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Graph pangenome captures missing 
heritability and empowers tomato breeding

Yao Zhou1,13, Zhiyang Zhang1,13, Zhigui Bao1,13, Hongbo Li1, Yaqing Lyu1, Yanjun Zan1,2, 
Yaoyao Wu1, Lin Cheng1, Yuhan Fang1, Kun Wu1, Jinzhe Zhang3, Hongjun Lyu1,4, Tao Lin5, 
Qiang Gao6, Surya Saha7, Lukas Mueller7, Zhangjun Fei7,8, Thomas Städler9, Shizhong Xu10, 
Zhiwu Zhang11, Doug Speed12 & Sanwen Huang1 ✉

Missing heritability in genome-wide association studies defines a major problem in 
genetic analyses of complex biological traits1,2. The solution to this problem is to 
identify all causal genetic variants and to measure their individual contributions3,4. 
Here we report a graph pangenome of tomato constructed by precisely cataloguing 
more than 19 million variants from 838 genomes, including 32 new reference-level 
genome assemblies. This graph pangenome was used for genome-wide association 
study analyses and heritability estimation of 20,323 gene-expression and metabolite 
traits. The average estimated trait heritability is 0.41 compared with 0.33 when using 
the single linear reference genome. This 24% increase in estimated heritability is 
largely due to resolving incomplete linkage disequilibrium through the inclusion of 
additional causal structural variants identified using the graph pangenome. 
Moreover, by resolving allelic and locus heterogeneity, structural variants improve 
the power to identify genetic factors underlying agronomically important traits 
leading to, for example, the identification of two new genes potentially contributing 
to soluble solid content. The newly identified structural variants will facilitate genetic 
improvement of tomato through both marker-assisted selection and genomic 
selection. Our study advances the understanding of the heritability of complex traits 
and demonstrates the power of the graph pangenome in crop breeding.

Missing heritability—the discrepancy between heritability estimates 
from family-based genetic studies and the variance explained by all of 
the significant variants in genome-wide association studies (GWAS)1,2—
compromises the use of rapidly developing genomics for understand-
ing biological questions and crop breeding5–7. The resolution of missing 
heritability is hindered by several factors, including incomplete detec-
tion of causal genomic variants, particularly structural variants (SVs), 
which leads to estimation bias caused by incomplete linkage disequi-
librium (LD) between genetic markers and causal variants, as well as 
genetic heterogeneity of causal variants, which reduces the statistical 
power of GWAS8–10. To overcome these bottlenecks, an exhaustive and 
precise catalogue of genetic variants is required.

A variation map constructed by mapping sequencing reads to a single 
linear reference genome generates reference bias, that is, the inability 
to precisely map non-reference alleles11,12. A pangenome comprising 
multiple reference genomes may more fully represent species-wide 
genetic diversity and, as such, retains non-reference information13–15. 

However, it is challenging to incorporate coordinates of non-reference 
sequences into existing analysis pipelines16. Recently, graph-based 
structures have been used to integrate all genetic variants into a sin-
gle genome graph, enabling thorough and accurate identification of 
genomic variants as well as data integration11,17–19. Recent studies have 
demonstrated the superiority of using graph pangenomes as refer-
ences in identification of SVs with short reads19–22. Here we report the 
construction of a variant-based graph pangenome of tomato (Solanum 
lycopersicum), an important fruit crop and a model system for plant 
biology and breeding. We demonstrate its use in capturing missing her-
itability in GWAS, providing insights into a classical genetics problem 
and facilitating genomic breeding (Extended Data Fig. 1).

Construction of the graph pangenome
A high-accuracy and gapless linear reference genome is as critical 
as the backbone of a graph pangenome. To this end, we assembled a 
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state-of-the-art backbone genome (tomato cv. Heinz 1706, Build SL5.0) 
using high-fidelity (HiFi) long reads and high-throughput chromo-
some conformation capture (Hi-C) long-range scaffolding (Extended 
Data Fig. 2a). The contig N50 size of SL5.0 is 41.7 Mb, an increase of 
approximately sevenfold compared with the previous build SL4.0 
(ref. 23). Moreover, SL5.0 contains 19.3 Mb more sequences than SL4.0 
(801.8 Mb versus 782.5 Mb), with 43 contigs (99.8% of the assembly) 
ordered and oriented on the 12 chromosomes (Fig. 1a and Extended 
Data Fig. 2b). Only 31 gaps remain in the SL5.0 pseudochromosomes, 
substantially fewer than in SL4.0 (259 gaps). Gaps remain mostly in 
highly complex regions, including subtelomeres, centromeres and 
rDNA repeats. Both bacterial artificial chromosome clone sequences 
and k-mer analysis support the superior quality of SL5.0 (Supplemen-
tary Table 1). We performed the annotation of SL5.0 (ITAG5.0), predict-
ing 36,648 protein-coding genes.

We generated reference-level genome assemblies for another 31 
accessions that represent the diversity of the red-fruited clade of toma-
toes, including 15 big-fruited tomato S. lycopersicum (BIG) accessions, 
eight cherry tomato (S. lycopersicum var. cerasiforme, CER) accessions 
and eight accessions from S. pimpinellifolium (PIM, considered to be 
the progenitor of cultivated tomatoes) (Supplementary Table 2 and 
Supplementary Fig. 1). The contig N50 sizes of these 31 assemblies range 
from 13.7 Mb to 52.2 Mb, with an average of 28.6 Mb, larger than any 

of the previously published tomato pangenome assemblies MAS2.0 
(ref. 24) (Fig. 1b and Supplementary Table 3). We annotated repeats 
and predicted protein-coding genes for 45 assemblies: 31 from this 
study, 13 from MAS2.0 (eight BIG, three CER and two PIM accessions)24 
and 1 PIM accession from another study25. The content of repetitive 
sequences ranges from 60.7% to 64.0%, with an average of 62.1% (Sup-
plementary Table 4). The number of predicted protein-coding genes 
ranges from 33,863 to 37,237, with an average of 35,298 (Supplemen-
tary Table 5). The completeness of these assemblies was assessed by 
BUSCO analysis, which shows an average of 96.2% single-copy Solanales 
genes completely assembled (Extended Data Fig. 2c). Taken together, 
these high-quality genome assemblies represent a robust resource to 
facilitate variant detection and genomic comparison for constructing 
a tomato graph pangenome.

