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RESEARCH ARTICLE

Predicting grain protein concentration in winter wheat (Triticum aestivum L.)
based on unpiloted aerial vehicle multispectral optical remote sensing
Sandra Wolters a, Mats Söderströma, Kristin Piikkia, Thomas Börjessonb and Carl-Göran Petterssonc

aDepartment of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Skara, Sweden; bAgroväst Livsmedel AB, Skara,
Sweden; cLantmännen, Stockholm Sweden

ABSTRACT
Prediction models for crude protein concentration (CP) in winter wheat (Triticum aestivum L.) based
on multispectral reflectance data from field trials in 2019 and 2020 in southern Sweden were
developed and evaluated for independent trial sites. Reflectance data were collected using an
unpiloted aerial vehicle (UAV)-borne camera with nine spectral bands having similar
specification to nine bands of Sentinel-2 satellite data. Models were tested for application on
near-real time Sentinel-2 imagery, on the prospect that CP prediction models can be made
available in satellite-based decision support systems (DSS) for precision agriculture. Two
different prediction methods were tested: linear regression and multivariate adaptive regression
splines (MARS). Linear regression based on the best-performing vegetation index (the
chlorophyll index) was found to be approximately as accurate as the best performing MARS
model with multiple predictor variables in leave-one-trial-out cross-validation (R2 = 0.71, R2 =
0.70 and mean absolute error 0.64%, 0.60% CP respectively). Models applied on satellite data
explained to a small degree between-field variations in CP (R2 = 0.36), however did not
reproduce within-field variation accurately. The results of the different methods presented here
show the differences between methods used and their potential for application in a DSS.
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Introduction

Grain crude protein concentration (CP) is an important
baking quality indicator in bread wheat (Triticum aesti-
vum L.). The quantity and also quality, of CP (primarily
the proteins glutenin and gliadin) affect gluten for-
mation and the physical properties of bread dough
(Gooding and Davies 1997). In many countries, wheat
grain intended for milling and baking is sold for a
higher price if a certain CP threshold is exceeded. In
Sweden, that threshold is often 11.5% protein on a dry
matter basis. CP concentration is therefore determined
on all grain deliveries, using near infrared transmittance
(NIT) sensing. It is also routinely determined in grain
samples from winter wheat field trials, using the same
technology.

Yield maps from monitors on combine harvesters are
already used as a tool for farmers to evaluate crop man-
agement and for guidance in precision management in
coming seasons, e.g. by splitting fields into management
zones (Mulla 1993; Martínez-Casasnovas et al. 2018; Miao
et al. 2018). Combine harvesters equipped with NIT
sensors for CP mapping during harvest are also available
(as described in Taylor et al. (2005) and Thylén and
Algerbo (2001)), however, these are not yet as widely

used as the yield mapping counterpart. Field zoning
based on expected CP is an alternative method. With
CP estimation before harvest, there is the option to
split fields into harvesting zones with different expected
CP in the current year. This would provide the option to
exploit the spatial heterogeneity by selling some grain
loads as bread wheat for a higher price and other
loads as fodder wheat. Such models could also be
useful for the grain industry, providing information on
available quality at harvest. For example, Freeman
et al. (2003) have shown how pre-harvest prediction of
winter wheat grain yield and/or protein using the nor-
malised difference vegetation index (NDVI; Rouse et al.
1974) could assist farmers in generating yield maps
and reliable product marketing. However, the spatial
pattern of CP within fields, and the relationship with
for example yield, is complex and can vary substantially
between years (e.g. Delin 2004).

Grain proteins are synthesised from nitrogen (N)
that is translocated from other plant organs (50–70%)
and from ongoing N-uptake during grain filling (30–
50%) (Gooding 2009). It has been demonstrated in
field trials that CP can be increased when additional
N is applied in Zadok’s growth stage (Zadok et al.
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1974) DC37 or later (Finney et al. 1957; Gooding and
Davies 1992; Hamnér et al. 2017; Rodrigues et al.
2018; Hu et al. 2021. Sieling and Kage 2021), even
though N use efficiency may be lowered by very late
applications (Gooding 2009). If CP could be predicted
from spectral reflectance data sensed by cameras
mounted on UAVs, satellites, ground vehicles or hand-
held instruments, CP predictions could serve as
decision support for late-season N fertilisation aiming
at meeting certain CP targets. Bastos et al. (2021)
made a review of CP predictions, including remote
and proximal sensing as well as on-combine sensors.
They concluded that using on-combine protein
measurements generated more accurate predictions
than what could be achieved using proximal or
remote sensing during the growing season. Prediction
modelling of CP based on proximal and remote
sensing data is often less successful than e.g. predic-
tion models of yield (e.g. Freeman et al. 2003;
Øvergaard et al. 2013; Barmeier et al. 2017). Barmeier
et al. (2017) used a hyperspectral field sensor in field
experiments during anthesis (DC 65) in malting
barley, and used partial least squares regression
(PLSR) for developing prediction models of protein
content. Validation was done in independent field
trials, but the models performed poorly (R2 = 0.28),
indicating the challenges in estimating protein
content in harvested grain. Similar to Hansen et al.
(2002) they did not find a clear effect of nitrogen fer-
tiliser level on protein content. Prey and Schmidhalter
(2019) tested a large number of vegetation indices and
their correlation to grain N concentration, and found
that only few parts of the electromagnetic spectrum
within the visible-near infrared (NIR) region proved to
be useful. Bands corresponding to around 780 nm in
the lower part of the NIR region, combined with a
band in the upper part of the red edge region per-
formed best. Zhou et al. (2021) compared linear
regression and some machine learning (ML; Liakos
et al. 2018) methods for CP prediction in four fields
in Japan, using data from a multispectral UAV based
sensor. The results showed that it was difficult to
predict protein accurately, although some ML
methods seemed to perform better than the linear
models. Bastos et al. (2021) reported that most
studies on CP predictions in grain based on remote
and proximal sensors probably overestimated the
model accuracy and precision since the models were
often not tested across different spatio-temporal
scales.

