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Abstract 
Water is an increasingly threatened resource. Anthropogenic input of nitrogen (N) to 
surface waters causes eutrophication, and N in the groundwater can be a threat to 
human health, hence management measures are needed. The aim of this thesis was 
to evaluate two types of systems for remediating N-polluted water using permeable 
reactive barriers by determining N removal efficiency, possible adverse effects, and 
the role of the microorganisms in the systems.  

Four projects evaluated denitrifying barriers, DBRs, for treatment of nitrate-
polluted water originating from the use of explosives in mining industry. Woodchip 
DBRs were found to be suitable for remediation of this type of water. Initial leakage 
of nitrite, ammonium and organic carbon was observed, the emission of nitrous 
oxide was small. Another study used barriers based on compost or woodchips in 
combination with aquifer recharge to replenish groundwater using ammonium-rich 
treated wastewater. One out of four barriers significantly removed ammonium from 
the wastewater, and instead nitrate was produced. All compost-based barriers 
released organic carbon, replacing one pollutant with another. 

The carbonaceous material in the permeable reactive barriers determined the 
composition of the microbial communities in the barriers; significantly different 
microbiomes developed depending on substrate type. Besides microorganisms 
capable of a range of N-transforming reactions, all barriers harboured groups of 
bacteria known for degrading macromolecules like cellulose. There were temporal 
and spatial patterns in the distribution the microorganisms, and the abundances of 
specific bacterial groups correlated to the chemistry in the water.  

Future studies should focus on how different types of carbon affect the N-
transforming processes, to maximise N-removal and minimise adverse effects.  

Keywords: permeable reactive barrier, denitrifying bioreactor, woodchips, 
denitrification, DNRA, microbial community, N transformation processes, passive 
wastewater treatment, functional gene abundance, nitrous oxide  
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Kväveomvandlande funktioner och mikrobiella samhällen i 
barriärsystem för behandling av kväveförorenat vatten 

Sammanfattning 
Vatten är dyrbar resurs som hotas alltmer. Människan släpper ut kväve i naturen, 

och konsekvenserna blir övergödning och potentiellt hälsofarligt grundvatten. 
Därför behövs åtgärder för att minska utsläppen. Syftet med denna avhandling var 
att utvärdera två system för att sanera kväveförorenat vatten med hjälp av kolrika så 
kallade permeabla reaktiva barriärer. Barriärernas kväveavskiljande effektivitet och 
deras eventuella negativa miljöeffekter studerades. Rollen hos de mikroorganismer 
i barriärerna som utför de biokemiska reaktioner som avlägsnar kvävet undersöktes.  

Denitrifierande barriärer med träflis som kolkälla användes för sanering av vatten 
som förorenats av nitrat vid användning av explosiva ämne i gruvindustrin. De 
visade sig vara lämpliga för rening av sådant vatten. Initialt observerades läckage av 
nitrit, ammonium och organiskt kol. Utsläppen av lustgas var små. En annan studie 
undersökte hur renat avloppsvatten kan användas för att skapa grundvatten genom 
att återfylla akvifärer. Då användes barriärer baserade på kompost alternativt träflis 
för att ta bort bland annat ammonium från vattnet. En av fyra barriärer reducerade 
mängden ammonium i vattnet, men i stället producerades nitrat. Organiskt kol 
lösgjordes från alla barriärer med kompost, så en förorening ersattes med en annan.  

Sammansättningen av de mikrobiella samhällen som utvecklades i barriärerna 
styrdes av vilket kolhaltigt material som användes. Signifikant olika mikrobiom 
utvecklades beroende på material. Alla barriärer hyste mikroorganismer som kan 
utföra olika kväveomvandlande reaktioner, dessutom grupper av bakterier som är 
kända för att bryta ner makromolekyler som cellulosa. Det fanns tidsmässiga och 
rumsliga mönster i distributionen av mikroorganismerna i barriärerna, och 
förekomsten av specifika bakteriegrupper korrelerade med vattenkemin.  

Framtida studier bör fokusera på hur olika typer av kol påverkar olika kväve-
omvandlande processer, för att maximera kväveavskiljning och minimera negativa 
effekter.  

Nyckelord: permeabel reaktiv barriär, markfilter, denitrifierande bioreaktor, träflis, 
denitrifikation, mikrobiellt samhälle, kväveomvandling, passiv vattenrening, 
abundans av funktionella gener, lustgas  
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Worldwide, water available for production of potable water, irrigation, and 
industrial use is a valuable, but increasingly threatened, resource. We need 
to improve how we use and manage water resources to avoid negative 
consequences for the environment and for human health. Several of the 17 
sustainable development goals, SDGs, in the United Nations´ (UN) 2030 
Agenda for Sustainable Development, directly concern water. Among them 
are SDG 14, Conserve and sustainably use the oceans, seas and marine 
resources for sustainable development, in which the first target is to prevent 
and reduce marine pollution of all kinds, including nutrient pollution. Goal 
number 13, Take urgent action to combat climate change and its impacts, 
includes drought, which has impact on water scarcity. In SDG 6, Ensure 
availability and sustainable management of water and sanitation for all, the 
indicator about safe treatment of domestic and industrial wastewater flows, 
is also directly related to parts of this thesis. However, the increasing 
population and expansion of urban areas (United Nations, 2019) together 
with climate change make the implementation of these goals a challenge. A 
variety of water management measures in agriculture, industry, and urban 
water handling, are required to minimise the anthropogenic impact on the 
environment and to provide a safe and sustainable water supply. 
Furthermore, a holistic view is needed, since all water is connected through 
the global water cycle (Fig. 1); water discharged as waste in the past becomes 
the valuable resource we use today.  

Many different compounds can contaminate water, and in this thesis, the 
focus is on nitrogen (N) compounds. The N-removal technology applied in 
the systems studied in this thesis is based on permeable reactive barriers. A 
permeable reactive barrier is a construction where contaminated water is 
forced to flow through a solid, reactive matrix and during passage, physical, 

1. Introduction 
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chemical, and biological mechanisms remove contaminants. Two permeable 
reactive barrier techniques for water treatment were studied: 1 – cellulose-
based denitrifying bioreactors for remediation of nitrate-polluted water 
originating from blasting operations and 2 – the addition of a reactive layer 
when recharging aquifers with treated municipal wastewater. The techniques 
share several features, for example, once established they are passive or 
semi-passive, they can handle large volumes of water and, relevant for this 
thesis, many of the processes leading to improved water quality after 
treatment are performed by microorganisms.   

1.1 Water resources 
There is not a global water shortage as such, despite the fact  that there is a 
finite amount of water on earth. Most of the water is saline, only 
approximately 3 % is freshwater, out of which 79 %,  is frozen or not easily 
available, for example hidden in underground water supplies, aquifers 
(olc.worldbank.org). This leaves us with less than 1 % of the Earth´s water 
available for use by society. The main use is food production, with 72 % of 
the withdrawn water used by agriculture, followed by 16 and 12 % for 
households and services in municipalities, and industry (United Nations, 
2021).  

 A highly simplified depiction of the natural water cycle is presented as 
the leftmost section of Figure 1. Energy from the sun drives the processes by 
which water enters the atmosphere through evaporation from land and sea 
surfaces and by transpiration from the vegetation. Subsequent condensation 
of the water vapour in the atmosphere allows it to fall back to the surface as 
precipitation. Through run-off, infiltration, and percolation, the water returns 
to water bodies and can again be re-cycled into the atmosphere. The 
rightmost part of Figure 1 illustrates how water is used for food production 
and industrial processes, and additionally how it can be reused before being 
returned to the environment.  
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Figure 1. The water cycle. Water is withdrawn from the natural water cycle (left) and 
used in society (right). Before returning the water, it can be reclaimed and used several 
times. 

Reusing the water will become increasingly important as the demand for 
water and the available water resources do not match geographically, and the 
gap between supply and demand will get bigger. In the most recent (2022) 
version of the UN publication World Population Prospects, it is predicted that 
the world population will continue to grow. The increase will be 
concentrated to cities, meaning that by 2050, 6.6 billion of the estimated 9.7 
billion people will live in urban areas (United Nations, 2019; 2022a). 
Further, regions already suffering from limited water availability,  for 
example sub-Saharan Africa, India, Pakistan, and Indonesia are among those 
where the population will increase the most (UN-Water, 2021; United 
Nations, 2019; 2022a). Local water scarcity is already a reality, and climate 
change and global warming will exacerbate the situation. The need for water 
has led to the development of a range of techniques to replenish groundwater 
by aquifer recharge. Resources as surface water, rainwater, and greywater 
can be used for this purpose, and the techniques are in use worldwide (Bekele 
et al., 2018). 

1.2 Nitrogen as a pollutant 
Nitrogen is essential for life but can at the same time be an environmental 
problem and a threat to human health. Globally, N originating from human 
activities causes eutrophication, algal blooms, and hypoxia in aquatic 
systems, and river basins in all continents have degraded water quality due 
to N pollution (Giri, 2021). In coastal ecosystems, anthropogenic inputs of N 
and phosphorous during the last century has been the primary cause of 
eutrophication and the trend might be ”the most widespread anthropogenic 
threat to the health of coastal ecosystems” (Malone and Newton, 2020). 
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Human activities have also been shown to cause elevated N concentrations 
in aquifers around the world, which is a threat to human health as nearly one 
third of the population is depending on groundwater for drinking water 
(Arauzo et al., 2022; United Nations, 2022b). The situation today is a legacy 
from decades of excessive N fertilization in agriculture around the world, and 
nitrate pollution of groundwaters and surface waters is now a global issue 
(Bijay-Singh and Craswell, 2021). In this thesis, papers I – III and V have 
direct implications for, but are not limited to, mitigating N release to 
watercourses in northern Sweden and the Bothnian Bay (the northernmost 
sub-basin of the Baltic Sea), whereas paper IV has implications for N 
pollution of groundwater.  

1.2.1 Status of European waterbodies  
There is a plethora of reports and data compilations describing the status of 
European waterbodies, for example from the European Commission (EC), 
the European Environment Agency (EEA) and the Baltic Marine 
Environment Protection Commission (aka the Helsinki Commission, 
HELCOM). Additionally, different approaches for assessments (European 
Commission, 2021) and for methods establishing threshold and background 
values for individual chemicals, including those for nitrate, vary between 
countries, making it difficult to get a complete picture of the situation. 

Surface waters are characterised by their  ecological and chemical status 
(EEA, 2018). The ecological status includes the level of eutrophication, and 
one of the eutrophication classification systems used, HEAT+, results in five 
levels from “high” to “bad” (HELCOM, 2009; Andersen et al., 2011). Input 
of N to the Baltic Sea sub-basins has decreased by 9 – 21 % in recent years, 
but the eutrophication status assessment based on data between 2011 and 
2015 shows that 97 % of the surface area in the Baltic Sea is eutrophied (Fig. 
2; HELCOM, 2017). Lack of data for many sections of European coasts and 
open seas,  leave significant areas without assessment of present 
eutrophication status (Fig. 2; EEA 2019; European Commission, 2021). 
There is, however, data on the ecological status of surface water bodies 
(EEA, 2018) showing that Europe has regions with severely impacted rivers, 
lakes, and coastal areas, most likely impacting the marine environments 
receiving water from those water bodies. 
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Figure 2. Eutrophication status in European waters, assessed with the HEAT+ tool. Map 
retrieved 2022-06-21 (www.eea.europa.eu/data-and-maps/figures/). Figure text and 
legend are modified for readability. 

Groundwaters are not assessed according to ecological status, but according 
to their chemical status (EEA, 2018). The status can be “good”  or “failing 
to achieve good” and there are regions in Europe where more than 50 % of 
the groundwater areas do not have the status “good” (Fig 3). 
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Figure 3. River basin groundwater chemical status in Europe (2015 – 2018 assessment). 
Map retrieved 2022-06-21 (www.eea.europa.eu/data-and-maps/figures/). Figure text and 
legend are modified for readability. 

Overall, the proportion of groundwater body areas with poor chemical status 
was 25 % with an additional 31 % at risk of not achieving the status “good” 
in the assessment covering the time period of 2015 – 2018 (EEA, 2018). The 
main pollutant causing the poor chemical status was nitrate. Depending on 
time period assessed, 14 % – 18 % of the groundwater stations/body areas 
had nitrate levels exceeding 50 mg nitrate per litre, the EU standard for 
drinking water.  

Despite efforts in mitigating the input of N to the environment, resulting 
in slight improvements in the ecological and chemical status of European 
waterbodies, the nutrient situation in European waters remains generally 
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poor. Measures to decrease anthropogenic N input to the environment are 
needed. 

1.2.2 Sources of nitrogen – Europe and the Baltic Sea 
Data available for Europe during the last ten years, estimates agriculture to 
be responsible for in average 77 % (ranging between 22 % and 99 %) of the 
total load of N into the environment (European Commission, 2021). 
Intensified fertilisation to increase food production has led to leaching of 
reactive N, causing high levels of nitrate in water bodies (Tilman et al., 2011). 
Nitrate is highly soluble in water and easily leach out from the soil if not 
assimilated by the crop. Background leaching from other types of terrestrial 
systems is another diffuse N source, while industries, wastewater treatment 
plants (WWTPs), and land-based recirculating aquacultures are examples of 
point sources of N. The relative contribution of the different N sources varies 
with region, here exemplified with data from the Baltic Sea. The net load of 
N to the Baltic Sea is dominated by diffuse background N input in the 
Bothnian Bay and the Bothnian Sea, and background input constitutes a 
considerable part of the net load also in Baltic Proper and Kattegat (Fig. 4).  
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Figure 4. Sources to net load of N in the six Baltic Sea Basins 2017. WWTP = wastewater 
treatment plant. Figure re-drawn from the report 2019:20, The Swedish Agency for 
Marine and Water Management, with permission. 

The anthropogenic input of N to the Baltic Sea was approximately 50 000 
tonnes per year in 2017 (Fig. 4, sum of the non-background sections of the 
bars), unchanged from 2014 (Hansson et al., 2019). Industry and WWTPs 
contribute approximately 50 % in the two northernmost sub-basins of the 
Baltic Sea while input from agriculture dominate in the south (Fig. 4). 

Another important source of N to the environment is wastewater, and 
during the 20th century, discharge of wastewater accounted for a high 
increase in the global nutrient transport of N (Preisner et al., 2021). The N in 
fresh domestic wastewater is mainly organic N compounds and ammonium, 
originating from protein metabolism in the human body. Depending on 
circumstances, it may be necessary to remove the N to meet specified criteria 
before the water is discharged. According to the EU directive 91/271 
(European Commission, 1991), member states shall provide collecting 
systems for urban wastewater from agglomerations bigger than 2 000 
population equivalents (the organic biodegradable load having a five-day 
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biochemical oxygen demand of 60 g of oxygen per day), and the collected 
water must undergo treatment.  

In a conventional WWTP, this can be described as sedimentation of 
suspended solids to remove a fraction of the solids and reduce the organic 
biodegradable material (primary treatment), and a biological process to 
further remove solids and organic material (secondary treatment). Secondary 
treated wastewater is a potential water source for recharge of aquifers, but it 
still contains N, mainly in the form of ammonium. It also has various levels 
of organic micropollutants, OMPs, since the most widely used secondary 
treatments are not designed for removing recalcitrant carbon compounds 
(Loos et al., 2013; Petrie et al., 2015). If the water is to be used for aquifer 
recharge, the presence of N and OMPs is undesirable. If the water is to be 
discharged into water bodies that are or in the near future risk of being 
eutrophic, or is a water body intended for drinking water, it must be subjected 
to more stringent treatment in order to meet additional criteria regarding N 
and phosphorous (P) (European Commission, 1991). This requires steps 
specifically removing N and P (tertiary treatment, nutrient removal). 
Although urban wastewater treatment has improved over the last 30 – 40 
years in Europe, WWTPs contribute up to 40 % of the anthropogenic N input 
to the Baltic Sea (Fig. 4)  with large variation among the European member 
states. While in 2020, 69 % of the urban population in the EU were connected 
to WWTPs having nutrient removal, there were countries where most of the 
urban sewage was discharged without any treatment steps, or not even 
collected (eea.europa.eu). Furthermore, large rural areas with settlements 
having less than 2000 population equivalents are not regulated by the EU 
directive. In many of these areas, sewage systems do not exist, and individual 
or small on-site wastewater treatment solutions are used. The use of small 
systems is regulated in each member country, and the requirements vary 
substantially. 

Nitrogen discharge to inland watercourses across Sweden is mainly from 
pulp and paper-, mining-, and metal industries, while direct N discharge to 
Swedish coastal waters is dominated by the pulp and paper industry (Fig. 5).  
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Figure 5. Distribution of N discharges  from industry to Swedish waters in 2018. a) 
discharge to inland waters, b) discharge to coastal water. Data retrieved from Statistics 
Sweden (scb.se) 2022-06-02. 

Until recently, blasting and the use of the explosive ANFO (Ammonium 
Nitrate mixed with Fuel Oil) was relatively overlooked as a N-source (paper 
I). During blasting operations in mining industries, quarries and at 
construction sites, not all explosives loaded in the bore holes detonate, and 
the ammonium nitrate is readily dissolved in the infiltrating groundwater, as 
is spillage during handling. Undetonated explosives are also adsorbed to the 
waste rock at mine sites and subsequently washed out from waste rock 
deposits (Nilsson and Widerlund, 2017). Yet another route for the 
ammonium nitrate is via the processing plants at mine sites, where it is 
washed out from the ore during the milling, separation, and flotation 
processes. The typical routes for water transport at an underground mine are 
depicted in Figure 6. As sublevel caving occurs below the groundwater table, 
the upwelling surface- and groundwater need to be removed from the mine. 
The water is transported to reservoirs via underground pump stations and is 
subsequently used in the processing plants. From the plants, the tailings 
slurry is pumped to a pond where the tailings are deposited. The water then 
flows into a clarification pond where it is retained before being recirculated 
to the reservoirs or being discharged to the receiving waters. 
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Figure 6. Water flows at a sublevel caving mine site. Points where nitrogen enters the 
flow paths are depicted with yellow circles.  

1.3 Aim and objectives 
The aim of this thesis was to investigate treatment capacity, the role of 
microorganisms, and possible adverse effects in systems for remediating N-
polluted water using permeable reactive barriers. Ultimately, this will 
support improved design of such systems for different applications. Two 
systems were studied: cellulose-based bioreactors treating nitrate-polluted 
water from mining activities (papers I – III and V), and reactive barriers as 
a supplement to managed aquifer recharge for treating ammonium-rich 
effluent from a municipal wastewater treatment plant (paper IV). 

In paper I, the objectives were to determine the treatment capacity of the 
first described cellulose-based bioreactor for nitrate-polluted mine water and 
to determine the abundance and distribution of denitrifying and anammox 
bacterial communities to determine the potential for heterotrophic and 
autotropic N removal processes, respectively. Additionally, we evaluated if 
there were preferential flow paths in the bioreactor. Since the sawdust used 
in paper I could not support N removal without acetate addition, the 
objectives of paper II were  to evaluate three alternative cellulose-based 
bioreactor substrates for their suitability as electron donors for denitrification 
at low temperature in a laboratory experiment. Additional objectives were to 
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analyse the temporal succession of the microbial communities in the three 
substrates in relation the nitrate removal rates and formation of unwanted 
products like ammonium, nitrous oxide, and nitrite . In papers III and V, we 
investigated full-scale woodchip denitrifying bioreactors over two 
operational years treating two types of nitrate-polluted water from mining 
activities: water from a tailings pond and leachate from waste rock dumps, 
respectively. The objectives were to relate bioreactor performance to 
temporal and spatial changes in the overall microbial communities and 
genetic potential for N transformation processes affecting N removal 
efficiency as well as the formation of unwanted products in the water and 
woodchips of the bioreactors. Finally, paper IV focused on another 
application of permeable reactive barriers for treating N polluted water. The 
first objective was to determine the N-removal efficiency of barriers based 
on compost or woodchips when infiltrated with water having a high 
concentration of ammonium prior to aquifer recharge. Secondly, to 
determine the abundances of functional groups involved in N transformation 
processes and describe the development of the bacterial community structure 
in the barriers in relation to barrier performance. 
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Depending on the origin and type of water, dissolved N species can have 
different forms. Nitrogen has seven oxidation states, from +5 in nitrate to -3 
in ammonia, ammonium and when bound in organic compounds. The 
reactions transforming N from one form to another are mediated by 
microorganisms, but abiotic photo- and thermochemical reactions also occur. 
These geochemical processes are connected in a complicated network, where 
many of the reactive inorganic N compounds are utilised in different 
pathways (Hallin et al., 2018; Kuypers et al., 2018) . In addition, N is 
assimilated, incorporated into biomass, by all organisms and subsequently 
mineralized to ammonium again during decay.  

2.1 Microbial N-transforming processes 
Under anoxic conditions, microorganisms can permanently remove N from 
water. Here, nitrite is a key compound, and the mechanism by which nitrite 
is reduced determines whether the N will be removed from the water or not. 
Nitrite can undergo denitrification or anaerobic ammonia oxidation 
(anammox), both leading to the formation of gaseous N compounds leaving 
the water. Alternatively, nitrite is reduced via dissimilatory nitrate reduction 
to ammonium (DNRA), leading to the formation of ammonium and the N will 
be retained. Since anammox involves oxidation of ammonium, the pathway 
removes both ammonium and nitrite. Under oxic conditions, ammonium can 
be removed by nitrification, but as nitrate is formed in the process, the N 
remains in the water. The size of the microbial communities performing 
specific N-transformation processes can be estimated by quantifying marker 
genes for the processes. Figure 7 shows which genes have been used as 
genetic markers in this thesis. The chemical reactions shown in sections 2.1.1 

2. Microbial nitrogen removal from water 
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– 2.1.4 are schematic and not balanced and hydrogen and oxygen atoms are 
omitted if not bound to N.    

 

 
Figure 7. Schematic representation of microbial N transformation processes. Marker 
genes for the respective processes used for estimating the abundances of the functional 
microbial groups involved are indicated by italicised text. Intermediate reaction products 
are not shown. 

2.1.1 Denitrification 
Denitrification is one of the dominant biogeochemical processes involved in 
removal of N from terrestrial and aquatic ecosystems (Burgin and Hamilton, 
2007; Devol, 2015), including its use in wastewater treatment plants. It is an 
anaerobic four-step pathway in which soluble nitrate is reduced to gaseous 
compounds:  

 
                                                         nir                               nosZ 

NO3
-  →  NO2

-  →  NO  →  N2O  →  N2 
 

Denitrifiers are found in nearly all environments that occasionally receive 
oxygen to some extent (Shapleigh, 2013) and there are denitrifiers in all three 
domains of life. Most of the cultured bacterial denitrifiers belong to the 
Proteobacteria (Philippot et al., 2007; Shapleigh, 2013), but there are also 
members in several other phyla, for example in Firmicutes and Bacteroidetes 
(Graf et al., 2014). In the domain Eukarya, denitrification has been described 
in fungi (Shoun et al., 1992; Maeda et al., 2015; Xu et al., 2019) and in 
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Foraminifera (Risgaard-Petersen et al., 2006; Woehle et al., 2018). 
Denitrification is most often used as a facultative respiratory process, 
producing ATP when oxygen is limiting. Since the reduction of nitrogen 
oxides conserves less energy than the reduction of oxygen, denitrification is 
most often downregulated in the presence of oxygen (Chen and Strous, 
2013). The process is therefore triggered by low oxygen tension and the 
availability of a nitrogen oxide that can serve as electron acceptor. Most 
denitrifiers are heterotrophs and use organic compounds as electron donors, 
but some are autotrophs and use inorganic molecules as reducing agents, 
such as sulphur compounds or metals (Kumaraswamy et al., 2006; Herrmann 
et al., 2017; Xing et al., 2018). It has become clear that denitrification is 
modular; microorganisms harbour different sets of the genes encoding for 
the enzymes needed for catalysing all four steps in the reaction (Zumft 1997, 
Graf et al., 2014).  Complete denitrification by a single organism might be 
the exception rather than the rule (Kuypers et al. 2018).  

The second step, reduction of nitrite to nitric oxide, is the defining step 
for denitrification, in which an inorganic N compound is converted from a 
soluble to a gaseous form (Shapleigh, 2013). The reaction is catalysed by the 
iron- or copper-dependent nitrite reductase, encoded by nirS or nirK, 
respectively. The two genes are commonly used as marker genes for 
denitrification (Henry et al., 2004; Throbäck et al., 2004). In the last step, the 
reduction of nitrous oxide (N2O) produces N2, and the reaction is catalysed by 
nitrous oxide reductase, encoded by nosZ. The clade I and clade II nosZ 
genes are used as marker genes for the N2O reduction (Henry et al., 2006; 
Jones et al., 2013).  

2.1.2 Anaerobic ammonia oxidation – anammox 
Anammox includes the oxidation of ammonium with nitrite as electron 
acceptor through a series of reactions that take place in a membrane bound 
structure, the anammoxosome, in anammox bacteria (Mulder et al., 1995; 
Dietl et al., 2015; Maalcke et al., 2016). The end products of anammox are 
N2 and water:  
 

NO2
-  →  NO 

                                       hdh 
NO  +  NH4

+  →  N2H2  →  N2 
 



28 

Anammox is only found in five genera in the phylum Planctomycetes (Dietl 
et al., 2015; Jetten et al., 2015). Ecologically, it has become evident that 
anammox plays an important role in the oceans and in oxygen minimum 
zones, where it contributes substantially to nitrogen removal (Dalsgaard et 
el., 2005). The anammox bacteria are autotrophs and their growth is favoured 
by the absence of organic carbon sources (González-Cabaleiro et al., 2015). 
The last two decades, the process has been implemented in wastewater 
treatment plants (Jetten et al., 2002; Hauck et al., 2016; Weralupitiya et al., 
2021). Thanks to the restricted phylogeny of anammox bacteria, it is possible 
to use part of the 16S rRNA gene as a molecular marker for the process 
(Tsushima et al., 2007; Yang et al., 2020). However, the gene hdh, catalysing 
the step converting hydrazine to N2 is a better marker as it targets a functional 
gene in the anammox process (Schmid et al., 2009). Both markers have been 
used in the papers in this thesis.  

2.1.3 Dissimilatory nitrate reduction to ammonium – DNRA 
The process DNRA reduces nitrate to ammonium and can be performed by 
many microorganisms, including taxa within most bacterial lineages, 
methane-oxidising archaea, and by some diatoms and fungi (Kamp et al., 
2015; Kuypers et al., 2018). DNRA is favoured by high C/N ratios and 
reducing conditions (Kraft et al., 2014; Hardison et al., 2015), and is for 
example found in soil, wetlands, peatlands, sediments, and aquaculture 
systems (Christensen et al., 2000; Song et al., 2014; Putz et al., 2018). Many 
DNRA bacteria are also fermenting (van den Berg et al., 2017). 

 
                                                              nrfA 

NO3
-  →  NO2

-→  NH4
+

 

 
The reduction of nitrite in DNRA is catalysed by the formate dependent nitrite 
reductase encoded by the nrfA gene (Einsle et al., 1999) and nrfA is used as 
marker gene for DNRA (Mohan et al., 2004; Welsh et al., 2014).  

2.1.4 Nitrification 
Nitrification stepwise oxidises ammonia to nitrate under oxic conditions 
(Caranto and Lancaster, 2017). Ammonia oxidation can be performed by 
either ammonia-oxidising bacteria (AOB) in the classes Beta- and 
Gammaproteobacteria, by ammonia-oxidising archaea (AOA) in the phylum 
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Thaumarchaeota, and by bacteria with capacity for complete ammonia 
oxidation (comammox). The Nitrospira within the phylum Nitrospirae is the 
so far only known genus to include comammox (Daims et al., 2015). The 
enzyme catalysing oxidation of ammonia is encoded by the amoA gene 
(Rotthauwe et al., 1997). It has been demonstrated that N2O can be formed 
from hydroxylamine and during nitrifier denitrification, when ammonia 
oxidisers reduce nitrite,  making nitrification a potential source of N2O 
(Caranto et al., 2016). Nitrate is formed from nitrite by nitrite-oxidising  
bacteria (NOB), found among Alpha- and Gammaproteobacteria.  

 
                                     amoA 

NH3  →  NH2OH  →  NO →  NO2
-  →  NO3

- 
 
Ammonia-oxidising organisms are ubiquitous and can be found in freshwater 
and marine habitats, in different types of soil, in hot springs and in 
wastewater treatment plants (Lehtovirta-Morley, 2018). Nitrite-oxidising  
bacteria are unequally distributed in the environment. Nitrospira is the most 
diverse genus and can be found in multiple habitat types, while other NOB 
are more restricted in their occurrence (Daims et al., 2016).  
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3.1 Denitrifying cellulose-based bioreactors 
A cellulose-based denitrifying bioreactor is a type of permeable reactive 
barrier. The terms denitrifying bioreactor, DBR, and bioreactor, will be used 
interchangeably in this text, and if needed, the reactive material will be 
specified. The reactive material in a cellulose-based DBR is a porous, plant-
derived organic material. A DBR removes nitrate from nitrate-polluted water 
by converting it to N2 during the passage through the reactive material. The 
reactive material is also named the substrate, since it supplies the system with 
organic carbon compounds that are used as electron donors when the nitrate 
is reduced to gaseous nitrogen compounds via denitrification by denitrifying 
microorganisms. In addition, the substrate serves as a surface for biofilm 
growth (Zhong et al., 2020). The construction can be in the form of walls, 
layers, compartments or beds, and which design to choose depends on if the 
water to be treated is diffuse or concentrated, on hydrologic conditions and 
of the specific site constraints (Schipper et al., 2010). Denitrifying 
bioreactors can be constructed and operated at relatively low cost and in the 
last 15 years the technique has been well established (Christianson and 
Schipper, 2016; Christianson et al., 2021). Today, there is good knowledge 
about how design parameters and environmental conditions affect the N 
removal efficiency and rate (Addy et al., 2016; Christianson et al., 2021) and 
research is ongoing on how to deal with seasonable variability in water flow 
or extreme flows caused by storm events (Pluer et al., 2019; Maxwell et al., 
2022). There is increasing knowledge about how to avoid the production of 

3. Cellulose-based bioreactors and reactive 
barriers –  design aspects 
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environmentally detrimental compounds such as greenhouse gases and 
ammonium.   

3.1.1 Applications 
The first field-scale cellulose-based denitrifying constructions were walls 
remediating septic tank effluents and groundwater (e.g. Robertson and 
Cherry, 1995; Schipper and Vojvodic-Vukovic, 2001). Today, the main 
application for DBRs is to treat agricultural drainage and there are several 
reports on field-scale bioreactors in use in areas with intense farming, for 
example in the U.S. (Hassanpour et al., 2017; Jang et al., 2019), New Zealand 
and Australia (Robertson et al., 2009; Long et al., 2011) and Europe (Jéglot 
et al., 2021a). In recent years, the use of DBRs have been extended to treating 
nitrate-rich effluent from aquaculture (Lepine et al., 2016; von Ahnen et al., 
2018; Aalto et al., 2020) and treating  stormwater and residential wastewater 
((Lynn et al., 2015a; Lopez-Ponnada et al., 2017). With the papers I, II, III 
and V in this thesis, we contribute to broadening the application range for 
DBRs to include the mining industry, where nitrate in the process water and 
in leachate from waste rock dumps can be removed before discharge to 
recipient waters (Table 1).  
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Table 1. Cellulose-based bioreactors treating water from mining industry studied in this 
thesis. Values are approximate. Removal rate refers to per m-3 pore volume of the reactor. 
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II wood-
chips 

0.54 x 
10-3 

0.48 x 
10-3 

6.0 – 7.2a 10 pond 37 – 52a  1.5 a  

II barley 
straw 

0.54 x 
10-3 

0.51 x 
10-3 

1.8 – 2.2a 10 pond 42 – 44a  5.1 a 

II bottle 
sedge 

0.54 x 
10-3 

0.48 x 
10-3 

1.7 – 1.8a 10 pond 46 - 51 a 6.4 a 

I saw-
dust 

27 5.4 0.5 – 1.2b 15 – 22  pond 14 – 47 c  NA 

III wood-
chips 

210 113 1 – 2.6  3 – 17  pond  9.7/ 
5.5 d 

V wood-
chips 

277 201 7.5 2 – 3  leachate 80/65 d 6.0/ 
4.2d 

a  after day 120  
b  depending on discharge pipe used 
c  before addition of acetate 
d  first and second full operational year, respectively 

3.1.2 Nitrate removal performance 
Since the first installations of DBRs in the 1990s, research has focused on 
how to dimension and design bioreactors to handle variations in flow and 
nitrate concentrations and at the same time promote a high removal 
efficiency. As a result, the US Department of Agriculture has issued a 
conservation practice standard for denitrifying bioreactors (USDA, 2020) in 
which it is stated how to construct a bioreactor and what considerations are 
needed regarding for example inflow nitrate levels, carbon source and 
topology of the site where the bioreactor is to be placed.  