With SL5.0 serving as the backbone, single-nucleotide polymor-
phisms (SNPs) and small insertions and deletions (indels, 1–50 bp) 
identified from the 31 accessions with HiFi reads, as well as SVs 
(>50 bp) from all 131 accessions with long reads (a total of 100 acces-
sions from a previous study24 and 31 accessions from this study), 
were integrated into a variation graph. Complex SVs were not  
specifically considered when constructing the graph pangenome  
(Supplementary Note 4). The resulting tomato graph pangenome 
(TGG1.0) spans 1,007,562,373 bp,including approximately 206 Mb 
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Fig. 1 | Genome and graph pangenome of tomato. a, Synteny between tomato 
reference genome build SL4.0 (blue) and SL5.0 (yellow). The grey lines 
represent synteny blocks. The positions of gaps are marked with black 
rectangles on the chromosomes, and centromeres are represented by orange 
rectangles along the chromosomes. b, Contig Nx size of all genome assemblies. 
SL4.0 and SL5.0 are marked with arrows. Line types represent different 
sequencing platforms. CLR, PacBio continuous long reads; HiFi, high-fidelity 
long reads; ONT, Oxford Nanopore long reads. The numbers in 
parentheses refer to the numbers of assemblies.  c, F1 scores (harmonic means 

of precision and recall) using simulated sequencing data from the genetic 
variants of 31 accessions with HiFi reads with different depths and genetic 
variants from the graph pangenome and the linear genome. d, Assessing 
false-positive (x-axis) and true-positive ( y-axis) rates for the graph (Giraffe) and 
linear (BWA-MEM) mappers using 2,000,000 simulated reads. The size of each 
point represents the number of reads with mapping quality equal to 60.  
e, Density map of unique SNPs from SL5.0-332 and TGG1.1-332 located within 
1 kb upstream or downstream of the SV breakpoints.
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absent from SL5.0. We mapped all predicted protein-coding genes 
to a graph generated from all assemblies, resulting in a tomato graph 
annotation (TGA1.0) with 51,155 genes, of which 14,507 are from the 
non-reference genomes. Previous resequencing projects accumulated 
7.8 Tb of Illumina short-read data for 706 tomato accessions with a 
sequencing depth of greater than sixfold26–31. By mapping these short 
reads to TGG1.0, we identified additional SNPs and indels that were not 
present in TGG1.0. After merging these variants with those from TGG1.0, 
we obtained a dataset comprising 17,898,731 SNPs, 1,499,161 indels and 
195,957 SVs. Integration of this updated genetic variant dataset and the 
SL5.0 backbone genome resulted in the generation of a new variation 
graph, which we designate TGG1.1.

Simulation studies indicate that the graph pangenome outperforms 
the linear genome at calling all types of genetic variants (SNPs, indels 
and SVs) (Supplementary Table 6), consistent with a recent study on 
a human variation graph12,19. We compared the performance metrics 
for SNPs, indels and SVs derived from the graph pangenome and the 
linear genome. From the raw output of genotypes, we obtained F1 scores 
(harmonic mean of precision and recall) of 0.966 for SNPs, 0.941 for 
indels and 0.840 for SVs in the graph pangenome using 10× sequencing 
data, significantly better than those in the linear genome (0.931, 0.897 
and 0.474; Wilcoxon rank sum test, P = 6.30 × 10−13, P = 5.04 × 10−14 and 
P = 1.69 × 10−17, respectively) (Fig. 1c). Given that the same variant caller 
DeepVariant32 was used for both datasets, higher precision and recall 
rate is probably driven by the higher accuracy of mapping short reads 
using the graph mapper (Fig. 1d).

Next, we genotyped genetic variants of 332 tomato accessions by 
mapping their Illumina sequences onto TGG1.1, resulting in a callset 
designated TGG1.1-332 that comprises 6,971,059 SNPs, 657,549 indels 
and 54,838 SVs. We also mapped these sequences against the linear 
genome SL5.0 and identified variants in a callset designated SL5.0-332 
comprising 7,317,844 SNPs, 447,098 indels and 11,397 SVs. We found 
that SNPs that were uniquely identified by the linear reference were 
physically closer to their neighbouring SVs than SNPs uniquely iden-
tified by the graph pangenome (Fig. 1e), consistent with lower levels 
of incorrect read mapping around SVs in the latter dataset (Extended 
Data Fig. 3). Furthermore, TGG1.1 contains 7,197 out of the 7,720 SNPs 
(93.2%) that were verified in a DNA chip33, whereas only 6,812 (88.2%) 
were detected using SL5.0 as the reference. Notably, the linear genome 
yields only 20% of the SVs called by the graph pangenome, indicating 
the high efficiency in detecting SVs using the graph pangenome. In sum-
mary, TGG1.1 represents one of the most comprehensive and accurate 
maps of tomato genome variation to date.

Capturing missing heritability
To test the power of the graph pangenome in capturing missing 
heritability, we used LDAK34 to estimate the variant heritability of 
20,323 molecular traits, comprising 19,353 expression traits and 970 
metabolite traits, from fruits of the 332 tomato accessions35. First, we 
analysed each category of genetic variants individually (that is, only 
SNPs, only indels or only SVs). The average heritability estimated 
using the graph pangenome is higher than that using the linear ref-
erence genome for all three categories (Fig. 2a and Supplementary 
Table 7). Higher SNP heritability (0.29 versus 0.28; Wilcoxon rank 
sum test, P = 7.24 × 10−3; Extended Data Fig. 4b) is suggested despite 
TGG1.1-332 comprising fewer SNPs than SL5.0-332. The results were 
similar when this analysis was restricted to 6,375 independent traits 
(square of Pearson’s correlation coefficient (r2) between the traits, 
<0.20) (Extended Data Fig. 4a).