Börjesson and Söderström (2003) showed that the
best time for making protein predictions for winter
wheat and malting barley (Hordeum vulgare L.) when

using spectral data from handheld sensors is at the
end of anthesis (Zadok’s DC69). Basnet et al. (2003)
and Prey and Schmidhalter (2019) also suggested that
canopy reflectance derived just after anthesis are best
correlated with grain protein content, and Bastos et al.
(2021) found that this was most commonly reported in
the studies included in their review. The reason may
be that it provides information on sources of N available
for protein formation through late season N remobilisa-
tion to the grain (e.g. Hansen et al. 2002). Söderström
et al. (2010) demonstrated that it is possible to map CP
in malting barley based on remotely sensed crop
canopy reflectance together with ancillary variables. Bör-
jesson et al. (2019) demonstrated that CP prediction in
winter wheat could be performed based on a combi-
nation of early (DC37) and late (DC73) satellite reflec-
tance data. Their prediction models had mean
absolute error (MAE) of <1% CP when tested on inde-
pendent fields.

The seasonal dynamics of N supply, from fertilisers
and from mineralisation of organic matter in the soil in
relation to the dynamics of (other) yield-influencing
environmental conditions, such as water availability,
disease, temperature and radiation, affect the CP
content in the harvested grain (see e.g. Gooding 2009).
Small on-farm experiments (OFE; Lacoste et al. 2022)
called zero-plots and max-plots can be used for deter-
mining optimal N fertilisation rates (see e.g. Lory and
Scharf 2003; Raun et al. 2011). Zero-plots are strategically
placed plots in commercial fields (often 10–100 m2) left
without any N fertiliser application, which are used to
monitor N-limited crop growth as a proxy for soil N
supply. Max-plots are plots with an N-fertilisation level
high enough for N not to limit yield, and crop growth
in max-plots can be used as a proxy for potential N-
uptake or potential yield (Johnson and Raun 2003;
Piikki and Stenberg 2017). Since it is now relatively
common to use zero-plots and sometimes also max-
plots in cereal fields, it is interesting to investigate how
these plots can be useful in CP prediction modelling. It
has been shown, e.g. by Pettersson and Eckersten
(2007), that there are differences between grain crop cul-
tivars in terms of both canopy properties (e.g. structure
or albedo) that affect vegetation indices and CP levels.
Thus, it is possible that cultivar-specific models would
perform better than general models. On the other
hand, when general models are parameterised based
on all cultivars used in a field trial, the resulting larger
calibration dataset may give more robust models.

Satellite-based decision support systems (DSS) can
reach many farmers and cover very large areas in com-
parison with handheld or tractor-based sensor systems.
In agricultural research, an abundance of data on crop

ACTA AGRICULTURAE SCANDINAVICA, SECTION B — SOIL & PLANT SCIENCE 789



qualities are available from field trials. Sensors carried by
unpiloted aerial vehicles (UAVs) are suitable for collect-
ing data in single fields for different crop management
purposes (Du et al. 2017). It could be beneficial to use
UAVs to collect spectral data in field trials, generate pre-
diction models for crop properties and then apply such
models on satellite images used in DSS to upscale the
research results in practical implementation.

The aim of the present study was to develop and
evaluate prediction models for CP at harvest in
winter wheat, based on optical remote sensing data
from UAV-borne multispectral sensors acquired in
development stages DC69-73, in field trials. In this
study we used a selection of vegetation indices
based on spectral bands in the red to NIR region
which in previous studies have been useful for describ-
ing the protein content (e.g. Freeman et al. 2003; Pet-
tersson et al. 2006; Prey and Schmidhalter 2019). For
modelling we used both linear regression and multi-
variate adaptive regression splines (MARS; Friedman
1991). MARS is a non-parametric ML method that in
previous studies has been useful when dealing with
remote sensing data in relatively small datasets (e.g.
Filippi et al. 2014; Söderström et al. 2015). Special
attention was paid to validation in order to validate
on independent data. Moreover, the models devel-
oped were applied on satellite images currently used
in DSSs and performance was evaluated against field
observations. The following tests were carried out:

. Screening for best CP modelling approach, by leave-
one-trial-out cross-validation of eight different mod-
elling approaches comprising linear regression
models or MARS models with different predictors
(combinations of vegetation indices in trial plots
with realistic N rates and chlorophyll index in zero-
plots and max-plots)

. Test of cultivar-specific models, by leave-one-trial-out
cross-validation

. Test of models on Sentinel-2 data, by comparing pre-
dictions with CP values from grain samples collected
across five fields.