Hydraulic retention time and temperature  
Hydraulic retention time (HRT) and temperature are the two most important 
factors determining N removal efficiency (Addy et al., 2016; Grießmeier et 
al., 2021). In general, longer HRTs give higher N removal efficiencies (Addy 
et al., 2016; Hoover et al., 2016; Martin et al., 2019; Audet et al., 2021), but 
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excessive HRTs are not recommended as the system becomes depleted in 
nitrate allowing other biogeochemical processes to take place (Lepine et al., 
2016; Davis et al., 2019; Rivas et al., 2020; Audet et al., 2021). None of the 
studies in this thesis were designed to evaluate HRT in relation to 
performance, HRTs were set to meet other criteria. In papers I and III,  HRTs 
between 12 and 60 h were chosen, retention times  used in many bioreactors 
treating agricultural drainage. It was possible to maintain a constant and high 
flow since pond water was used, and there was unlimited availability of water 
at the two field sites. The bioreactor in paper V instead treated leachate from 
a waste rock pile. According to recommendations (USDA, 2015) the reactor 
was dimensioned to treat 60 % of the annually generated leachate volume. 
The volume of the leachate was estimated from hydrological data, but less 
leachate than estimated was generated. Hence, during the first operating year, 
there was not enough water and the system experienced longer HRTs, 7.5 
days, than it was dimensioned for. In paper II, the flow was adjusted so that 
stable nitrate removal but not nitrate limited conditions would occur and that 
was achieved with an HRT of 6 – 7 days. 

Temperature affects the N removal performance, as chemical reactions 
are affected by temperature, and the differences in temperature within and 
between the DBRs studied in this thesis could be among the factors 
contributing to differences in performance. The lab-scale bioreactors in 
paper II were kept at constant temperature and the field reactor in paper V 
had an underground water reservoir that kept the water at the same 
temperature all year around. The other bioreactors were affected by 
variations in ambient temperature. According to several studies, the N 
removal rate is approximately doubled per 10 °C in bioreactors with 
temperatures between 5 and 30 °C, consistent with general theories on 
activation energy (Addy et al., 2016; Hoover et al., 2016; Nordström and 
Herbert, 2017). That temperature range is reasonable in agricultural 
applications, but efficient N removal at lower temperatures might be needed 
to treat mining impacted water in cold areas. To my knowledge, no woodchip 
DBR operating under a permanently low  temperature (< 3 °C) has been 
described until now (paper V), where we show that a high N removal 
efficiency is possible even at 2 – 3 °C.   

Carbon source and inflow nitrate concentration 
The choice of reactive material, the substrate, in a DBR is a balance between 
many factors since the availability of carbon is a prerequisite for 
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heterotrophic denitrification to take place. Woodchips have become the 
hallmark, for several reasons. They are cheap and easily available, have good 
hydraulic properties, a high enough reaction rate and can last at least a decade 
(Robertson et al., 2008; Cameron and Schipper, 2010; Schipper et al., 2010; 
Christianson et al., 2021). Initially, many of the systems described, mostly 
denitrifying walls, used sawdust (Robertson and Cherry, 1995; Schipper and 
Vojvodic-Vukovic, 2001). The pilot-scale bioreactor in paper I was based 
on sawdust, and to increase the permeability the sawdust was mixed with 
gravel. Schmidt and Clark (2013) showed that sawdust and woodchips are 
comparable in terms of reactivity, but that the ratio of organic material to 
sand correlated with nitrate removal. The bioreactor in paper I did not reach 
sufficient removal efficiency until an external carbon source in the form of 
acetate was added, and a possible explanation is that the proportion of 
sawdust was too low for an efficient N removal. 

The role of carbon quality in DBRs has gained increased attention (Ghane 
et al., 2018; McGuire et al., 2021) and many other plant-derived substrates 
have been tested for their suitability as electron donors. Moreover, the 
possibility of using waste products or material available locally has been 
important when considering which material to choose. With that in mind, we 
evaluated sedge in one set of the laboratory bioreactors in paper II. The 
material has previously not been tested as an electron donor and was locally 
available in large quantities. We also aimed at using a substrate having higher 
proportions of hemicellulose and cellulose than woodchips. Hemicellulose 
and cellulose are the easier degradable polymers among lignin, cellulose, and 
hemicellulose, the three main constituents of plant fibres (Ahmad et al., 
2007). Consistently with many other non-woody plant-based substrates 
evaluated for their nitrate removal capacity (Della Rocca et al., 2006; 
Greenan et al., 2006; Fowdar et al., 2015; Feyereisen et al., 2016; Pang and 
Wang, 2021), the sedge and barley straw bioreactors supported higher nitrate 
removal rates than the woodchip bioreactors. We attribute at least part of the 
higher removal in the sedge and straw bioreactors to the  higher content of 
hemicellulose and cellulose in sedge and straw. Although we did not measure 
the concentrations of dissolved organic carbon (DOC) in the water of the 
bioreactors, it is likely that the more labile cellulose and hemicellulose 
contributed to higher DOC concentrations and hence supported the higher 
removal rates in the bioreactors packed with sedge and straw. Similarly, 
increased nitrate removal rates were observed when using the more labile 
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carbon source potato residues in combination with woodchips when treating 
aquaculture effluent (Kiani et al., 2020).  

In the two systems described in this thesis where we have carbon data 
from the water phase, we see a relationship between carbon, performance, 
and age of the system. The observations agree with the findings of for 
example Hassanpour et al. (2017), David et al. (2016), and the meta study of 
Addy et al. (2016) based on 57 bioreactors. Initially, the N removal rate is 
high, it declines with age of the woodchip bed, and after 1 – 3 years, the 
removal rate stabilises. Interestingly, David et al. (2016) showed that the 
impact of carbon quality overruled the impact of temperature. They found no 
relationship between temperature and nitrate removal rate until after two 
years, when the load of DOC in the outlet water of the bioreactor had 
decreased substantially. The same relation between woodchip age, nitrate 
removal rate and temperature was demonstrated in a paper analysing 
previously published datasets (Maxwell et al., 2020). Accordingly, the 
woodchip DBR in paper III removed N at a higher rate the first year 
(Nordström and Herbert, 2019) and there was a strong negative correlation  
between the concentrations of total organic carbon and nitrate in the pore 
water along the distance of the reactor (Spearman´s rho = -0.94 and -0.67, p 
< 0.0001 and 0.001 the first and second operational year, respectively, Fig. 
8).  
 

 
Figure 8. Nitrate (a) and total organic carbon (b) lengthwise at the bottom of the 
bioreactor. Based on data presented in Fig. 1 in paper III. 

In paper V, the concentrations of DOC in the outlet water of the woodchip 
DBR were highest at start-up, fall 2018, and the highest N removal efficiency 

0

5

10

15

20

25

0 10 20 30
Distance from inlet (m)

N
O

3 
(m

g 
L-1

)

a

5

10

15

20

25

0 10 20 30
Distance from inlet (m)

TO
C

 (m
g 

L-1
)

b

Year

2015

2016



37 

was obtained during this period (paper V, Fig. S1d and a). Another factor 
contributing to the high  N removal of the bioreactor in paper V during the 
first months is likely the high concentrations of nitrate in the incoming water. 
Several studies have shown that a high N load results in high removal rates 
(Addy et al., 2016; Nordström and Herbert, 2019; Rivas et al., 2020).  

3.1.3 Adverse effects 
There is a potential risk of pollution swapping, to increase one pollutant as a 
result of a measure introduced to reduce another, when using DBRs for nitrate 
removal (Hartfiel et al., 2022). Ideally, the nitrate will undergo full 
denitrification and be converted to N2, but non-complete denitrification leads 
to the production of N2O, and the processes DNRA retains N in the form of 
ammonium. Additionally, nitrite can be accumulated if the rate of nitrite 
production exceeds the rate of  nitrite reduction.  

Nitrous oxide, methane, and hydrogen sulphide production 
It has been estimated that up to 10 % of the reduced nitrate leaves DBRs in 
the form of N2O (Greenan et al., 2009; Healy et al., 2012; Feyereisen et al., 
2016; Davis et al., 2019) and the majority of the N2O is found dissolved in 
the water (Warneke et al., 2011a; Davis et al., 2019). Hydraulic retention 
time is one important factor controlling N2O production (Davis et al., 2019; 
Audet et al., 2021; Jéglot et al., 2022), but temperature, carbon source and 
nitrate removal efficiency (Feyereisen et al., 2016; Nordström and Herbert, 
2018; Grießmeier et al., 2021) are additional factors impacting the amount 
of N2O formed. Conditions favouring N2O production are short HRTs, low 
temperature, and low removal efficiency. The origin of the woodchips 
mattered when tested in denitrifying walls, where woodchips from hardwood 
produced higher N2O fluxes (Manca et al., 2020). The bioreactors in papers 
III and V both emitted N2O from the reactor surface. Comparisons on how 
big the contributions from nitrate-treating bioreactors are in relation to the 
emissions from agriculture are difficult since it is complicated to estimate the 
N2O fluxes from agricultural land (Lawrence et al., 2021). However, given 
the size relation between agricultural land and a bioreactor, the overall 
contribution from DBRs is likely small. It can be further noted that covering 
the reactor surface with soil lowers the amount of N2O emitted (Christianson 
et al., 2013a; Manca et al., 2021). Our field-scale bioreactors (papers III and 
V) were covered, with glacial till or till and peat, which makes it difficult to 
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evaluate these systems in relation to previously described ones. It might be 
more relevant to look at the N2O dissolved in the water of the reactor and 
determine if the bioreactor produces or consumes N2O. Both field-scale 
bioreactors produced N2O the second year, but data was highly variable and 
during the first operational year, the bioreactor in paper V instead consumed 
N2O.  

Production of methane, also a potent greenhouse gas, can take place under 
reducing conditions and low levels of nitrate. Such conditions might occur 
at the start-up of a bioreactor due to high levels of DOC, but when methane 
has been detected in DBRs, it is in most cases transient (Nordström and 
Herbert, 2018) or in low concentrations (Warneke et al., 2011a; Jéglot et al., 
2022). However, with other substrate types than woodchips, higher methane 
emissions have been reported (Healy et al., 2012). The bioreactor in paper 
V had neglectable fluxes of methane, and in most cases, methane was 
consumed, not produced. 

Yet another gaseous undesired product that may form in a DBR if sulphate 
is present, is hydrogen sulphide, H2S. Hydrogen sulphide is ecotoxic and can 
be formed if the system is anoxic and depleted of nitrate, and it has been 
observed in DBRs treating different types of water. Lepine et al. (2016) noted 
that prolonged N-limitation intensified the formation of sulphide at high DOC 
concentrations and temperatures around 20 °C in a reactor treating 
aquaculture wastewater and Rivas et al. (2020) detected the production of 
H2S from its characteristic odour at low water flows in a system treating 
agricultural drainage. Very long retention times in a system for stormwater 
treatment also led to the reduction of sulphate and H2S formation (Lynn et 
al., 2015). The water sampled near the outlet of the bioreactor in paper V 
had a clear smell of H2S on some occasions the first summer when the flow 
was very low, and no nitrate was detected in the water. 

Production of nitrite, ammonium, and leaching of dissolved organic carbon 
Accumulation of nitrite in denitrifying bioreactors has been observed during 
the start-up phase (Warneke et al., 2011a), and the same trend was observed 
in all DBRs studied in this thesis. Ammonium production in the bioreactors 
was in general low, with concentrations in the outlet water most often < 0.5 
mg N L-1. The sedge- and straw-based laboratory-scale bioreactors in paper 
II though, displayed a significantly higher production of ammonium than the 
corresponding woodchip reactors. Ammonium levels in the outlet of both 
woodchip and other type of reactors are found, but have been shown to 
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decrease after some time (Greenan et al., 2006; Cameron and Schipper, 
2010) and steady state ammonium levels of 1 – 6 mg N L-1 have been reported 
(Healy et al., 2012).  

The release of dissolved organic matter from a bioreactor is an 
environmental risk since it can result in low oxygen levels in the receiving 
water bodies when the material is later degraded. The initial flush of DOC 
typically observed from woodchip DBRs (Hoover et al., 2016) or from 
reactors with a variety of other cellulose materials, decline and stabilise with 
time (Cameron and Schipper, 2010; Grießmeier and Gescher, 2018). And 
this pattern was noted also in the reactors of papers III and V. 

Other concerns about DBR effluent were addressed by Lepine et al. 
(2021). The authors investigated the chemistry of the outflow water from 
bioreactors with hardwood woodchips and focused on if the water would be 
possible to reuse in agriculture. They concluded that the water might be 
possible to re-use, but that further studies are needed to ensure that a 
combined effect of contaminants do not cause adverse effects.  

3.2 Reactive barriers as complement in Soil Aquifer 
Treatment 

In soil aquifer treatment, (SAT), treated sewage effluent is used to produce 
groundwater by artificially recharging aquifers via infiltration basins in a 
combination of wet and dry cycles producing intermittent aerobic and 
anaerobic conditions in the soil under the basin. In the wet cycle, the water 
passes through the unsaturated zone and undergoes processes improving the 
water quality. The system is then allowed to dry, and the dry periods allow 
for aeration of the soil to renew the treatment capability of the system and 
when needed, maintenance of the basins. In its current form, SAT has been 
used for decades, especially in arid regions (Quanrud et al., 2003; Mienis and 
Arye, 2018), but the principle goes far back in time; it was used in Athens 
2000 years ago and became common in Germany and England during the 
1500s (Idelovitch and Michail, 1984). The technique is robust, cost-effective, 
and can remove a wide range of contaminants, including pathogens, mainly 
by filtration, adsorption or biological degradation or a combination of the 
mechanisms (Sharma and Kennedy, 2017).  

The effect of SAT on DOC removal is well known; a 40 – 90 % reduction 
of DOC concentrations, including OMPs, has been shown in several studies 
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(Quanrud et al., 2003; Amy and Drewes, 2007; Suzuki et al., 2015). 
However, not all organic compounds are efficiently removed (Amy and 
Drewes, 2007; Ternes, 2007). To improve the effect of SAT, a carbon-rich 
reactive barrier, can be added to the system. Similar to in a DBR, the material 
in a reactive barrier is plant-derived and offers surfaces for biofilm growth. 
A layer of for example compost or woodchips releases enough DOC to the 
infiltrating water to generate a range of redox conditions and adds additional 
sorption sites, which facilitates biodegradation and retards transport of 
pollutants through the system. Another function of a reactive barrier is to 
supply labile carbon to support co-metabolic degradation of OMPs. So far, 
the results are promising regarding OMPs removal and lowering the number 
of pathogens in the treated water (Schaffer et al., 2015; Valhondo et al., 
2020b; Modrzyński et al., 2021).  

3.2.1 Barriers for nitrogen removal in SAT 
Nitrogen removal in SAT is a function of HRT, DOC to N ratio and redox 
conditions (Sharma and Kennedy, 2017; Gharoon and Pagilla, 2021). It has 
been shown that SAT can lower concentrations of nitrate and ammonium 
(Sopilniak et al., 2017; Beganskas et al., 2018; Friedman et al., 2018; Grau- 
Martínez et al., 2018) but the effect of a reactive layer on the N-removing 
processes has not been well studied. When N-containing organic matter in 
the material is degraded and N is mineralised, it can add ammonium to the 
water passing through the barrier, instead of removing it. Additionally, the 
ammonium-producing pathway DNRA could be promoted if the C/nitrate ratio 
increases (Hardison et al., 2015; Putz et al., 2018). Modrzyński et al. (2021) 
investigated how ammonium was transformed and the N eventually removed 
in a column experiment with compost-based barriers treating synthetic 
wastewater with OMPs and a low, 2 mg L-1, N as ammonium content. The 
ammonium was effectively removed, and nitrate was formed. Denitrification 
subsequently removed the nitrate, but the removal was dependent on the 
proportion of compost in the barrier mixtures. In addition, ammonium was 
re-formed in the columns having the highest proportion of compost. An 
increase in ammonium concentrations after SAT was observed also in the 
column experiments of Silver et al. (2018). The soil used for the infiltration 
of treated wastewater had a high organic content, and by using 15N analyses 
the authors show that the increase in ammonium likely originated from the 
soil.  In paper IV, we investigated how the addition of reactive organic 
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barriers affected the ability to remove N from secondary treated wastewater 
having high ammonium concentrations, approximately 30 – 60 mg N L-1. We 
found that across the experimental period of nearly one year, all barriers 
reduced the ammonium concentrations in the infiltrated water to some 
degree. A sand filter was used as reference, and when normalising the 
ammonium removal efficiencies in the barriers to the reference, all barriers 
but one mixture based on compost and with vegetation, removed less 
ammonium than the reference. The only barrier that significantly lowered the 
ammonium concentrations in the water, instead increased the nitrate 
concentration in the water. The sand filter significantly removed DOC from 
the secondary effluent. In addition to the overall poor N-removal capacity in 
all barriers, the barriers based on compost leaked DOC to the water. This 
highlights the difficulties with designing multi-purpose reactive barriers, the 
compost-design of the barriers was also meant to facilitate degradation of 
OMPs, and to attenuate pathogens in the water. Some of the OMPs tested were 
degraded in the system but the retention of pathogens was poor (Valhondo 
et al., 2020). 
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The microbiome is the most essential component of a bioreactor. A better 
understanding of the microbial ecology of permeable reactive barriers for N 
removal will ultimately help designing systems. In 2014, when paper I was 
published, there were no more than a handful studies in the scientific 
literature addressing the microorganisms responsible for the N 
transformations leading to the removal of nitrate in cellulose-based DBRs 
(Long et al., 2011; Warneke et al., 2011; Andrus et al., 2014; Porter et al., 
2015). Since then, the interest in understanding which microorganisms 
establish and sustain in a permeable reactive barrier, and what controls their 
activity has increased. In a recent review, 15 papers published between 2011 
and 2020 addressing microbial communities in cellulose-based DBRs were 
summarised, (Hartfiel et al., 2022), and from 2020 until mid of 2022 several 
articles on this topic have been published (e.g. Jéglot et al., 2021a; Schaefer 
et al., 2021; Aalto et al., 2022). The microbiology in reactive barriers in 
combination with aquifer recharge has also gained attention the last years, 
yet the number of studies is still low. Barriers based on woodchips have been 
investigated under field and laboratory conditions (Beganskas et al., 2018; 
Gorski et al., 2020; Pensky et al., 2022), and the microbiology of barriers 
based on compost was addressed in paper IV and by Modrzyński et al. 
(2021).  

To investigate the microbial communities in the bioreactors and barriers 
studied, we used two methods, quantitative PCR (qPCR) and Illumina 
sequencing of the V3 – V4 region of the 16S rRNA gene. Using qPCR, the 
genetic potential for a specific metabolic pathway can be quantified by 
targeting genes encoding for key enzymes in the pathway. The method is 
widely used in microbial ecology and consequently also when exploring 

4. Microbial communities and nitrogen 
cycling functions 
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permeable reactive barriers (Feyereisen et al., 2016; Aalto et al., 2020; 
Modrzyński et al., 2021). Sequencing of the 16S rRNA variable regions gives 
taxonomic information and is a standard approach to determine prokaryotic 
community composition  (Bukin et al., 2019). An alternative and 
complement to qPCR for determining the magnitude of different metabolic 
pathways, is to use metagenomic and metatranscriptomic approaches. Biases 
introduced by primer selection and varying PCR efficiencies can thereby be 
avoided. We have used qPCR to estimate the abundances of different N 
transformation processes in all papers included in this thesis. To determine 
the structure of the communities and the taxonomy of the community 
members, we used sequencing in papers II, IV and V. Except for in the first 
DBR, samples were collected at more than one occasion to explore temporal 
variability and the development of microbial communities from the start-up 
of reactors and up to two years of operation. We expanded to not only 
looking at the temporal succession of the microbial communities, but also 
determined if there were spatial patterns in how the microorganisms were 
distributed along the length and depth of reactors and barriers and, in some 
cases, between the solid and liquid phases of the systems. Table 2 
summarises the approaches in the projects. 

 
Table 2. Overview of the approaches and sample types used to study the microbial 
communities in the different papers. 
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4.1 Spatial and temporal patterns of microbial 
communities – examples from papers I - V 

4.1.1 Paper I 
One of the objectives in paper I was to find out if there were preferential 
flow paths through the bioreactor. The design of the discharge pipes could 
potentially favour the water to flow faster through the middle parts and to be 
less mobile along the sides. The simplest way to evaluate preferential flow 
paths was to just look at the bioreactor material during the sampling event, 
when the bioreactor was excavated. In Figure 9, one of the inner dividing 
walls is shown. Different colours of the iron oxide deposits on the wall and 
in the gravel, indicate that different microorganisms had oxidised the iron. 
Additionally, it was clear that the sawdust in the bioreactor had been washed 
away from some areas, whereas others had dense patches of sawdust. All this 
indicates non-homogenous conditions. We hypothesised that preferential 
flow paths would affect the distribution of  nitrate-reducing microorganisms, 
and for the abundances of nirK, this was the case. The lengthwise transects 
that represented the middle of the bioreactor, harboured more nirK-type 
denitrifiers than the sides of the bioreactor at the depth that was always water 
saturated (paper I, Fig. 6b). The potentially higher flow, and hence higher 
load of nitrate, in the middle section of the reactor, could have promoted the 
increase in nirK community size. The design of the experiment did not allow 
for measuring N-removal rates specifically corresponding to the transects, 
but as N load is one of the factors determining the N removal rate (Rivas et 
al., 2020), the middle section of the bioreactor likely contributed more to the 
overall N removal and the full reactor volume was not efficiently used. This 
is not ideal and makes it difficult to dimension bioreactors correctly and can 
reduce their life length (Christianson et al., 2013; Christianson et al., 2020), 
The community harbouring nirS-type denitrifiers displayed a different 
spatial pattern, as it was more abundant in the deeper, water-saturated regions 
of the bioreactor (paper I, Fig. 4). Overall, there was a higher abundance of 
most of the N-transforming microorganisms quantified in the deeper, water 
saturated layers of the bioreactor. The efficiency of the bioreactor would 
probably have been higher if it had been designed so that a bigger volume 
was water saturated.  
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Figure 9. Iron oxide deposits on a sheet metal inner dividing wall in the bioreactor in 
paper I. The photo has been modified in Photoshop. A glove positioned in the upper part 
of the picture, indicating size, has been replace by gravel. 

4.1.2 Paper II 
In contrast to the bioreactor in paper I, the lab-scale bioreactors in paper II 
were not meant to remove as much nitrate as possible. The design of the 
experiment instead aimed at exploring the development of the microbial 
communities in different substrates when the bioreactors were working with 
approximately the same removal efficiencies and never ran out of nitrate. We 
evaluated if the communities that developed on the substrates were different 
at the in- and outlet of the reactor by comparing the Shannon diversity indices 
and the community composition between the two positions. In general, the 
inlet position of the reactors had a higher diversity than the outlet position 
and the woodchip bioreactors always had lower diversity indices than the 
straw and sedge bioreactors. The spatial differences in the diversity 
developed with different rates in the substrate types. The succession in the 
woodchip columns was the fastest, the change in diversity was measurable 
at day 43, while it was first detected at day 181 and 216 for the sedge and 
straw bioreactors, respectively. All bioreactor types had high relative 
abundances of Alpha- and Gammaproteobacteria, and the sedge and straw 
bioreactors additionally harboured Actinobacteria, Bacteroidia and 
Fibrobacteria, contributing to the higher diversity in these reactor types. The 
differences in diversity were not always reflected in different genetic 
potentials for the N transformation reactions. For example, in the woodchip 
and sedge reactors, position was not a significant factor determining the size 
of the of nitrate-reducing community. This might be a consequence of that 
the bioreactors were never depleted of nitrate and therefore a high abundance 
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of nitrate reducers was supported throughout the reactor. In contrast to our 
results, bioreactors with addition of a more labile carbon source, potato 
residues, displayed a lower diversity compared to bioreactors with woodchip 
only (Kiani et al., 2020). Like in the sedge and straw bioreactors, the potato 
bioreactors harboured high abundances of Bacteroidota, but not a high 
abundance of Alpha- and Gammaproteobacteria, instead  Campylobacterota 
and Firmicutes were abundant.  

4.1.3 Papers III and V 
Similar to the lab-scale bioreactors in paper II, Alpha- and 
Gammaproteobacteria, and Bacteroidia were highly abundant in the 
woodchip microbiome of the full-scale bioreactor in paper V, and these 
bacterial classes are frequently reported from woodchip DBRs (von Ahnen et 
al., 2019; Grießmeier et al., 2021; Jéglot et al., 2021a; Aalto et al. 2022). A 
closer look into the Gammaproteobacterial class, shows the presence of 
Burkholderiales in the paper V bioreactor. Bacteria in this order have been 
identified as key denitrifiers in woodchip DBRs (Grießmeier et al., 2021), and 
they also seem to be associated with low temperature (Jéglot et al., 2021b). 
As in the lab-scale bioreactors, the diversity in the woodchips, in paper V 
estimated as Faith´s PD, was higher closer to the inlet of the bioreactor 
(paper V Table S2), and the trend was similar for the Shannon index (data 
not shown). The composition of the microbial communities was also 
significantly affected by the distance from the inlet (paper V, Fig. 5). This 
contrasts with the findings of Jéglot et al. (2021a), where the diversity in the 
woodchips along the flow paths of three willow DBRs was analysed and 
presented using the Shannon index. However, this could be due to 
differences in the design and operation of the bioreactors. A notable 
distinction between the bioreactors was the age of the reactor bed, the 
bioreactors described by Jéglot et al. had been operating at least four years, 
and the one in paper V less than two years at the final sampling occasion. 
The ordination in figure 5, paper V, shows an overall increased similarity 
between the samples the second year, and the phylogenetic diversity (paper 
V, Table S2) in the water had a smaller range the second year, indicating a 
higher similarity between the microorganisms along the length of the reactor. 
Studies following the diversity of DBR microbiomes over several years are 
still lacking, but given the sparse existing data (Porter et al., 2015; Schaefer 
et al., 2022; paper V), and the knowledge about stabilisation in performance 
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after a couple of years (Addy et al., 2016), it is possible that spatial 
differences in community composition will decrease within the reactor. Still, 
since the chemical conditions along the length of the reactor will vary, 
different processes will be supported at different distances from the inlet.  

The diversity and community composition between the woodchip- and 
water phases, an additional aspect of spatial patterns, in the paper V 
bioreactor were different and many taxa present in the water were not found 
on the woodchips. Despite the different overall community compositions, 
there were resemblances in the spatial patterns between the two phases, for 
example the occurrence of the phylum Desulfobacterota, that was present in 
both woodchips and water were predominantly found close to the end of the 
bioreactor. This phylum includes bacteria reducing sulphate and other 
sulphur compounds (Murphy et al., 2021; Ward et al., 2021), reactions that 
can occur when nitrate is depleted. 

In the paper III bioreactor, we did not sequence the DNA from the 
microbial communities in the bioreactor. Instead, we quantified the genetic 
potential for N transformation processes and found a high degree of temporal 
and spatial variability. The N-cycling community structure in the pore water 
differed between the two years, with nitrite and dissolved N2O as the main 
environmental drivers, and the abundance of nosZI being the gene 
contributing the most to the separation of the two communities (paper III, 
Fig. 4). Spatially, the occurrences of nirS and nirK genes were strongly 
correlated with the woodchip and pore water samples, respectively (paper 
III, Fig. 2c). 

4.1.4 Paper IV 
In paper IV, we tested permeable reactive barriers with varying 
compositions to relate N-removal performance to community composition, 
similar to what was done in paper II. Here the N-polluted water was 
secondary treated effluent from a WWTP, and the main N compound to be 
removed was ammonium. Barrier samples were collected when the system 
experienced dry cycles, first in the beginning of the experimental period and 
next in the fourth dry period when the system had been running for one year 
(paper IV, Fig 1a). Within each type of barrier tested, the community 
composition differed between the two sampling occasions, but the diversity 
was similar (paper IV, Fig. 4, Fig. S4). One class of bacteria increasing in 
relative abundance in the woodchip-based barrier and in the reference sand 
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filter, was the nitrite oxidising Nitrospira (paper IV, Fig 1b), known to be 
important in sand filters (Fowler et al., 2018). Water for microbial analyses 
was collected directly after barrier passage, before the fourth dry period 
started. In the compost-based barriers, the Shannon and Pielou diversity 
indices in the water was lower than in the barriers, but the phylogenetic 
diversity was similar between the water and barrier in all barrier types (paper 
IV, Fig. S4).  

4.2 N transformation processes in the reactor and barriers  
The dominating nitrate removal pathway in cellulose-based DBRs is 
denitrification. This has been established in this thesis and in studies by 
others using a range of different methods: the water chemistry in the in- and 
effluent water, enrichment of the isotope 15N, biochemical assays, and 
abundance of nir genes (Greenan et al., 2009; Moorman et al., 2010; 
Schipper et al., 2010; Nordström and Herbert, 2018; von Ahnen et al., 2019). 
We found genes associated with denitrification in all cellulose-based DBRs 
investigated, including the reactive barriers for ammonium removal. Here, 
denitrification is important if N is to be permanently removed. However, as 
denitrification is a modular pathway that can terminate with N2O production, 
and DNRA produces ammonium, it is important to look at the magnitude of 
the latter two products and processes in relation to denitrification to avoid 
pollution swapping and insufficient N removal.  

4.2.1 Denitrification and nitrous oxide reduction 
Incomplete denitrification leads to production of N2O. Therefore, the ratio 
between the genetic potential for production and consumption of N2O, 
estimated as the respective abundances of the nir and nosZ genes, indicates 
if a system is a possible source or sink of the gas. In paper III, there was a 
positive correlation, along the length of the bioreactor, between the 
concentrations of N2O in the water and the nir/nosZ ratios. Higher nir/nosZ 
ratios closer to the inlet, where nitrate concentrations were high, agrees with 
the findings that low C/nitrate ratio could lead to the promotion of 
microorganisms or communities with incomplete denitrification ending with 
N2O (Pan et al., 2013). An increased genetic potential for N2O production was 
also found in the water of the other full-scale woodchip DBR the second year, 
with the highest potential where nitrate was most abundant (paper V, Fig. 
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4c). For this bioreactor, dissolved N2O could be quantified only once the 
second operational year, and the concentration of N2O was higher than in the 
first year, while the emission of N2O remained unchanged. The temporal 
pattern with increasing potential for N2O production was not observed in the 
lab-scale bioreactors in paper II, as they developed in the opposite direction 
with decreasing N2O production.   

Monitoring N2O over years, especially in relation to microbial community 
composition is rare. In a recent study though, describing eight DBRs of 
different ages, it was shown that the two youngest bioreactors acted as sinks, 
while the older ones were sources of N2O (Audet et al., 2021). However, no 
links to differences in abundance of N-cycling genes could be detected.  
 