We next analysed categories of genetic variants jointly. Estimated 
heritability increases with more categories in the model (Fig. 2a). 
When jointly analysing all three categories of variants in a composite 
model, the average heritability is 0.41 in the graph pangenome callset, 
24% higher than that in the linear genome callset (0.33; Wilcoxon rank 

sum test, P = 1.23 × 10−217). We used the composite model to estimate the 
average heritability explained by SNPs, indels and SVs from TGG1.1-332, 
finding that SVs contribute the largest proportion of overall heritability 
(0.27, 65.9%) (Extended Data Fig. 4c). Moreover, SVs contribute the 
largest share of heritability for approximately half of the molecular 
traits (10,297 out of 20,323, 50.7%) (Fig. 2b). These data indicate that 
the capture of missing heritability through the graph pangenome is 
largely due to the inclusion of more identified SVs.

Incomplete LD between molecular markers and causal variants leads 
to the underestimation of heritability9. SVs in close proximity to genes 
are probably causal variants as they could lead to dysregulation of 
gene expression24,36. We observed that a large proportion of SVs are 
in strong LD (R2 > 0.7) with adjacent (50 kb on either side) SNPs and 
indels (61.2% and 45.5%, respectively), but only small fractions (3.2% 
and 0.6%, respectively) are in complete LD (R2 = 1) (Fig. 2c), indicating 
that incomplete LD between markers and causal variants is common in 
our population. Our simulation studies show that inclusion of causal 
variants captures some missing heritability (Supplementary Fig. 2). This 
could, at least partially, explain why the average heritability increases 
from 0.37 to 0.41 when SVs are included in the model compared with 
models that consider only SNPs and indels (Fig. 2a).

As an example, we studied the case of Solyc03G002957, which encodes  
a protein that interacts with phosphoinositides. To evaluate the effects 
of cis-variants on gene expression, we partitioned genetic variants into 
six categories, namely cis-variants (50 kb on either side of the gene) and 
trans-variants of SNPs, indels and SVs from the linear and graph pange-
nome callset, respectively. We found that total heritability estimated 
from SL5.0-332 is 0.54 (s.d. = 0.32). By contrast, total heritability esti-
mated from TGG1.1-332 is 0.75 (s.d. = 0.51), to which cis- and trans-SVs 
jointly contribute the largest proportions, 0.41 (s.d. = 0.34) and 0.28 
(s.d. = 0.10), respectively (Fig. 2d). This indicates that SVs around this 
gene, most of which can be identified only using the graph-based 
approach, are more likely to be causative than other variant types and 
contribute to the majority of total heritability.

When we performed a single-variant association study, we found 
that the expression of Solyc03G002957 is probably affected by a SV, 
a leading variant residing at a peak on chromosome 3 (sv3_62128422, 
a 2,628 bp deletion causing a truncation at the end of the transcript) 
(Fig. 2e and Extended Data Figs. 5 and 6). This SV explains approxi-
mately 0.45 (s.d. = 0.63) of heritability and is present only in TGG1.1-322. 
However, a significant SNP (SNP3_62204487, located about 57.6 kb 
upstream from the gene) exhibits modest LD with the SV (R2 = 0.66) 
(Fig. 2e) and explains 0.34 (s.d. = 0.48) of heritability in both SL5.0-332  
and TGG1.1-332. However, given the fact that SNP3_62204487 is eight 
genes away from the target gene, the statistical significance of this SNP 
could give misleading results. These results suggest that, by address-
ing incomplete LD through inclusion of possibly causal SVs, the graph 
pangenome has the potential to capture missing heritability.

A marked discrepancy still exists between the estimated heritability 
and the heritability explained by GWAS significant loci2. One of the 
important sources is allelic heterogeneity (that is, multiple underly-
ing genetic variants at the same locus contribute to the same phe-
notype), a widespread phenomenon in complex traits that tends to 
impair the power of GWAS37,38. To assess the potential effect of allelic 
heterogeneity on GWAS in tomato, we analysed the effects of variants 
in cis-regions (within 50 kb on either side of genes) on their correspond-
ing gene expression (19,353 genes). Using a single-locus mixed linear 
model (MLM)39 on the TGG1.1-332 callset, we detected cis-expression 
quantitative trait loci (eQTLs) for 1,179 genes. Although the average 
estimated heritability of the expression of these genes is 0.62, the 
average heritability explained by leading significant variants is only 
0.27 (Fig. 3a). Thus, heritability contributed by nearby genetic variants 
might be ‘invisible’ when considering only leading significant variants 
within eQTLs. When including all genetic variants in cis-regions of eQTLs 
(within 50 kb on either side of the leading variant), the average estimated 
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heritability increases to 0.37, therefore capturing an additional 0.10 
of heritability (Fig. 3a). Moreover, there is still the expression of 18,174 
(93.9%) genes, some with large cis-heritability, without any significant 
cis-eQTLs (Extended Data Fig. 7a). Our study clearly suggests that allelic 
heterogeneity contributes to the missing heritability of GWAS.