Materials and methods

Sites

The study area was Skåne (Scania) county in southern
Sweden (approx. 55–56°N, 12–14°E). Data were used
from five field trials, conducted at different locations.
Three of the trials were performed in 2019 (at Stora
Markie, Tommarp and Alnarp) and two in 2020 (at
Lund and Brantevik) (Figure 1). All field trials were part

of an ongoing national trial series (L7-0150, Nitrogen
demand of different winter wheat cultivars1). The
winter wheat cultivars grown were different between
years, and 10 different cultivars were tested in each
year. Each trial had six split N treatments (the latest
applied in Zadok’s development stage DC37). Total N
rates were: 0, 80, 140, 200, 260 and 320 kg N ha−1. The
trial was replicated four times. In total, one trial consisted
of 240 plots, of approximately 2 × 10 m in size (Figure 2).
The focus in this study was on winter wheat cultivars
intended for bread wheat, for which CP is critically
important. Six bread wheat cultivars were grown in the
field trials in 2019 and 2020 (cultivars: Etana, Hallfreda,
Julius, Linus, Praktik and RGT Reform). The data for the
satellite application were collected from five sites in
the same region (A-E in Figure 1).

UAV measurements

Data were collected with a UAV octocopter (Explorian-8,
Pitchup AB, Gothenburg, Sweden), equipped with a
MAIA-S2 multispectral camera (Eoptis Srl, Trento, Italy),
a global navigation satellite system (GNSS) unit and an
incoming light sensor (ILS). The MAIA-S2 sensor has
nine bands with centre wavelengths in the range 443–
865 nm (Table 1). These bands correspond to nine of
the bands in the Sentinel-2 satellite system (ESA, EU)
(Nocerino et al. 2017).

The UAV was flown autonomously (at 80 m height
and flight speed 5 m s−1), using a pre-planned flight
mission, in DC65-75, covering anthesis to medium milk
development stages. Details of the flights are summar-
ised in Table 2. The flights were mostly carried out
between 12:00 and 16:30 h local time, when the solar
incidence angle varied between about 40 and 55°.
Each flight took about 10 minutes, during a period
with uniform cloud conditions (clear sky or complete
overcast), no precipitation the day before the flight,
and not windier than a gentle breeze. At each trial site,
10 reflectance calibration panels (MosaicMill Oy,
Vantaa, Finland) measuring 50 cm × 50 cm were placed
on the ground (five along each end of the trial). These
panels had known near-lambertian reflectance charac-
teristics (2%, 9%, 23%, 44% and 75%) within the 400–
900 nm range of the electromagnetic spectrum.

The UAV images were collected with at least 80%
overlap both along and between flight lines. During a
flight, the UAV’s position was logged using GNSS and
the incoming light from the ILS was logged at each
photo point. Post-processing of images was performed
using Multicam Stitcher Pro 1.1 provided by the manu-
facturer of the MAIA-S2 sensor. This software corrects
for geometrical distortion and radial distortion of the
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raw images and stitches the images of each of the nine
bands into one multispectral image. The software also
incorporates data from the ILS to radiometrically cali-
brate the images. The output images had pixel size
of about 3 × 3 cm. Orthomosaics were created from
the output images using the web application Solvi
(https://solvi.ag; Solvi AB, Gothenburg, Sweden).
These were downloaded and further processed in
ArcGIS (ESRI Inc., Redlands, CA, USA). Using the reflec-
tance panels, a linear function was derived to empiri-
cally recalculate the digital numbers of the
orthomosaics to reflectance. The median reflectance
of each band and for each trial plot was calculated
(excluding a 0.2–0.3 m buffer zone along the plot

edges). Data on harvested yield (kg ha−1) and protein
content (CP in % of dry matter) were extracted for
each plot in the Nordic Field Trials System (NFTS;
https://nfts.dlbr.dk; Danish Technological Institute and
SEGES, Aarhus, Denmark). CP in this dataset was deter-
mined by FOSS Infratec1241 NIT equipment (FOSS,
Hillerød, Denmark). These data were combined with
the UAV data for the statistical modelling and analyses.