4.2.2 Denitrification and DNRA 
The processes denitrification and DNRA compete for nitrite and C, and based 
on the water chemistry and gene abundance data in paper III, competition 
between the two dissimilatory nitrite reduction processes likely occured. 
There was for example a negative correlation between C/nitrate and the ratio 
of genetic potentials for denitrification/DNRA (paper III, Table 1). 
Furthermore, C/nitrate ratios correlated positively with high ammonium 
concentrations (paper III, Table 1), and the nrfA gene abundance (Fig. 10). 
Altogether, this agrees with high C/nitrate ratios favouring DNRA (Putz et al., 
2018). The C/nitrate conditions were not specific to year of operation or 
distance from inlet (Fig. 10, paper III), but temperature was found to affect 
the abundance of DNRA in the bioreactor, with more DNRA at lower 
temperatures, as an effect of less removal of nitrate (Nordström and Herbert, 
2018). In agreement, nrfA increased in abundance when nitrate was in lower 
concentrations in the bioreactor in paper V (paper V, Fig. 2, Fig. S3). 
Altogether, these findings support DNRA as a possible nitrate reduction 
pathway in DBRs.  

It has been shown  that different carbon compounds specifically promote 
denitrification or DNRA (Carlson et al.,  2020), and in paper II we found that 
the sedge and straw bioreactors harboured bigger nrfA communities than the 
woodchip reactors. The sedge and straw reactors had a notably higher 
relative abundance of Bacteroidia than in the corresponding woodchip 
reactors. Bacteroidia are known for their ability to degrade cellulose 
(Lapébie et al., 2019), and they have been associated with DNRA in woodchip 
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DBRs treating aquaculture effluents (Aalto et al., 2020). We suggest that the 
presence of cellulose degrading bacterial taxa together with the higher 
concentrations of cellulose in the substrate of these bioreactors increased the 
C/nitrate ratio and promoted DNRA. Nevertheless, the water chemistry in the 
DBRs supports that denitrification was the dominating nitrate removal 
pathway in all bioreactor types. After a start-up period, the risk of 
discharging water with high ammonium concentrations from woodchip-
based DBRs seem to be small. DNRA was addressed also in paper IV, and as 
in paper II, the woodchip-based barrier had a smaller DNRA community than 
barriers based on another type of C substrate (paper IV, Fig. 3D). Overall, 
the higher C/nitrate ratio in water from the compost-based barriers (paper 
IV, Figs. 2B, D) could have contributed to DNRA and  ammonium production 
and thereby their poor total N removal, but that is contradicted by the 
similarly poor performance of the woodchip-based barrier and reference.    

 

 
Figure 10. Relation between the total carbon/nitrate ratio and abundance of nrfA in the 
porewater of the bioreactor in paper III at different distances from the inlet of the reactor 
over two years of reactor operation. The shaded area represents the 95 % confidence 
interval. 
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4.2.3 Anammox 
The concomitant removal of nitrite and ammonium via anammox in a 
permeable reactive barrier would be advantageous, as reducing power in the 
form of organic carbon would not be needed. The presence of anammox was 
analysed in the bioreactors in papers I, II, III, and V. However, since 
anammox is favoured by the absence of organic C, we did not expect 
anammox to be a significant potential N-removal pathway in the DBRs. In 
most papers we targeted the hdh, formerly known as hzo, using specific 
primers described by Schmid et al. (2008). These primers have been used to 
detect anammox in different environments, including wetlands, sediments, 
marine sediments, and moving bed bioreactors (Wittorf et al., 2016; Wu et 
al., 2021; Kaewyai et al., 2022; Tao et al., 2022). The gene was not detected 
in any of the water or woodchip samples analysed. In agreement with our 
findings, no expression of hydrazine oxidoreductase, the enzyme encoded by 
hdh, was detected in the bioreactors characterised by Grießmeier et al. 
(2017). Yet, we did find a non-neglectable genetic potential for anammox in 
the bioreactor in paper I, using taxa specific primers that have been found 
to have 89 – 100 % specificity for all known genera performing anammox 
(Yang et al., 2020). In this reactor, sawdust was used as the substrate, but it 
did not support denitrification well, and acetate had to be added to achieve 
sufficient nitrate removal. It is possible that the oligotrophic conditions in 
this particular reactor was more favorable for anammox compared with the 
other reactors and barriers. Nevertheless, if the target is not a pathway-
specific gene, the question whether the organisms targeted could perform a 
specific function or not will always be raised. Anammox has been reported 
to substantially remove N from DBRs, especially if denitrification was C 
limited (Rambags et al., 2019). However, in the study it was not 
discriminated between anammox and codenitrification, why the N2 identified 
with isotopic analyses also could have been a product of codenitrification.   

4.2.4 Nitrification 
Most of the permeable reactive barriers presented in this thesis operated 
under anoxic conditions, and therefore the potential for nitrification was 
quantified only in paper IV with reactive barriers treating ammonium-
polluted water. Both bacterial and archaeal ammonia oxidisers were detected 
in the reactive barrier material. The abundance of ammonia oxidising 
bacteria increased over the year in the compost-based barriers with 
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vegetation, resulting in significantly larger ammonia oxidising communities. 
This was however not reflected in the ammonium removal, possibly because 
ammonium could have been produced in the barriers, both from 
mineralisation of the organic material, but also from DNRA. The one barrier 
that did remove ammonium, had a lower ratio of DNRA/nitrification at the 
end of the period, which may explain the better performance.  
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This thesis addressed the role of microbial communities in permeable 
reactive barriers for removal of N from waters with high nitrate or ammonium 
concentrations before discharge to recipient surface waters or when 
recharging aquifers to replenish groundwater reservoirs. The composition of 
the microbial community and the genetic potential for different N 
transformation processes can aid the design of permeable reactive barriers 
by providing insights into mechanisms that underpin  N removal efficiency 
and production of unwanted N species in the system.  

Results in this thesis show that woodchip-based DBRs are suitable for 
remediation of nitrate-polluted water from mining activities. Although 
woodchip-based bioreactors had lower nitrate removal rates than bioreactors 
based on other organic carbon-rich substrates, woodchip reactors are 
preferred due to their long life length and good hydraulic properties. 
According to the results in this thesis, they also have lower potential for the 
ammonium-generating DNRA bacterial community to develop compared to 
the other substrates investigated. Moreover, the results highlight the 
difficulties of designing multipurpose reactive barriers. The barriers treating 
the ammonium-rich wastewater had previously been shown to work well for 
other pollutants, but they had no major effect on nitrogen and the compost-
based barriers released DOC.    

The type of C substrate used in permeable reactive barriers determines the 
genetic potential for N transformation processes and composition of the 
microbial communities in the barrier, but not necessarily the N-removal 
performance. The role and importance of C substrate in the competition 
between denitrification and DNRA in DBRs should be further studied to 
understand how to achieve a high rate of denitrification while avoiding 
production of ammonium and leaching of DOC. To take advantage of the 

5. Conclusions and outlook 
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higher nitrate removal rates obtained with more labile C than woodchips, 
woodchip DBR design could be potentially improved by replacing a fraction 
of the woodchips with another material, which should be investigated in 
future research. A reactor with mixed C substrates would likely need to be 
designed with the possibility of an easy replacement of the labile carbon 
material, as it would degrade faster than the woodchips.  

The risk of pollution swapping when using DBRs and reactive barriers is 
under discussion, and research is ongoing. We conclude that methane 
emissions are negligible and that N2O emissions from DBRs with similar 
design as those investigated in this thesis likely only have a minor 
contribution to global N2O emissions. Nitrous oxide dissolved in the 
discharge water might be a problem since the N2O can be emitted downstream 
if not consumed by N2O reducers in the recipient water. To monitor N2O from 
DBRs, I suggest that effort is placed on measuring N2O concentrations in the 
water rather than on measuring fluxes from the bioreactor surface, at least if 
the bioreactor is covered with soil or peat. The release of nitrite, ammonium, 
and DOC at the start-up of a DBR is problematic but may be transient and 
should be weighed against the urgent need for mitigating N releases to the 
environment. Estimated over the life length of a DBR, it might be 
advantageous to use the technique even if the ecological footprint of a 
bioreactor can still be lowered. Life cycle analyses of DBRs are needed to 
answer the question. Also permeable reactive barriers treating ammonium 
polluted waters can produce greenhouse gases, although this was not 
investigated in this thesis. 

An interesting question to address is how long-term development of 
microbial communities and N removal in DBRs are affected by an inoculum.  
When a new bioreactor is constructed, the substrate is often inoculated to 
support the establishment of a denitrifying community. This can be 
accomplished by adding material from an old bioreactor or, as in this thesis, 
sludge from a wastewater treatment plant or, as has been tested under 
laboratory conditions, pure strains of denitrifying bacteria selected for under 
specific conditions, for example coldness. Other organisms that could be 
interesting to add are cellulose and hemicellulose degraders, to support a 
higher rate of woodchip degradation and thereby increasing the 
denitrification capacity. 

Finally, since DBRs can be used for multiple applications, I suggest that 
the conditions for introducing this technique in Sweden, as a complement to 
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other means mitigating nitrate pollution into the Baltic Sea, should be 
examined.   
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Water is a precious resource that we must protect. While it is true that more 
than 70 % of Earth’s surface is covered by water, much of this is salt water 
and therefore not directly usable by humans, and most of the freshwater that 
exists is largely locked up in glaciers or otherwise inaccessible. This means 
that the amount of water we have access to is limited. For our water use to 
be sustainable in the long term, we need to introduce measures to increase 
access to water but also to reduce emissions of environmentally harmful 
substances. 

The element nitrogen is essential for life, but in excess it can be an 
environmental problem and a threat to human health. Different forms of 
nitrogen derived from human activities cause eutrophication, algal blooms 
and lack of oxygen in lakes and seas; the Baltic Sea, for example, is one of 
the world's most eutrophicated seas. The largest emission source of nitrogen, 
from both Sweden and other countries around the Baltic Sea, is agriculture, 
followed by emissions from sewage treatment plants. Some industries also 
contribute to nitrogen emissions, for example the mining industry where the 
nitrogen comes from the use of nitrogen-based explosives. Another serious 
consequence of nitrogen emissions is contamination of groundwater, which 
is an important source of drinking water. High levels of the nitrogen 
compound nitrate in drinking water can be a health hazard, especially for 
young children, and in many parts of the world the levels of nitrate in 
groundwater are dangerously high. 

Nitrate-contaminated water can be purified by passing the water through 
a so-called denitrifying bioreactor. These reactors are used in many countries 
to reduce the input of nitrate into the environment from various sources, such 
as runoff from agricultural land. This technique is relatively simple and does 
not require a lot of resources. The water is passed through a permeable barrier 
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consisting of a carbon-rich material, for example woodchips or other plant-
based substances, and microorganisms in the bioreactor remove the nitrate 
by converting it into gaseous forms of nitrogen, optimally nitrogen gas. 
However, microbial transformation of nitrate can proceed through different 
reaction paths, and not all end with harmless nitrogen gas. One path may 
result in the formation of the greenhouse gas nitrous oxide, whereas the other 
does not remove the nitrogen from water but rather converts it into 
ammonium, which can also damage the environment. 

This thesis investigated whether the technology of denitrifying 
bioreactors is also suitable for nitrate-containing water from the mining 
industry. The work in the thesis also analysed which of the nitrogen-
converting processes takes place in the barriers, as well as their timing and 
location in the reactors. The results showed that woodchip denitrifying 
bioreactors are well suited for purifying nitrate-contaminated mine water. 
There were also clear patterns of which nitrogen transformations were 
dominant, both in time and space. The performance of the reactors was 
related to the extent in which different nitrate transformation processes 
dominated, which ultimately determined whether the nitrate was removed or 
converted to an unwanted nitrogen compound. The type of carbonaceous 
material used in the bioreactor turned out to be important for determining 
which microorganisms established themselves, and thus also for which 
processes became dominant. Similar results were also obtained in a project 
that analysed permeable barriers intended for use in the recharge of aquifers 
to increase the availability of groundwater. The type of carbonaceous 
material again determined which microbial communities were established 
and which nitrogen-transforming processes took place. The results also 
showed the difficulties of designing barriers aiming at removing different 
types of chemical compounds; these barriers had no major effect on nitrogen 
but worked well for other pollutants. 

To design future denitrifying bioreactors so that they function with high 
nitrogen removal efficiency and without the production of harmful 
compounds, it is important to have knowledge of how the development of 
the microbial community in a bioreactor is affected by various factors. This 
thesis contributes to that knowledge. Continued research should investigate 
more closely how different types of carbonaceous material can be used to 
control the composition of the microbial community in the bioreactor. Since 
denitrifying bioreactors can be used for multiple applications, the conditions 
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for introducing this technique should be examined as a means to mitigate 
nitrate pollution into the Baltic Sea.  
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Vatten är en dyrbar resurs som vi måste värna. Visserligen är mer än 70 % 
av jordens yta täckt av vatten, men saltvatten är inte direkt användbart för 
oss och det sötvatten som finns är till stor del bundet i glaciärer eller på annat 
vis otillgängligt. Det gör att den mängd vatten vi har tillgång till är 
begränsad. För att vår vattenanvändning ska vara långsiktigt hållbar behöver 
vi införa åtgärder för att öka tillgången till vatten men också för att minska 
utsläppen av miljöskadliga ämnen. 

Grundämnet kväve är livsnödvändigt men för mycket kväve kan vara ett 
miljöproblem och ett hot mot människors hälsa. Olika former av kväve som 
härrör från mänskliga aktiviteter orsakar övergödning, algblomning och 
syrebrist i sjöar och hav, Östersjön är till exempel ett av världens mest 
övergödda hav. Den största utsläppskällan av kväve, från både Sverige och 
övriga länder runt Östersjön, är jordbruk, följt av utsläpp från 
avloppsreningsverk. En del industrier bidrar också till utsläppen, till exempel 
gruvindustrin, där kvävet kommer från användningen av kvävebaserade 
sprängämnen. En annan allvarlig följd av kväveutsläpp är att grundvattnet, 
som är en viktig källa till dricksvatten, blir förorenat. Höga halter av 
kväveföreningen nitrat i dricksvattnet kan vara en hälsofarliga, speciellt för 
små barn och i många delar av världen är nivåerna av nitrat i grundvattnet 
hälsofarligt höga.  

Nitratförorenat vatten kan renas genom att vattnet leds genom en så kallad 
denitrifierande bioreaktor. De används i många länder för att minska 
nitratutsläppen till miljön, till exempel i avrinningsvatten från åkermark. 
Tekniken är relativt enkel och kräver inte så mycket resurser. Vattnet leds 
genom en genomsläpplig barriär bestående av ett kolrikt material, till 
exempel träflis eller annat växtbaserat material, och mikroorganismer i 
bioreaktorn tar bort nitratet genom att omvandla det till gasformiga 
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kväveföreningar, mest gynnsamt till kvävgas. Men inte alla mikrobiella 
omvandlingar av nitrat leder till ofarlig kvävgas, nitratet kan även följa andra 
reaktionsvägar. En av dessa kan sluta med att växthusgasen lustgas bildas, 
och en annan avlägsnar inte kvävet ur vattnet utan omvandlar nitratet till 
ammonium, som också orsakar skador på miljön.  

Den här avhandlingen undersökte om tekniken med denitrifierande 
bioreaktorer också är lämplig för nitrathaltigt vatten från gruvindustrin. 
Arbeten i avhandlingen har även analyserat vilka av de kväveomvandlande 
processerna som ägde rum i barriärerna, samt när och var de försiggick. 
Resultaten visade att denitrifierande bioreaktorer med träflis fungerar bra för 
att rena gruvvatten. Det fanns också tydliga mönster av vilka 
kväveomvandlingar som var dominerande, både i tid och rum.  
Bioreaktorernas prestanda, om nitratet avlägsnades eller omvandlades till 
oönskade kväveföreningar, var relaterat till proportionerna mellan de olika 
kväveomvandlande processerna. Vilket kolhaltigt material som användes i 
bioreaktorn visade sig vara viktigt för vilka mikroorganismer som etablerade 
sig, och därmed också för vilka processer som blev dominerande. Liknande 
resultat erhölls också i ett projekt som analyserade genomsläppliga barriärer 
avsedda att användas vid påfyllning av underjordiska vattenmagasin för att 
öka tillgången på grundvatten. Även här avgjorde typen av kolhaltigt 
material vilka mikrobsamhällen som etablerades och vilka 
kväveomvandlande processer som ägde rum. Resultaten visade också på 
svårigheterna med att designa barriärer med många funktioner; dessa 
barriärer hade ingen större effekt på kvävet, men fungerade bra för andra 
föroreningar.  

För att designa framtida denitrifierande bioreaktorer så de fungerar med 
hög kväverenande effektivitet och utan produktion av skadliga föreningar är 
det viktigt att ha kunskap om hur utvecklingen av mikrobsamhället i en 
bioreaktor påverkas av olika faktorer. Denna avhandling bidrar till den 
kunskapen. Fortsatt forskning bör närmare undersöka hur olika typer av 
kolhaltigt material kan användas för att styra sammansättningen av 
mikrobsamhället i bioreaktorn. Denitrifierande bioreaktorer kan användas i 
många tillämpningar och för att minska kväveutsläppen till Östersjön bör 
förutsättningarna för att införa tekniken i Sverige undersökas.  
  



81 

I have written this section once before. Despite additional years as a PhD 
student, it is as difficult as it was then. Below I will only mention a few 
persons by name, people who have literally contributed to the texts in this 
thesis. It does not mean that I am less thankful to the rest of you who have 
supported me in one way or another, I truly am.  

My supervisors, Sara Hallin and Jaanis Juhanson, my sincerest thanks. 
Sara, for support to go through with year 3 and 4, even when it was tough. 
Jaanis, for endless help whenever needed, always with patience and in a kind 
way.  

Roger Herbert, co-author of three of the papers in the thesis. Many thanks 
for being available to comment on all questions I have had about the 
bioreactors we have been working with. Additional co-authors of my papers: 
Harry Winbjörk, Valerie Hubalek, Robert Almstrand, Sari Peura, Albin 
Nordström, Cristina Valhondo, Lurdes Martínez-Landa, Jesús Carrera, and 
Felicia Wallnäs, thank you for qualified and creative contributions, making 
it possible to publish the papers in well recognised scientific journals. 

Employees at LKAB, it has been a privilege and pleasure working with 
so positive, helpful, and innovative persons, many thanks.  

Christopher Welch and Christopher Jones, I am deeply grateful to you for 
helping me by reading parts of the thesis text and coming with suggestions 
for improvements. In the end I did change a little here and there, all mistakes 
are my own.  

Colleagues at Mykopat and Biocenter, thank you all for creating a nice 
work environment. 

Finally, my family, in Uppsala and Umeå. I love you. 

Acknowledgements 





I





Nitrogen removal and spatial distribution
of denitrifier and anammox communities
in a bioreactor for mine drainage treatment

Roger B. Herbert Jr.a,*, Harry Winbj€ork b, Maria Hellman c, Sara Hallin c

a Uppsala University, Department of Earth Sciences, Villav€agen 16, SE-752 36 Uppsala, Sweden
b LKAB, SE-983 81 Malmberget, Sweden
c Swedish University of Agricultural Sciences, Department of Microbiology, Box 7025, SE-750 07 Uppsala, Sweden

a r t i c l e i n f o

Article history:

Received 17 March 2014

Received in revised form

15 July 2014

Accepted 23 August 2014

Available online 4 September 2014

Keywords:

Denitrification

Residence time

nirS

nirK

nosZ

Nitrous oxide

a b s t r a c t

Mine drainage water may contain high levels of nitrate (NO3
�) due to undetonated nitrogen-

based explosives. The removal of NO3
� and nitrite (NO2

�) in cold climates through the mi-

crobial process of denitrification was evaluated using a pilot-scale fixed-bed bioreactor

(27 m3). Surface water was diverted into the above-ground bioreactor filled with sawdust,

crushed rock, and sewage sludge. At hydraulic residence times of ca.15 h and with the

addition of acetate, NO3
� and NO2

� were removed to below detection levels at a NO3
� removal

rate of 5e10 g N m�3 (bioreactor material) d�1. The functional groups contributing to ni-

trogen removal in the bioreactor were studied by quantifying nirS and nirK present in

denitrifying bacteria, nosZI and nosZII genes from the nitrous oxide e reducing community,

and a taxa-specific part of the16S rRNA gene for the anammox community. The abun-

dances of nirS and nirK were almost 2 orders of magnitude greater than the anammox

specific 16S rRNA gene, indicating that denitrification was the main process involved in

nitrogen removal. The spatial distribution of the quantified genes was heterogeneous in

the bioreactor, with trends observed in gene abundance as a function of depth, distance

from the bioreactor inlet, and along specific flowpaths. There was a significant relationship

between the abundance of nirS, nirK, and nosZI genes and depth in the bioreactor, such that

the abundance of organisms containing these genes may be controlled by oxygen diffusion

and substrate supply in the partially or completely water-saturated material. Among the

investigated microbial functional groups, nirS and anammox bacterial 16S rRNA genes

exhibited a systematic trend of decreasing and increasing abundance, respectively, with

distance from the inlet, which suggested that the functional groups respond differently to

changing environmental conditions. The greater abundance of nirK along central flowpaths

may indicate that the bioreactor design favored preferential flow along these flowpaths,

away from the sides of the bioreactor. An improved bioreactor design should consider the

role of preferential flowpaths and the heterogeneous distribution of the genetic potential

for denitrification, nitrous oxide reduction and anammox on bioreactor function.
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1. Introduction

Nitrogen release from undetonated ammonium-nitrate based

explosives used in mining is an environmental issue that is

just beginning to be recognized (e.g. H€ayrynen et al., 2008;

Bailey et al., 2013). Undetonated ammonium nitrate is

readily soluble in water and quickly enters into the mine

drainage. The nitrogen in thesewaters is primarily in the form

of nitrate (NO3
�) and ammonium (NH4

þ) with lesser amounts of

nitrite (NO2
�), which is eventually discharged to the environ-

ment. In the cold climate of northern circumpolar areas,

aquatic ecosystems are often nutrient-limited, and even small

nitrogen loadings could impact water bodies. In addition, a

significant issue is the presence of NO2
� and the generation of

ammonia (NH3), both of which have toxic effects on aquatic

ecosystems (EPA, 2009). To prevent detrimental environ-

mental impacts, there are a number of viable approaches for

removing nitrogen from mine drainage waters. For complete

nitrogen removal, most of the techniques involve oxidation of

reduced nitrogen species to NO3
� followed by denitrification.

This is a microbial reaction mainly involving heterotrophic

denitrifying bacteria that use organic compounds (‘CH2O’) as a

carbon and energy source while reducing NO3
� to nitrogen gas

(N2) under anaerobic conditions:

4NO�
3 þ 5CH2O/2N2ðgÞ þ 4HCO�

3 þH2CO3 þ 2H2O (1)

A low-cost solution for treating mine drainage with highly

variable water flow, low organic matter content, and variable

nutrient loading is a fixed-bed denitrifying bioreactor system

(e.g. Schipper et al., 2010), which is a passive or semi-passive

surface or subsurface structure containing a porous organic

material through which water flows. During water flow

through the anaerobic regions of the bioreactor, dissimilatory

reduction of NO3
� to N2 is promoted by the denitrifier com-

munity (reaction 1). The process can also terminate with

nitrous oxide (N2O), either due to unfavorable environmental

conditions (Elgood et al., 2010) or community members lack-

ing the genetic capacity to reduce N2O (Jones et al., 2008;

Philippot et al., 2011). When designing bioreactors for treat-

ment of nitrogen-contaminatedmine drainage, it is important

to consider the fraction of denitrifiers with a complete deni-

trification pathway to avoid emissions of the potent green-

house and stratospheric ozone-depleting gas N2O. Potentially,

anaerobic ammonia oxidation (anammox) resulting in NO2
�

reduction by NH4
þ and formation of N2 (Kuenen, 2008) could

also be used in bioreactors, but little is known about the role of

anammox bacteria in these types of systems.

The performance of a denitrifying bioreactor system is

dependent on hydraulic conditions, geochemical conditions

and microbiological characteristics, all of which in turn are at

least partially dependent on the composition of the organic

material in the bioreactor (e.g. Warneke et al., 2011). Neverthe-

less, preferential flow and other site-specific conditions may

lead to short hydraulic residence times anddepleted reserves of

labile organic carbon in the bioreactor substrate, which in turn

result in lower rates of contaminant removal (cf. Cameron and

Schipper, 2011; Christianson et al., 2013). When the availability

of labile organic carbon limits the denitrification rate, a sup-

plementalcarbonandenergysourcecanbe fed to thebioreactor.

This study reports on the design and operation of a pilot-

scale bioreactor installed at an iron ore mine in the north of

Sweden for the removal of nitrogen from drainage water. In

this system, NO3
� was the primary dissolved nitrogen species.

Our objectives were to determine 1) the treatment capacity of

a semi-passive bioreactor under ambient conditions, and 2)

the abundance and distribution of denitrifying and anammox

bacteria in the bioreactor after two years of operation. As

bacterial abundances cannot be easily assessed, genes that

code for key enzymes in the denitrification pathway and taxa-

specific genes for anammox bacteria were used as proxies for

genetic potential of the functional communities. Thus, a

change in gene abundance would be interpreted as growth or

decay of that particular community resulting in an increased

or decreased genetic potential, respectively. Our hypotheses

were that 1) availability of electron donors and acceptors and

2) preferential flowpaths affected the distribution of N-

reducing microorganisms and thereby reactor performance.

While bioreactor systems for denitrification have been

installed for treating groundwater contaminated with sewage

effluents (Robertson and Cherry, 1995; Robertson et al., 2008)

or agricultural drainagee impacted runoff (Christianson et al.,

2013; Schipper and Vojvodic-Vukovic, 2001; Schipper et al.,

2010), this is the first reported study of a semi-passive deni-

trification bioreactor system for treating mine drainage.

2. Materials and methods

2.1. Site description

At theMalmberget iron oremine in northern Sweden (67�130N,

20�420E), operated by the mining company LKAB, nitrogen

from undetonated explosives enters into the mine drainage

and groundwater, which is pumped from the mine and used

as process water in the ore processing and pelletization

plants. After passing through a tailings impoundment and a

sedimentation pond, excess processwater is discharged to the

Lina€alven River via a spillway at levels up to 60 000 m3 day�1

(LKAB, unpublished data). In addition, nitrogen compounds

are adsorbed to waste rock that is removed from themine and

deposited within the catchment area; leachate from these

rock dumps also contributes to nitrogen discharges from the

site. For the period 2010e2011, the average concentrations of

the primary nitrogen species in discharge from the sedimen-

tation pond were 30 mg NO3
�eN L�1, 0.8 mg NH4

þeN L�1, and

0.5 mg NO2
�eN L�1. The mean annual air temperature in the

vicinity of Malmberget was �1 �C for the period 1961e1990

(SMHI, 2014).

2.2. Bioreactor construction and instrumentation

The bioreactor system was designed to treat “hot spots” of

nitrogen discharge, such as close to the detonation source in

the mines, or down-gradient from rock waste dumps (cf.

Bailey et al., 2013). Thus, only a small fraction of the discharge

from the sedimentation pond was diverted to the bioreactor

system at our site to simulate this type of situation.

The bioreactor system was constructed of sheet metal

(steel) in autumn 2009, with dimensions 9 m (length) �2 m
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(wide) �1.5 m (deep). The bioreactor (Fig. 1) was an open box-

like container with three inner dividing walls. The first and

third dividing walls extended from the upper edge down to

0.5 m from the bottom of the bioreactor, while the second

inner wall extended from the bottom up to 0.5 m; the purpose

of the inner dividing walls was to force the water flow below

the surface of the bioreactor so as to maintain anaerobic

conditions through as much of the flowpath as possible.

Water was loaded into the bioreactor from the surface on the

one side, and discharged from the other side through one of

three possible discharge points. The discharge points con-

sisted of two pipes situated 100 cm from the bottom of the

bioreactor, two pipes situated 40 cm from the bottom of the

bioreactor, and one pipe 10 cm from the base. These three

discharge points are denoted as the upper, middle, and lower

discharge points, respectively (Fig. 1); the middle discharge

pipes were used at the start of barrier operations on June 13,

2011.

After construction, the bioreactor was placed on a level

location adjacent to the regulated spillway from the sedi-

mentation pond at the Malmberget iron ore mine. The biore-

actor was filled with two different mixtures of reactive

material: the first compartment, nearest the inlet, was filled

with a 10:3:1 mixture (by volume) of crushed rock (8e16 mm),

water e saturated sawdust, and sewage sludge, respectively,

and the remaining compartments were filled with a 15:5:1

mixture that had a greater amount of crushed rock and hence

a greater permeability. The sewage sludge, obtained from the

Uddebo sewage treatment plant in Luleå, contained an active

community of denitrifying bacteria, while the sawdust pro-

vided a long-term carbon and electron source for heterotro-

phic denitrification (see Herbert, 2011). The crushed rock

functioned as a supporting material and prevented the

organic substrate from compacting under its own weight,

which would otherwise create a zone of low hydraulic con-

ductivity at the base of the bioreactor.

Prior to filling the bioreactor structure with the reactive

material, piezometers were installed for sampling pore water

(Fig. 1). The piezometers take in water at a location 30e50 cm

from the bottom of the bioreactor (90e110 cm below the ma-

terial surface). Thermistors (Campbell Scientific® 107 tem-

perature probe) were installed for measuring in-situ

temperature and air temperature (Fig. 1) and data was

continuously stored on a CR1000 data logger. The air tem-

perature thermistor was installed in a radiation shield

(Campbell Scientific® MET20) at a height of 2.5 m above the

ground surface.

2.3. Bioreactor operation, tracer test and sampling

The bioreactor was first operated for a test period May 17 e

October 10, 2010 to establish steady flow. After this, the

Fig. 1 e Bioreactor dimensions including location of piezometers (denoted P1 e P5) (point of water intake shown in cross-

section), thermistors (denoted T1eT5), and location of reactive material sampling. (a) Bioreactor in plan view, blue arrows

show locations of water inflow and outflow from bioreactor. North arrow refers to direction in plan view. (b) Bioreactor in

cross section view. Dotted lines show assumed location of water level when the upper or lower discharge points were used.

(c) Plan view showing location of bioreactor material samples at one depth along four transects (AeD) parallel to the

direction of flow and at seven positions at increasing distance from the inlet (aeg). Numbers along edge denote distance in

cm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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bioreactor was operated and monitored during the experi-

mental period June 13 e September 23, 2011. During this

period, a 24 h hydraulic residence time was applied; this

residence time was based on the results of laboratory column

experiments (Herbert and Bj€ornstr€om, 2009; Herbert, 2011) at

5 �C where a ca. 50% nitrate removal was achieved, and based

on practical considerations (i.e. pump limitations). With this

residence time as a design criteria (i.e. 24 h), a pump with

regulating valvewas used tomaintain flow to the bioreactor at

close to 3.75 L min�1 (5.4 m3 d�1, flow rate ¼ total bioreactor

volume � porosity/hydraulic residence time ¼ 27 m3 � 0.2/1

day). A porosity of 0.2 was estimated based on the measured

porosity of the crushed rock (0.4) and the assumption that the

sawdust and sewage sludge that fill the crushed rock pore

spaces have a combined effective porosity of ca. 0.5. While

both sawdust and sewage sludge generally have porosities

exceeding 0.5 (cf. Horisawa et al., 1999; O'Kelly, 2004), the

sawdust-sludge mixture contains a certain amount of pore

space that does not participate in advective flow (Herbert,

2011), resulting in a lower effective porosity. The value of 0.5

is hence an estimated value.

From day 31 of the 2011 operational period, an acetate so-

lution was added to the bioreactor so as to increase the supply

of labile carbon and thereby increase the NO3
� removal rate.

The solutionwas delivered to the bioreactor surface in the first

bioreactor compartment at a rate of 0.23 m3 d�1, correspond-

ing to an organic loading rate of 4.3 g organic carbon m�3 d�1.