Multilocus models have the potential to resolve allelic heterogeneity, 
but only small numbers of variants can be analysed simultaneously, 
limiting their applications in GWAS40. Thus, to determine whether the 
graph pangenome enables capturing missing heritability by address-
ing allelic heterogeneity, we focused on associations between SVs 
within gene-proximal regions (50 kb upstream and downstream) and 
gene expression, motivated by the assumption that SVs are likely to be 

causative. Using the least absolute shrinkage and selection operator 
(LASSO)41, a multilocus regression model, we found that the expression 
of 1,787 out of the 19,353 genes is affected by at least two significantly 
associated SVs (false-discovery rate = 7.53 × 10−4; permutation test). 
Compared with MLM, LASSO uniquely detected 1,249 cis-SV eQTLs, 
indicating its greater power in resolving allelic heterogeneity (Fig. 3b). 
The cis-heritability of the 1,249 eQTLs ranges from 0.00 to 0.59, with an 
average of 0.10. By contrast, we identified only 169 cis-SV QTLs with at 
least two significant SVs using the SL5.0-332 callset, showing the need 
for more thorough inclusion of genetic variants to resolve allelic het-
erogeneity and to capture missing heritability in GWAS. Furthermore, 
complex SVs such as duplications, tandem repeats and copy number 
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variants (CNVs), most of which are probably multiallelic SVs36,42,43, could 
not be adequately addressed in this study. Thus, it is probable that 
allelic heterogeneity may be even more prevalent than estimated here.

By way of demonstration, we considered the gene Solyc03G001472, 
which encodes a protein of unknown function. The cis-heritability of 
this gene is 0.24 (s.d. = 0.18), contributing 52% of the total heritability. 
There are 646 SNPs, 46 indels and three SVs within the gene-proximal 
region, none of which are significantly associated with its expres-
sion when applying the MLM. Considering that the three SVs explain 
approximately half of the cis-heritability (0.12, s.d. = 0.11), we applied 
the LASSO model to the three SVs, and found that two of them show 
significant association with gene expression, one with minor allele 
frequency (MAF) of 0.017 (sv3_42936717) and the other with MAF of 
0.032 (sv3_42954617) (Fig. 3c). The expression levels of different SV 
genotypes show that both SVs are associated with the expression of 
Solyc03G001472 (Extended Data Fig. 7b). Overall, we show that allelic 

heterogeneity can be partially addressed by cataloguing of SVs exclu-
sively identified by the graph pangenome.

Locus heterogeneity—the phenomenon that complex traits are con-
trolled by allelic variants across multiple genes—may also decrease 
the statistical power of GWAS44. In theory, the LASSO model could be 
used to resolve locus heterogeneity (as well as allelic heterogeneity)  
but, in practice, this is not feasible owing to the large number of genome- 
wide markers. An alternative approach is to focus on a network of 
genes potentially involved in regulating specific traits. The ‘omni-
genic model’ postulates that all expressed genes may be involved 
in the regulation of complex traits45; however, only genes with large 
effects can be detected with a limited sample size. For gene expres-
sion, we derived a co-expression network formed by 99 modules, 
including 17,592 genes, using weighted correlation network analysis 
(WGCNA)46 (Supplementary Table 8). Each module consists of an aver-
age of 177.7 genes, accounting for only 0.92% of the 19,353 expressed 
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genes. Notably, we found that variants within the proximal region of 
module genes on average contribute 0.22 of gene expression herit-
ability, or 48.9% of the total estimated heritability (0.45) (Extended 
Data Fig. 7c). This indicates that genes in the same module, although 
fewer in number, may have disproportionately large effects on their 
corresponding module gene expression.

As a consequence, to address locus heterogeneity for complex 
traits, we can narrow the search space within a certain module in the 
co-expression network, and then focus on SVs affecting the correspond-
ing gene expression. To assess the effectiveness of this strategy, we 
concentrated on flavonoid content (comprising 38 detected metabo-
lites35), an important tomato fruit-quality trait, with heritability ranging 
from 0.07 to 1.00 (Fig. 3d and Supplementary Table 9). A co-expression 
network analysis shows that a module comprising 81 genes is related 
to the flavonoid pathway (hereafter, the flavonoid module) (Extended 
Data Fig. 8). Whole-genome SVs from TGG1.1-332 contribute on average 
0.21 to the heritability of the 38 metabolite contents (range, 0.00–0.58). 
We found that SVs located in the proximal regions of flavonoid-module 
genes contribute 0.14 of heritability (Fig. 3d), suggesting that the 81 
genes account for most of the genetic regulation of flavonoid con-
tent. Using LASSO, we identified 17 out of 81 genes with cis-SV eQTLs 
(Fig. 3d and Supplementary Table 10). The 171 SVs surrounding the 17 
genes (cis-SV set) constitute the candidate dataset for evaluating the 
effect of locus heterogeneity on flavonoid content. We performed 
association analyses between the cis-SV set and the 38 metabolites 
using LASSO and identified 16 SVs surrounding nine genes associated 
with 31 metabolites (Supplementary Table 11). Moreover, 17 out of 31 
metabolites are associated with multiple genes (Fig. 3d), suggesting 
that locus heterogeneity affects this complex network of flavonoids.

The nine genes affecting the 31 flavonoids consist of three genes 
with transcription factor activity (including the previously reported 
gene SlMYB12) and six enzyme-coding genes. In particular, Gene 
Ontology analysis shows that there are two transcription factors and 
two enzymes involved in the flavonoid biosynthetic process (Supple-
mentary Table 12). This is one example demonstrating how the graph 
pangenome-based methodology sheds new light on recovering missing 
heritability by resolving locus heterogeneity.

Graph pangenome empowers tomato breeding
Optimal use of the extensive genome variants is expected to facilitate a 
paradigm shift in crop improvement47. Significant genetic variants iden-
tified in GWAS are promising candidate markers for marker-assisted 
selection (MAS) in breeding. As a proof-of-concept study taking advan-
tage of the added value of the graph pangenome to tomato breeding, we 
took fruit soluble solids content (SSC), an important yield and flavour 
trait, as a breeding target.