Statistical analyses and modelling

An initial screening process revealed potential problems
with the data from the flight at Alnarp. In this particular
field trial there was an unusually large amount of soil

Figure 1. Field trial locations in Skåne (Scania) County, Sweden, and locations where satellite data were collected. Numbers (A-E)
indicate locations of winter wheat field trials where trial-data were collected for testing crude protein (CP) prediction models
using satellite data.
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nitrogen available (the zero-plot yield was about 10
tonnes ha−1) which made treatments in this trial similar
and not representative for Swedish conditions, therefore
this trial was excluded from analysis. In addition, two
plots in the Brantevik trial and 14 plots in the Lund trial
were excluded, due to missing data in the NFTS.

Plots where the applied N rate was >0 kg N ha−1 and
<320 kg ha−1 were selected for model calibration and
validation. The plots with 0 kg N ha−1 and 320 kg N

ha−1 were denoted as zero-plots and max-plots, respect-
ively and were not used in general modelling. A remote
sensing-based vegetation index from these plots was
introduced as a predictor. Reflectance values of
different replicates (blocks) were averaged. The initial
dataset contained 1184 records, and cleaning, treatment
subsetting and block aggregation resulted in 96 records
for building predictive models.

The correlations among and between predictors and
CP content were explored using the Spearman

Figure 2. A field trial orthomosaic example from the unmanned aerial vehicle (UAV) sensor in Brantevik, on sensing date June 18,
2020. The different nitrogen (N) treatments are displayed in the trial blocks.

Table 2. Crop development stage, date, time and weather on
the day of the unpiloted aerial vehicle (UAV) flights.

Trial

UAV flight
date (yyyy-
mm-dd)

Crop
development

stage

Local flight
time (hh:
mm) Weather

Alnarp 2019-06-22 DC75 16:00-16:10 Clear sky
Stora
Markie

2019-06-22 DC75 13:50-14.00 Clear sky

Tommarp 2019-06-23 DC71 11:55-12:05 Slight
haze

Brantevik 2020-06-18 DC69 14:15-14:25 Overcast
Lund 2020-06-18 DC69 16:30-16:40 Overcast

Table 1. Band specifications of the MAIA-S2 camera used in this
study. NIR = near infrared.
MAIA-
S2
sensor

Centre
wavelength

(nm)

Width of
band
(nm) Band name

Corresponding band
in Sentinel-2
constellation

S1 443 20 Violet Band 1
S2 490 65 Blue Band 2
S3 560 35 Green Band 3
S4 665 30 Red Band 4
S5 705 15 Red Edge 1 Band 5
S6 740 15 Red Edge 2 Band 6
S7 783 20 NIR 1 Band 7
S8 842 115 NIR 2 Band 8
S9 865 20 NIR 3 Band 8A
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correlation coefficient (r). The statistical procedures
linear regression modelling (as explained in Hastie
et al. 2009) and multivariate adaptive regression
splines (MARS, Friedman 1991) were used in this study
for building predictive models. Linear regression is a
simple statistical procedure of fitting a linear model
with one, or more (if multiple linear regression), predic-
tor variables. MARS is a more flexible, non-parametric
regression method which can predict using non-linear
relationships with multiple predictors.

Vegetation indices

Seven vegetation indices (VIs) were calculated from the
reflectance values in the different bands in the electro-
magnetic spectrum (Table 3). These were: (i) Optimised
soil-adjusted vegetation index (OSAVI) (Huete 1988;
Rondeaux et al. 1996), which was developed in an
effort to minimise soil brightness influence by use of
red and near-infrared (NIR) wavelengths. (ii) Red-edge
inflection point (REIP), the computed wavelength
where the crop canopy reflectance spectrum has its
inflection point in the red-edge wavelength region,
which is strongly related to chlorophyll content
(Reusch 1997). A method to approximate this point pre-
sented by Guyot et al. (1988) was used in this study. (iii)
Transformed chlorophyll absorption in reflectance index
(TCARI) (Kim et al. 1994; Haboudane et al. 2002), which is
one of several ‘CARI’ indices and indicates the relative
abundance of chlorophyll. (iv) TC/OS, a ratio introduced

by Haboudane et al. (2002) that is very sensitive to chlor-
ophyll content variations and to variations in leaf area
index (LAI: defined as half the total area of green
elements of the canopy per unit horizontal ground
area). This index is not sensitive to altitude. TC/OS has
been found to show good results for protein predictions
in malting barley (Pettersson et al. 2006). (v) Chlorophyll
index (CI) (Gitelson et al. 2003), is another relevant
simple ratio index. (vi). Normalised difference vegetation
index (NDVI) (Rouse et al. 1974), is a very common NIR-
visible-based ratio calculation introduced by Rouse
et al. (1974). (vii) Normalised difference red-edge index
(NDRE) (Barnes et al. 2000) is calculated in a similar
manner to NDVI and includes a red-edge band instead
of a red band, making it less sensitive to saturation if
biomass is high compared with NDVI.

The equations in Table 3 show how these VIs were
calculated, with reflectance (ρ) followed by the MAIA-
S2 band number.