Near the end of the operational period (day 95), a tracer test

was conducted by rapidly adding 40 L of a concentrated NaCl

solution along with theminewater at the bioreactor inlet. The

purpose of this test was to determine the average hydraulic

residence time of a conservative compound in the bioreactor,

which would subsequently be used in the calculation of ni-

trate removal rates. At the time of the tracer test, the lower

discharge point from the bioreactor was used. The electrical

conductivity of the bioreactor discharge was measured for

seven days after the start of the tracer test in order to monitor

for the transport of the salt pulse through the bioreactor and

to obtain a hydraulic residence time for the system.

Water sampling from the bioreactor was performed by

directly collecting discharge water, or by sampling the pie-

zometers using PVC tubing and a peristaltic pump. Samples

were subsequently frozen until analysis.

After the termination of the bioreactor operations, the

bioreactor material was sampled in order to determine the

spatial distribution and the size of the denitrifier and anam-

mox communities as well as of the total bacterial community.

In addition, the material was sampled for the extraction of

pore water for chemical analysis. Since the bioreactor started

to freeze after the 2011 operational period, reactor material

samples were not collected until the following year, on June

18, 2012. At the time of sampling, the bioreactor matrix was

saturated from the base up to ca. 50 cm from the bottom (i.e.

deeper than 90 cm below the upper surface of the bioreactor

material). At this time, the bioreactor contents were emptied

using a vacuum truck; the material was removed in layers so

that samples could be acquired at different depths. Samples

were collected using a peat corer (6 cm in diameter) at each

point in a grid system as indicated in Fig. 1c. Samples were

collected at the following depths below the surface of the

undisturbed bioreactor material: 20e30, 60e70, 100e110 and

125e135 cm, where the latter two samples were water-

saturated. In addition, samples were collected along four

transects (labeled A e D, Fig. 1c), where transects B and C are

presumed to lie along the predominant flowpath in the

bioreactor. Samples of 50e100 mL, consisting of crushed rock

and sawdust in varying proportions, were collected with

dedicated, sterile plastics scoops and stored in sterile plastic

bottles. Samples were stored on ice during transport and

frozen until analysis. For the quantification of the microbial

communities in the bioreactor, 64 samples (out of the 112

collected) distributed across all four depth horizons (12 sam-

ples at 20e30, 60e70, and 125e135 cm, and 28 at 100e110 cm)

and at various distances from the inlet were analyzed.

2.4. Analyses

2.4.1. Chemical analyses of water samples
Water samples consisted of samples collected from bioreactor

discharge and piezometers, as well as pore water extracted

from the reactive material. Pore water from bioreactor mate-

rial was extracted by first removing the crushed rock and then

squeezing the samples in 60 mL syringes; samples were

filtered (0.2 mm) prior to analysis.

Inorganic nitrogen compounds (NO3
�, NO2

�, NH4
þ), total

organic carbon, and alkalinity in discharge and piezometer

water samples were measured by LKAB's accredited labora-

tory. Alkalinity was determined by titration, NO3
� by ion

chromatography, NO2
� by flow injection analysis, NH4

þ by the

indophenol method, and TOC by combustion followed by CO2

detection. In a limited number of water samples from the

bioreactor and in pore water extracted from the bioreactor

material, nitrate was measured using an ion selective elec-

trode (Orion™ 9707, Thermo Electron Corporation) following

standard measurement procedures.

2.4.2. DNA extraction and quantitative real-time PCR
A 15 mL phosphate-buffered saline solution containing 0.05%

Tween 20 was added to each bioreactor material sample

(50e100 mL). The sample was extensively shaken by hand for

10 s and the liquid, including smaller particles but not the

crushed rock, was transferred to a 50 ml tube. After repeating

this procedure three times, the tube was left for a 3e5 min to

allow the majority of the particles to settle. The water phase

was decanted and filtered through a 0.22 mm Supor® mem-

brane (Pall Corporation). Themembranewas cut in two halves

and DNA was extracted from one of them using the MoBio

PowerWater® DNA Isolation kit following the manufacturer's
instructions. The extractedDNAwas quantified using a Qubit®

fluorometer (Life Technologies Corporation).

Quantitative real-time PCR (qPCR) was used to determine

the abundance of specific marker genes present in each of the

functional bacterial communities in addition to the 16S rRNA

genes in the overall bacterial community. A taxa-specific part

of the16S rRNA gene was used for the anammox bacterial

community, whereas the genes nirS and nirK, coding for the

cytochrome-like nitrite reductase and the copper-dependent

nitrite reductase, respectively, represented the denitrifying

community. Nitrite reduction defines the process deni-

trificaton sensu stricto (Shapleigh, 2013) and the presence of
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nirK or nirS indicates genetic potential for denitrification. To

target nirS and nirK, we used currently available primer sets

which, while not covering the extant genetic diversity of each

group, still allows for a comparative analysis of the relative

abundance of each in the bioreactor. This is accomplished by

sampling a standard subset of each group for which denitri-

fication functionality is verified (Penton et al., 2013) and genes

coding for reduction of nitric oxide to nitrous oxide are pre-

sent (Jones et al., 2008). The nosZI and nosZII genes, coding for

the nitrous oxide reductase from clade I and II, represented

the nitrous oxide reducing community; primer sets that

encompass the known diversity of the nosZ gene were used

(Jones et al., 2013), allowing for a complete assessment of the

known N2O reducing community. All amplifications were

performed according to the protocols in Table S1 (see Sup-

plementary data).

Two independent reactions were performed per gene, each

in a reaction volume of 15 mL using DyNAmo Flash SYBR Green

qPCR kit (Thermo Fisher Scientific Inc.), 0.1% Bovine Serum

Albumin, 1.0 mM of each primer and 15 ng DNA. Standard

curveswere obtained by serial dilutions of linearized plasmids

with cloned fragments of the specific genes. Standard curves

were linear (R2 ¼ 0.999) in the range used. The amplification

efficiency for 16S rRNA was 94%, whereas it was 83, 88, 90, 69

and 82% for nirS, nirK, nosZI, nosZII and anammox specific 16S

rRNA genes, respectively. Non-template controls resulted in

null or negligible values. Potential inhibition of the PCR re-

actions was checked by comparing amplification of a known

amount of the pGEM-T plasmid (Promega) with the plasmid

specific T7 and SP6 primers when added to the DNA extracts

or to non-template controls. No inhibition of the amplification

reactions was detected with the amount of DNA used.

2.4.3. Statistical analysis
For the determination of statistical significance between two

sample datasets, Origin Pro 9.1 (OriginLab Corporation,

Northampton, USA) was used for the application of a two

sample student's t-test for comparing the means of both

datasets.

The structure of the concatenated community of all func-

tional groups involved in reduction of NO3
� to N2 among

samples was analysed using non-metric multidimensional

scaling (NMS). The community matrix was based on the

relative gene abundances, expressed as gene copy number per

ng of extracted DNA, which were compiled into a community

matrix using the BrayeCurtis distance measure. Data was

relativized by the column total for each gene followed by arc-

sine square root transformation to stabilize variance. The

NMSwas performedwith a random starting configuration and

a maximum of 200 iterations performed on 250 runs with the

real data and 250 runs with randomized data to ensure that

final ordination scores were significantly different from those

generated from randomized data. For a solution with the

lowest possible stress value, a final run using the best starting

configuration from the first run was performed. Multi-

Response Permutation Procedures (MRPP) were used to test

whether the communities composed of the functional groups

differed according to the a priori group depth. For the MRPP,

multiple comparisons were corrected by controlling the false

discovery rate according to the procedure established by

Benjamini and Hochberg (1995), accepting 5% false positives.

All the multivariate analyses were performed using PC-ORD

version 5.10 (MjM Software, Oregon, USA).

3. Results

3.1. Thermistor data

Prior to the start of the 2011 operational period, the average

daily core temperature in the bioreactor (thermistor T1)

remained at or below 0 �C until June 5, while temperatures at

thermistor T3 continuously exceeded 0 �C after April 20

(Figure S1, Supplementary Data). This temperature differen-

tial in the bioreactor was due to the solar irradiation of the

southeast face of the bioreactor. After the start of water flow

through the bioreactor, bioreactor temperatures generally

reflect the temperature of the inflowing water from the sedi-

mentation pond, which follows average air temperature

(thermistor T5). As demonstrated by the temperature time

series, the effective operational period for the bioreactor sys-

tem, when the core bioreactor temperature (thermistor T1,

Figure S1, Supplementary Data) was greater than 0 �C, was on

the order of 5e6 months.

3.2. Chemical analyses

3.2.1. Nitrate
Inlet NO3

� concentrations were relatively constant with a

mean concentration of 30.4 mg N L�1 during the operational

period (Fig. 2a). Outlet NO3
� concentrationswere initially in the

range 16e25mgN L�1, indicating a 14e47% removal. However,

the concentrations were variable, which probably reflects

variations in hydraulic residence time and temperature in the

bioreactor (Figure S1, Supplementary Data). After the addition

of acetate on day 31, outlet NO3
� concentrations decreased and

were below the detection limit after day 57. This level per-

sisted until after day 84, when the outlet concentration started

to increase.

The decrease in NO3
� removal after day 84 coincided with a

change in the hydraulic conditions in the bioreactor system:

from day 63, water started to flow over the top edge of the

bioreactor system and out of the upper discharge pipes, and

not only through the middle discharge pipes as intended.

Therefore, outlet water was sampled from the upper

discharge pipes for days 70e94. Because of the change in hy-

draulic conditions, the lower discharge point was used from

day 95, thereby creating a greater hydraulic gradient through

the bioreactor and avoiding the presumed region of low con-

ductivity near the middle discharge pipes.

The change in the hydraulic conditions that led to water

flowing over the top of the bioreactor was probably the result

of a decrease in the hydraulic conductivity of the reactive

material near the middle discharge pipes. The reason for the

conductivity decrease is unknown, although possible expla-

nations could be the growth of biofilm in the reactive material

(cf. Seifert and Engesgaard, 2007; Seki et al., 2006; Soares et al.,

1991), or themobilization of fine-grained organicmatter in the

bioreactor, both of which would lead to local decreases in

porosity and permeability.
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3.2.2. Nitrite, ammonium and alkalinity
Inlet NO2

� concentrations were relatively constant with a

mean level of 0.60mg N L1 (Fig. 2b). Outlet NO2
� concentrations

initially exceeded the mean inlet concentration by a factor of

ca. 2e3, but then rapidly decreased to below detection limit

after the addition of acetate with the inlet water. Similarly to

NO3
�, NO2

� concentrations at the outlet also increased at the

end of the operational period when the lower discharge point

was used. The elevated NO2
� concentrations at the beginning

of the operational period were most likely attributable to the

partial reduction of NO3
� in the influent water; further reduc-

tion of NO2
� to more reduced N species may have been limited

by the availability of labile organicmatter and the distribution

of the denitrifying community with genes coding for nitrite

reductase.

Relative to inlet NO3
� and NO2

� concentrations, inlet NH4
þ

concentrations exhibited greater variability (Fig. 2c), with a

mean concentration of 0.28 mg N L�1; the decrease in NH4
þ

concentration during the first 30 days probably reflected an

increase in nitrification rate in upstream locations with

increasing bioreactor temperature (see Supplementary data).

At the start of the sampling period, inlet and outlet NH4
þ

concentrations were very similar. After the addition of acetate

(i.e. day 31), outlet NH4
þ concentrations were close to detection

limits but this may be coincidental as NH4
þ concentrations had

started to decrease prior to the addition of acetate, perhaps

due to enhanced nitrification at the surface of the bioreactor.

With the exception of day 52, NH4
þ concentrations remained

low until day 84when inlet concentrations started to increase.

Alkalinity in the bioreactor inlet water was relatively con-

stant with a mean value of 49 mg L�1 HCO3
- (Fig. 2d). After the

addition of acetate, outlet alkalinity concentrations increased

by up to an order of magnitude over inlet concentrations. In-

creases in alkalinity through the bioreactor are an indication

of denitrification (reaction 1).

3.2.3. Nitrate concentrations in direction of flow
The analysis of NO3

� in water samples from piezometers

suggests that denitrification occurred along the entire flow-

path, as there was a progressive decrease in nitrate concen-

tration with distance from the inlet (Fig. 3).

3.3. Tracer test

Results of the tracer test on day 95 indicated an average hy-

draulic residence time in the bioreactor of 11 h, based on the

time to maximum electrical conductivity after NaCl addition

(Figure S2, Supplementary Data). At this point in time, the

lower discharge point was used. Considering this measured

value and the volume of bioreactor material that was water-

saturated when the other discharge points were used (cf.

Fig. 1), hydraulic residence times of 15 and 29 h were esti-

mated for the middle and upper discharge points,

respectively.

Fig. 2 e Concentrations of (a) NO3
¡, (b) NO2

¡, (c) NH4
þ, and (d) alkalinity in bioreactor inlet and outlet waters during the

operational period. Dotted line and arrow mark the start of the acetate addition on day 31. Closed and open squares refer to

bioreactor inlet and outlet water, respectively.
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3.4. Occurrence and spatial distribution of bacterial
communities

Both denitrification and anammox-related genes were detec-

ted in the bioreactor material, but the total abundance of

denitrification genes sensu stricto (sum of nirS þ nirK genes)

was on average almost 2 orders of magnitude greater in

abundance than the anammox specific 16S rRNA gene (Fig. 4).

A trend of increasing abundances of the bacterial 16S rRNA

genes and nirS, nirK and nosZI genes with depth was observed

(Fig. 4). The abundance of the denitrification genes nirS and

nirK increased the most, resulting in not only an increasing

fraction of this group with increasing depth, but also a

decreasing fraction of genes coding for nitrous oxide reduc-

tion in relation to denitrification. In general, there was a sig-

nificant difference (P < 0.05) between themean abundances of

samples collected at the shallower depths (20e30 and

60e70 cm) compared with the deeper depths (100e110 and

125e135 cm) with respect to the 16S rRNA, nirS, nirK, and nosZI

genes; the one exception was that no significant difference

was found for the difference between average nirK gene

abundance at 60e70 and 100e110 cm depth. In general, there

was no significant difference (P > 0.08) in the samples

collected at different depths in terms of the abundance of

nosZII and anammox specific 16S rRNA genes. The concate-

nated community including the relative abundance of all

functional groups involved in reduction of NO3
� to N2, either

fully or partly, also indicated a separation of the bioreactor

samples according to depth (Fig. 5). These differences were

supported by the MRPP and were significant between all

depths (P < 0.05), apart from the two deepest layers. The nirS

gene contributed most to the separation.

In addition to the differences in gene abundance attribut-

able to depth, there were observable differences in abun-

dances along transects representing the hypothetical

flowpaths A e D in Fig. 1, at a depth of 100e110 cm, which was

water-saturated or close to saturation for the entire opera-

tional period (Fig. 6). The nirS genes decreased in abundance

with distance from the inflow, although flowpath in the

bioreactor (i.e. represented by transect A-D) did not appear to

be important (Fig. 6a). By contrast, the abundance of nirK was

Fig. 4 e Abundances of 16S rRNA genes from the total

bacterial community, nirS and nirK from denitrifying

bacteria, nosZI and nosZII genes from bacteria with nitrous

oxide reducing capacity, and anammox-specific16S rRNA

genes in all four depths in bioreactor. Each cluster of four

boxes represents the 20e30 cm (n ¼ 12), 60e70 cm (n ¼ 12),

100e110 cm (n ¼ 28), and 125e135 cm depth (n ¼ 12) in the

bioreactor. Box plots indicate 25, 50 (median) and 75

percentiles and whiskers indicate 5 and 95 percentiles.

Fig. 5 e Non-metric multidimensional scaling analysis of

the abundances of bacteria involved in reduction of NO3
¡ to

N2 at different sampling depths in the bioreactor. The

distance matrix was based on the concatenated

abundances of nirS, nirK, nosZI, nosZII and anammox-

specific16S rRNA genes. Symbols indicate sampling depth

( 20e30 cm, 3 60e70 cm, 100e110 cm and

125e135 cm) and symbol size increases with increasing

value of the size of the total denitrifying community

(nirSþ nirK genes) among samples. Stress value is 13.0 and

the cumulative R2 between ordination distances and

distances in the original space is 0.91.

Fig. 3 e Nitrate concentration profile through the bioreactor

for two sampling episodes. Profile includes samples in the

sequence inlet e P1 e P2 e P3 e Outlet (see Fig. 1) and

closed and open squares refer to day 45 and 95,

respectively.
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greater along the middle transects (i.e. B and C) and in the

central regions of the bioreactor (positions c, d, e; Fig. 1c) than

along the sides of the bioreactor (Fig. 6b). A comparison of the

potential for nitrous oxide reduction relative to denitrification

[(nosZI þ nosZII)/(nirS þ nirK), Fig. 6c] indicates a somewhat

greater genetic potential for nitrous oxide reduction near the

bioreactor inlet and outlet, relative to the central regions. The

average abundance of anammox specific 16S rRNA genes

increased slightly with distance from the inlet (Fig. 6d). There

were no observable trends in the overall bacterial 16S rRNA

gene copy numbers along the transects (data not shown).

4. Discussion

The chemical analyses of water samples collected from the

bioreactor indicated that NO3
� was removed in the bioreactor,

but an effective NO3
� and NO2

� removal (>95%) was not ach-

ieved until after the addition of acetate. This suggests that

denitrification and not anammox was the main process

involved in nitrogen removal in the bioreactor. This is sup-

ported both by the increase in alkalinity and the detection of

nirS and nirK genes at high numbers in the bioreactormaterial.

The latter shows that growth conditions during the opera-

tional period had favored denitrifiers in the system. Compared

to wastewater treatment plants designed for nitrogen

removal, the number of denitrification geneswere in the same

range (Gabarro et al., 2013; Kim et al., 2011; Thomsen et al.,

2007), but in relation to natural systems like soil, wetlands

or other aquatic systems, the abundance relative to the total

bacterial 16S rRNA gene copy numbers was 10e200 times

higher in the bioreactor (e.g. Garcı́a-Lled�o et al., 2011; Hallin

et al., 2009; Lyautey et al., 2013). Nevertheless, the concomi-

tant removal of NO2
� and NH4

þ during days 57e77 suggests that

anammox bacteria were also involved in overall nitrogen

reduction, although the relatively lower abundance of genes

specific for anammox bacteria in the bioreactor material

compared to denitrification genes supports denitrification as

the dominating process in the bioreactor during operation.

The nitrate transects through the bioreactor express a

near-linear decrease in NO3
� concentrations with distance

(ztransport time), suggesting that denitrification occurred in

the entire reactor and was following a zero-order rate law. A

concentration-independent rate is expected for microbial

processes that follow Monod kinetics and when substrate

concentration (i.e. NO3
�, acetate) is not limiting the reaction

rate (Appelo and Postma, 2005). Assuming zero-order kinetics,

NO3
� removal rates for the bioreactor system were calculated

as the difference between the inlet and outlet NO3
� concen-

trations divided by the hydraulic residence time and multi-

plied by the estimated material porosity (0.2; conversion

factor for liters water to liters bioreactor material). Nitrate

removal rates for the period before the addition of acetate

ranged 1.3e4.8 g N m�3 (bioreactor material) d�1 at a mean

daily bioreactor temperature of 18 �C ± 2.5 �C, and were

5e10 g N m�3 d�1 after the addition of acetate (average daily

bioreactor temperature 16 �C). Schipper et al. (2010) and

Warneke et al. (2011) reported NO3
� removal rates in deni-

trifying bioreactors (without additional carbon sources) to

generally lie in the range 0.6e10 g N m�3 d�1 at similar tem-

peratures; the higher end of these rates are derived from

bioreactors with relatively reactive organic materials (e.g.

Fig. 6 e Four transects from the 100e110 cm depth depicting a) abundance of nirS genes, b) abundance of nirK genes, c) ratio

of nos and nir genes (nosZI þ nosZII)/(nirS þ nirK), and d) abundance of anammox-specific16S rRNA genes, as a function of

distance from inlet in the bioreactor. Symbols represent the four transects in the bioreactor according to Fig. 1:A transect A,

◊ transect B, - transect C, , transect D.

wat e r r e s e a r c h 6 6 ( 2 0 1 4 ) 3 5 0e3 6 0 357



maize cobs, wheat straw) or with longer hydraulic residence

times (e.g. Elgood et al., 2010; Greenan et al., 2009; Robertson

et al., 2008). These results highlight the importance of select-

ing an appropriate hydraulic residence time and sufficiently

reactive material in order to meet the treatment goals of the

bioreactor.

A clear trend was observed with depth of an increasing

abundance of specific genes characteristic of the denitrifier

community (i.e. nirS, nirK, nosZ) and of the total bacterial

community. The increase in nirS þ nirK abundance is sup-

ported by a significant (P < 0.05) decrease in pore water NO3
�

concentrations from the 60e70 cm to the 125e135 cm depths.

The increase in the abundance of denitrifying bacteria may

coincide with an increase in NO3
� removal rate with depth, as

Warneke et al. (2011) has demonstrated a correlation be-

tween NO3
� removal rate and both the abundance of

nirS þ nirK genes and carbon availability in bioreactors. In our

bioreactor, proliferation of denitrifying bacteria was likely

supported by the degree of water saturation, which would

have limited oxygen availability in the deeper layers (i.e.

bottom two sampling horizons. Therefore, it is expected that

O2 competed with NO3
� as a terminal electron acceptor in the

oxidation of the organic substrate in the upper horizons. If

this assumption is valid, oxygen diffusion and substrate

supply affected the depth distribution of denitrification po-

tential in the bioreactor. It is apparent that the entire biore-

actor cross-section was not effectively exploited for NO3
�

removal in this study, such that regions of lower water

saturation were associated with a lower abundance of nirS

and nirK genes, proxies for the abundance of the denitrifier

community. Similar findings have been reported by Andrus

et al. (2014), where increased depth and continuous water

saturation in a bioreactor were linked to a more homoge-

neous microbial community structure, a lower exposure to

O2, and a greater availability of organic carbon.

The abundance of microbial communities capable of

denitrification and anammox varied with distance from the

bioreactor inlet. The abundance of nirS decreased with dis-

tance from the inlet while the greatest nirK abundance

occurred in the central region of the bioreactor. This agrees

with previous studies suggesting that nirS and nirK type de-

nitrifiers have different niche preferences (Jones and Hallin,

2010), which would explain why they would respond differ-

ently to changing environmental conditions, as reported by

others (Desnues et al., 2007; Enwall et al., 2010; Santoro et al.,

2006; Smith and Ogram, 2008; Yuan et al., 2012). Since NO3
�

concentrations decreased to below detection limits in the

outlet during the second half of the operational period, nirS

abundance may have reflected substrate availability. Indeed,

other studies (Enwall et al., 2010; Philippot et al., 2009) have

reported that nirS rather than nirK abundance is more often

correlated or more strongly correlated to denitrification ac-

tivity in soil. In bioreactor systems,Warneke et al. (2011) noted

a correlation between nirSþ nirK abundance and NO3
� removal

rate, but with an increasing predominance of nirS with

increasing temperature. In contrast to the patterns observed

for specific genes characteristic of the denitrifier community,

16S rRNA gene copy numbers representing anammox bacte-

rial communities showed a slight increase in abundance with

distance from the inlet, suggesting that conditions may

be more conducive for anammox (e.g. higher NO2
� concen-

trations) closer to the outlet. The accumulation of NO2
� in the

bioreactor outlet in the absence of acetate as an electron

donor may have been indicative of this spatial distribution in

NO2
� reduction potential.

The spatial development of the denitrifier community in

the bioreactor material is ultimately tied to the hydraulic

conditions in the system, in terms of water saturation, hy-

draulic residence times, and flowpaths. As depicted in Fig. 1,

mobile water discharged from the bioreactor through either

two pipes (upper and middle discharge points) or from one

pipe (lower discharge point). The bioreactor design hence

favored the development of preferential flow, away from the

sides of the bioreactor, with regions of immobile water along

the sides and in the corners. The occurrence of large volumes

of immobile water has been associated with poor bioreactor

performance in other studies (e.g. Christianson et al., 2013).

Although there is currently insufficient data to explain the

variability in nirK abundance along different flowpaths, it

may be attributed to the continuous renewal of electron do-

nors and acceptors (i.e. acetate and NO3
� or NO2

�, respectively)
along the central flowpaths where preferential flow is

occurring, and substrate limitation along the sides of the

bioreactor where there is a higher fraction of immobile water.

A similar situation has been observed in a constructed

wetland (Kjellin et al., 2007), where the hydraulic residence

time explained the potential denitrification rates along

different flowpaths. Lower denitrification rates at longer

residence times were likely linked to the limited supply of

nitrate from the water to the sediments.

The fraction of genes coding for nitrous oxide reduction

(sum of nosZI and nosZII) in relation to those for denitrifica-

tion (sum of nirS and nirK amplified from respiratory de-

nitrifiers with capacity to reduce nitric oxide to nitrous oxide)

was on average 39.6 ± 9.7%. This indicates that the genetic

potential for nitrous oxide production by denitrifiers was

greater than the potential for nitrous oxide reduction in the

bioreactor. However, this number needs to be interpreted

with caution since the nosZII clade could have been under-

estimated due to the lower amplification efficiency compared

with the nosZI and nir genes. It has previously been shown

that nosZI and II are found in equal abundance in a range of

different environments (Jones et al., 2013) and if that would

be the case in the bioreactor, nir genes would be more

abundant than nos. In agreement with our results, the nosZ

abundance in wetlands and soils is often lower than that of

the denitrification genes nirS and nirK (Garcı́a-Lled�o et al.,

2011; Henry et al., 2006; Hallin et al., 2009; Philippot et al.,

2009). Similar results were reported by Warneke et al. (2011)

for bioreactors, who further showed that the nosZ/

(nirS þ nirK) ratio decreased with increasing temperature.

Interestingly, genetic potential for nitrous oxide reduction

increased with depth when nosZI were considered, whereas

nosZII showed no depth-related pattern. These results indi-

cate that organisms belonging to one of the two different

nosZ clades are not necessarily influenced by the same

environmental conditions. The fact that nosZII dominates

among non-denitrifying nitrous oxide -reducing bacteria

(Jones et al., 2013; Sanford et al., 2012) suggests that organ-

isms capable of nitrous oxide reduction as part of the
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denitrification process (mainly those harboring nosZI) are

favored under denitrifying conditions, i.e. the prevailing

condition in the deeper layer of the bioreactor. In relative

terms, there was a tendency for a higher fraction of overall

genetic potential for nitrous oxide reduction in relation to

denitrification in the upper sampling horizon compared with

the lower, but there were no differences along flowpaths or

with distance from inlet. Overall, our results suggest that the

emission of nitrous oxide from the bioreactor may be linked

to bioreactor performance.

5. Conclusions

The results of this study indicated that a bioreactor system

could successfully remove NO3
� at concentrations of ca.

30 mg N L�1 to below detection levels, at hydraulic residence

times of ~15 h, with the addition of acetate as an external

carbon and energy source for heterotrophic denitrifying bac-

teria. The concomitant removal of NO2
� and NH4

þ in the

bioreactor, along with the detection of genes that code for

anammox activity, suggested that anammox processes may

be a pathway for NO2
� and NH4

þ removal, although denitrifi-

cation was the dominating nitrogen removal process. In light

of these findings, the importance of the anammox pathway

for the treatment of nitrogen-contaminated mine drainage

should be further investigated.

There was a significant relationship between the abun-

dance of nirS, nirK, and nosZI genes and depth, which is likely

controlled by oxygen diffusion and substrate supply in the

partially or completely water-saturated material. In terms of

lateral spatial distribution, the abundance of genes coding for

nitrite reduction (nirS þ nirK) and the potential for nitrous

oxide production varied with distance from the bioreactor

inlet and, in the case of nirK, varied with different flowpaths.

This spatial variability is likely linked to the hydraulic condi-

tions of the system (e.g. water saturation, hydraulic residence

times, flowpaths) and to the continuous renewal of electron

donors and acceptors. The findings imply that an overall,

greater genetic potential for nitrite reduction and nitrous

oxide reduction could have developed in the bioreactor if

water-saturated conditions had been maintained at all

depths, and preferential flow had been avoided.

The knowledge of preferential flowpaths and the hetero-

geneous distribution of the denitrifying community should be

considered in an improved bioreactor design, yielding a

greater NO3
� and NO2

� removal. For example, to prevent pref-

erential flow, the treatedwater should be allowed to discharge

over the entire width of a bioreactor. In terms of the hetero-

geneous distribution of nirS and nirK, it needs to be investi-

gated if this is due primarily to variations in the flow field and

water saturation, or if other factors such as pore water

chemistry or competitionwith other functional groups should

be considered. Furthermore, research on the design and per-

formance of bioreactors needs to consider the effect of oper-

ational procedures and supported processes on net emissions

of nitrous oxide, so that nitrogen removal systems do not

simply transfer the problems of eutrophication and toxicity to

emissions of a potent greenhouse gas.
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Figure S1: Average daily temperatures in bioreactor (thermistors T1, T3) and in air (thermistor T5). 

Period of operation is indicated. 



 

Figure S2: Electrical conductivity variations in lower bioreactor discharge point as a result of 

tracer test initiated on day 95 (time = 0).  
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Substrate type determinesmicrobial activity and community composition
in bioreactors for nitrate removal by denitrification at low temperature
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• Sedge and straw bioreactors removed
nitrate at higher rates than woodchip
reactors.

• Denitrification was the dominant ni-
trate reduction process, but potential
for DNRA.

• Distinct bacterial communities devel-
oped in the lignocellulosic substrates.

• Thepotential forN2O reduction increased
with time in all tested substrates.
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High levels of nitrogen originating from blasting operations, for example atmining sites or quarries, risk contam-
inating water bodies through leaching fromwaste rock dumps. Woodchip bioreactors can be a simple and cost-
effective way of reducing nitrate concentrations in the leachate. In this study we investigated how bottle sedge,
barley straw, and pine woodchips used as electron donors for denitrification influenced microbial community
composition and nitrate removal in lab-scale bioreactors during 270 days. The reactors were operated to ensure
that nitrate was never limiting and to achieve similar nitrate removal (%). Distinct bacterial communities devel-
oped due to the different substrates, as determinedby sequencing of the 16S rRNAgene. Sedge and straw reactors
shared more taxa with each other than with woodchips and throughout the experimental period, sedge and
straw were more diverse than woodchips. Cellulose degrading bacteria like Fibrobacteres and Verrucomicrobia
were detected in the substrates after 100–150 days of operation. Nitrate removal rates were highest in the
sedge and straw reactors. After initial fluctuations, these reactors removed 5.1–6.3 g N m−3 water day−1,
whichwas 3.3–4.4 timesmore than in thewoodchip reactors. This corresponded to 48%, 42%, and 44% nitrate re-
moval for the sedge, straw, and woodchip reactors respectively. The functional communities were characterized
by quantitative PCR and denitrification was the major nitrate removing process based on genetic potential and
water chemistry, although sedge and straw developed a capacity for ammonification. Gene ratios suggested
that denitrificationwas initially incomplete and terminatingwith nitrous oxide. An increase in abundances of ni-
trous oxide reducing capacity in all substrate types towards the end increased the potential for less emissions of
the greenhouse gas nitrous oxide.
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1. Introduction

Nitrogen (N) contamination ofwater bodies due toN-rich leachates or
run-off water is a major environmental problem worldwide resulting in
eutrophication and toxic levels of nitrite and ammonia for aquatic organ-
isms (Camargo and Alonso, 2006). During the last decade, woodchip bio-
reactors have established as a cheap and sustainable way of treating
nitrate leaching from agricultural soils and greenhouses (Christianson
and Schipper, 2016; Fatehi-Pouladi et al., 2019), recirculating aquaculture
systems (Aalto et al., 2020; von Ahnen et al., 2019), and from stormwater
runoff (Ashoori et al., 2019). In these bioreactors, denitrifying microor-
ganisms reduce nitrate to gaseous compounds, ultimately to N2, using
the carbon (C) in the woodchip as electron donors (Schipper et al.,
2010). The technology could also be adapted for treating N originat-
ing from undetonated explosives and spillage during handling at
blasting operations, for example in quarries, at mining sites, and dur-
ing road construction, which is increasingly being acknowledged as
an environmental issue (Bailey et al., 2013). Ammonium nitrate
fuel oil is the most commonly used explosive (Forsyth et al., 1995)
and the ammonium nitrate is easily washed out from rock deposits,
and eventually ends up in waterbodies. Denitrifying bioreactors
using woodchips or sawdust for treating nitrate contaminated
mine water has been evaluated in pilot-scale reactors (Herbert Jr
et al., 2014; Nordström and Herbert, 2018), but more effort is needed
regarding the design to obtain high nitrate removal rates at low tem-
peratures for use at northern latitudes, andwithout introducing non-
wanted side effects, such as production of ammonium or nitrous
oxide.