A previous study reported two QTLs underlying SSC30, Lin5 on chro-
mosome 9 and SSC11.1 on chromosome 11. To detect variants that poten-
tially cause locus heterogeneity, we developed a universal pipeline by 
analysing SSC and gene expression simultaneously using WGCNA and 
identified a module containing 103 genes that are probably related 
to SSC. SVs in the proximal regions of these genes contribute 0.33 
(s.d. = 0.21) to SSC heritability, comprising 52.9% of total heritability 
(0.62, s.d. = 0.68). Using LASSO, we identified cis-SV eQTLs in 25 genes 
among these module genes. Three SVs (SV1_85728347, SV2_44168216 
and SV4_54067283) in physical proximity to the corresponding 
genes (Solyc01G003449, Solyc02G001638 and Solyc04G001842) are 
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significantly associated with SSC (Fig. 4a). These genes are promising 
candidates for dissecting the genetic architecture of SSC.

Moreover, the significant genetic variants identified in this study 
can be valuable candidates for developing new markers to iden-
tify accessions with high SSC. We found that two of the three SVs 
(SV2_44168216 and SV4_54067283) significantly affect the expression 
of their nearby genes (Solyc02G001638 and Solyc04G001842) (Fig. 4b). 
Solyc02G001638 encodes a PapD-like superfamily protein, and a previ-
ous study revealed that the expression of Solyc04G001842 encoding 
a trehalose-phosphate phosphatase is negatively correlated with the 
contents of d-fructose and d-glucose48. Given that SV1_85728347 is 
not significantly associated with the expression of Solyc01G003449 
(Fig. 4b), we did not consider this variant for MAS. We found that select-
ing accessions with high SSC on the basis of favourable alleles of both 
SV2_44168216 and SV4_54067283 is more efficient than selecting on the 
basis of only one SV (Fig. 4c). These results indicate that it is valuable 
to design marker assays with SVs, highlighting the superiority of the 
graph pangenome for future plant breeding.

Complex traits controlled by multiple small-effect loci limit the 
application of MAS in crop improvement. Genomic selection provides 
an alternative approach that takes advantage of small-effect QTLs. 
Genomic selection involves the selection of elite lines on the basis of 
genome-estimated breeding values from all markers, regardless of the 
magnitude of their effects. Using 191 metabolites of which the herit-
ability estimated from SVs is larger than that from SNPs (0.60 versus 
0.55; Wilcoxon rank sum test, P = 0.032), the accuracy (r2 between the 
true phenotype and genome-estimated breeding values) of genomic 
selection using SVs is higher than that using SNPs (0.11 versus 0.10; 
Wilcoxon rank sum test, P = 3.30 × 10−32) (Fig. 4d). This demonstrates 
that capturing missing heritability using SVs improves the accuracy 
of genomic selection.

We next applied genomic selection to tomato flavour breeding.  
The estimated heritability of 33 flavour-related metabolites ranges from 
0.21 to 1.00 (Supplementary Table 7). With the best linear unbiased pre-
diction, the prediction accuracy ranges from 0.00 to 0.23, 0.00 to 0.24 
and 0.02 to 0.25 using SNPs, indels and SVs, respectively, and prediction 
accuracy using SVs is highest for 22 of the 33 metabolites (Fig. 4e). To 
facilitate genomic selection in tomato breeding, we selected 20,955 
candidate SVs, comprising 11,488 insertions, 9,403 deletions and 64 
inversions for the design of a DNA capture array. When applied to the 
genomic selection of the 33 flavour-related metabolites, the SV set 
exhibits only limited reduction of prediction accuracy compared with 
the entire SV set (0.10 versus 0.11, Wilcoxon rank sum test, P = 0.693) 
(Fig. 4e). As SVs can be captured by a limited number of probes (Sup-
plementary Note), this panel potentially provides an accurate and 
cost-effective platform for tomato improvement. We anticipate that 
future studies will validate the effectiveness of the SV array in tomato 
breeding. These results also enable the advancement of SV-based 
genomic selection in other species.

Genetic variants identified from the graph pangenome will facilitate 
transgenic and/or genome editing-based breeding. To improve primer 
design in genome editing, we designed sgRNA primers with the proto-
spacer adjacent motif of Cas9 for all predicted genes and released them 
in a web-based database (http://solomics.agis.org.cn/tomato). This 
database also provides tools to search the comprehensive catalogue 
of SNPs, indels and SVs, and to design kompetitive allele-specific PCR 
(KASP) markers, which can benefit the tomato research and breeding 
communities.

Discussion
The state-of-the-art graph pangenome presented here incorporates 
genetic variants from a wide range of tomato germplasms. The inclusion 
of biodiversity from non-reference accessions will serve as an important 
platform for next-generation genomic studies and genome-assisted 

breeding. In particular, using the resources offered by the graph 
pangenome highlights the importance of SVs in capturing missing 
heritability by addressing incomplete LD, allelic heterogeneity and 
locus heterogeneity.

Here we used both read mapping and assembly-based methods to 
detect SVs and genotype SVs in a population using short reads using a 
graph-based method. One limitation is that complex SVs—for example, 
segmental duplications, tandem repeats and CNVs—are not specifi-
cally considered in our current pipeline. Another limitation is that only 
SVs present in the graph could be genotyped, and the accuracy of SV 
genotyping is still lower than that for SNPs and indels. Methods based 
on high-quality genome assemblies are superior for identifying highly 
complex SVs4,49. We believe that these problems will be addressed in the 
future through the development of tools that can generate a unified 
pangenome graph and annotation graph, reinforced by the greater 
availability of population-level reference-grade genome assemblies.