Modelling strategies

The eight modelling strategies tested (Table 4) were
combinations of two different model types, linear
regression (a) and MARS modelling (b), and four
different predictor sets (1–4). Linear regression models
were based on a VI highly correlated with CP content,
and MARS models were based on all seven VIs in Table
3. In some strategies, in addition to the VIs, the CI
values in the zero-plots (denoted CI-zero) and/or the
max-plots (denoted CI-max) were included as predictors.
The index CI was pre-selected since this index was found
to have the highest correlation with protein in this
dataset. Irrespective of model type, the predicted
values were constrained within reasonable limits. Pre-
dicted CP values below 8% were set to 8% and predicted
CP values higher than 13.5% were set to 13.5%.

Table 3. The seven vegetation indices used in this study, with
equations and references. Reflectance is expressed in spectral
bands (ρ).
Index Full name Equation References

OSAVI Optimised soil-
adjusted
vegetation
index

1 + 0.16
r7− r4

(r7+ r4) + 0.16
Huete 1988;
Rondeaux
et al. 1996

REIP Red-edge
inflexion
point

700 + 40

r4− r7
2− r5
r6− r5

Guyot et al.
1988

TCARI Transformed
chlorophyll
absorption in
reflectance
index

3(r5− r4)− 0.2(r5− r3)
r5
r4

Kim et al.
1994;
Haboudane
et al. 2002

TC/OS Ratio
calculation

tcari
osavi

Haboudane
et al. 2002

CI Chlorophyll
index

r7
r6

− 1 Gitelson et al.
2003

NDVI Normalised
difference
vegetation
index

r8− r4
r8+ r4

Rouse et al.
1974

NDRE75 Normalised
difference
red-edge
index

r7− r5
r7+ r5

Barnes et al.
2000

Table 4. The eight different modelling strategies with different
model types and predictor sets tested in this study.
Strategy Predictors Model type Validation

1a Best single VI LR LTO + field test
2a Best single VI + CI-zero MLR LTO
3a Best single VI + CI-max MLR LTO
4a Best single VI + CI-zero + CI-max MLR LTO
1b All seven VIs MARS LTO + field test
2b All seven VIs + CI-zero MARS LTO
3b All seven VIs + CI-max MARS LTO
4b All seven VIs + CI-zero + CI-max MARS LTO

All models were evaluated by leave-one-trial-out cross-validation (LTO). Two
strategies were also evaluated by comparison with independent crude
protein (CP) observations in five production fields. VI, vegetation index;
LR, linear regression; MLR, multiple linear regression; MARS, multivariate
adaptive regression splines. CI-zero, chlorophyll index in zero-plot; CI-
max, chlorophyll index in max-plot.
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Model cross-validation

To assess the prediction accuracy when applying a mod-
elling strategy to new sites, leave-one-trial-out (LTO)
cross-validation was performed. Records were repeat-
edly split into ‘test data’ (the record(s) for which a predic-
tion was made) and ‘training data’ (the records used to
parameterise the model). With each iteration, all data
from one trial were assigned to the test set and the
remaining records were assigned to the training set.

To determine prediction accuracy, two validation
measures (mean absolute error, coefficient of determi-
nation) were calculated from the measured and predicted
N-uptake values.Mean absolute error (MAE) is the average
of the absolute prediction errors. Coefficient of determi-
nation (R2) quantifies the prediction goodness-of-fit.

Model parameterisation

After LTO cross-validation, the final models were para-
meterised for each of the eight strategies using all
data (no trials left out). In linear regression models (1a-
4a in Table 4), all predictors obtained were included in
the final model, however in the parameterisation of
MARS model predictors with a little predictive power
were discarded. Therefore, the final model may not
include all predictors. Modelling was also carried out
separately for each specific cultivar in the dataset. The
cultivar-specific models were validated for the best-per-
forming strategies in the general models.

Model field application

Model application was tested for general models from
strategies 1a and 1b (Table 4) using satellite data for
five winter wheat fields in Skåne county (locations A-E
in Figure 1). These models were implemented on satel-
lite data, Sentinel-2, L2A processing type, from June
25, 2020 (the cloud-free image expected to most
closely correspond to DC 69-75). Field data were col-
lected just before harvest in the year 2020. On each
sampling location, one sample consisted of seven sub-
samples (for sampling stability), covering an area of
approximately 3 × 3 m. There were eight samples
obtained on each field. A total of 34 records remained
after removal of sample points with incorrect location
references, or those collected very close to field
boundaries.

Software

The data were stored in a SQLserver database (Microsoft,
Redmond, Washington, USA) accessed via SQL Server

Management Studio (Microsoft, Redmond, Washington,
USA) and analyses were carried out using R (R Core
Team, 2021), including package ‘Earth’ (Milborrow
2021). ArcGIS 10.7 (Esri Inc., Redlands, California, USA)
was used for spatial data analysis and display.

Results

In most compiled predictor sets, there were strong cor-
relations between variables (Figure 3). For example,
NDRE75 proved to be highly correlated with three
other VIs, CI, TCOS and REIP. The VIs TCARI and TCOS
were also very highly correlated, while TCARI and
OSAVI showed very low correlation. All except two pre-
dictor pairs r was above 0.5. For the indices, the Spear-
man correlation ranged between −0.90 and 0.96.
Wolters et al. (2021) have shown a good relationship
with reflectance calculated to CI and N-uptake. In this
study, the CI index also had the best correlation with
grain CP (r = 0.87) content and was selected as the
index to use in linear models.