The hydraulic retention time (HRT) in the bioreactor is an important
factor determining removal efficiency (Addy et al., 2016). For example,
Hoover et al. (2016) showed a positive linear relationship between HRT
and percent nitrate removed in woodchip columns. However, HRTs ex-
ceeding the needed reaction time will result in depletion of nitrate,
allowing for more reduced conditions that can lead to undesired pro-
cesses like sulfate reduction and formation of methane. Another impor-
tant factor determining N removal is temperature (Hoover et al., 2016),
but few studies have been conducted at 15 °C or lower (Jang et al.,
2019). In the northern hemisphere were many mines are situated,
even the mean summer temperature can be lower than that, challeng-
ing the application of cellulose-based denitrifying reactors for treatment
of mine drainage. Further, different cellulose-based substrate types give
different removal rates (Greenan et al., 2006) and C quality indicators of
the solid substrate, e.g. hemicellulose content, have been studied to op-
timize nitrate removal (Schmidt and Clark, 2013). There is an increas-
ing interest in the link between nitrate removal and microbial
community composition in woodchip or other cellulose-based sub-
strate bioreactors treating different types of wastewater (e.g. Aalto
et al., 2020; Grießmeier et al., 2017; Hathaway et al., 2015; Herbert
Jr et al., 2014; Jang et al., 2019; Kiani et al., 2020; Porter et al.,
2015). Better knowledge about which microorganisms are associ-
ated with specific substrates in these types of bioreactors could
help explaining differences in removal rates or why some substrates
favor unwanted reactions, for example the N retaining pathway dis-
similatory nitrate reduction to ammonium (DNRA) or production of
the potent greenhouse gas nitrous oxide (N2O) (e.g. Fowdar et al.,
2015; Warneke et al., 2011).

The aimwas to evaluate the effect of different solid substrates on ni-
trate removal rates and unwanted nitrogen transformation processes
and to determine the development of the bacterial communities and
the functional groups involved in denitrification, DNRA, and N2O reduc-
tionwhen treating nitrate richminingwater at 10 °C, which is themean
summer temperature in Northern Sweden. The abundance of DNRA
bacteria and N2O reducers give information on the genetic potential
for different nitrate reduction pathways in the reactors that would re-
sult in either removal or retention of N, and N2O production or reduc-
tion. We specifically compared the substrates pine woodchips, barley

straw, and bottle sedge, Carex rostrata, using lab-scale bioreactors,
which were continuously fed with water from a clarification pond at a
mine site in Sweden for 270 days. Bottle sedge was chosen because it
is a common plant in wetlands in areas surrounding mining ponds in
northern Sweden. It can grow to dense stands and is hence locally avail-
able at a low cost. To our knowledge sedge has not been tested as sub-
strate in cellulose-based denitrifying bioreactors. Barley straw is also
available locally and woodchips was chosen as the benchmark.

2. Material and methods

2.1. Substrates and water used in lab-scale bioreactors

Bottle sedge plants were dug up in April 2016 from a wetland area,
barley strawwasobtained froma farm, and pinewoodchips froma lum-
beryard; all close to Uppsala, Sweden. The sedge plants were cultivated
in 12 L plastic containers in tapwater supplementedwith potassiumni-
trate to a final concentration of 25mgN L−1 fourweeks in a growth cab-
inet under 12/12 h light/dark conditions at 25 °C and outdoors for
additional three weeks at ambient conditions. The sedge biomass was
cut with a scissor and left to dry at room temperature for two days. All
substrate types were prepared to obtain two size fractions. The smaller
sized material was packed into mesh bags, 0.300 g fresh weight per
25 × 25mmbag and the bigger sized fractionwas used for the bulkma-
terial of the bioreactor bed. The woodchips were sieved to obtain the
two fractions, diameter 2–4 mm/length 12–20 mm and diameter
12–13 mm/length 30–40 mm. The sedge and straw were cut into
15–20 mm pieces (small size fraction) with a scissor. To ensure equal
distribution of the sedge plant parts when preparing the reactors and
mesh bags, the material was divided into green shoots (75% of total
dry weight), dry/previous season shoots (15%) and fruit/male flowers
(10%) before mixing. Water content in the substrates was determined
by drying over night at 105 °C.

In the experiment, nitrate contaminated water from the clarifi-
cation pond at the LKAB mining site in Kiruna, Sweden was used.
The water was collected in 25 L plastic containers and shipped to
Uppsala by road transport. Upon arrival, the water was frozen
until use. Two batches of water from separate sampling occasions
were used, with the second batch used at the very end of the exper-
iment, days 260–270. The concentrations of nitrate, nitrite and am-
monium were 22.3 ± 3.0, 0.48 ± 0.22 and 0.19 ± 0.17 mg N L−1 for
the first batch and 32.9 ± 1.0, 0.61 ± 0.01 and 0.72 ± 0.16 mg N L−1

for the second respectively. The dissolved organic content (DOC) of
the water was 3.6 ± 0.18 and 3.7 ± 0.18 mg L−1respectively.

The substrate bulkmaterial andmesh bags to be used in the reactors
were wetted in sterile distilled water for 30 h at 10 °C. After pouring off
excesswater, the substrates were inoculatedwith sludge collected from
the return activated sludge flow from the secondary clarifier at the
Kungsängenmunicipalwastewater treatment plant inUppsala. Inocula-
tion was done by combining substrate, sludge and pond water in
sealable plastic bags to a concentration of 0.06% dry sludge per dry
mass substrate. The bags were agitated (150 rpm) over night at 10 °C.

2.2. Experimental bioreactors

The reactors were prepared in glass columns, inner diameter 48mm,
length 300 mm (Kontes Brand Chromaflex ® chromatography columns,
Kimble-Chase, New Jersey, USA) with three replicate columns for each
substrate type. The content of the plastic bags, i.e. sludge-inoculated sub-
strate and pond water, was put in the columns. The mesh bags were
placed in the bottom and in the top, 10 per position, to allow sampling
of the substrate during the experimental period without destroying
the bulk of the column. Pondwater was added to completely fill the col-
umns at the start of the experiment. As the effective porosity of the sub-
strateswere unknown, the total water volume (Vtot) of each columnwas
calculated as the sum of the water content of the fresh weight material,
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the distilled water soaked into the material, and the volume of added
water (pond water and sludge slurry). The porosities of the packed
beds, calculated as the total water volume divided by column volume,
were 0.89 ± 0.017, 0.95 ± 0.007, and 0.88 ± 0.012 for the sedge,
straw, and woodchip reactors respectively. A schematic drawing de-
scribing the experimental setup and detailed information on theweights
and volumes are given in Supplementary Fig. S1.

During the experimental period of 270 days, the reactors were incu-
bated in the dark at 10 °C. Pondwater was continuously pumped from a
25 L container through the reactors in bottom-to-top direction using
peristaltic pumps (Ismatec IPC 4- and 12 channel pumps, Cole-Parmer
Instrument Company LLC, Illinois USA) and separate tubings (Tygon®
3350, inner diameter 1.42 mm) for each reactor. The inlet water con-
tainer was replaced approximately every two weeks. Flows were ini-
tially set to 80 μL min−1 giving a theoretical hydraulic retention time
(THRT) of 4.2–4.5 days (Table S1). Higher nitrate removal rates when
starting cellulose-based denitrifying bioreactors are caused by a combi-
nation of the HRT and an initial flush of labile carbon (e.g. Abusallout
and Hua, 2017; Hassanpour et al., 2017). After 3 weeks, the flows
were regularly adjusted to reach a similar removal efficiency in the reac-
tors, hence flow rates and THRT (Eq. 1) differed in reactors with differ-
ent substrates. Across the remaining period of experiment, this resulted
in THRTs of 1.5–1.8, 1.2–2.2, and 5.2–7.2 days for the sedge, straw and
woodchip reactors, respectively (Table S1). After ca. 120 days, nitrate
removal stabilized at approximately 45% and flow adjustment was
only performed once more after that (Fig. 1a; Table S1). THRT was cal-
culated based on the total water volume and flow rate (Q):

THRT ¼ Vtot

Q
ð1Þ

With this set-up we ensured that the microbial communities were
never nitrate limited, thereby also avoiding reduced conditions. Further,
by allowing for the optimal reaction time for each substrate at a given
removal effiency, the substrates could be compared on an equal basis
in terms of the absolute nitrate removal capacity andmicrobial commu-
nities involved.

2.3. Sampling and analyses of reactor water and substrate

The outlet water of the reactors was sampled weekly for nitrate and
biweekly for nitrite and ammonium. After adjusting flow rates, one void
volume or more was allowed to pass the reactors before sampling. The
compounds were analyzed using a Hach Lange DR 3900 spectropho-
tometer (Hach Lange, Loveland, Colorado 80539, USA)with appropriate
kits. The sampling was done via a 0.2 μm syringe filter into bottles over-
night. Removal rates (v) and nitrate removal efficiency (ε) were calcu-
lated based on the concentrations (C) and THRT (Hassanpour et al.,
2017):

v ¼ Cin−Coutð Þ
THRT

ð2Þ

ε ¼ Cin−Coutð Þ
Cin

ð3Þ
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Fig. 1. Nitrogen removal and transformation rates in the reactor substrate types during the experimental period. (a) nitrate removal, (b) nitrate transformation rate, (c) nitrite
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1 – 3). Substrate types are indicated with shapes.
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With intervals between 4 and 8 weeks, the reactors were opened
and onemesh bag from the top and one from the bottomwere removed
from each reactor. To fill the space of the sampled bags, they were re-
placed by new, sterile bags with the same substrate. The open reactors
were handled under a constant flow of nitrogen gas to prevent aeration.
At the end of the experiment, the bulk material of each reactor was di-
vided into three equal parts representing the inlet, middle and outlet.
Mesh bags and bulk material were kept frozen until freeze dried and
further analyzed.

2.4. DNA extractions and quantitative PCR

Prior to DNA extraction, freeze dried substrate wasmilled for 20 s at
a frequency of 30 beats/s (Laarmann, LMLW-320/2). DNAwas extracted
from 0.2 g using the DNeasy Power Soil kit (Qiagen GmbH, Hilden,
Germany) following the manufacturer's instructions.

Quantitative PCR was used to estimate the 16S rRNA gene abun-
dance (Muyzer et al., 1993) as a proxy of the size of the total bacterial
community. The genetic potential for denitrification was determined
as the abundances of the functional genes nirS (Throbäck et al., 2004)
and nirK (Henry et al., 2004), nitrous oxide reduction potential as
nosZI (Henry et al., 2006) and nosZII (Jones et al., 2013), anammox
using hdh (Schmid et al., 2008), and DNRA using nrfA (Mohan et al.,
2004; Welsh et al., 2014). Each reaction contained 1 ng template DNA,
iQ SYBRGreen Supermix (BioRad, CA, USA), 0.1%Bovine SerumAlbumin
(BSA), and primer concentrations of 0.5–0.8 μM in a total volume of
15 μL. The PCR reactions were run twice in separate runs using the
BioRad CFX Connect Real-Time System. Thermal cycling conditions,
primer sequences, and concentrations are available in Supplementary
Table S2. Standard curves were obtained using serial dilutions of linear-
ized plasmids containing fragments of the respective genes. Prior to
gene quantifications, potential PCR inhibition was tested for all samples,
by spiking the DNA extracts with a known amount of the pGEM-T plas-
mid (Promega, WI, USA) and then amplifying it with plasmid specific T7
and SP6 primers in the presence of 1 ng of DNA or water. The threshold
values for quantification in controls withwater were not significantly dif-
ferent from those with DNA, indicating no inhibition of the PCR reaction.

2.5. Sequencing of bacterial and archaeal 16S rRNA genes and sequence
processing

To determine the diversity and composition of the bacterial and ar-
chaeal communities in the reactors, the V3-V4 region of the 16S ribo-
somal RNA gene was sequenced using the primer pair pro341F and
pro805R (Takahashi et al., 2014). The preparations of amplicons were
as described in Conthe et al. (2018) with the following modifications:
purification steps were done using Sera-Mag™ magnetic beads (GE
Healthcare, Illinois, USA), BSA concentration was 1 μg μL−1, 15% of the
purified amplicons from the first PCR reaction was used as template
for the second reaction, and the primer concentration was 0.2 μM in
the second reaction. Sequencing was performed on an Illumina MiSeq
instrument using the 2 × 250 bp chemistry. The raw sequence dataset
is available under BioProject accession number PRJNA639955.

The 16S rRNA gene sequences were trimmed usingmothur (Schloss
et al., 2009) following Kozich et al. (2013) with the exception that the
clustering into OTUs was done using VSEARCH (Rognes et al., 2016) as
implemented in mothur. In short, all sequences longer than 500 bases,
shorter than 440 bases, and those with ambiguous bases or homopoly-
mers longer than 8 bases were removed. Further, chimeras were re-
moved, and sequences were cleaned for PCR and sequencing errors by
clustering together all sequences with maximum of 4 bases difference.
For OTU classification, the SILVA database version 132 (Yilmaz et al.,
2014) was used. Finally, all samples were rarefied prior to further anal-
ysis to the smallest sample size, resulting in 2,884,050 sequences
(19,227 per sample) corresponding to 135,514 OTUs. Of these, 3359
OTUs had 10 or more sequences.

2.6. Carbon analyses of the substrate

The total C content in the startingmaterial of the three substrateswas
determined by isotope analyses (SLU Stable Isotope Laboratory, Umeå,
Sweden). The lignocellulosic polymers hemicellulose, cellulose, and lig-
nin were quantified as mass loss after sequential neutral detergent-
acid digestion (Vansoest et al., 1991) at the Department of Animal Hus-
bandry and Management Laboratory, SLU Uppsala, Sweden.

2.7. Sequence data handling and statistical analyses

Handling of sequence data and statistical analyses were carried out in
R, versions 3.5.0 and 3.6.1 (R Core Team, 2016). PHYLOSEQ (McMurdie and
Holmes, 2013)was used to process data, VEGAN (Oksanen et al., 2018)was
applied for the alpha diversity indices Shannon, Pielou, and Inverse
Simpson, and for non-metric multidimensional scaling (NMDS) using
Bray–Curtis dissimilarity matrices to visualize community patterns. Dif-
ferences in community structure were analyzed by permutational multi-
variate analysis of variance (PERMANOVA) using the function ‘adonis’.

The effects of time and substrate on alpha-diversity, gene abun-
dances, nitrate removal efficiency, rate of nitrate removal, and on am-
monium dynamics were analyzed using a linear mixed model (the
‘lme’ function in NLME). The model accounted for the interaction be-
tween substrate effect and time. The autocorrelation in the error term
was modeled by an AR(1) process (Pinheiro et al., 2018). For alpha-
diversity and for gene abundances, the three substrates were analyzed
separately and the position of the sampled bag (i.e. top or bottom of a
column) was included as a fixed factor. Sampling occasions that did
not have at least one observation per substrate type and variable as
well as those connected to problems with the pumps were excluded
from the data set. For nitrate removal rate and efficiency, 15 time points
were analyzed, whereas ammonium, that was measured less fre-
quently, included five time points. In the model for alpha-diversity
and gene abundances 5–7 time points each with 3–6 observations
were included. For models where the interaction term between the var-
iableswere significant, pairwise comparisons betweenmeans at the same
time points and Tukey's method for p-value adjustments, were made
(EMMEANS, Lenth, 2018). Gene abundance datawas log-transformedbefore
analyses tomeet normality and variance requirements. The total C, hemi-
cellulose, cellulose, and lignin data were analyzed using Student's t-test
for comparison between two groups and Tukey's HSD test for multiple
groups, α= 0.05.

3. Results and discussion

3.1. Bioreactor performance

Nitrate removal was achieved in all reactors (Fig. 1). Initially, the
flow rates were similar in all reactors, resulting in different nitrate re-
moval (%) and nitrate removal rates among the substrates, with the
highest removal and removal rates in sedge followed by straw and
woodchips (Fig. 1a, b, Table S1). After three weeks, the flow rates
were adjusted to avoid nitrate limitation and reach similar nitrate re-
moval efficiencies and thereby different THRTs (Table S1). From day
96 and onwards, nitrate removal (Fig. 1a, Table S1) did not differ signif-
icantly (all p-values > 0.05) between substrates when making pairwise
comparisons at each timepoint, with the exception of at day 209 where
wood had a lower removal than straw (p = 0.02). The removal rates
were significantly affected by substrate type and time, and their interac-
tion (p < 0.05; Table 1). The sedge had higher removal rates than
woodchip at all sampling occasions, with the exception of day 180,
where there were no differences between any of the substrates
(Fig. 1b, all p-values ≤ 0.03). After approximately four months, the re-
moval rates stabilized, and there were no differences between the
sedge and the straw reactors (day 120 ff. all p-values > 0.43). The aver-
age nitrate removal rates from day 120 were 6.4 ± 2.1, 5.1 ± 1.7, and
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1.5 ± 0.7 g N m−3 water day−1 for the sedge, straw, and woodchip re-
actors respectively. The differences in nitrate removal rates were
reflected by the differences in labile carbon content in the substrates.
As expected, the sedge and straw had significantly lower total C, cellu-
lose, and lignin content, but a higher content of hemicellulose compared
to the woodchips (p < 0.05; Table S3). The nitrate removal rates in the
woodchip reactors were lower than rates reported for 27 laboratory
woodchip reactors in a meta study (Addy et al., 2016), although direct
comparisons between studies are hampered by different study designs,
ways of reporting results, and type of woodchips. Pine woodchips are
not commonly used, instead birch (Šereš et al., 2019; Kiani et al.,
2020), poplar (Grießmeier and Gescher, 2018; von Ahnen et al., 2019),
mixes of species (Ashoori et al., 2019; Aalto et al., 2020) or woodchips
in combination with e.g. gravel or biochar (Šereš et al., 2019; Kiani
et al., 2020) have been recently investigated, but all types of woodchips
tested support nitrate reduction. Both barley and wheat straw have
been tested in small-scale denitrifying bioreactors treating synthetic
water resembling agricultural drainage or groundwater and the overall
pattern is similar to in the present study; straw reactors remove nitrate
at higher rates than woodchip reactors, independent of the origin of the
influentwater (Feyereisen et al., 2016;Healy et al., 2012;Warneke et al.,
2011). From a practical perspective, the higher removal rates for the
straw and sedge are advantageous when reactor volumes are limited,
for example at a road construction site. From a sustainability perspec-
tive, the choice of substrate should also be guided by local availability.

The release of nitrite in the outlet water of thewood and sedge reac-
tors, and of ammonium, primarily from the sedge reactors, indicated
that nitrate was not always efficiently converted to gaseous N com-
pounds (Fig. 1c and d). However, ammonium and nitrite were analyzed
less frequently than nitrate, and outlet concentrationswere often below
detection level (0.015 mg N L−1), preventing the application of the sta-
tistical model to the nitrite data. In contrast with the other substrates,
nitrite was released from the woodchip columns during the entire pe-
riod, with the highest effluent concentrations in the beginning, 2.2 ±
0.65 gNm-3 day−1 (mean±SDdays 12–42) (Fig. 1c). In agreement, ni-
trite leaching during the startup period of woodchip-based denitrifying
reactors has previously been observed (von Ahnen et al., 2019;
Nordström and Herbert, 2018), although transient nitrite accumulation
has also been described for other solid substrates (Fowdar et al., 2015).
We speculate that this could be due to an initial imbalance between ni-
trate reducers, a feature common among a large number of bacterial
species, and denitrifiers. Regarding ammonium, substrate type and
time, aswell as the interaction between the two,were significant factors
affecting the dynamics (p < 0.001; Table 1). However, when analyzed
separately, ammonium removal in the woodchip reactors was not
time dependent (p = 0.18) and corresponded to a removal rate of
0.040 ± 0.03 g N m−3 day−1, whereas the straw reactors released am-
monium during the first ten weeks and the sedge reactors continued
to release ammonium almost until the end of the experiment. In agree-
ment, ammonium in the outletwater of denitrifying bioreactorswith la-
bile carbon substrates have been demonstrated by e.g. Warneke et al.
(2011) and Greenan et al. (2006). Production of ammonium can be
the result of decomposition of the substrates, but can also originate
from DNRA, known to be favored by high C/NO3

− ratios (Kraft et al.,

2014; Putz et al., 2018; Song et al., 2014; van den Berg et al., 2015),
and as a consequence, nitrogen removal becomes less efficient. It was
recently shown that different carbon compounds influence the end
products of nitrate respiration by specifically promoting denitrification
or DNRA (Carlson et al., 2020). Nevertheless, the water chemistry indi-
cate that denitrificationwas the dominating nitrate reduction process in
all reactor types in the present study.

3.2. Microbial community development

During the experiment, a specific microbial community developed
in each substrate type (PERMANOVA, p ≤ 0.001; Fig. 2a) with different
levels of alpha diversity (Shannon's diversity index, Inverse Simpson
index, and Pielou's evenness; Figs. 2b and S2). The sedge reactors
displayed the highest diversity followed by straw and in both cases, di-
versity increased over time (p<0.001; Figs. 2b and S2). Thiswas not the
case in woodchips (p > 0.09), which also had the lowest diversity
(Figs. 2b and S2). The position in the column, in- or outlet, mattered de-
pending on substrate and diversity index (Table S4) and Shannon's
diversity was always significantly higher at the inlet from day 97 in
woodchips (all p-values ≤ 0.033), from day 181 in straw (all p-
values ≤ 0.047) and from day 216 in sedge (all p-values ≤ 0.013). Higher
Shannon's diversity of microbial communities than those in the present
study have been reported in reactors using other types of woodchips
and operated at higher temperatures, e.g. in Grießmeier and Gescher
(2018) and in Kiani et al. (2020).

The inoculum sludge was dominated by Acidimicrobiia, Bacteroidia
and Gammaproteobacteria, but the bioreactors had a different commu-
nity structure and composition already at the first sampling date
(Figs. 2a and 3), suggesting that the choice of inoculummight be subor-
dinate for the final outcome. The bacterial communities in the strawand
sedge reactors were more similar to each other than to the community
in the woodchip reactors (Fig. 2a). The taxonomic compositions be-
tween the reactor types likely reflected not only the lignocellulosic
composition in the solid substrates (Table S3), but a combination of sub-
strate, hydraulic retention time and chemical properties in the reactor
water as a result of the microbial activity. Thus, the development of
the different communities in the three reactor types should have
underpinned the performance of the reactors, by beingdirectly involved
in nitrogen transformations, but more importantly when considering
the overall community, by controlling decomposition of the substrates
that feed denitrification. Therefore, the distributions of the 50 most
abundant OTUs from each of the substrates at day 270 were analyzed
further to determine how the microbial communities had developed
once community changes and nitrate reduction had reached steady
state (Figs. 1, S3a and b). All substrates were in the end dominated by
Alpha- and Gammaproteobacteria, together with Bacteroidia (Figs. 3,
S3), similar to what was found in other woodchip reactors in recent
studies (von Ahnen et al., 2019; Kiani et al., 2020). Within each sub-
strate, there were no spatial differences in community composition in
the reactors (inlet, mid and outlet bulk samples, PERMANOVA, p > 0.3,
day 270). Woodchips had the highest number of unique OTUs (36)
while straw and sedge had fewer (24 and 20 unique taxa respectively).
Only six of the 50most abundant OTUs were found in all substrates, the

Table 1
Two-way analysis of variance on the effects of substrate type and time on nitrate removal rate and efficiency, on ammonium accumulation rates in the water and on gene abundances in
the solid substrates.

Variable Time period Substrate Time Substrate × Time

days F p F p F p

Nitrate removal rate 22–120 66.24 0.0001 38.39 <0.0001 15.15 <0.0001
Nitrate removal rate 120–252 23.90 0.0014 33.78 <0.0001 7.52 <0.0001
Nitrate removal efficiency 22–120 18.20 0.0028 15.18 <0.0001 12.28 <0.0001
Nitrate removal efficiency 120–252 0.08 0.9228 6.02 <0.0001 4.73 <0.0001
Ammonium accumulation 22–252 63.16 0.0001 75.75 <0.0001 38.94 <0.0001

M. Hellman, V. Hubalek, J. Juhanson et al. Science of the Total Environment 755 (2021) 143023

5



majority belonging to Betaproteobacteriales, dominating all reactors at
the end of the experiment. Shared families were e.g. Burkholderiaceae,
Sphingobacteriaceae, Rhizobiaceae and Caulobacteriaceae. Members of
Caulobacteriaceae are able to degrade all three lignocellulosic polymers
detected in our reactors, especially lignin (Wilhelm et al., 2019). In

fact, the woodchip reactors, having a higher lignin content than
the other two substrates (Table S3), had a higher proportion of
Caulobacterales than straw and sedge (Fig. S3). Another group
separating woodchips from sedge and straw was class Bacteroidia, in
woodchips represented only by Sphingobacteriales, genus Arcticibacter,
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whereas in sedge and straw, other orders were also found (Figs. 3, S3).
All of these are well known for their ability to degrade cellulose and they
are often found in habitats where wood is degraded. Flavobacterium, a
large genus widely distributed in aquatic habitats, with a preference for
cool to cold environments (Bernardet and Bowman, 2006) were unique
to the straw and sedge reactors. The genus includes denitrifying species
(Bernardet and Bowman, 2006) and has been detected in groundwater
and systems for management of high nitrate strength water with low C
content, like in our experiment (Hou et al., 2019; Zhu et al., 2019) as
well as in denitrifying woodchip reactors operated at temperatures
below 15 °C (Jang et al., 2019). Straw and sedge reactors also shared
one dominant OTU assigned to family Fibrobacteraceae, a group found in
the gut of e.g. ruminants and termites (Rosenberg, 2014). Further,
Verrucomicrobia were detected in all substrate types after 3–4 months
of operation. Both Fibrobacteres and Verrucomicrobia are associated
with anaerobic degradation of cellulose (Bao et al., 2019) and
Grießmeier and Gescher (2018) found these phyla in woodchip
reactors. In agreement with our results, Verrucomicrobia was
deteted only after a period of operation also in the work of von
Ahnen et al. (2019). Many of the uniquewoodchip taxa belonged to ei-
ther Sphingomonadaceae, Luteolibacter or Rhodanobacter from orders
Sphingomonadales, Verrucomicrobia and Xanthomonadales respec-
tively. Sphingomonadaceae has been identified in other woodchip-
based systems for treating nitrate rich water and the family was
among the ten most common taxa in a reactive barrier treating nitrate
rich ground water (Hiller et al., 2015).

The 16S rRNA gene abundance, a proxy for the size of the total bac-
terial community, differed only slightly between woodchip and the
other two reactor types, with less bacteria in woodchips initially (days
43 and 97, Tukey's HSD test) (Fig. 4f). In the sedge reactors, the abun-
dance of the total bacterial community decreased significantly over
time (Table 2) but the small difference in total community size likely
had minor effects on reactor performance in relation to the effects of
community composition. The position (in- or outlet of the reactor) of

the sampled substrate was also significant for the 16S rRNA gene abun-
dance in these reactors (Table 2).

3.3. Functional groups involved in nitrate reduction

To decipher to which extent functional nitrogen transforming
groups established in the reactors, the abundances of key players were
quantified since this information is not possible to obtain from the se-
quence data (Fig. 4, Table 2). Anammox, quantified by the abundance
of hdh, could not be detected in any of the reactors. Since anammox is
an autotrophic process (Jetten et al., 2009), it was not expected to be a
significant removal pathway in the reactors where organic C was
available for the more competitive denitrifiers and DNRA bacteria that
we detected. In line with the nitrate removal activity, the absolute
abundances of nirS and nirK genes, indicating genetic potential for deni-
trification, was higher in the sedge and straw reactors compared to
woodchip, and also increased over time in the sedge and straw reactors
(Fig. 4a and b, Table 2). This indicates a strong selection for bacteria in-
volved in nitrate reduction by denitrification, which agrees with other
studies (e.g. Warneke et al., 2011). However, the abundance of the
nrfA gene, indicative of DNRA bacteria, also increased in the sedge and
straw reactors, but remained constantly low in those with woodchips
(Fig. 4e). The increase in nrfA abundance coincided with the release of
ammonium from the reactors (Fig. 1d). Thus, substrate type did not
only affect the genetic potential for denitrification, but also controlled
the potential for the two nitrate reduction pathways differently, which
was reflected in the nitrate removal rates.

Denitrifiers with nirK type nitrite reductase increased in all reactor
types, whereas the nirS type increased only in the straw and sedge reac-
tors. (Fig. 4a and b). This suggests that different denitrifying communi-
ties developed since nirK and nirS are most often mutually exclusive in
denitrifying bacteria (Graf et al., 2014). The dominance of nirK to nirS
abundance in all substrates are in contrast to ratios reported in reactors
with other substrates (von Ahnen et al., 2019; Fatehi-Pouladi et al.,
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2019). Regarding the N2O reduction capacity, the pattern for nosZI was
the same in all reactors, and the abundance of this gene increased dur-
ing the second half of the experimental period (Fig. 4c, p < 0.03 in all
substrates). By contrast, nosZII abundance remained at the same level
from day 181 (Fig. 4d, p = 0.63; 0.05; 0.87 for sedge, straw and wood
respectively), and was always lower in abundance than nosZI. In agree-
ment with our results, Feyereisen et al. (2016) found lower nosZII abun-
dance in a woodchip reactor compared to one with straw. The nosZI
gene is typically found in denitrifiers, whereas nosZII is dominating in
non-denitrifying N2O reducers (Graf et al., 2014). The constantly low
abundance of nosZI in relation to nir genes in all reactor types implies
that denitrification during the first six months was not complete,
which would lead to emissions of N2O (Fig. 5). However, the sum of
nosZ genes (nosZI and nosZII) in relation to the sum of nir genes (nirK
and nirS), increased over time (p < 0.012 for all substrates), reflecting
an increasing capacity of the system to reduce N2O. Only a minor part
of the nitrate removed from denitrifying reactors is actually estimated
to end up as N2O (Greenan et al., 2009; Healy et al., 2012; Aalto et al.,
2020). Emissions of N2O have been reported from both laboratory and
field reactors, and where time series data is available, the emissions
seem to be higher during the start-up phase (Healy et al., 2012;
Nordström andHerbert, 2017). Thisfits with our observations of the dy-
namics of the nir and nosZ functional groups, which offers an underlying
mechanism as an increased nosZ to nir ratio, increase the potential for
N2O produced during denitrification to be further reduced to N2.