Some statistical tools exist that consider allelic heterogeneity, 
although these tools often fail to detect causal variants without high 
marginal P values43. The power of these tools can probably be improved 
by incorporating SVs. Moreover, we have demonstrated the importance 
of locus heterogeneity. However, we recognize that our solution to use 
the LASSO is suboptimal, because it is not yet computationally feasible 
to consider all genetic markers at once. Ideally, multilocus tools will be 
developed that consider more markers. Furthermore, when it becomes 
feasible to genotype complex SVs, it will be necessary to develop tools 
that, for example, allow for multiallelic variants, and can use these 
variants to capture additional missing heritability and improve the 
accuracy of MAS and genomic selection.
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Methods

Tomato sequencing and genome assembly
A total of 32 tomato accessions, including the reference cultivar Heinz 
1706, were chosen from the BIG, CER and PIM groups. Genomic DNA was 
extracted from fresh leaves of each accession. SMRTbell libraries were 
constructed according to the standard protocol of PacBio (Pacific Bio-
sciences) and sequenced on the PacBio Sequel II platform to generate 
HiFi reads. Primary assemblies were generated from three assemblers 
(Flye v.2.7, Hicanu v.2.0 and Hifiasm v.0.13)50–52 and potential misas-
semblies were corrected using the GALA pipeline53 (Supplementary 
Note). For the reference genome Heinz 1706, the Hi-C data were used 
to obtain a chromosome-level assembly. The remaining assemblies 
were anchored and oriented to chromosomes by the reference-guided 
software RagTag (v.1.0.1)54 with the default parameters.

Genome annotation
Protein-coding genes were predicted for each genome assembly using 
the MAKER2 (ref. 55) and PRAM56 pipelines. RNA evidence was collected 
by aligning RNA-sequencing (RNA-seq) reads to the repeat-masked 
assembly using HISAT2 (v.2.10.2)57 and assembling them to transcripts 
with StringTie (v.1.3.0)58. TACO (v.0.7.3)59 was applied to merge stringtie 
gtf (--filter-splice-juncs). Ab initio gene prediction was performed using 
SNAP (v.2006-07-28)60 and AUGUSTUS (v.3.3.3)61. SNAP was trained 
for two rounds, and AUGUSTUS prediction was performed using the 
‘tomato’ model. Proteins from SwissProt (Viridiplantae) (https://www.
uniprot.org) and three Solanum species (S. lycopersicum cv. Heinz 1706 
ITAG4.0 (ref. 23), Solanum pimpinellifolium LA2093 (ref. 25) and Solanum 
tuberosum DM (v.6.1)62 were integrated, with redundant sequences 
removed using CD-HIT (v.4.6)63 with the parameter ‘-c 0.99’. Non-redun-
dant proteins were used for homology-based prediction using BRAKER 
(v.2.1.4)64 and GeneMark (v.4.3.8)65. Only integrated gene models with 
AED values of <0.5 were retained. Furthermore, new gene models were 
predicted using PRAM.

SNP and indel calling using HiFi reads
The HiFi reads were first mapped to SL5.0 using minimap2 (ref. 66) 
with the parameters ‘-a -k 19 -O 5,56 -E 4,1 -B 5 -z 400,50 -r 2k --eqx 
--secondary=no’. DeepVariant (v.1.0.0) with the pretrained PacBio mode 
(--model_type PACBIO) was then used for variant calling of each acces-
sion, and all individual variants were merged using glnexus_cli from 
DeepVariant (v.0.9.0). Finally, variants that met all of the following 
criteria were retained: (1) total sequencing depth from 400 to 1,500; 
(2) quality score ≥ 20; (3) biallelic variants; (4) length ≤ 50 bp for indels.

SV detection
To detect SVs using HiFi reads from the 31 accessions, we mapped 
HiFi reads to SL5.0 using NGLMR (v.0.2.7)67 with the default param-
eters. A total of four callers: Sniffles (v.1.0.12)67, SVIM (v.1.2.0)68, 
CuteSV (v.1.0.10)69 and PBSV (v.2.4.0) (https://github.com/PacificBi-
osciences/pbsv) with the default parameters were used for variant 
calling in each accession. We retained variants with a ‘pass’ flag and 
a read depth of at least three. Deletions ranging from 51 bp to 100 kb 
in length, and insertions ranging from 51 bp to 20 kb in length were 
retained. To identify SVs from the 45 genome assemblies, Assem-
blytics70 was applied to the genome alignments generated using 
MUMmer (v.4.0)71 with the default parameters. For the 31 accessions 
with SVs from the five callers, we merged all SVs shorter than 100 kb 
using SURVIVOR (v.1.0.6)8 using a maximum allowed distance of 1 kb, 
reporting only calls supported by at least two callers and where the 
callers agreed regarding the type of variant. SVs longer than 100 kb 
detected by Assemblytics were retained. As the publicly available 
SVs from 100 tomatoes were identified using a different version 
of the reference genome (SL4.0), we transformed the coordinates 
to SL5.0 using the LiftOver software according to the instructions 

provided on the UCSC website (http://genomewiki.ucsc.edu/index.
php/Minimal_Steps_For_LiftOver).

Construction of the graph pangenome
SVs from the 31 accessions with HiFi reads and previously identified SVs 
from the 100 tomatoes were merged, and redundant SVs were removed 
according to instructions provided on GitHub (https://github.com/
vgteam/giraffe-sv-paper/blob/master/scripts/sv). The variation graph 
toolkit (vg) pipeline19 was used for the construction of TGG1.0, with 
SNPs and indels called from the HiFi reads. The vg pipeline was also used 
for variant calling with short reads. To obtain genotypes of variants in 
TGG1.0, the GBWT index was created using the greedy path-cover algo-
rithm and 32 paths, and the default minimizer length of 29 was chosen 
in the minimizer index with a window size of 11. Short reads from 706 
tomato accessions (>6×) were mapped to TGG1.0 with Giraffe19 and SNPs 
and indels were called using DeepVariant with the NGS model. These 
SNPs and indels were filtered as recommended. Non-redundant SVs, 
SNPs and indels from both the 31 accessions with HiFi reads, the 100 
accessions with ONT long reads and the 706 accessions with short reads 
were integrated into TGG1.1. Genotypes of SVs for the 706 accessions 
were called by Paragraph18 using the default parameters.