Performance of general models

A summary of the results from LTO cross-validation for
the six different bread wheat varieties is given in Table
5. Using the linear regression method and the best-per-
forming index (CI), R2 = 0.71 the MAE was 0.64% CP.
Inclusion of CI values from zero-plots reduced the accu-
racy of the model slightly, to R2 = 0.60 with MAE 0.71%
CP. The max-plot CI value (CI-max) did not influence
the prediction outcome substantially, R2 = 0.71, MAE =
0.64% CP. A model with both the zero-plots and the
max plot gave R2 = 0.60, MAE = 0.71% CP for the linear
method.

Leave-one-trial-out cross-validation with the MARS
method gave lower accuracy in the results. The number
of indices selected by the MARS method varied from
three to five. Using all seven indices at the start of the pro-
cedure resulted in a model with R2 = 0.50, MAE = 0.90%
CP. The VIs: CI, OSAVI, TCOS and REIP were selected in
this model. In the MARS method, the model was
improved with the introduction of zero-plot CI values
R2 = 0.63, MAE = 0.70% CP. The opposite was the case
when max-plots were used for modelling, R2 = 0.36,
MAE = 1.19% CP. The model performance improved
again when VI values for both zero-plots and max-plots
were introduced to the model R2 = 0.70, MAE = 0.60%
CP. In all models, for both methods, MAE was <1.20% CP.

Prediction results for all eight modelling strategies
summarised in Table 5 are also presented in Figure 4.
In two cases (1a, 3a), linear models were generally a
better fit than the predictions with MARS modelling
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and in two cases (2b, 4b) the MARS models performed
slightly better. In the prediction graphs for linear predic-
tions, there was less variation between sites than in the
MARS method graphs. For the site ‘Tommarp’, predicted
values were lower than observed in the first three
models (Figure 4).

Performance of cultivar-specific models

Results from LTO cross-validation of cultivar-specific
models for strategies 1a and 4b (the best-performing

strategies for general models for the two model
types, Figure 4) are summarised in Table 6. Using
the linear modelling method with CI (strategy 1a),
it was possible to parameterise well-performing
cultivar-specific models. Cultivar-specific linear
models performed better than general models. For
MARS models, more variation in the performance
of different cultivar-specific models was found
(Table 6). In both methods, the varieties ‘RGT
Reform’ and ‘Etana’ stood out as good-performing
varieties.

Satellite application

Model performance evaluation for a satellite dataset
on five fields (strategy 1a-b) showed that the linear
regression model based on one VI performed better
(higher R2) than the multivariate model based on
four VIs (Figure 5). However, it is clear from Figure 5
that the model mainly explained between-field vari-
ation in those cases. The CP variation within the
fields was small and could not be predicted well by
the model. In application of the linear model there
was a general prediction bias, with most predictions
being higher than the observed values.

Figure 3. Spearman correlation coefficient (r) for the different predictors and crude protein (CP) content.

Table 5. Validation results (leave-one-trial-out) of crude protein
(CP) content in wheat for the eight modelling strategies, using
two model types (linear (a), MARS (b)), and four different
combinations of predictor variables (1-4).

Strategy R2
MAE (%
CP) Predictors in final model

1a 0.714 0.64 CI
2a 0.602 0.71 CI, CI-zero
3a 0.710 0.64 CI, CI-max
4a 0.601 0.71 CI, CI-zero, CI-max
1b 0.504 0.90 CI, OSAVI, TCOS, REIP
2b 0.630 0.70 CI, CI-zero, OSAVI, TCOS
3b 0.363 1.19 CI, CI-max, OSAVI, TCOS, REIP
4b 0.703 0.60 CI, CI-zero, CI-max, NDRE75, REIP, TCARI,

OSAVI

Indices used are shown in Table 3. R2, goodness of fit; MAE, mean absolute
error.
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Discussion

Field trials and decision support systems

Field trials are important for agricultural research. From
a practical application perspective, it is advantageous if
results can quickly reach end-users, in the form of
advice and recommendations (Söderström et al.
2021). One part of the ongoing digitalisation of agricul-
ture is increasing use of digital DSSs in precision agri-
culture. Some of these systems are using remote

sensing multispectral data derived with satellites, or
less commonly, UAVs. It is important to develop
different types of relevant models that are
suitable for implementation in DSSs. Thus, the aim in
the present study was to develop a model for
protein prediction at harvest in winter wheat using
data from a UAV-borne sensor flown over a number
of field trials during two seasons and transfer
that model to a satellite data processing DSS and
test it on a few fields. This approach, moving from

Figure 4. Leave-one-trial-out cross-validation for the eight modelling strategies (see Table 5). Predicted crude protein (CP) percentage
vs. observed CP percentage.
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trials to DSS application, revealed opportunities and
challenges.