4. Conclusions

The study shows that an indigenous wetland plant, bottle sedge,
has at least the same potential as straw for nitrate removal via a
denitrifying bioreactor at 10 °C. Both substrates supported high re-
moval rates, allowing for shorter THRTs. Distinct bacterial communi-
ties developed in the three substrate types and the abundances of
functional genes indicates that denitrification was not complete in
the beginning of the experiment when flow rates were not optimized
in relation to reaction time. Nitrous oxide concentrations in the
water were not measured, but an increased genetic potential for
N2O reduction developed after six months. Future studies should de-
termine DOC in the reactor water to shed light on its importance for
the competition for nitrate between the processes DNRA and denitri-
fication. Altogether, our work adds to the understanding of the

microbial processes underlying the performance of denitrifying
cellulose-based bioreactors.
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Abstract
Denitrifying woodchip bioreactors are potential low-cost technologies for the

removal of nitrate (NO3
−) in water through denitrification. However, if environmen-

tal conditions do not support microbial communities performing complete denitrifi-

cation, other N transformation processes will occur, resulting in the export of nitrite

(NO2
−), nitrous oxide (N2O), or ammonium (NH4

+). To identify the factors control-

ling the relative accumulation of NO2
−, N2O, and/or NH4

+ in denitrifying wood-

chip bioreactors, porewater samples were collected over two operational years from

a denitrifying woodchip bioreactor designed for removing NO3
− from mine water.

Woodchip samples were collected at the end of the operational period. Changes in the

abundances of functional genes involved in denitrification, N2O reduction, and dis-

similatory NO3
− reduction to NH4

+ were correlated with porewater chemistry and

temperature. Temporal changes in the abundance of the denitrification gene nirS were

significantly correlated with increases in porewater N2O concentrations and indi-

cated the preferential selection of incomplete denitrifying pathways ending with N2O.

Temperature and the total organic carbon/NO3
− ratio were strongly correlated with

NH4
+ concentrations and inversely correlated with the ratio between denitrification

genes and the genes indicative of ammonification (Σnir/nrfA), suggesting an environ-

mental control on NO3
− transformations. Overall, our results for a denitrifying wood-

chip bioreactor operated at hydraulic residence times of 1.0–2.6 d demonstrate the

temporal development in the microbial community and indicate an increased poten-

tial for N2O emissions with time from the denitrifying woodchip bioreactor.

1 INTRODUCTION

Denitrifying fixed-bed bioreactors are low-cost technologies
for the removal of nitrate (NO3

−) from water, which passes

Abbreviations: DNRA, dissimilatory NO3
− reduction to ammonium;

DWB, denitrifying woodchip bioreactor; HRT, hydraulic residence time;

NMDS, nonmetric multidimensional scaling; PCR, polymerase chain

reaction; qPCR, quantitative polymerase chain reaction; TOC, total organic

carbon.
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through an organic porous material, supplying electrons for
the reduction of NO3

− to nitrogen gas (N2) (Schipper, Robert-
son, Gold, Jaynes, & Cameron, 2010). Woodchips are typi-
cally used due to their high permeability, moderate reactivity,
and capability of providing a carbon (C) and energy source
for denitrification (Cameron & Schipper, 2010; Robertson,
2010; Schipper et al., 2010). However, the release of other
nitrogen (N) species (nitrite [NO2

−], nitric oxide [NO], and
the greenhouse gas nitrous oxide [N2O]) from intermedi-
ate steps during denitrification is a potential drawback of
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denitrifying woodchip bioreactors (DWBs) (Davis, Martin,
Moorman, Isenhart, & Soupir, 2019; Feyereisen et al., 2016).
Up to 10% of the reduced NO3

− is exported as N2O from
DWBs (Davis et al., 2019; Elgood, Robertson, Schiff, &
Elgood, 2010; Feyereisen et al., 2016; Greenan, Moorman,
Kaspar, Patkin, & Jaynes, 2006; Warneke et al., 2011b). The
release of these compounds is affected by temperature, NO3

−

concentration, dissolved oxygen concentration (Elgood et al.,
2010; Grießmeier, Bremges, McHardy, & Gescher, 2017),
and the functional communities involved in the production or
reduction of these compounds (Warneke et al., 2011b).

Denitrifiers compete with bacteria performing dissimila-
tory NO3

− reduction to ammonium (NH4
+) (DNRA) for

NO3
−, and the outcome of this competition determines if

NO3
− is removed as a gaseous N species or is converted to

aqueous NH4
+, thereby affecting the overall N removal capac-

ity of the DWB. The availability of organic C in relation to
NO3

− (C/NO3
− ratio) has been shown to control this compe-

tition, with high C/NO3
− ratios favoring DNRA (Kraft et al.,

2014; Van Den Berg, Van Dongen, Abbas, & Van Loosdrecht,
2015; Yoon, Cruz-García, Sanford, Ritalahti, & Löffler, 2015)
and low ratios favoring denitrification, which includes an
increased risk for the net production of N2O (Pan, Ni, Bond,
Ye, & Yuan, 2013). This is not only because more N2O is
produced during denitrification than DNRA but also because
denitrification can terminate with N2O under NO3

−–rich con-
ditions (Felgate et al., 2012). For some denitrifiers, N2O is
always the end product because they do not have the genetic
repertoire needed to further reduce N2O to N2 and because
they, as well as nondenitrifying N2O reducers, also affect
the net N2O emissions (Graf, Jones, & Hallin, 2014; Hallin,
Philippot, Löffler, Sanford, & Jones, 2018; Jones et al., 2014).
In DWBs, C availability is controlled by woodchip degrada-
tion, and the relative availability of different C substrates may
change throughout DWB operations (Grießmeier & Gescher,
2018; Grießmeier et al., 2017; Nordström & Herbert, 2018).
It can therefore be expected that differences in relative abun-
dances of the functional groups involved in the different N
transforming processes develop over time during DWB oper-
ation. The proportion between these functional groups ulti-
mately controls the export of N species from DWBs, but
little is known about the temporal development of the N-
transforming community and the associated temporal changes
in the production of NO2

−, N2O, and NH4
+ in DWBs.

In this study, temporal and spatial changes of the abun-
dances of functional groups performing denitrification and
DNRA in the porewater were studied with the objectives to
relate these patterns with changes in the concentrations of
NO2

−, N2O, and NH4
+ in the porewater and overall reac-

tor performance in a previously described DWB (Nordström
& Herbert, 2018). We hypothesized that temporal and spa-
tial changes in the genetic potential for denitrification and
DNRA, determined as abundances of functional genes in den-

Core Ideas
∙ A high degree of spatial and temporal variability

for functional gene abundances was noted in pore-
water.

∙ Temperature dependence was exhibited especially
for the gene nrfA.

∙ N2O production correlated with nirS abundance
and Σnir/ΣnosZ ratio.

∙ TOC/NO3
− ratio positively correlated with nrfA

abundance and NH4
+ concentration.

∙ A truncated denitrification pathway was promoted
with time in the bioreactor.

itrifying and DNRA bacteria, control concentrations of NO2
−,

N2O, and NH4
+ and that their abundances are a consequence

of changes in C/NO3
− ratios. Because the porewater com-

munity is more easily sampled for temporal studies than the
woodchip-associated community, we primarily monitored the
development of the N-reducing community in the porewater.
However, for the last sampling episode, we compared the spa-
tial distribution of the abundance of denitrifying and DNRA
bacteria in the woodchip matrix with their spatial distribution
in porewater.

2 MATERIALS AND METHODS

2.1 Study site and DWB system

The subsurface DWB described by Nordström and Herbert
(2018) was constructed at the Kiruna iron ore mine, north-
ern Sweden (67˚51′ N, 20˚13 ′E), with the purpose to reduce
NO3

− concentrations in mine and process water originating
from the use of ammonium nitrate–based explosives. For this
study, samples from the inlet, outlet, and five porewater sam-
pling points along the bottom centerline of the DWB were
used (Supplemental Figure S1).

The DWB was filled with decorticated pine woodchips.
To increase the initial abundance of denitrifying microorgan-
isms, digested sewage sludge mixed with water was added
while the DWB was filled with woodchips. The center areas
of the DWB were capped by glacial till (Supplemental Fig-
ure S1) with the intention to restrict oxygen diffusion into the
DWB.

Mine drainage from the clarification pond at the mine
site was pumped to the DWB, where it entered through a
perforated drainage pipe near the surface of the DWB and
extending across its width. The hydraulic residence time
(HRT) of the DWB was adjusted several times during the
operational periods by changing the pump discharge
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(Supplemental Table S1), with 2.6 d being the most common
HRT (varying between 1 and 2.6 d). The choice of HRT
was based on a previous laboratory-scale experiment where
relatively long HRTs at low temperature provided nearly
complete removal of NO3

− (Nordström & Herbert, 2017).
The DWB was operated for two consecutive field seasons:
22 June to 21 Nov. 2015 (Days 0–151) and 9 May to 21 Oct.
2016 (Days 322–490), referred to as the first and second
operational year, respectively.

2.2 DWB sampling

2.2.1 Water sampling

Porewater, inlet water, and outlet water were sampled once
a month (referred to as “profile sampling”) to analyze water
chemistry (Nordström & Herbert, 2018). Briefly, a peristaltic
pump was used for porewater sampling, and the first ∼2 L of
water was discarded prior to sample collection to ensure a rep-
resentative sample. Inlet and outlet water was grab-sampled.
For analyses of microbial communities involved in N trans-
formation processes, water sampled on Days 57, 85, 113,
365, 400, 428, 456, and 477 was filtered using Sterivex fil-
ter units, with 0.22-μm Millipore Express polyethersulfone
membranes, attached to 60-ml syringes. Inlet water sam-
ples from Days 57 and 85 were discarded because of tech-
nical problems during sampling. Between 540 and 1,680 ml
of water (average, 990 ml) was required to saturate the
Sterivex filter units. The syringes were rinsed in sample
water three times prior to filtration, and new polyvinyl chlo-
ride plastic tubing for the peristaltic pump was used for
each sample. The Sterivex filter units were stored on ice for
∼6 h following collection and frozen at −20 ˚C until DNA
extraction.

Denitrifying woodchip bioreactor porewater temperature
was obtained from thermistors attached to porewater sampling
points at the base of the DWB.

2.2.2 Woodchips and sewage sludge media

Sewage sludge samples used as inoculum were collected in
sterile 50-ml plastic tubes at the time of DWB construc-
tion and frozen at −20 ˚C until analysis. Woodchips were
sampled following the termination of DWB operations (Day
490). The sampling focused on the deepest regions of the
DWB because a previous DWB study indicated a significantly
greater abundance of 16S rRNA, nirS, nirK, and nosZI genes
at the greatest depths in a DWB (Herbert, Winbjörk, Hellman,
& Hallin, 2014). Water was drained from the DWB, and tra-
verse trenches were excavated at 2.7, 11.2, 19.7, 28.2, and
33.9 m from the inlet (Supplemental Figure S1). Woodchip

samples were collected along a center line at bottom depth
(corresponding to the five porewater sampling points) and at
0.4 m above the bottom. Samples were also collected at depths
of 11.2, 19.7, and 28.2 m at ±1.35 m from the center line and
0.4 m above bottom (i.e., the deepest possible depth due to the
trapezoidal shape of the reactor). At the inlet and outlet, wood-
chip samples were collected from the surface of the bioreac-
tor. All samples were collected in triplicate. The samples were
stored in sterile 50-ml plastic tubes and placed on ice for ∼6 h
following collection, frozen at −10 ˚C for 4 d, and stored at
−20 ˚C until DNA extraction.

2.3 Analyses

2.3.1 Chemical analyses of water samples

We used porewater chemistry data from Nordström and Her-
bert (2018). Dissolved N2O concentrations were determined
via headspace equilibrium and analyzed at the Swedish Uni-
versity of Agricultural Sciences in Uppsala. The dissolved
N2O concentrations reported in this study differ from those
reported in Nordström and Herbert (2018) because errors
were identified in the latter study regarding the calculation
of dissolved N2O from headspace concentrations. See Nord-
ström and Herbert (2018) for additional details on analytical
methods.

2.3.2 DNA extraction and quantitative
real-time polymerase chain reaction

DNA from the Sterivex filter units was extracted using the
MoBio PowerWater Sterivex DNA kit following the manu-
facturer’s instructions, including incubation at 90 ˚C (Mobio
Laboratories Inc., 2018). For DNA extraction from the wood-
chips (4 g) and sewage sludge (0.2 g), the DNeasy PowerMax
Soil Kit was used according to the manufacturer’s instructions
(Qiagen GmbH). Both the woodchips and digested sewage
sludge were freeze-dried prior DNA extraction.

Real-time quantitative polymerase chain reaction (qPCR)
was used to determine the abundances of functional genes
specific for the denitrification, N2O reduction, DNRA, and
anammox pathways and used as proxies for the communi-
ties performing these reactions. Primers for nirS (Throbäck,
Enwall, Jarvis, & Hallin, 2004) and nirK (Hallin & Lind-
gren, 1999; Henry et al., 2004) were used for the denitri-
fiers, nosZI (Henry, Bru, Stres, Hallet, & Philippot, 2006)
and nosZII (Jones, Graf, Bru, Philippot, & Hallin, 2013) for
the N2O reducers, hdh (Schmid et al., 2008) for anammox
bacteria, and nrfA (Mohan, Schmid, Jetten, & Cole, 2004;
Welsh, Chee-Sanford, Connor, Löffler, & Sanford, 2014) for
the DNRA communities. These primers, especially the ones
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for nir and nrfA, do not cover the extant diversity of each gene
(e.g., Bonilla-Rosso, Wittorf, Jones, & Hallin, 2016; Cannon,
Sanford, Connor, Yang, & Chee-Sanford, 2019), which results
in an underestimation of the absolute abundances. However,
they allow for a comparative analysis of the relative abun-
dance across samples by sampling a standard subset of each
functional group for which functionality is verified (Penton
et al., 2013).

The 16S rRNA gene (Muyzer, Dewaal, & Uitterlinden,
1993) was used as a proxy for the abundance of the total bacte-
rial community. Each 15-μl qPCR reaction contained 2–5 ng
(water samples) or 0.1–0.3 ng (woodchip samples) of DNA,
0.25–2 μM of each primer, 15 μg bovine serum albumin, and
1x iQ SYBR Green Supermix (BioRad Laboratories). Two
independent quantifications per gene were performed using
the BioRad CFX Real-Time System (BioRad Laboratories).
Potential PCR inhibition in the samples was tested by spiking
each sample with the pGEM-T plasmid (Promega Co.) and
amplifying it using plasmid-specific primers. Amplification
was compared between samples and nonsample (water con-
trol) reactions, and no inhibition was present in the samples
with the amounts of DNA extract used. Cycling protocols and
primer concentrations are described in the supporting infor-
mation (Supplemental Table S2).

2.3.3 Statistical analysis and parameter
estimation

Differences in the abundances of all functional genes and
the 16S rRNA genes between porewater (including outlet
samples), inlet water, woodchips, and sewage sludge were
tested using Dunn’s test, which is appropriate for groups with
unequal numbers of observations (Zar, 2010), in R package
‘FSA’ (Dinno, 2017), which performs a Kruskal–Wallis test
(normality could not be assumed based on a Shapiro–Wilks
test; Supplemental Table S3) followed by pairwise compar-
isons. Corrections for multiple comparisons were done by
false discovery rate (Benjamini & Hochberg, 1995). For com-
parisons between two groups, Wilcoxon rank sum tests were
used.

Nonmetric multidimensional scaling (NMDS; using the R
package ‘vegan’ [Oksanen et al., 2018]) was used to illustrate
the structural differences in the concatenated N reducing com-
munities (i.e., based on all functional genes) between samples
from the porewater (including outlet samples), inlet water,
woodchips, and the inoculum (digested sewage sludge). The
abundances of the studied marker genes from each individ-
ual sample in the DWB were assumed to represent a specific
N-reducing community. Gene abundances were square-root
transformed and submitted to Wisconsin double standardiza-
tion. Then, a community matrix with Bray–Curtis dissimilar-

ities was created and the NMDS was run with a maximum of
250 iterations.

We compared the similarity between the N reducing com-
munity in the porewater samples with those in the three poten-
tial sources: the inlet water, the woodchip media, and the inoc-
ulant sewage sludge. Community matrices based on Bray–
Curtis dissimilarities were generated for each sample source
using the same procedure as described above and compared
using a permuted (n = 999) analysis of similarity (anosim;
R-package ‘vegan’) (Oksanen et al., 2018).

To identify the selective pressures for changes in NO2
−,

N2O, and NH4
+ concentrations in the DWB, we first tested

the correlation between porewater pH, temperature, and solute
concentrations (NO3

−, NO2
−

, N2O, NH4
+, total organic C

[TOC]) with the N reducing community structure in the
porewater samples using a permuted (n = 999) correlation
test (envift; R-package ‘vegan’) (Oksanen et al., 2018). Fur-
ther, a Spearman’s rank correlation analysis with permutation
(10,000) tests (R-package ‘coin’) (Hothurn, Hornik, van de
Wiel, & Zeileis, 2006) was used to correlate N species in the
porewater with individual gene abundances and abundance
ratios.

3 RESULTS

3.1 Porewater chemistry

The NO3
−–N, NO2

−–N, NH4
+–N, N2O–N, and TOC concen-

trations as well as the C/NO3
− ratio (calculated from TOC and

NO3
−–N concentrations) are presented as a function of time,

temperature, and position in the DWB (Figure 1). Nitrate con-
centrations consistently decreased along the DWB flowpath
throughout the operational period (Figure 1a), with the low-
est concentrations observed during the warmer periods (Days
1–85, 365–428). Nitrogen removal rates ranged from 0.14 to
37.5 g N m−3 (DWB volume) d−1 and have been previously
shown to have a temperature dependence (Nordström & Her-
bert, 2019). Nitrite concentrations (Figure 1b) were observed
up to 11 mg L−1 in the first half of the DWB during the first
operational year but were below 1 mg L−1 in the DWB efflu-
ent with the exception of first week of operations. Similarly,
NH4

+–N concentrations were elevated throughout the DWB
during the first operational year (Figure 1c) but remained rela-
tively constant at <0.5 mg L−1 during the second operational
year. Nitrous oxide (Figure 1d) varied irregularly with sam-
pling position and time but with a tendency for higher con-
centrations in the first half of the DWB during the summer
months (Days 400 and 428). Nitrous oxide production rates,
determined from the difference in inlet and outlet N2O–N con-
centrations, ranged from ∼0 to 3.7 mg N2O–N m−3 d−1; this
can be compared with a production in the range of 12–152 mg
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F I G U R E 1 Porewater chemistry in the bioreactor. Concentrations of (a) NO3
−–N, (b) NO2

−–N, (c) NH4
+–N, (d) N2O–N, (e) total organic C

(TOC), and (f) log TOC/NO3
−–N ratio as a function of time and position in the bioreactor. Position refers to distance from bioreactor inlet. On Day 1,

TOC concentrations were 138–244 mg L−1 (inlet excluded).

N2O–N m−3 d−1 for DWB’s with much shorter HRTs (2–16 h)
and composed of hardwood woodchips (Davis et al., 2019).
As demonstrated in the porewater data, the average concen-
trations and concentration ranges of denitrification products
(i.e., NO2

−–N, N2O–N) when combined from all positions
were significantly different between the first and second oper-
ational year (Supplemental Figure S2).

Total organic C concentrations generally decreased during
the first operational year and remained <10 mg L−1 during
the second year (with the exception of one sample; Figure 1e).
The resultant TOC/NO3

− ratio (Figure 1f) exhibited increas-
ing values with travel distance through the DWB and dur-
ing the summer months, reflecting primarily the variations in
NO3–N concentration.
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F I G U R E 2 Abundances of the 16S rRNA gene and the functional

genes nirS, nirK, nosZI, nosZII, and nrfA in bioreactor samples. (a) Gene

abundances in porewater (n = 47–54), inlet water (n = 7), woodchips

corresponding to the porewater sampling points and outlet (n = 18), and

digested sewage sludge used as inoculum (n = 2–3) across the two oper-

ational years. Based on Dunn’s test (p < .05), uppercase letters indicate

differences in gene abundances within sample type, and lowercase let-

ters indicate differences in gene abundance compared with the respec-

tive gene abundance in other sample sources. (b) Gene abundances in

woodchip samples from 0 m (bottom) and 0.4 m above bottom in the

bioreactor, with data from the two depths combined. “Near inlet” (n = 6)

and “Near outlet” (n = 6) indicate samples from 2.7 and 33.9 m from

the inlet, along the center line (see Supplemental Figure S1); “Middle”

(n = 36) indicates samples from 11.2, 19.7, and 28.2 m from inlet, at

both depths along the centerline and at 0.4 m depth along the sides of

the reactor (±1.35 m from centerline). Based on Dunn’s test (p < .05),

uppercase letters indicate differences in gene abundances within each

position, and lowercase letters indicate differences in gene abundance

compared with the respective gene abundance in other positions. In (a)

and (b), empty circles are outliers and lines through boxes signifies

median. (c) Nonmetric multidimensional scaling ordination based on

Bray–Curtis dissimilarities for the abundances of the functional genes

in porewater, inlet water, woodchips (from bottom centerline, inlet, and

outlet), and digested sewage sludge used as inoculum. For water samples,

3.2 Gene abundances and N-reducing
community structure

The abundances of the total bacterial community and genes
coding for the different N reducing pathways differed among
sample types, but the hdh gene coding for anammox was not
detected in any of the samples (Figure 2a). An assessment of
the difference between woodchip samples collected at differ-
ent depths indicated that there was not a significant difference
(p < .05, one-sided Wilcoxon test) in the abundances of the
16S rRNA genes and the functional genes between the two
sampling depths, with the exception of nirS. For nirS, there
were significantly lower abundances at the bottom compared
with 0.4 m above (p < .01) (data not shown). Regardless,
woodchip samples from these two sample depths are consid-
ered together for the rest of this study.

There were significant differences in the abundances of the
16S rRNA and functional genes between the porewater, inlet
water, woodchips, and digested sewage sludge (Figure 2a;
Supplemental Table S4). The sample source with the high-
est abundance of functional genes differed depending on the
gene, although gene abundances in the inlet water were most
often the lowest among the different sample sources (Fig-
ure 2a). For the different genes and sample sources, nirS was
most abundant in the woodchips and sludge, whereas nrfA
in sludge had the greatest abundance. Among the woodchip
samples, the 16S rRNA and nirS abundance varied the most
along the flowpath from inlet to outlet and the nrfA abundance
did not vary (Figure 2b). nirK and nosZI displayed the same
pattern with the highest abundances in the middle section of
the reactor, whereas nirS and nosZII had contrasting patterns,
with nirS lower at the inlet and nosZII lower at the outlet.

The NMDS analysis (Figure 2c) showed that nirS-type den-
itrifiers were indicative of the N-reducing community struc-
ture in the woodchip media. By contrast, nosZI and nosZII
involved in N2O reduction were relatively more enriched in
the porewater and inlet water samples in comparison to the
woodchip media (Figure 2c), and nrfA (DNRA) characterized
the N-reducing community in the digested sewage sludge.

Despite differences in absolute abundances, the distribu-
tion of gene abundances relative to each other in the pore-
water was comparable with that in the woodchip media
(nirS > nrfA ≥ nirK > nosZII > nosZI) (Figure 2a). How-
ever, when comparing the N-cycling community in porewa-
ter at Day 477 and woodchip samples from Day 490, there
was a significant difference between these two sample pools
(R = .87; p = .001), demonstrating that these two matrices
represent different sampling environments.

increasing symbol sizes imply later sampling dates. Gene names in black

boxes denote species scores
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3.3 Temporal changes in the N-reducing
community and associated biogeochemical
changes in the porewater

We observed differences in gene abundances between the
operational years and along the flowpath of the DWB (Fig-
ure 3). In general, there was a significant increase in gene
abundance between the corresponding periods in the first and
second operational year with respect to nirS, nirK, nosZII, and
nrfA, whereas the total bacterial community remained approx-
imately the same and nosZI decreased significantly (Supple-
mental Figures S2 and S3). However, the opposite changes
in nosZI and nosZII abundances more or less canceled out
the total change in potential N2O reduction capacity between
years. The structure of the N reducing community in the pore-
water also changed over time and differed between the two
operational years, as shown with NMDS (Figure 4), and the
change was significantly associated with changes in porewa-
ter concentrations of NO3

−–N (R2 = .34; p = .001), NO2
−–N

(R2 = .30; p = .003), N2O–N (R2 = .17; p = .022), NH4
+–

N (R2 = .14; p = .040), TOC (R2 = .28; p = .003), DWB
temperature (R2 = 0.46; p = .001; see also Figure 2), and
TOC/NO3

− ratio (R2 = .3627; p = .001) but not with porewa-
ter pH (R2 = .01; p = .901). The differences in the structure of
the N reducing community between years were mainly split in
relation to axis 1 (Figure 4), corresponding to changes in the
porewater concentrations of NO2

−–N and N2O–N. Although
there was no significant difference in the TOC/NO3

− ratio
between the two operational years (Supplemental Figure S2),
the NMDS demonstrates that the TOC/NO3

− ratio is likely
controlled by DWB temperature (Figure 4).

Because the gene abundance data from the first operational
year were limited to three sampling dates, it was not pos-
sible to make conclusive interpretations of temporal trends
during the first year. The investigation of temporal changes
over an operational year was hence restricted to data from
the second year. During this period, gene copies representing
the total bacterial community (Figure 3a) decreased in abun-
dance by approximately 50%. Maximum gene abundances
were observed during the summer months (Days 400 and
428) for nirS and nrfA and to a certain extent nirK, whereas
nosZII abundance decreased and nosZI was relatively constant
over this period (see Figure 3a–f). Indeed, abundances of nrfA
closely followed porewater temperature variations during the
second year, with the greatest covariation existing for sam-
pling points towards the outlet (Figure 3f). The abundances
of nirS also followed porewater temperature variations, but
the peak in abundance appeared to lag behind the tempera-
ture maximum (Figure 3b). However, contrary to nrfA, nirS
abundance peaked at locations in the first half of the DWB
and increased nearest the outlet toward the end of the sam-
pling period.

Among the investigated genes coding for NO2
− reductases

in denitrifiers (i.e., nirS, nirK), the abundance of nirS consis-
tently exceeded that of nirK in the porewater (Figure 3b,c).
The nirS/nirK ratio attained a maximum value at locations
close to the inlet and during the summer months (data not
shown). Relative to nrfA, the abundance of nirS + nirK was
consistently greater during the two operational years (Fig-
ure 3g), with the exception of Day 400 near the outlet where
nrfA > nirS + nirK. The abundance of nirS and nirK genes
was also greatly in excess of the sum of the genes coding for
N2O reductase (i.e., nosZI, nosZII; Figure 3h).

Correlation analyses using data from the second year indi-
cated that significant correlations (rs > |0.6|; p < .05) existed
among geochemical parameters and between geochemical
parameters and gene abundances (Table 1). For example,
N2O correlated positively with NO2

− and negatively with pH.
Both NO2

− and N2O correlated with nirS and the Σnir/Σnos
ratio. The dominance of nirS over nirK was positively cor-
related with NO2

−, NO3
−, and N2O. The TOC/NO3

− ratio
correlated with nirK, nrfA, NH4

+, and temperature, and nrfA
was positively correlated with temperature, NH4

+, and TOC
and negatively correlated with NO3

−. The ratio (nirS +
nirK)/nrfA correlated positively with NO3

−–N and negatively
with TOC/NO3

−.

4 DISCUSSION

The higher abundance of functional genes involved in the den-
itrification pathway compared with DNRA and the absence of
anammox in both the porewater and woodchip media agrees
with denitrification being the major pathway for NO3

− reduc-
tion and N removal in the DWB studied here (Nordström
& Herbert, 2018) as well as in DWBs in general (Schipper
et al., 2010). Based on gene abundance data, the structures of
the N-reducing communities in the woodchips, sludge, inlet
water, and the porewater were significantly different from one
another in many instances. The original intention of inocu-
lating with digested sewage sludge was to promote the rapid
development of a denitrifying community in the woodchip
material. However, the sludge also provided a high-abundance
source of organisms with the nrfA gene (i.e., genetic capac-
ity for DNRA, an undesired side-reaction in a denitrifying
bioreactor). The gene abundances determined in the wood-
chip samples on Day 490 likely reflect the accumulated con-
tribution from the sludge inoculant, the original community
in the woodchips (not analyzed), the inlet water, and the tem-
poral changes of the community in response to selective pres-
sures. However, development of the N-reducing community
is mainly determined by the type of substrate used in reactors
(Hellman et al., 2020) and, as shown in Figure 4, the porewater
TOC concentration, the TOC/NO3

− ratio, and DWB temper-
ature.
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F I G U R E 3 Gene abundances (a–f) and gene abundance ratios (g and h) as a function of time since start of denitrifying woodchip bioreactor

operations and as a function of distance from the inlet. Abundances of (a) 16S rRNA genes and functional genes (b) nirS, (c) nirK, (d) nosZI, (e)

nosZII, and (f) nrfA. Ratios (g) (nirS + nirK)/nrfA (h) and (nirS + nirK)/(nosZI+nosZII). Bioreactor temperature is plotted on secondary y axis. The x
axis corresponds to day of porewater sampling (Days 57, 85, 113, 330, 365, 400, 428, 456, and 477)
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F I G U R E 4 Nonmetric multidimensional scaling ordination based

on Bray–Curtis dissimilarities for the abundance of the functional genes

nirS, nirK, nosZI, nosZII, and nrfA in porewater samples. Arrows show

significant correlations (p < .05) between the N cycling community

structure across samples and porewater chemistry. Gene names in black

boxes denote species scores. TOC, total organic C

The surface-bound N reducing community associated with
the woodchips and containing nirS, nirK, and nosZI increased
in abundance from the bioreactor inlet to the middle of the
DWB (Figure 2b), suggesting that environmental conditions
promoting the growth of organisms with nirS, nirK, and nosZI
were better in the central region of the DWB compared with
conditions closer to the inlet. A similar spatial development in
gene abundance was observed in the porewater on Day 477,
just prior to woodchip sampling (i.e., nirS and nirK gene abun-
dances increased through bioreactor). Because temperature
did not vary greatly within the bioreactor for any given date
(data not shown), the increase in nirS and nirK gene abun-
dances along the bioreactor flowpath was likely controlled by
the relatively low concentration of organic C, elevated con-
centrations of NO3

− and NO2
−, and consequently the low

TOC/NO3
− ratio (Figure 1f). These results are contrary to our

previous study (Herbert et al., 2014) that indicated a decrease
in nirS abundance in a sawdust DWB with distance from the
bioreactor inlet; however, this system (Herbert et al., 2014)
was NO3

− limited in regions further from the inlet but was
not C limited (i.e., high TOC/NO3

− ratio).
Based on the porewater samples (Figures 2 and 3), we

clearly detected a shift in the structure of the N reducing com-
munity over time, as characterized by the change in the rela-
tive abundances of functional groups (Figure 3; Supplemen-
tal Figure S2). The increased abundance of the capacity for
NO2

− reduction relative to N2O reduction during the second
operational year suggests a preferential selection of nirS-type
denitrifiers with a truncated denitrifying pathway terminat-
ing with N2O. Dissolved N2O porewater concentrations were
most strongly correlated (Table 1) with pH and the type of

NO2
− reductase (positively with nirS and nirS/nirK ratio and

negatively with nirK; c.f. Barrett et al., 2016; Jones et al.,
2014) and also with the relative abundance of NO2

− reducers
to N2O reducers (Σnir/ΣnosZ). Furthermore, the abundances
of nirS and nirK (and also nrfA) during the second operational
year (Figure 3) demonstrated a clear temperature dependence,
whereas abundances of nosZI and nosZII appeared to be inde-
pendent of temperature, which led to a correlation between
temperature and Σnir/ΣnosZ (Table 1). Warneke, Schipper,
Bruesewitz, McDonald, and Cameron (2011a) showed that
an increased abundance of NO2

− reducers over N2O reduc-
ers at higher temperatures, including a relative enrichment
in nirS-type to nirK-type denitrifiers, was associated with
increased N2O emissions in denitrifying bioreactors. Our
observations imply an increased genetic potential for the pro-
duction of N2O from DWBs over time and with increas-
ing temperature at HRTs of 1–2.6 d. In addition, the genetic
potential for N2O production was spatially variable within the
bioreactor, implying a geochemical control (e.g., TOC/NO3

−,
see below) as well. These implications are important
contributions to our general understanding of greenhouse gas
emissions from DWBs over longer time scales because they
indicate the importance of understanding the temporal devel-
opment of these systems.