Graph annotation
To determine the coordinates of genes from non-SL5.0 assemblies, 
we calculated the distance of each accession from SL5.0 using Mash 
(v.2.2)72. We first generated a graph format for all assemblies by aug-
menting the 45 assemblies to SL5.0 using minigraph73 in increasing 
Mash distance with the reference SL5.0, according to the instruc-
tions provided online (https://github.com/AnimalGenomicsETH/
bovine-graphs). All of the coding sequences from the 45 accessions24,25 
and the previous pangenome31 were next mapped to the graph using 
minigraph. Coding sequences with more than 90% coverage and 
sequence identity and overlapping with the SL5.0 gene models were dis-
carded. For genes mapped to the backbone without any protein-coding 
gene annotation, we selected the longest one if annotated in more than 
one accession. For genes that were not mapped on the backbone of the 
graph, we removed redundant genes using CD-HIT with the parameter 
‘-l 0.9’ and only genes from the accession with the lowest distance from 
SL5.0 were retained. Finally, the gene sets mapped to the backbone 
and the graph were merged, and redundant genes were removed using 
CD-HIT with the parameter ‘-l 0.9’.

Gene expression and metabolite contents
To quantify the expression of all genes, we used Kallisto (v.0.46.2)74 for 
all 51,155 gene models in the graph pangenome. RNA-seq data from a 
total of 332 accessions (217 from BIG, 98 from CER and 17 from PIM) were 
quantified as transcripts per million (TPM). Genes with TPM values of 
>0.5 were defined as expressed. Only genes expressed in at least 100 
accessions were retained for the downstream analyses. Raw expres-
sion levels were normalized with quantile–quantile normalization. 
To remove potential batch effects and confounding factors affecting 
gene expression, the probabilistic estimation of expression residu-
als method75 was applied with the top four factors as covariates. For 
metabolites with missing values in <100 accessions, the mean value of 
two replicates was used. Raw metabolite values were transformed using 
the ternary logarithm and then normalized using quantile–quantile 
normalization.

Heritability estimation
The LDAK-thin model76 was used to estimate the proportion of phe-
notypic variance explained by genetic variants. The genetic variants 
were first pruned to exclude nearby SNPs in perfect LD using LDAK-thin 
with parameters ‘--window-prune 0.98 and --window-kb 100’. When 
computing the kinship matrix, it is necessary to specify the power 
parameter alpha, which determines the expected relationship between 
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per-variant heritability (hj

2) and MAF (fj). Specifically, it is assumed 
that E[hj

2] is proportional to [fj(1 − fj)](1 + alpha). By trying multiple values 
between −1 and 0, we found that alpha = −0.5 fits best under most sce-
narios, indicating a tendency for per-variant heritability to decrease 
with lower MAF. Principal component analysis was performed using 
PLINK (v.2.0)77 using SNPs and indels from TGG1.1-332, and the first four 
principal components were used as covariates when estimating herit-
ability. For partitioning contributions to heritability by different types 
of genetic variants, we derived the kinship for each variant category 
and estimated the heritability using a composite model with multiple 
kinship matrices. For all estimations with LDAK-thin, we added the 
parameter ‘--constrain YES’ to ensure no negative estimates of herit-
ability (if there was insufficient evidence to support the inclusion of a 
category, the estimated heritability was set to zero).

Definition of heritability category
We identified the coordinates of seven anchor dots that represent the 
seven categories as described in Supplementary Table 13. The pro-
portions of heritability contributed by each type of genetic variants 
(SNPs, indels and SVs) were used as the coordinate of each trait. Traits 
with heritability of zero were excluded as we could not determine the 
coordinate. We next calculated the Euclidean distance between the 
trait and each anchor dot, and each trait was assigned to the category 
with the shortest distance.

Genome-wide association study
For the MLM, we used the leave-one-chromosome-out method and 
the mixed model implemented in GCTA39. After pruning using PLINK 
(v.2.0) with the parameter ‘-indep-pairwise’ set to ‘50 5 0.2’, the pruned 
SNPs were used for the kinship matrix (genetic relationship matrix; 
GRM). For SNPs and indels, the pruned dataset (-indep-pairwise 100, 
1, 0.98) was used. The first four principal components were used as 
covariates in the model. A Bonferroni-derived threshold (0.05/total 
number of markers) was used as the significance threshold. For the 
LASSO model, the best linear unbiased prediction (BLUP) value esti-
mate from LDAK (obtained from the composite model) was used as 
the response variable (new phenotype) for each trait, and the signifi-
cance of genetic variants was assessed using the lassopv package41. 
The significance threshold of LASSO was determined by 1/number 
of SVs and the false-discovery rate at the threshold was estimated on 
the basis of permutations.

QTL definition
Significant variants were grouped into the same cluster if the correla-
tion coefficient R2 of two adjacent variants was >0.20 and the physical 
distance was <1 Mb. Clusters containing more than three significant 
variants were considered as candidate QTLs. For eQTL classification, 
cis-eQTLs were inferred if the leading significant variants were <50 kb 
from the transcription start sites or transcription end sites of the cor-
responding genes; otherwise, they were considered to be trans-eQTLs.

Co-expression network
WGCNA46 was applied to the prefiltered expression data from 332 acces-
sions to reconstruct gene modules exhibiting different expression 
patterns. Based on the criterion of approximate scale-free topology, 
the number nine was chosen as the proper soft-thresholding power 
for a signed network. Similar expression profiles were merged to the 
same module with a minimum module size set to 10 and the dissimilar-
ity set to 0.15.

Genomic selection
The rrBLUP78 package was used for genomic prediction of metabolites. 
SNPs and indels with positive weight were used to calculate the kinship 
matrix with the A.mat function implemented in rrBLUP. The predic-
tion accuracy was obtained by a five-fold cross-validation with five 

repetitions. As the kinship matrix was calculated from genomic data, 
the method is also called genomic best linear unbiased prediction.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All sequencing data generated in this study have been deposited at the 
Sequence Read Archive (https://ncbi.nlm.nih.gov/sra) under BioPro-
ject PRJNA733299. Whole-genome sequencing data were downloaded 
from NCBI (BioProjects: PRJNA259308, PRJNA353161, PRJNA454805 
and PRJEB5235) and RNA-seq data were downloaded from the NCBI 
(BioProject: PRJNA396272). All assemblies with annotations, variant 
VCF files and graph files are available at the SolOmics database (http://
solomics.agis.org.cn/tomato/ftp) and Sol Genomics Network (https://
solgenomics.net/ftp/genomes/TGG/). The InterPro database was down-
loaded from https://www.ebi.ac.uk/interpro/. The UniProtKB/Swis-
sProt database is available online (https://www.uniprot.org). Source 
data are provided with this paper.