UAV data collection

Ideally, UAV data is collected in all field trials during the
same crop development stage, at the same time of day,
and under similar weather conditions (e.g. Souza de
et al. 2021). In reality this is not always feasible, especially
in a project with trial sites located far apart (Figure 1). We
aimed for a relatively narrow crop development window
(DC69-73; as suggested in earlier studies, e.g. Bastos et al.
2021; Börjesson and Söderström 2003; Prey and Schmid-
halter 2019;) however, in one of the trials used in the

modelling measurements were made at DC75. Note
also that the DC specified is the manually assessed
average DC of each trial, although there were some differ-
ences within each trial, both random and between var-
ieties and N rates. Since weather conditions were
different, the aim was at least for uniform weather con-
ditions where possible during individual flights, although
three different types of weather were encountered during
the flights: overcast, sunny and hazy (Table 2).

Trial design

The purpose of the trial design (Figure 2 & Table 2), was
to test the response of different wheat varieties to
different N rates. This means that the trials were, when
possible, located in places where the crop variation
was only driven by the treatment (i.e. different N rates
and cultivars). In farmers’ fields, this of course rarely is
the case (Colaço and Bramley 2018). Conventional plot
experiments are likely not the ideal method to evaluate
variable rate technologies implemented to accommo-
date the effects of spatial variability in CP. Other
factors may limit crop growth to different extents in
different parts of a field, such as availability of other
soil nutrients or water. A difficulty with the use of reflec-
tance data is that the causes of variation in reflectance
from the crop are usually not known. Studies separating
e.g. water status from N status may provide valuable
context in this case (Reese et al. 2010; Kusnierek and Kor-
saeth 2015).

Table 6. Validation statistics from leave-one-trial-out cross-
validation of linear or multiple linear regression models based
on the best single index for strategy 1a (see Table 4) and
Multivariate Adapted Regression Splines (MARS) prediction
results for strategy 4b.
Strategy Cultivar R2 MAE (% CP)

1a Etana 0.86 0.41
1a Hallfreda 0.70 0.69
1a Julius 0.81 0.64
1a Linus 0.79 0.60
1a Praktik 0.80 0.50
1a RGT Reform 0.87 0.40
4b Etana 0.75 0.48
4b Hallfreda 0.33 1.00
4b Julius 0.70 0.69
4b Linus 0.71 0.69
4b Praktik 0.65 0.56
4b RGT Reform 0.84 0.46

R2, goodness of fit; MAE, mean absolute error; CP, crude protein content.

Figure 5. Predicted crude protein (CP) values versus observed CP values when the best-performing (left) linear model (strategy 1a)
and (right) multivariate adaptive regression splines (MARS) model (strategy 1b) (see Table 4) as applied on Sentinel-2 data from the
five test fields (locations A-E in Figure 1).
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Protein prediction models

Even with the well-known relationship between CP and
N rate (Terman et al. 1969; Hamnér et al. 2017; Sieling
and Kage 2021), it is challenging to model protein
content in field crops (Colaço and Bramley 2018), even
when distinct fertilisation steps are present in the
dataset (Pettersson et al. 2006). In this study we did
not find benefit in using a more complex CP prediction
model (MARS model based on multiple indices including
zero-plots and max-plots) (R2= 0.70; MAE = 0.60% CP)
over using the best linear model (based on one veg-
etation index, CI) (R2= 0.71; MAE = 0.64% CP). It
appeared that the ML model did not optimise with this
small dataset, and the independent validation. Given
that it can be difficult to compare validation statistics
between different studies, these models seem to
perform relatively well compared to a statistical
summary of reported research in this field (Bastos et al.
2021). In terms of best-performing index (CI), our study
is in line with earlier work (e.g. Reusch 2005; Prey and
Schmidhalter 2019) which indicates that an index
based on two bands in the NIR-red-edge region is
better correlated to N concentration and N-uptake
than commonly used indices, such as NDVI and
MSAVI2. There were in general small or no improve-
ments in model performance when zero-plots and/or
max-plots were included as predictors in the models
(Table 5). In practical agricultural production in
Sweden, the use of zero-plots and max-plots as a
means of improving supplementary N fertilisation rate
at DC37-45 in winter wheat appears to be increasing
(Hushållningssällskapet 2021). However, data collection
was done here at a considerably later stage, when the
benefit of zero-plots and max-plots for protein predic-
tion models may be limited. . There was much variation
in the model accuracy between the different models
including these predictors, and there was no proven
benefit in preparing zero-plots and max-plots for this
type of CP prediction.