The preferential promotion of denitrifiers with a denitrifi-
cation pathway terminating with N2O may have been an effect
of the increased competition for electron donors. The simula-
tions by Nordström and Herbert (2018) suggested a decrease
in the export of acetate from the DWB studied here with
time from start-up, which is consistent with the observations
of other studies (Grießmeier & Gescher, 2018; Grießmeier
et al., 2017). When there is competition for available organic
C by denitrifiers capable of complete denitrification, elec-
trons are preferentially directed to the NO2

− reductase rather
than the N2O reductase (Pan et al., 2013). This suggests that
low TOC/NO3

− ratios could lead to the preferential promo-
tion of microorganisms with denitrification pathways trun-
cated to N2O, in this case nirS denitrifiers. This was supported
in this study by the negative correlation between TOC/NO3

−

ratio and the nirS/nirK ratio and its positive correlation with
nirK abundances. Promotion of organisms lacking the nosZ
gene is also supported by the spatially dependent relation-
ship between N2O concentrations and Σnir/ΣnosZ (Figures 1d
and 3h). Further, clade II nosZ is frequently associated with
nondenitrifying bacteria that do not have the genetic make-
up needed for N2O production (Graf et al., 2014; Jones et al.,
2014). The disproportional abundance of nos and nir genes
suggests that the denitrification pathway is split among com-
munity members. This decoupling of the intermediate steps of
denitrification onto several populations would reduce intraor-
ganism competition (Lilja & Johnson, 2016; Pan et al., 2013).
Such decoupling and metabolic specialization among trun-
cated denitrifiers and N2O reducers has been inferred from
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metagenomes in tidal sediments and grassland soils (Diamond
et al., 2019; Marchant et al., 2018).

The abundance of nrfA genes detected in the porewater
suggests DNRA bacteria may be competing for NO3

− with
the denitrifiers (Figures 2a and 3f). The genetic potential for
NO2

− reduction relative to DNRA (i.e., Σnir/nrfA) was neg-
atively correlated with the TOC/NO3

− ratio (Table 1), in
agreement with studies showing that DNRA is favored by
high C/N ratios (e.g., Kraft et al., 2014). Both temperature
and the TOC/NO3

− ratio had an important control on nrfA
abundance (Figure 3f) and hence NH4

+–N concentrations, as
indicated by significant correlations between these parame-
ters (Table 1). However, the NH4

+ concentrations were over-
all low, suggesting limited importance of this unwanted pro-
cess. Interestingly, many DNRA bacteria are also fermenting
(Muyzer & Stams, 2008; Van Den Berg, Elisário, Kuenen,
Kleerebezem, & van Loosdrecht, 2017), and hence the DNRA
bacteria may also contribute to fermentation and thereby sup-
port denitrification despite being competitors for NO3

−.

5 CONCLUSIONS

Denitrification was the major pathway for NO3
− reduction

and N removal in the DWB over two operational years at
HRTs of 1–2.6 d but was associated with an increased genetic
potential for N2O production with time. We conclude that pH
and temporal and spatial changes in the relative abundance
of different denitrifier genotypes, indicated by abundances of
genes involved in different steps in the denitrification path-
way, controlled porewater concentrations of N2O. Bioreactor
temperature and TOC/NO3

− ratio had a strong control on the
occurrence of bacteria capable of NO2

− reduction and those
capable of DNRA (preferring high TOC/NO3

−). A spatially
variable community, likely dominated by nirS-type denitri-
fiers with a truncated pathway terminating with N2O, devel-
oped over time in the DWB, where the supply of electron
donors from substrate decomposition may be a controlling
parameter on community development. Considering the sig-
nificant differences in DWB chemistry and functional gene
abundance between the two operational years, this study high-
lights the importance of distinguishing between initial vari-
ations during a start-up period, which may be extensive in
length, and the long-term performance of a DWB.
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Fig. A.1. Cross-section of the denitrifying woodchip bioreactor (DWB) showing positions of 

the sampling points (red circles) for the inlet, outlet, and porewater along centerline.  
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Figure A.2 a) Differences in porewater concentrations of NO3
-, NO2

-, N2O, NH4
+, and TOC, 

and b) functional gene abundances between the first (cyan, left) and second (magenta, right) 

operational years. Data include all porewater sampling locations. Lines through boxes 

signifies median, empty circles are outliers, and stars (*) indicate significant (p<0.05) 

differences between the two operational years based on a two-sided Wilcox test for 

significance. Note different scales on y-axes in panel a. 

 

 

a 

b 
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Fig. A.3 The variation in the abundances of functional genes nirS, nirK, nosZI, nosZII, and 

nrfA between the inlet (0 m) and the outlet (36.7 m) in the DWB at the time of porewater 

sampling (days 57, 85, 113, 330, 365, 400, 428, 456, and 477), and at the time of woodchip 

sampling (day 490). Note log-scale on y-axes. Functional gene abundances shown for 

woodchip samples are the average of three replicates, where samples at 0 m and 36.7 m are 

obtained 2.1 m above base and remaining samples are collected along the centerline at the 

base of the bioreactor. 
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Table A.1. Theoretical hydraulic residence times (HRT) calculated by dividing the estimated 

pore volume with the pump flow rate (Q). 

Days Q [m3 day−1] Theoretical HRT [days] 

0–45  

 

43.2 2.6 

46–52  

 

0 No flow – Pump malfunction 

53–151  

 

59.4 1.9 

152–321  

 

0 No flow – winter intermission 

322–370  

 

43.2 2.6 

371–428  

 

48.9 2.3 

429–490  

 

109.6 1 
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Table A.3. Shapiro-Wilk test of normality for the abundances of the 16S rRNA gene and 

functional genes (nirS, nirK, nosZI, nosZII, nrfA) in the porewater, influent water, and sewage 

sludge, respectively. 

Gene Source 
Shapiro-Wilk 

W p-value 

16S rRNA 

Porewater 0.97 0.20 

Influent water 0.88 0.21 

Woodchips 0.94 0.22 

Sewage sludge 0.93 0.47 

nirS 

Porewater 0.89 <0.01 

Influent water 0.97 0.92 

Woodchips 0.98 0.84 

Sewage sludge 0.76 0.01 

nirK 

Porewater 0.88 <0.01 

Influent water 0.94 0.62 

Woodchips 0.90 0.04 

Sewage sludge 0.82 0.16 

nosZI 

Porewater 0.69 <0.01 

Influent water 0.65 <0.01 

Woodchips 0.96 0.44 

Sewage sludge 0.83 0.18 

nosZII 

Porewater 0.77 <0.01 

Influent water 0.61 <0.01 

Woodchips 0.94 0.22 
aSewage sludge n.a. n.a. 

nrfA 

Porewater 0.80 <0.01 

Influent water 0.88 0.31 

Woodchips 0.97 0.67 

Sewage sludge 0.84 0.20 

 anosZII only quantifiable in two out of three samples (Shapiro-Wilk requires three measurements) 

 

 

Table A.4. Kruskal-Wallis test for differences in the 16S rRNA and functional gene 

abundances in the porewater, influent water, woodchips, and sewage sludge. 

Gene 
Kruskal-Wallis 

χ2 dfa p-value 

16S rRNA 20.98 3 <0.01 

nirS 56.83 3 <0.01 

nirK 32.96 3 <0.01 

nosZI 53.58 3 <0.01 

nosZII 13.23 3 <0.01 

nrfA 23.79 3 <0.01 
adf = degrees of freedom 
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Table A.5. Kruskal-Wallis test for differences in the 16S rRNA and functional gene 

abundances in the woodchip media at three different positions (near inlet, n=6; middle, n = 

36; near outlet, n = 6).  

Gene 
Kruskal-Wallis 

χ2 dfa p-value 

16S rRNA 13.75 2 <0.01 

nirS 15.85 2 <0.01 

nirK 23.37 2 <0.01 

nosZI 20.69 2 <0.01 

nosZII 7.23 2 0.03 

nrfA 2.18 2 0.34 
adf = degrees of freedom 
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Global water supplies are threatened by climate changes and the expansion of urban
areas, which have led to an increasing interest in nature-based solutions for water reuse
and reclamation. Reclaimed water is a possible resource for recharging aquifers, and
the addition of an organic reactive barrier has been proposed to improve the removal
of pollutants. There has been a large focus on organic pollutants, but less is known
about multifunctional barriers, that is, how barriers also remove nutrients that threaten
groundwater ecosystems. Herein, we investigated how compost- and woodchip-based
barriers affect nitrogen (N) removal in a pilot soil aquifer treatment facility designed
for removing nutrients and recalcitrant compounds by investigating the composition
of microbial communities and their capacity for N transformations. Secondary-treated,
ammonium-rich wastewater was infiltrated through the barriers, and the changes in
the concentration of ammonium, nitrate, and dissolved organic carbon (DOC) were
measured after passage through the barrier during 1 year of operation. The development
and composition of the microbial community in the barriers were examined, and
potential N-transforming processes in the barriers were quantified by determining the
abundance of key functional genes using quantitative PCR. Only one barrier, based on
compost, significantly decreased the ammonium concentration in the infiltrated water.
However, the reduction of reactive N in the barriers was moderate (between 21 and
37%), and there were no differences between the barrier types. All the barriers were
after 1 year dominated by members of Alphaproteobacteria, Gammaproteobacteria,
and Actinobacteria, although the community composition differed between the barriers.
Bacterial classes belonging to the phylum Chloroflexi showed an increased relative
abundance in the compost-based barriers. In contrast to the increased genetic
potential for nitrification in the compost-based barriers, the woodchip-based barrier
demonstrated higher genetic potentials for denitrification, nitrous oxide reduction, and
dissimilatory reduction of nitrate to ammonium. The barriers have previously been shown
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to display a high capacity to degrade recalcitrant pollutants, but in this study, we show
that most barriers performed poorly in terms of N removal and those based on compost
also leaked DOC, highlighting the difficulties in designing barriers that satisfactorily meet
several purposes.

Keywords: water reuse, wastewater, nature-based solutions, soil aquifer treatment, reactive barriers, nitrogen
removal, N-transforming microorganisms

INTRODUCTION

Climate change with altered precipitation patterns, an increasing
human population and expansion of urban areas threaten
sustainable drinking water supplies globally (Wheeler and
von Braun, 2013). A continuous decline in the long-term
groundwater level is becoming increasingly problematic due to
over-drafting, and freshwater supplies can be limited in densely
urbanized areas. More than 50% of the world’s population lives
in urban areas, and by 2050 it is expected to increase to 68%
(United Nations [UN], 2018). Thus, there are increasing demands
for transforming urban water solutions, including water reuse
and reclamation, to close the urban water cycle (Valhondo
and Carrera, 2019). Nature-based solutions are gaining interest,
and one option is the application of managed aquifer recharge
(MAR), a low-cost technology that is used for increasing
groundwater resources and enhancing recharged water quality
(Bekele et al., 2018; Silver et al., 2018). The effluent coming from
wastewater treatment plants is a possible water resource for this
purpose (Page et al., 2018). However, treated wastewater contains
various contaminants, such as pharmaceuticals, personal care
products, pesticides, pathogens, and nutrients, that have not been
eliminated in the wastewater treatment plant (Loos et al., 2013;
Petrie et al., 2015) and which affect the water quality and threaten
the integrity of groundwater ecosystems.

The implementation of reactive barriers in MAR systems
has been proposed to increase the removal of contaminants
(Valhondo et al., 2014). A reactive barrier is a layer of carbon-
rich material, for example, compost or woodchips, through which
water percolates. This offers a range of redox conditions and
adds sorption sites that facilitate biodegradation and retard the
transport of pollutants through the system (Valhondo et al.,
2018), but the efficiency and capacity to remove environmentally
harmful pollutants are uncertain and will depend on the type of
barrier, pollutant (Modrzyński et al., 2021), and the operation
of the system. The addition of reactive barriers has shown
promising results for the removal of organic micropollutants
and for reducing the number of pathogens in the treated water
(Schaffer et al., 2015; Valhondo et al., 2020a; Modrzyński et al.,
2021). With respect to nitrogen (N) removal, reactive barriers
can also support denitrification for the removal of nitrate ions
(Beganskas et al., 2018; Grau-Martínez et al., 2018). However,
the fate of N when ammonium-rich treated sewage water is used
with compost as a reactive layer has not yet been well addressed
and may even counteract the desired N removal (Modrzyński
et al., 2021). Compost might add ammonium to the system by the
mineralization of N-containing organic matter in the compost.
Further, the introduction of compost will supply carbon (C) for

co-metabolic degradation of pollutants, but could also increase
the C to N ratio, which may further promote dissimilatory nitrate
reduction to ammonium (DNRA), thereby retaining N in the
system (Putz et al., 2018). Overall, the effects of compost addition
on N removal are unclear and open the question regarding which
microbial communities develop when ammonium-rich water
percolates through the barrier.

Our aim was to evaluate compost- and woodchip-based
reactive barriers for their ability to remove N when infiltrated
with ammonium-rich treated sewage water and determine the
microbial communities developing in these barriers, including
the pathways underpinning N-transforming processes. We used
a pilot facility representing the MAR technique soil aquifer
treatment (SAT) with infiltration basins supplemented with
compost- and woodchip-based barriers and an infiltration basin
with only a sand filter (control) (Valhondo et al., 2020b). The
basins were operated under alternating dry and wet cycles
(Bouwer et al., 2008; Sharma and Kennedy, 2017), but with very
long wet periods (Supplementary Figure 2). Nitrogen removal
was studied together with the diversity and composition of
the microbial communities developing during the first year of
operation. The prevalence of the microbial N-transformation
pathways nitrification, denitrification, nitrous oxide reduction,
and DNRA was estimated by quantifying the abundance of key
genes involved in N-transformation processes. We hypothesized
that (1) the microbial communities developing in the barriers
would affect the N-removal capacity by changing the genetic
potentials for the various N-transforming processes, and (2)
the compost-based barriers would develop the most diverse
microbial communities, followed by the woodchip and the
control barriers, because of the larger redox range offered in
the compost-based barrier and the additional sorption sites for
contaminants in both compost- and woodchip-based barriers.

MATERIALS AND METHODS

System Description
The pilot aquifer recharge facility located at a wastewater
treatment plant (WWTP) in the vicinity of Girona, Spain, has
been described in detail previously (Valhondo et al., 2020b).
The facility has reactive barriers constructed using compost-
or woodchip-based materials for the infiltration of secondary
effluent from the WWTP and a reference system with sand
only. The compost used was based on garden waste, and the
woodchips were from pine wood. The barriers were 110 cm deep,
including a 10 cm top layer of fine sand, and the infiltration
area was 3.6 m2. All except one of the barriers had vegetation
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with mixed plant species that were established naturally. In
this study, we evaluated one woodchip-based barrier (WCB),
three compost-based barriers varying in the proportions of sand,
compost, clay, and presence of vegetation (CB1-, CB1, and
CB2), and the reference (Ref) for their ability to reduce reactive
N (ammonium and nitrate) and dissolved organic compounds
(DOC) in the secondary-treated effluent water from the plant
(Table 1). The purpose of clay was to provide sorption sites
for cationic compounds. The concentrations of reactive N and
DOC in the influent water to the barriers were determined
on several occasions using the methods described in Valhondo
et al. (2020b). The average influent ammonium (n = 31), nitrate
(n = 29), and DOC (n = 12) concentrations were 57.4, 0.44,
and 15.3 mg L−1, respectively (Supplementary Table 1 and
Supplementary Figure 1). The oxygen level in the influent
water was 3.76 mg L−1 (SD = 2.23, n = 28) and pH was
7.6 (SD = 0.22, n = 30; Supplementary Table 1). The pilot
plant was operated in wet and dry cycles with four recharge
periods of 27–123 days and three intermittent dry periods of 13–
38 days (Figure 1A). The average inflow rate was 1 L min−1,
corresponding to a recharge rate of 0.40 m day−1. To facilitate
uniform infiltration, the influent was distributed through a 7 m
long tubing, perforated every 20–25 cm, covering the recharge
area.

Sampling of Water and Barrier Material
Water samples were taken from piezometers installed in
a 20-cm thick layer of gravel under each of the reactive
barriers (Figure 1B). Samples for chemical characterization were
collected at eight time points during the wet periods (Figure 1A).
Water for microbial analyses was collected in the middle of the
last wet cycle, that is, after 45 wet days (10–11 December 2018).
For this purpose, 80–150 ml of infiltrated water per barrier was
filtered through a Sterivex R© polyethersulfone filter unit (0.22 µm
pore size), and the filters were kept at −20◦C until further
analysis. In the following text, the term “water” refers to the water
after passage through the barriers unless stated otherwise. Barrier
material was collected during the dry periods by digging with a
small spade 7 or 8 days after the first wet cycle (8–9 February 2018,
initial sampling) and 6 days after the fourth wet cycle (14 January
2019, final sampling). Four depths were sampled: the top sand
and at 27, 37, and 47 cm depth from the top of the upper sand
layer (Figure 1B). During the last sampling, it was only possible
to collect the top sand and the 27-cm layer of the reference, since
the sand fell into the hole while digging. The samples were kept
at−20◦C until further analysis.

Chemical Analyses of Water and Barrier
Material and Calculation of N Removal
Dissolved organic carbon in the water was analyzed using a
TOC-VCSH analyzer (Shimadzu, Kyoto, Japan) after filtration
(0.22 µm) and acidification, ammonium (NH4

+) concentration
was analyzed using an ORION Ion Selective Electrode (ISE,
Thermo Fisher Scientific, Waltham, MA, United States),
and nitrate (NO3

−) concentration was determined by ion
chromatography as previously described (Valhondo et al., 2020b).

TABLE 1 | Barrier composition (% volume).

CB1- CB1 CB2 WCB Ref

Vegetation No Yes Yes Yes Yes

Sand 49 49 60 49 100

Compost 49 49 40 – –

Woodchips – – – – –

Clay 2 2 2 2 –

The amount of reactive N removed (percent) was calculated per
barrier and date (n= 1) as:

Nremoved = 100× (total Nin − total Nout)/total Nin where

total Nin = (NO−3 +NH+4 ) in inflow water (mg N L−1) and

total Nout = (NO−3 +NH+4 ) in water after barrier passage

(mg N L−1).

Dry weight was calculated by the amount of weight lost after
drying overnight at 105◦C. Organic matter content in the barrier
samples was determined by weight lost after combustion. The pH
of the barrier samples was measured in a sample: water slurry
(1:2.5 weight/weight) after incubating for 1 h on a rotary shaker
(200 rpm), followed by 1.5 h for the settling of solids in the dark.

Molecular Methods
Sample Preparations and DNA Extraction
For the water samples, the filters were detached from the
Sterivex R© cartridges and cut into halves. For each sample, one
of the halves was cut into 8–10 pieces and transferred to a
microcentrifuge tube. For the barrier material, approximately
0.4 g was used for the DNA extraction. The samples collected
from the woodchip barrier were first sieved, and the size
fractions > 2 mm were ground in a ball mill (Laarmann LMLW-
320/2, Roermond, the Netherlands) using two steel balls (20 mm
diameter) for maximum of six 10 second pulses at a frequency of
30 s−1. Before weighing the woodchip material for the extraction,
the <2 mm and the milled > 2 mm fractions were thoroughly
mixed in the same weight/weight ratio as before the sieving
process. DNA was extracted from all samples using the Qiagen
PowerSoil kit according to the manufacturer’s instructions, with
a slight modification in the cell lysis step, where Precellys tissue
homogenizer (set at 5,500 rpm for 30 s) was used. The extracted
DNA was quantified using the Qubit fluorometer (Thermo Fisher
Scientific, Waltham, MA, United States).

Quantitative PCR
To estimate the genetic potential for carrying out different
N-transformation processes, the abundances of functional genes
were determined by performing quantitative real-time PCR
(qPCR) as described in Modrzyński et al. (2021), using 2 ng
of template in each reaction. The abundances of nirS and nirK
genes were used as proxies for the denitrifying community
(Henry et al., 2004; Throbäck et al., 2004), nosZI and nosZII
for the nitrous oxide-reducing community (Henry et al., 2006;
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Jones et al., 2013), nrfA for the DNRA performing community
(Mohan et al., 2004; Welsh et al., 2014), and amoA (bacterial and
archaeal) for the ammonia-oxidizing communities (Rotthauwe
et al., 1997; Tourna et al., 2008). Primer sequences, reaction
conditions, and thermal cycling protocols are summarized in
Supplementary Table 2.

Sequencing and Bioinformatic Analyses of 16S rRNA
Genes
To determine the diversity and composition of the microbial
communities in the water and barrier samples, the V3–V4
region of the bacterial and archaeal 16S ribosomal RNA genes
was amplified using the primer pair of pro341F and pro805R
(Takahashi et al., 2014) as previously described (Hellman
et al., 2019), with the slight modifications that the first PCR
was performed in 25 µl of the reaction mixture and that
purification steps were carried out using Sera-MagTM magnetic
beads (GE Healthcare, Chicago, IL, United States). Sequencing
was performed on an Illumina R© MiSeq instrument using the
2× 250 bp chemistry. The raw sequence dataset is available in the
NCBI sequence read archive (SRA) under BioProject accession
number PRJNA773712.

The sequences were processed as described in Hellman
et al. (2019). Briefly, the trimmed and merged sequences
were quality-filtered using a maximum expected error = 1,

dereplicated using a minimum unique size = 2, clustered at
97% identity, and chimera-checked using VSEARCH (Rognes
et al., 2016). Singleton operational taxonomic units (OTUs)
were removed, and representative OTUs were classified using
the non-redundant reference database SILVA version 132
(Yilmaz et al., 2014). A phylogenetic tree was constructed
based on the aligned nucleotide sequences of representative
OTUs using FastTree (Price et al., 2009) and the Jukes-
Cantor and CAT model (Jukes and Cantor, 1969). Sequences
representing chloroplasts and mitochondria were identified
from the tree and removed. One sample (a barrier sample
from CB2, February 2018) had only 94 sequences and was
excluded from the analyses. The resulting dataset had 1,276,515
sequences, corresponding to 9,862 OTUs. The dataset was
divided into separate sets for water and barrier samples (5 and
37 samples, respectively) and rarefied to the smallest sample
size (20,364 counts per sample and 3,757 OTUs for water
and 7,479 counts per sample and 7,634 OTUs for barrier).
To partition OTUs identified as frequent members of the
community from less frequent OTUs, a dispersion index (the
ratio of the variance to the mean abundance, multiplied by the
occurrence) was calculated for each OTU and used to model
whether the OTUs followed a Poisson distribution. Theory
predicts that rare OTU abundances are randomly (Poisson)
distributed across sites and follow a log-series distribution,
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whereas frequently occurring OTU abundances are non-
randomly distributed (Magurran and Henderson, 2003). OTUs
occurring at a frequency above the 2.5% confidence limit of
the Chi2 distribution were retained in the dataset (Saghaï et al.,
2021). If not stated specifically, these frequently distributed
communities are those analyzed and discussed in the following
text. Analysis of the sequence data was carried out in R, version
4.0.3 (R Development Core Team, 2016).

Statistical Analyses
“Phyloseq” (McMurdie and Holmes, 2013) was used to estimate
Shannon entropy (H′). Pielou’s evenness index (J) was calculated
from the Shannon entropy as J = H′/ln(S), where S is the
total number of taxa in a sample, across all the samples in
the dataset. Phylogenetic diversity (Faith’s PD) (Faith, 1992)
was estimated using the function estimate_pd in package
“btools” (Battaglia, 2021). “Phyloseq” was also used for non-
metric multidimensional scaling (NMDS) using Bray–Curtis
dissimilarity matrices to visualize community patterns. The
“vegan” (Oksanen et al., 2018) function envfit was used to
correlate chemical and taxonomical data with the community

structure and the function adonis to test differences in the
community structures by permutational multivariate analysis
of variance (PERMANOVA, using nperm = 999). Pairwise
testing after significant PERMANOVAs was done using function
pairwise.perm.manova from the package “RVAideMemoire”
(Hervé, 2020; 999 permutations and p-value adjustment with
“false discovery rate”). The alpha diversity estimates were done
using non-rarefied data, and all other analyses were done using
rarefied data. Student’s t-test (assuming unequal variances and
two-sided, if not indicated else) was used when comparing
two groups, and Tukey’s honest significance test (HSD test)
was used when comparing three or more groups (α = 0.05).
Gene abundance data were log-transformed before statistical
testing. Statistical analyses were carried out in R, version 4.0.3
(R Development Core Team, 2016).

RESULTS

Water Chemistry and N Removal
Regardless of the barrier composition, ammonium
concentrations were generally reduced and nitrate concentrations
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were increased after passage through the barrier, albeit
significantly only in the CB1 with vegetation in the barrier
(Figures 2A,B). CB1 showed the highest removal of ammonium
from mid-May and throughout the experimental period, and
despite the production of nitrate, the removal of reactive N
was more than 40% during summer (Figure 2C). From 23
May to 29 August, the concentration of dissolved oxygen was
lower than observed during the rest of the year (15.1 ± 5.3
and 50.1 ± 19.7%, respectively, mean ± SD, t-test, p < 0.001),
which coincided with lower ammonium removal. The high and
similar N removal capacity in all the barriers at the beginning
of September might be caused by the of high dissolved oxygen
concentration in the inflow water at that time (Supplementary
Table 1). When normalizing ammonium removal to the removal
capacity of the reference, CB1 had a 2.3 times higher capacity,
but CB1-, CB2, and WCB removed less, 0.39, 0.39 and 0.70 times
the reference, respectively (mean values of ratios of % reactive
N removal, n = 4–8). Over the year, the amount of reactive N
removed was moderate, with an average of 29% across all the
barriers (including the reference, which showed a 29% removal),
and there were no differences between the barriers (HSD test,
Supplementary Figure 2). The DOC concentration increased
in the water after passing through the compost barriers, but was
found to be reduced in the reference and unaffected in the WCB
groups (Figure 2D).

Genetic Potential for N-Transformation
Processes
Gene abundances in the barrier material are shown separately
for the top sand and the actual barrier layers in Supplementary
Figure 3. The abundances in the top sand were lower than
those in the reactive layer of all the compost barriers. With few
exceptions, the gene abundances in the compost and woodchip
barriers were higher after the fourth wet cycle compared to
those observed after the first wet cycle, whereas the reference
displayed increases only for nirS and nosZI. The potential for
ammonia oxidation (the sum of archaeal and bacterial amoA
gene abundances), increased in the two compost barriers having
vegetation (Figure 3A; one-sided t-test, top sand excluded,
p < 0.05). In the woodchip barrier, there was an increase
in the genetic potential for denitrification (sum of nir genes),
nitrous oxide reduction (sum of nosZ genes), and DNRA (nrfA)
(Figures 2B–D; one-sided t-test, top sand excluded, p < 0.05).
Possible changes in the reference could not be tested statistically
due to missing samples at the final sampling stage. A week
into the first dry cycle, all processes but nitrification had a
higher genetic potential in the compost barriers than in the
WCB and reference (Figures 3A–D; HSD test). In the end, a
week into the fourth dry cycle, denitrification and nitrous oxide
reduction potentials were similar among all the treatments, while
nitrification potential remained higher in the CB barriers than
in the WCB barrier, reference excluded (Figures 3A–C; HSD
test). The ratio between DNRA and nitrification [nrfA/(bacterial
amoA + archaeal amoA)] was significantly lower at the end of
the experiment in the vegetated CB1 barrier (not shown, t-test
p= 0.025).

The genetic potentials of the N-transforming processes in
the water were determined during the fourth wet cycle. Gene
abundances involved in nitrous oxide reduction, DNRA, and
denitrification (nirK) were higher in the water collected from the
woodchip barrier when compared to water collected from the
reference and compost barriers. The other gene abundances in
the water showed no specific pattern (Supplementary Table 1).

Diversity and Community Structure
The phylogenetic diversity (Faith’s PD) initially differed between
CB2 and WCB samples, but after 1 year, there were no significant
differences among the barriers (Supplementary Figure 4A; HSD
test). Shannon’s entropy and Pielou’s evenness showed the same
pattern (Supplementary Figures 4B,C; HSD test). Differences
in the structure of microbial community between samples were
mainly driven by barrier composition and sampling occasion
(PERMANOVA, p = 0.001 and 0.003, respectively; Figure 4A).
Two groups could be distinguished: one group included the
compost barriers and the other included WCB and reference
(pairwise comparisons after PERMANOVA, p > 0.16 within
groups and p < 0.007 between the two groups). The top sand
in the compost barriers was, however, more similar to the WCB
and reference samples than to the deeper layers of compost
barriers (Figure 4A). Actinobacteria, Alphaproteobacteria, and
Gammaproteobacteria dominated the barrier samples both
at the beginning and the end of the experimental period
(Figure 4B). In total, 77 classes (36 phyla) were represented
in the barriers, and most of them were significantly correlated
with the community structure (Supplementary Table 3). Higher
abundances of Gammaproteobacteria were correlated with the
end point samples (Figures 4A,B), but most of the bacterial
classes correlating to the separation of community structure
were strongly associated (r2 > 0.7) with the compost barriers
(Figure 4A and Supplementary Table 3). Nitrospira was the
second most abundant class present in the reference at the final
sampling stage (Figure 4B). Organic carbon content and pH
also correlated with the separation of the communities; organic
carbon correlated with the compost barriers and samples from
start, and pH with the deeper layers in the WCB (Supplementary
Table 3; p= 0.019 and 0.011, respectively).

All gene abundances correlated positively with the compost
barrier communities. Differences in the correlations with start
and end communities were seen for nir genes, where nirK and
nirS correlated with those from start and end, respectively. Also,
nosZI correlated with end samples, whereas nosZII showed no
pattern with sampling occasion (Supplementary Table 3).

Although the water samples were also dominated by
Actinobacteria and Gammaproteobacteria (Supplementary
Figure 5), the water and barrier samples had distinctly different
bacterial communities (PERMANOVA, p = 0.001) at the end
of the experimental period. Other highly represented classes
in the water samples were Bacteroidia, Campylobacteria, and
Clostridia. The water from the WCB also had a high occurrence
of Desulfobulbia and Desulfuromonadia, classes not found in the
water sampled from the other barriers or in the barrier samples
(Supplementary Figure 5). The water from the WCB had the
highest diversity and evenness, as indicated by Shannon’s and
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Pielou’s indices (Supplementary Figures 4B,C). Overall, the
water communities had a lower diversity based on Shannon’s
entropy than the barrier communities across time and among
barrier types (Supplementary Figure 4B), but the phylogenetic
diversity did not differ between water and barrier samples
(Supplementary Figure 4A).

DISCUSSION

The overall N removal performance of the barriers was
moderate, with only 29% of N removed on average across
all the barrier types. During the period with less dissolved
oxygen concentrations available in the water fed to the barriers,
removal of ammonium decreased in all barriers except for
CB1, which can likely be attributed to oxygen deficiency for
the organisms involved in nitrification. We can only speculate
why CB1 showed a more stable performance and functioned
better than the other barriers under oxygen-limiting conditions.
Compared to CB1-, CB1 had vegetation. The idea behind
having vegetation in the barriers was to prevent clogging by
facilitating the flow through small channels made by the roots.
In addition, small channels might have helped in the advection

and diffusion of oxygen, thereby favoring nitrification. However,
this phenomenon should also have occurred in CB2. The
higher proportion of compost, likely increasing heterotrophic
respiration and thereby decreasing oxygen levels, is a more
plausible explanation for the differences in ammonium removal.
The significant removal of ammonium in the CB1 barrier with
vegetation did not lead to a significantly higher net removal of
reactive N in the barrier, since nitrate was formed. Nevertheless,
decreasing the ammonium load is still advantageous, not only
because of its toxicity, but also because it contributes to
decreasing biological oxygen demand, thus preventing anoxic
conditions in the recipient aquifer. Allowing plants to grow in the
barriers could have several effects on the N dynamics, the most
obvious being plant N uptake and accumulation in plant biomass.
This could contribute to the lowered ammonium concentrations
in the water from CB1 in comparison to the corresponding
barrier without plants (CB1-). However, plants can also affect
microbial activity, for example, resulting in immobilization of
available ammonium (Skiba et al., 2011), and either increase or
decrease nitrification depending on the plant species and soil
(Skiba et al., 2011; Thion et al., 2016; Norton and Ouyang, 2019).
Although our experimental design does not allow us to decipher
the mechanisms, allowing plants to grow in the barriers makes the
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system resemble a vertical sub-surface flow constructed wetland
or reedbed (Vymazal, 2007; Al-Ajalin et al., 2020), a design
that has proven to be efficient in the removal of nutrients and
organic material from domestic wastewater (e.g., Blankenberg
et al., 2008). Further, in a full-scale SAT with more frequent
alteration of wet and dry periods (Sharma and Kennedy, 2017),
additional nitrification in the vadose zone, together with dilution
when the recharged water reaches the aquifer, will contribute to
lower ammonium levels in the aquifer than measured in our pilot
system (Sopilniak et al., 2017).