Code availability
All code associated with this project is available at GitHub (https://
github.com/YaoZhou89/TGG).
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Extended Data Fig. 1 | Layout of the tomato graph pangenome study.  
a) Data used for constructing the tomato graph pangenome. b) Sketch of the 
tomato graph pangenome. c) Profiles of metabolome and transcriptome.  
d–f) Potential sources of missing heritability: incomplete linkage 
disequilibrium (d), allelic heterogeneity underlying gene expression (e), and 

locus heterogeneity represented in a co-expression network (f). Genes 
affecting the different steps of the same pathway might have the same effect  
on the final product. Yellow stars represent causal mutations. g) Practical 
application of genomic breeding such as genomic selection (GS), marker- 
assisted selection (MAS) and transgenic/gene editing.



Extended Data Fig. 2 | Characteristics of tomato genome assemblies.  
a) Hi-C heatmap of SL5.0. Darker red indicates higher contact probability.  
b) Structural variants between builds SL4.0 (blue) and SL5.0 (yellow). 
Insertions, deletions, duplications and inversions between SL4.0 and SL5.0  

are labelled with unique colour for each type of variants. c) Benchmarking 
Universal Single-Copy Orthologs (BUSCO) evaluation for the tomato genome 
assemblies.
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Extended Data Fig. 3 | Read alignments to the graph pangenome and the 
linear genome. Visualization of alignments of the same reads in a region by 
Geneious software79 to compare differences between the graph mapper 

(Giraffe) (a) and the linear mapper (bwa) (b). An 81-bp deletion can be detected 
accurately in the graph pangenome, but soft-clipped sequences are detected in 
the linear genome with five false-positive SNPs (indicated by red stars).



Extended Data Fig. 4 | Evaluation of contributions to heritability by 
different variant types. a) Comparison of heritability estimated from 
different combinations of genetic variants from SL5.0-332 and TGG1.1-332.  
b) Comparison of estimated heritability based on SNPs of different groups. 
n = 6,375 independent traits (a, b) were evaluated. ‘Overlapping’ refers to SNPs 
found in both TGG1.1-332 and SL5.0-332. ‘Unique’ refers to SNPs uniquely 
identified in either TGG1.1-332 or SL5.0-332. Box and whisker plots (a, b) with 
centre line = median, cross = mean, box limits = upper and lower quartiles, 
whiskers = 1.5 × interquartile range and solid points = outliers. c) Heritability 
contributed by different variant categories using a composite model.
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Extended Data Fig. 5 | Gene structure of Solyc03G002957. a) Different gene 
structures of Solyc03G002957; gene structures from three assemblies (TS12, 
SL5.0, and PP) are represented. The 2,628-bp deletion occurs at the end of the 
transcript. The 8,681-bp deletion in the LTR region results in a different 
annotation at the 3’ end of the transcript. b) Graph representation of adjacent 
regions of Solyc03G002957. The graph was generated from the 46 assemblies 
shown in c). c) Linear representation of regions adjacent to Solyc03G002957. 

Multiple alignment of all assemblies was performed using pggb (https://
github.com/pangenome/pggb). The 8,681-bp deletion in the LTR region exists 
in all assemblies harbouring the haplotype with the 2,628-bp deletion. 
Furthermore, the multiallelic LTR deletion is represented in TGG1.1 but was 
filtered out in TGG1.1-332 due to low frequency, implying the potential for 
further improvements in genotyping multiallelic SVs using short reads.



Extended Data Fig. 6 | Integrated genome viewer of gene models according 
to SL5.0 and SL4.0. This gene was misannotated as two separate genes in ITAG 
4.0, possibly due to an LTR/Gypsy retrotransposon (12,295 bp) at the sixth 
intron. Blue and green lines with mRNA IDs shown represent the complete gene 

structure. UTRs are illustrated by thin bars, ORFs by thick bars and introns by 
thin lines. Arrowheads within the bars indicate transcriptional orientation. 
RNA-seq reads mapped to Solyc03G002957 in SL5.0 are shown in the lower part 
of this figure.
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Extended Data Fig. 7 | Allelic and locus heterogeneity in GWAS.  
a) Comparison of heritability estimated from leading significant variants  
(if present) and all genetic variants in the cis regions (within 50 kb upstream 
and downstream of a gene) for all expressed genes. If no significant variants are 
detected, hcis gwas

2  is zero. b) Box plots of best linear unbiased prediction (BLUP) 
for the expression of Solyc03G001472 in different genotypes of the two 
significant SVs. n represents number of accessions of each group. The total 

sample size is 331 (only groups with at least three accessions were analysed). 
The P-value was calculated from Kruskal-Wallis rank sum test. Box and whisker 
plots with centre line = median, cross = mean, box limits = upper and lower 
quartiles, whiskers = 1.5 × interquartile range and solid points = outliers.  
c) Heritability of gene expression contributed by different types of variants 
(SNPs, indels and SVs) within module and non-module genes in a composite model.



Extended Data Fig. 8 | Co-expression network of expressed genes. The hub 
genes of each module (a total of 99) are visually magnified and coloured in 
black and non-hub genes are coloured in grey. The soluble solids content (SSC) 

and flavonoid module genes are coloured in blue and red, respectively. There 
are 5,520 expressed genes in the network with 190,606 links (threshold > 0.05).
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