The linear cultivar-specific protein prediction
models worked better than the general model
(Tables 5 and 6). The LTO validation statistics
showed good performance, with the best variety
being RGT Reform (R2 = 0.87; MAE = 0.40% CP). When
modelling was performed for each variety individu-
ally, the MARS model performed less well, possibly
due to the relatively small number of observations
used for calibration. When the MARS method was
used, the variety ‘RGT Reform’ again performed best
(R2 = 0.84; MAE = 0.46% CP). With a more extensive
dataset, the results would likely have been more
clear. The response to N varies between cultivars

(Fowler 2003). Some cultivars tend to be both high-
yielding and at the same time have high CP
content, whereas others can be high-yielding but
the CP content will be lower. The yield-CP interaction
differs among the cultivars tested in this study. For
example, the cultivar Etana is a high-yielding high-
protein cultivar, and in comparison the cultivar Hall-
freda tends to have lower CP at the same yield,
whereas the cultivar Praktik has a lower yield at the
same CP (Hammarstedt 2021). This interaction is
likely important when using canopy reflectance for
modelling CP, and modelling yield variation is often
easier than modelling CP (e.g. Barmeier et al. 2017).

Transfer of UAV data to satellite data

A question raised in the section on model field appli-
cation, is whether it is possible to transfer models
between platforms. Application of the UAV-based
models on Sentinel-2 satellite data revealed that trans-
fer of the model resulted in a low prediction accuracy
and bias in the predictions. We used a UAV-borne
sensor (MAIA-S2), which sensed bands with similar
spectral characteristics as the intended satellite to be
used in a DSS (Sentinel-2), however there are likely
still discrepancies between the acquired reflectance
values from the two sensing systems (shown in e.g.
Bukowiecki et al. 2021; Peng et al., 2021; Rasmussen
et al. 2021; Sarvia et al. 2021). Panels with known reflec-
tance properties were used in the field trials and the
digital numbers were calculated using an empirical
relationship derived in each trial. Here we applied the
protein prediction models on Sentinel-2 L2A data,
which presumes that data from the two platforms are
comparable. The prediction accuracy was not good
when the models were applied, which indicates that
the comparability in the field of data from MAIA-S2
and Sentinel-2 requires further investigation (Figure
5). An issue with applying models in satellite based
DSS is that images from suitable dates (the growth
stages for which the model was parameterised) must
be available. The protein prediction model in this
study was developed based on data collected at crop
development stages DC69-75, a relatively large DC
range, however a satellite image was not always avail-
able for that period. If the model is to be applied over
large areas and the crop growth stages in individual
fields are not known, the model performance may be
limited. Earlier research suggested that spectral
models during anthesis could be affected by large phe-
nological shifts during that period, and that the most
stable relationships between N concentration and
canopy reflectance could be found during milk-
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ripening stage (DC73; Prey and Schmidhalter 2019). In
this case, the DC was not recorded in the fields. The
Swedish Board of Agriculture has a website where
weekly recordings of DC are reported (https://etjanst.
sjv.se/povpub-gui/#/karta?produktionsinriktning=
jordbruk, accessed March 10, 2022), and by following
information from this page we noticed it is possible
that in part of south-western Sweden the DC in winter
wheat on June 25, 2020 was slightly higher than DC75.

Validation of the performance of a satellite-based
model requires carefulness (e.g. Bastos et al. 2021). Col-
lecting ground truth protein data in a growing wheat
crop is difficult if the data are to be comparable to
values sensed by a satellite such as Sentinel-2. The Sen-
tinel-2 pixels are 400 m2 (20 × 20 m) for the bands used
in the best-performing models. Ground truth data in
the field were subsamples collected within about 3 ×
3 m areas. In this case, the sampling locations were
not positioned according the outline of the pixels of
the Sentinel-2 data. Even if this had been done,
minor shifts in the georeferencing of the satellite
image, practicalities during field work, and accuracy
of positioning of the grain sampling location, still
make it difficult to match a sample with a satellite
image pixel. The sampling procedure is usually challen-
ging and will inevitably have induced uncertainty in
the results. In future research, the procedure of collect-
ing ground truth data with modification will better
match to the satellite data. The results reported in
Figure 5 should be interpreted with the issues
described above in mind. There appears to be some
bias in the predictions (see linear model application
in Figure 5), with the model over-predicting the
protein content compared with the ground obser-
vations. If all observations are regarded collectively,
the model made a poor prediction on the satellite
dataset (R2= 0.36) and the within-field variation was
not captured by the model. There was no field check
done on the crop development stage for the
different fields, and therefore the satellite data was
selected from regional general information on reported
crop growth stages in winter wheat, which will differ
between fields. The simpler linear model performed
better than the more flexible MARS model.

The modelling results of the different methods pre-
sented here add to the general knowledge base on CP
estimation and protein models will maybe be applicable
in a DSS in the future, when a different approach has
been tested. Predicting and mapping the variation of
protein content in grain crops remains a challenge, as
also reported by Bastos et al. (2021). Further work on
finding functional methods using proximal and remote
sensing is recommended.

Note

1. The trial series forms part of Sverigeförsöken. It was con-
ducted by Hushållningssällskapet and funded by Stiftel-
sen lantbruksforskning. Agronomic data from the trials
are publicly available in the Nordic Field Trials System
(NFTS; https://nfts.dlbr.dk; The Danish Technological
Institute and SEGES, Aarhus, Denmark). More method
details on the trials are also available in this database.
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