The composition of the bacterial community differed and
largely reflected the concentrations of DOC in the water after
passage through the barrier, but in contrast to our hypothesis
about diversity, there were no differences between the reactive
barriers at the end of the first year of operation (reference
barrier excluded). The reference showed a relative increase
in Nitrospira, which is known to be involved in nitrification
and is important in sand filters (Fowler et al., 2018), yet this
was not reflected in the ammonium removal. The presence of
compost in the barriers was the strongest driver of community
structure, and hence strengthens the part of our first hypothesis
about different communities developing in the barriers and
supports the lab-scale study using the same compost material
(Modrzyński et al., 2021). The type of available carbon is known
to be an important factor that determines the development
of soil bacterial communities (e.g., Cederlund et al., 2014),

as well as their metabolic capacity and N removal rates in
wastewater treatment plants (e.g., Hallin et al., 2006). One of
the bacterial classes present in higher abundance in the compost
barriers, which also increased in relative abundance over the
year, was Anaerolineae, belonging to the phylum Chloroflexi.
It has been retrieved from a wide range of habitats (Yamada
and Sekiguchi, 2009), and members of this class have genes
for cellulose hydrolyzation (Xia et al., 2016). The abundance
of uncharacterized Chloroflexi KD4-96 also increased in the
barriers with time and has previously been found in polluted
soils (Gołębiewski et al., 2014; Wegner and Liesack, 2017). The
origin of the compost used in our experiment was based on
waste from gardens, and compost of a different origin could
potentially promote a different community with other carbon
degradation pathways or tolerance and capacity to degrade
contaminants. Thus, when designing multipurpose reactive
barriers, the origin of the compost could be a way of controlling
which microorganisms proliferate and thrive in the barriers.

The differences in the genetic potentials for N-transforming
processes that developed during the first year of operation were
not reflected in the N removal activity among the barriers. The
poor ammonium removal in the compost barriers could be due
to the observed trend of increasing genetic potential for DNRA,
even though we detected a high abundance and significant
increase in ammonia-oxidizing bacteria and archaea in these
barriers. A previous study has reported an increase in the DNRA
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bacteria in the lower, anoxic layers in compost-based barriers,
resulting in increased ammonium production despite efficient
nitrification in the upper, oxic barrier layers (Modrzyński
et al., 2021). The exception in our study was the increased
ammonium removal in CB1, which had a lower ratio between
nrfA (DNRA) and amoA (ammonia oxidation) in the barrier
material at the end of the experimental period. Another
aspect when comparing amoA abundances between the compost
barriers versus the woodchips and reference is the possible
effect of N mineralization. We speculate that N mineralization
of organic matter in the compost continuously supplies the
systems with ammonium (Habteselassie et al., 2006), and
thereby supports the development of a larger ammonia-oxidizing
community in the compost barriers. Hence, the resulting
ammonium levels in the water after barrier passage is not
lower in the compost barriers despite significantly higher amoA
abundances. In other woodchip-based systems for N removal,
it has been shown that changes in the microbial community
composition appear within a few months (Grießmeier et al.,
2017; Aalto et al., 2020; Hellman et al., 2021; Jéglot et al.,
2021). Given that the increase in copy numbers of nir and
nosZ genes in the woodchip barrier resulted in the same
genetic potential for denitrification and nitrous oxide reduction
between the compost and woodchip barriers, it is plausible
that in the present systems, the potentials for denitrification
and nitrous oxide reduction were similar among the barriers
during a substantial part of the experimental period, which
contributed to the equal overall removal of reactive N. A higher
temporal resolution would be needed to better understand
this phenomenon.

To conclude, our study found small or no differences in
ammonium or overall N removal among the barriers, despite
large differences in the composition of microbial community
and genetic potential for N-transforming processes. The barrier
with vegetation and the highest proportion of compost continued
to remove approximately 50% of the ammonium even under
conditions with low oxygen concentration in the water. The
composition of the barrier material will be crucial to achieve
sufficient N removal and avoid leakage of DOC. In this regard,
a barrier based on woodchips is preferred over compost, but
the removal of other pollutants must be considered as well,
indicating that designing reactive barriers for multiple purposes
is a challenge. In summary, a range of materials is likely necessary
to achieve sustainable urban wastewater management using a
soil aquifer treatment system in combination with barriers when
recharging aquifers.
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Gołębiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A., and Wróbel, B. (2014).
16S rDNA pyrosequencing analysis of bacterial community in heavy metals
polluted soils. Microb. Ecol. 67, 635–647. doi: 10.1007/s00248-013-0344-7

Grau-Martínez, A., Folch, A., Torrentó, C., Valhondo, C., Barba, C., Domènech,
C., et al. (2018). Monitoring induced denitrification during managed aquifer
recharge in an infiltration pond. J. Hydrol. 561, 123–135. doi: 10.1016/j.jhydrol.
2018.03.044

Grießmeier, V., Bremges, A., McHardy, A. C., and Gescher, J. (2017). Investigation
of different nitrogen reduction routes and their key microbial players in wood
chip-driven denitrification beds. Sci. Rep. 7:17028. doi: 10.1038/s41598-017-
17312-2

Habteselassie, M. Y., Stark, J. M., Miller, B. E., Thacker, S. G., and Norton, J. M.
(2006). Gross nitrogen transformations in an agricultural soil after repeated
dairy-waste application. Soil Sci. Soc. Am. J. 70, 1338–1348. doi: 10.2136/
sssaj2005.0190

Hallin, S., Throbäck, I. N., Dicksved, J., and Pell, M. (2006). Metabolic profiles and
genetic diversity of denitrifying communities in activated sludge after addition
of methanol or ethanol. Appl. Environ. Microbiol. 72, 5445–5452. doi: 10.1128/
aem.00809-06

Hellman, M., Bonilla-Rosso, G., Widerlund, A., Juhanson, J., and Hallin, S. (2019).
External carbon addition for enhancing denitrification modifies bacterial
community composition and affects CH4 and N2O production in sub-arctic
mining pond sediments. Water Res. 158, 22–33. doi: 10.1016/j.watres.2019.
04.007

Hellman, M., Hubalek, V., Juhanson, J., Almstrand, R., Peura, S., and Hallin,
S. (2021). Substrate type determines microbial activity and community
composition in bioreactors for nitrate removal by denitrification at low
temperature. Sci. Total Environ. 755:143023. doi: 10.1016/j.scitotenv.2020.
143023

Henry, S., Baudoin, E., López-Gutiérrez, J. C., Martin-Laurent, F., Brauman, A.,
and Philippot, L. (2004). Quantification of denitrifying bacteria in soils by nirK
gene targeted real-time PCR. J. Microbiol. Methods 59, 327–335. doi: 10.1016/j.
mimet.2004.07.002

Henry, S., Bru, D., Stres, B., Hallet, S., and Philippot, L. (2006). Quantitative
detection of the nosZ gene, encoding nitrous oxide reductase, and comparison
of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl.
Environ. Microbiol. 72, 5181–5189. doi: 10.1128/aem.00231-06

Hervé, M. (2020). “RVAideMemoire: Testing and Plotting Procedures for
Biostatistics.”, version 0.9-78.

Jéglot, A., Sørensen, S. R., Schnorr, K. M., Plauborg, F., and Elsgaard, L. (2021).
Temperature sensitivity and composition of nitrate-reducing microbiomes
from a full-scale woodchip bioreactor treating agricultural drainage water.
Microorganisms 9:1331. doi: 10.3390/microorganisms9061331

Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L., and Hallin, S. (2013).
The unaccounted yet abundant nitrous oxide-reducing microbial community:
a potential nitrous oxide sink. ISME J. 7, 417–426. doi: 10.1038/ismej.20
12.125

Jukes, T. H., and Cantor, C. R. (1969). “Evolution of protein molecules,” in
Mammalian Protein Metabolism, ed. H. N. Munro (New York, NY: Academic
Press), 21–132. doi: 10.1016/b978-1-4832-3211-9.50009-7

Loos, R., Carvalho, R., António, D. C., Comero, S., Locoro, G., Tavazzi, S., et al.
(2013). EU-wide monitoring survey on emerging polar organic contaminants

in wastewater treatment plant effluents. Water Res. 47, 6475–6487. doi: 10.1016/
j.watres.2013.08.024

Magurran, A. E., and Henderson, P. A. (2003). Explaining the excess of rare species
in natural species abundance distributions. Nature 422, 714–716. doi: 10.1038/
nature01547

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible
interactive analysis and graphics of microbiome census data. PLoS One
8:e61217. doi: 10.1371/journal.pone.0061217
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Fig. S3. Genetic potential for nitrogen transformation processes in top sand and barrier material shown as individual 
gene abundances at the initial (Feb 2018) and final (Jan 2019) sampling point. (A) amoA in ammonia oxidizing 
archaea, (B) amoA in ammonia oxidizing bacteria, (C) nirS in denitrifiers, (D) nirK in denitrifiers, (E)

 

nosZI in 
denitrifiers/nitrous oxide reducers, (F) nosZII in denitrifiers/nitrous oxide reducers, (G) nrfA in DNRA bacteria. 
Dashed lines indicate gene abundances in the top sand and solid lines connect points representing the mean value of 
abundances at three depths (27, 37 and 47 cm) at each sampling occasion. Error bars show SD, n = 3 (Ref final 
sampling, n=1).
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Table S1. Location, sampling date, chemical and microbial characterization of all samples. 
Sample type Barrier Date Sampling Depth pH LOI NH4 NO3 DOC Oxygen Oxygen Faith PD Shannon Pielou 16S r RNA gAOA AOB nirS nirK nosZ I nosZ II nrfA

or cm % of dw mg L-1 mg L-1 mg L-1 mg L-1 % cop g dw-1 cop g dw-1 cop g dw-1 cop g dw-1 cop g dw-1 cop g dw-1 cop g dw-1 cop g dw-1
Inflow cop L-1 cop L-1 cop L-1 cop L-1 cop L-1 cop L-1 cop L-1 cop L-1

Water INF 2018-01-25 7.9 59.6 15.38 6.2 61
Water INF 2018-02-20 7.9 75.5 16.17
Water INF 2018-03-06 7.9 46.7 0.5 25.32
Water INF 2018-03-07 7.4 40.9 0.44 3.7
Water INF 2018-03-23 71.5 0.33
Water INF 2018-03-25 7.1 16.7 3.45 4.4 40
Water INF 2018-03-26 7.3 27.1 0.44 4.5 43
Water INF 2018-03-27 7.3 37.1 0.23 2.4 23
Water INF 2018-03-28 7.3 44.3 0.26 1.2 13
Water INF 2018-03-29 7.3 59.4 0.24 1.0 10
Water INF 2018-03-30 7.5 63.4 0.15 5.5 56
Water INF 2018-03-31 7.5 62.5 0.17 5.6 58
Water INF 2018-04-01 7.6 44.4 0.42 5.4 54
Water INF 2018-04-02 7.9 42.0 0.3 7.8 80
Water INF 2018-04-03 7.7 46.3 0.28 6.0 64
Water INF 2018-04-04 7.6 40.3 0.54 5.3 55
Water INF 2018-04-05 7.6 39.5 0.21 6.3 64
Water INF 2018-04-06 7.7 78.2 0.32 6.4 68
Water INF 2018-04-07 7.6 76.5 0.32 5.9 60
Water INF 2018-05-11 7.7 95.5 0.23 13.00 5.9 69
Water INF 2018-05-23 7.7 55.4 0.23 13.71 0.8 9.3
Water INF 2018-05-25 7.7 47.5 0.32 15.71 0.6 7.1
Water INF 2018-07-20 7.6 63.3 0.32 1.3 16
Water INF 2018-07-24 7.6 82.4 0.26 1.5 18
Water INF 2018-07-25 69.7 0.39
Water INF 2018-07-27 7.7 68.0 0.39 1.4 18
Water INF 2018-07-30 7.7 66.2 0.35 13.22 1.0 13
Water INF 2018-07-31 7.6 79.2 0.27 16.89 1.2 15
Water INF 2018-08-29 7.7 15.18 1.9 24
Water INF 2018-09-05 7.2 100.0 0.41 17.72 5.2 65
Water INF 2018-12-10 7.3 47.1 0.58 11.05 3.0 30
Water INF 2018-12-11 7.3 52.7 0.46 11.39 3.8 38

Water CB1- 2018-01-25 7.7 50.2 34.69 0.2 1.6
Water CB1- 2018-02-01 29.34
Water CB1- 2018-02-01 28.46
Water CB1- 2018-02-20 7.4 54.7 31.42 1.6 15
Water CB1- 2018-03-27 7.2 39.0 0.97 0.1 0.8
Water CB1- 2018-07-30 7.2 63.3 5.13 33.43 0.8 10
Water CB1- 2018-09-05 7.2 46.7 1.52 20.89 0.8 10
Water CB1- 2018-12-10 final 6.8 23.0 6.92 10.15 1.9 18 169 4.386 0.576 3.78E+08 7.88E+06 4.08E+06 3.21E+06 2.77E+06 2.28E+06 4.34E+06 2.47E+07

Water CB1 2018-01-25 7.3 34.8 12.43 56.34 0.2 1.9
Water CB1 2018-02-01 42.96
Water CB1 2018-02-01 43.16
Water CB1 2018-02-20 7.2 30.6 37.31 0.3 2.8
Water CB1 2018-03-27 6.7 16.8 49.25 0.4 3.8
Water CB1 2018-05-11 6.8 61.5 3.53 23.78 0.6 6.1
Water CB1 2018-05-25 6.8 23.3 11.97 25.85 0.3 3.7
Water CB1 2018-07-31 6.8 38.0 24.37 27.52 0.6 7.5
Water CB1 2018-09-05 7.4 48.4 0.18 19.65 0.4 5.3
Water CB1 2018-12-11 final 6.6 25.0 34.97 10.3 0.8 7.8 174 5.023 0.654 3.92E+08 3.84E+06 1.91E+06 4.00E+06 2.72E+06 1.77E+06 5.80E+06 2.39E+07

Water CB2 2018-01-25 7.6 57.9 1.63 27.38 0.2 1.9
Water CB2 2018-02-01 28.22
Water CB2 2018-02-01 31.37
Water CB2 2018-02-20 7.0 46.2 40.34 0.6 5.8
Water CB2 2018-03-27 6.8 32.9 6.9 0.2 1.3
Water CB2 2018-07-30 7.3 66.7 0.51 22.63 0.6 7.0
Water CB2 2018-09-05 7.1 54.4 2.24 23.31 0.3 4.0
Water CB2 2018-12-10 final 7.0 30.0 6.94 9.65 0.9 9.1 191 4.631 0.592 3.21E+08 5.60E+06 6.38E+05 2.15E+06 3.50E+06 1.73E+06 6.32E+06 3.14E+07

Water WCB 2018-01-25 7.6 52.3 5.99 16.96 0.2 1.9
Water WCB 2018-02-01 15.49
Water WCB 2018-02-01 19.94
Water WCB 2018-02-20 7.0 37.9 17.08 0.6 5.8
Water WCB 2018-03-27 6.8 13.8 36.56 0.2 1.3
Water WCB 2018-07-31 7.0 71.0 2.54 14.04 0.4 5.6
Water WCB 2018-09-05 7.1 51.6 1.14 17.5 0.3 4.0
Water WCB 2018-12-11 final 6.7 35.0 3.75 10.09 0.6 6.5 160 5.595 0.731 7.74E+08 4.22E+05 1.49E+06 4.93E+06 7.25E+06 3.31E+06 2.41E+07 8.93E+07

Water Ref 2018-01-25 7.1 29.7 16.58 10.71 0.2 2.1
Water Ref 2018-02-01 9.21
Water Ref 2018-02-20 7.1 16.7 10.16 0.9 8.2
Water Ref 2018-03-27 6.5 9.99 26.54 0.4 4.0
Water Ref 2018-05-11 7.0 66.5 0.49 11.33 0.3 3.6
Water Ref 2018-05-25 7.0 41.8 1.09 11.66 0.3 3.6
Water Ref 2018-07-31 7.1 74.0 1.17 13.87 0.5 6.6
Water Ref 2018-09-05 7.3 45.2 0.32 12.69 0.7 8.3
Water Ref 2018-12-11 final 6.7 38.0 5.87 8.37 0.9 8.8 172 4.433 0.574 2.65E+08 2.14E+06 1.39E+06 1.77E+06 3.10E+06 2.07E+06 5.46E+06 3.31E+07

Barrier CB1- 2018-02-08--09 initial Top sand 7.8 0.39 118 5.384 0.72 2.24E+08 9.27E+05 4.92E+06 8.81E+05 2.46E+06 5.38E+05 1.89E+06 1.28E+07
Barrier CB1- 2018-02-08--09 initial 27 7.6 4.84 195 7.125 0.883 4.04E+08 1.20E+07 1.80E+07 1.90E+06 1.14E+07 3.01E+06 1.01E+07 5.39E+07
Barrier CB1- 2018-02-08--09 initial 37 7.6 5.70 182 7.102 0.882 1.12E+09 2.88E+07 1.95E+07 4.35E+06 1.94E+07 1.03E+07 2.40E+07 1.02E+08
Barrier CB1- 2018-02-08--09 initial 47 7.9 4.71 224 7.11 0.858 2.82E+08 1.08E+07 3.61E+06 1.53E+06 5.99E+06 2.96E+06 6.78E+06 2.67E+07
Barrier CB1 2018-02-08--09 initial Top sand 7.7 0.34 118 6.079 0.791 4.70E+07 5.83E+05 1.60E+06 1.73E+05 8.55E+05 1.47E+05 8.98E+05 4.63E+06
Barrier CB1 2018-02-08--09 initial 27 7.9 3.36 138 6.898 0.881 1.24E+09 1.33E+07 1.22E+07 6.67E+06 2.10E+07 1.50E+07 3.31E+07 1.22E+08
Barrier CB1 2018-02-08--09 initial 37 7.5 4.45 114 6.693 0.884 4.74E+08 4.64E+06 9.24E+06 2.60E+06 1.14E+07 4.81E+06 1.26E+07 5.17E+07
Barrier CB1 2018-02-08--09 initial 47 7.7 5.18 221 7.181 0.858 4.08E+08 4.36E+06 4.36E+06 1.60E+06 8.43E+06 3.95E+06 1.27E+07 4.15E+07
Barrier CB2 2018-02-08--09 initial Top sand 7.3 0.58 189 6.539 0.807 4.88E+08 4.53E+05 1.03E+07 1.27E+06 4.52E+06 1.59E+06 7.68E+06 1.97E+07
Barrier CB2 2018-02-08--09 initial 27 7.5 3.62 252 7.322 0.865 9.81E+08 1.54E+07 1.52E+07 6.08E+06 1.66E+07 8.49E+06 3.00E+07 1.07E+08
Barrier CB2 2018-02-08--09 initial 37 7.6 2.68 194 7.157 0.881 1.26E+09 1.97E+07 1.77E+07 7.65E+06 2.27E+07 9.88E+06 4.13E+07 1.17E+08
Barrier CB2 2018-02-08--09 initial 47 7.6 4.80 8.49E+08 1.15E+07 9.15E+06 3.57E+06 1.57E+07 5.82E+06 2.50E+07 1.13E+08
Barrier WCB 2018-02-08--09 initial Top sand 7.3 0.62 143 5.976 0.763 3.87E+08 2.02E+06 3.76E+07 2.85E+06 7.43E+06 2.09E+06 5.28E+06 2.82E+07
Barrier WCB 2018-02-08--09 initial 27 7.8 0.49 136 6.414 0.828 8.21E+07 2.54E+06 8.30E+06 4.70E+05 2.00E+06 1.95E+05 1.64E+06 1.16E+07
Barrier WCB 2018-02-08--09 initial 37 7.8 7.80 133 6.094 0.795 6.18E+07 2.30E+05 1.90E+06 9.97E+04 3.14E+06 4.31E+05 1.27E+06 6.04E+06
Barrier WCB 2018-02-08--09 initial 47 7.7 12.1 104 5.533 0.752 1.09E+08 7.96E+04 2.27E+06 1.02E+05 3.54E+06 6.49E+05 1.56E+06 4.55E+06
Barrier Ref 2018-02-08--09 initial Top sand 7.5 0.40 136 6.04 0.777 1.01E+08 2.33E+06 1.73E+07 1.36E+06 2.39E+06 3.38E+05 2.59E+06 1.01E+07
Barrier Ref 2018-02-08--09 initial 27 7.8 0.40 173 6.69 0.832 1.22E+08 4.26E+06 1.38E+07 5.40E+05 5.09E+06 3.56E+05 2.98E+06 2.01E+07
Barrier Ref 2018-02-08--09 initial 37 8.1 0.35 189 6.678 0.818 2.88E+07 8.15E+05 3.91E+06 1.60E+05 1.14E+06 6.86E+04 6.42E+05 5.10E+06
Barrier Ref 2018-02-08--09 initial 47 8.1 0.38 164 6.772 0.851 4.13E+07 1.26E+06 4.36E+06 2.76E+05 1.21E+06 1.02E+05 9.15E+05 8.11E+06
Barrier CB1- 2019-01-14 final Top sand 7.4 0.50 170 6.269 0.794 8.88E+07 2.07E+05 3.23E+06 4.08E+06 2.10E+06 2.71E+06 2.12E+06 1.32E+07
Barrier CB1- 2019-01-14 final 27 7.3 5.24 223 7.121 0.863 6.10E+08 1.61E+07 3.70E+07 7.51E+06 9.25E+06 7.35E+06 1.25E+07 9.64E+07
Barrier CB1- 2019-01-14 final 37 7.6 4.33 289 7.266 0.85 8.19E+08 2.19E+07 4.38E+07 9.39E+06 1.60E+07 1.21E+07 2.18E+07 1.27E+08
Barrier CB1- 2019-01-14 final 47 7.7 4.85 192 7.188 0.898 1.42E+09 2.42E+07 2.40E+07 1.83E+07 1.91E+07 1.62E+07 3.76E+07 2.71E+08
Barrier CB1 2019-01-14 final Top sand 7.1 0.67 137 6.039 0.792 1.91E+08 3.55E+05 1.03E+07 4.47E+06 3.66E+06 2.98E+06 3.26E+06 1.74E+07
Barrier CB1 2019-01-14 final 27 7.0 5.06 173 7.166 0.897 7.38E+08 1.28E+07 3.49E+07 8.18E+06 1.20E+07 9.18E+06 1.52E+07 1.01E+08
Barrier CB1 2019-01-14 final 37 7.0 4.34 205 7.159 0.873 1.39E+09 3.21E+07 3.25E+07 1.14E+07 2.71E+07 1.22E+07 5.42E+07 1.90E+08
Barrier CB1 2019-01-14 final 47 7.2 4.77 153 7.076 0.911 4.91E+08 1.40E+07 1.19E+07 3.54E+06 8.34E+06 4.70E+06 1.30E+07 8.27E+07
Barrier CB2 2019-01-14 final Top sand 7.0 1.04 178 6.38 0.801 2.28E+08 1.05E+06 2.11E+07 7.18E+06 5.69E+06 7.28E+06 4.73E+06 4.37E+07
Barrier CB2 2019-01-14 final 27 7.0 5.31 221 7.285 0.876 1.08E+09 1.64E+07 5.29E+07 1.32E+07 2.19E+07 1.10E+07 2.44E+07 2.10E+08
Barrier CB2 2019-01-14 final 37 7.2 3.66 152 7.059 0.908 5.63E+08 1.35E+07 3.34E+07 6.62E+06 1.24E+07 4.60E+06 1.46E+07 7.26E+07
Barrier CB2 2019-01-14 final 47 7.4 3.89 218 7.072 0.856 1.23E+09 2.02E+07 2.69E+07 6.74E+06 1.65E+07 8.30E+06 3.18E+07 1.97E+08
Barrier WCB 2019-01-14 final Top sand 7.1 0.64 169 6.333 0.798 2.00E+08 1.16E+06 7.19E+06 5.82E+06 4.28E+06 3.38E+06 4.72E+06 2.41E+07
Barrier WCB 2019-01-14 final 27 7.2 0.69 114 5.586 0.76 1.41E+08 9.96E+05 3.98E+06 2.87E+06 2.98E+06 3.20E+06 2.55E+06 1.10E+07
Barrier WCB 2019-01-14 final 37 7.2 4.40 96 6.012 0.844 4.75E+08 6.72E+05 4.68E+06 3.16E+06 2.58E+07 7.92E+06 1.40E+07 5.98E+07
Barrier WCB 2019-01-14 final 47 7.2 8.10 224 7.156 0.86 2.28E+08 5.93E+04 1.84E+06 7.64E+05 1.41E+07 2.97E+06 7.07E+06 2.64E+07
Barrier Ref 2019-01-14 final Top sand 7.0 10.7 122 5.273 0.713 2.85E+08 1.84E+05 3.57E+07 3.80E+06 7.57E+06 1.06E+07 3.26E+06 4.89E+07
Barrier Ref 2019-01-14 final 27 7.3 0.46 137 4.859 0.64 8.48E+07 6.06E+04 5.59E+06 2.66E+06 1.73E+06 5.35E+06 1.20E+06 8.22E+06
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Table S3. Correlations between Non-Metric Multidimensional Scaling based on Bray-Curtis 

distances of the frequent communities in the barrier samples and class level taxonomy, chemical and 
gene abundance data. Coordinates refer to main Figure 3A. Results from vegan function envfit.

Variable Coordinates Strength Significancea 

MDS1 MDS2 r2 

Class -1.000 0.016 0.189 * 

-0.919 0.395 0.037 

0.060 0.998 0.094 

0.637 -0.771 0.364 ** 

0.000 1.000 0.017 

0.823 -0.567 0.222 * 

0.335 -0.942 0.326 ** 

0.182 -0.983 0.429 ** 

0.345 0.939 0.208 * 

-0.289 -0.957 0.071 

0.394 -0.919 0.300 ** 

0.562 -0.827 0.397 ** 

-0.986 -0.165 0.841 ** 

-1.000 0.028 0.688 ** 

-0.706 0.708 0.206 * 

0.663 -0.749 0.141 . 
0.887 0.462 0.050 

0.592 0.806 0.051 

0.771 0.636 0.424 ** 

-0.993 -0.115 0.125 

-0.994 0.113 0.232 * 

-0.972 0.237 0.301 ** 

-0.966 0.258 0.163 . 
-0.964 0.268 0.249 ** 

0.795 -0.607 0.253 ** 

-0.933 0.359 0.723 ** 

-0.690 0.724 0.608 ** 

-0.998 0.064 0.784 ** 

-0.735 0.678 0.399 ** 

-0.699 0.715 0.297 ** 

0.912 -0.411 0.337 ** 

0.800 -0.601 0.031 

0.346 0.938 0.460 ** 

0.037 0.999 0.132 

-0.865 0.502 0.531 ** 

-0.927 0.375 0.692 ** 

-0.711 -0.703 0.073 

0.623 0.782 0.268 * 

0.568 -0.823 0.228 * 

0.761 0.649 0.224 * 

0.336 -0.942 0.070 

0.915 0.403 0.477 ** 

-0.996 0.085 0.836 ** 

-0.990 0.141 0.175 * 

-0.844 0.536 0.137 . 
-0.034 0.999 0.143 . 

Nitrososphaeria 

Methanobacteria 

Parcubacteria 

Fimbriimonadia 

Microgenomatia 

Bacteroidia 

Saccharimonadia 

Spirochaetia 

Lineage Iiab 

Blastocatellia 

Thermoleophilia 

Actinobacteria 

Acidimicrobiia 

Rubrobacteria 

Coriobacteriia 

MB-A2-108 

AKAU4049 

Desulfitobacteriia 

Clostridia 

Halanaerobiia 

Limnochordia 

Bacilli 

Gitt-GS-136 

KD4-96 

P2-11E 

Anaerolineae 

Chloroflexia 

Dehalococcoidia 

OLB14 

JG30-KF-CM66 

TK10 

Cyanobacteriia 

Nitrospira 

Fusobacteriia 

S0134 terrestrial group 

BD2-11terrestrial group 

Longimicrobia 

Gemmatimonadetes 

Vampirivibrionia 

Sericytochromatia 

Dadabacteriia 

Bdellovibrionia 

bacteriap25c 

unculturedd 

Myxococcia 

Desulfobacteria 

Desulfobulbia -0.797 0.603 0.291 ** 



Desulfuromonadia -0.541 0.841 0.425 ** 

Polyangia -0.301 -0.954 0.311 ** 

Oligoflexia 0.985 -0.171 0.297 ** 

Alphaproteobacteria -0.302 -0.953 0.700 ** 

Hydrogenedentia 0.682 0.731 0.489 ** 

Gammaproteobacteria 0.376 0.927 0.738 ** 

Desulfovibrionia 0.168 0.986 0.009 

Planctomycetes 0.794 -0.608 0.152 . 
Phycisphaerae -0.382 0.924 0.040 

Sumerlaeia 0.131 0.991 0.089 

Verrucomicrobiae 0.641 -0.768 0.439 ** 

Subgroup 11e 0.816 -0.578 0.194 * 

Subgroup 5e -0.990 0.140 0.379 ** 

Acidobacteriae 0.509 0.861 0.102 

Kapabacteria 0.999 0.038 0.349 ** 

SJA-28 0.189 0.982 0.256 * 

Rhodothermia -0.946 -0.325 0.177 . 

Ignavibacteria 0.244 0.970 0.504 ** 

Kryptonia -0.983 0.184 0.399 ** 

Calditrichia -0.981 0.196 0.271 * 

Methylomirabilia -0.948 -0.319 0.339 ** 

Vicinamibacteria -0.841 -0.542 0.452 ** 

Subgroup 25e -1.000 -0.003 0.607 ** 

Subgroup 22e 0.716 -0.698 0.073 

Thermoanaerobaculia -0.991 0.136 0.397 ** 

Holophagae 0.306 0.952 0.373 ** 

Entotheonellia -1.000 -0.017 0.701 ** 

Babeliae 0.133 -0.991 0.073 

Campylobacteria -0.181 0.983 0.162 . 
Gracilibacteria -0.613 0.790 0.110 

Chemical OrgC -0.699 -0.715 0.209 * 

pH 0.189 -0.982 0.243 * 

Gene abundance 16S rRNA -0.996 0.089 0.559 ** 

nrfA -0.976 0.218 0.493 ** 

Archaeal amoA -0.992 0.127 0.578 ** 

Bacterial amoA -0.656 0.754 0.265 ** 

nirS -0.754 0.656 0.416 ** 

nirK -0.964 -0.266 0.519 ** 

nosZI -0.861 0.509 0.483 ** 

nosZII -1.000 0.006 0.506 ** 
a p-values adjusted for multiple comparisons using false discovery rate. ∙ p < 0.1, * p < 0.05, ** p < 0.01
b Phylum Elusimicrobiota 
c Phylum Myxococcota 
d Phylum Desulfobacterota 
e Phylum Acidobacteriota 
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