Home About Browse Search

Albedo on cropland: Field-scale effects of current agricultural practices in Northern Europe

Sieber, Petra and Böhme, Sepp and Ericsson, Niclas and Hansson, Per-Anders (2022). Albedo on cropland: Field-scale effects of current agricultural practices in Northern Europe. Agricultural and Forest Meteorology. 321
[Research article]

[img] PDF


Agricultural land use and management affect land surface albedo and thus the climate. Increasing the albedo of cropland could enhance reflection of solar radiation, counteracting the radiative forcing (RF) of greenhouse gases (GHGs) and local warming. However, knowledge is lacking on how agricultural practices affect albedo under local conditions, and on the benefits of individual practices. In this study, field measurements were made in 15 paired plots at a site in Northern Europe to determine albedo, net shortwave irradiance and RF impacts under various common crops, cultivation intensities and tillage practices. Field data for 2019-2020 were compared with satellite-based albedo for the surrounding region in 2010-2020. At regional level, different combinations of soil type, yearly weather and agricultural practices led to great variability in the albedo of individual crops, despite similar pedo-climatic conditions. At field level within years, albedo differences were determined mainly by crop type, species-specific phenology and post-harvest management. Annual albedo was higher with perennial ley (0.20-0.22) and winter-sown crops (0.18-0.22) than with spring-sown crops (0.16-0.18) and bare soil (0.13). Barley had the highest albedo among winter and spring cereals. In summer, when increased albedo could alleviate local heat stress, oats reduced net shortwave irradiance at the surface by 0.8-5.8 Wm(-2) compared with other cereals, ley, peas or rapeseed. Delayed or reduced tillage gave high local cooling potential (up to-13.6 Wm(-2)) in late summer. Potential benefits for global mean climate as GWP(100 )per hectare and year reached-980 kg CO(2)e for avoiding black fallow,-578 kg CO(2)e for growing a winter-sown variety and-288 kg CO(2)e for delayed tillage. Thus realistic albedo increases on cropland could have important effects on local temperatures and offset a substantial proportion of the RF deriving from field-scale GHG emissions on short time-scales.

Authors/Creators:Sieber, Petra and Böhme, Sepp and Ericsson, Niclas and Hansson, Per-Anders
Title:Albedo on cropland: Field-scale effects of current agricultural practices in Northern Europe
Series Name/Journal:Agricultural and Forest Meteorology
Year of publishing :2022
Number of Pages:12
Associated Programs and Other Stakeholders:?? SLU.id.research.prog-standup ??
Publication Type:Research article
Article category:Scientific peer reviewed
Version:Published version
Copyright:Creative Commons: Attribution 4.0
Full Text Status:Public
Subjects:(A) Swedish standard research categories 2011 > 1 Natural sciences > 105 Earth and Related Environmental Sciences > Environmental Sciences (social aspects to be 507)
(A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 405 Other Agricultural Sciences > Environmental Sciences related to Agriculture and Land-use
(A) Swedish standard research categories 2011 > 2 Engineering and Technology > 207 Environmental Engineering > Other Environmental Engineering
Keywords:Land management, Biophysical, Radiative forcing, Climate impact, LCA, Life cycle assessment
Permanent URL:
Additional ID:
Type of IDID
Web of Science (WoS)000798103100003
ID Code:28632
Faculty:NJ - Fakulteten för naturresurser och jordbruksvetenskap
Department:(NL, NJ) > Dept. of Energy and Technology
Deposited By: SLUpub Connector
Deposited On:29 Aug 2022 12:32
Metadata Last Modified:11 Sep 2022 02:10

Repository Staff Only: item control page


Downloads per year (since September 2012)

View more statistics