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A B S T R A C T

The objective of this study was to explore the effects of (1) the presence/absence of snow and snow depth,
(2) solar noise, i.e., day/night and sun angle observations, and (3) strong/weak beam differences on ICESat-
2 data in the context of data utility for forest AGB estimation. The framework of the study is multiphase
modeling, where AGB field data and wall-to-wall airborne laser scanning (ALS) and Sentinel-2 data are used
to produce proxy ALS plots on ICESat-2 track positions. Models between the predicted proxy AGB and the
ICESat-2 photon data are then formulated and evaluated by subsets, such as only strong beam data captured
in snowy conditions.

Our results indicate that, if possible, strong beam night data from snowless conditions should be used in
AGB estimation, because our models showed clearly smallest RMSE (26.9%) for this data subset. If more data
are needed, we recommend using only strong beam data and constructing separate models for the different
data subsets. In the order of increasing RMSE%, the next best options were snow/night/strong (30.4%),
snow/day/strong (33.5%), and snowless/day/strong (34.1%). Weak beam data from snowy night conditions
could also be used if necessary (31.0%).
1. Introduction

Forest above-ground biomass (AGB) has a crucial role in the global
carbon cycle (Herold et al., 2019), but maps describing its global
distribution have large uncertainties (Mitchard et al., 2013; Zhang
et al., 2019). The key to improving the accuracy of global AGB maps
is the development of sensors that can obtain direct measurements of
3D structure of forests (Duncanson et al., 2019), which passive satellite
sensors can only observe indirectly.

Satellite lidar sensors are one such sensor type. Utilization of space-
borne lidar measurements for AGB estimation started with the original
ICESat (Ice, Cloud and land Elevation Satellite), launched in 2003,
which included a full waveform lidar instrument GLAS (Geoscience
Laser Altimeter System) (Zwally et al., 2002). Spaceborne lidars do not
provide wall-to-wall coverage similar to, for example, optical satellites,
which complicates field plot collection. In early studies (e.g. Lefsky
et al., 2005; Nelson et al., 2009b), field plot locations were chosen
to coincide with the spaceborne lidar footprint locations, however in

∗ Corresponding author.
E-mail address: petri.varvia@uef.fi (P. Varvia).

remote forests such approach is usually not feasible. Later studies have
therefore often used proxy field plots acquired using airborne laser
scanning (ALS) (Wulder et al., 2012) to produce biomass models for
spaceborne lidar. Both profiling airborne lidar (e.g. Boudreau et al.,
2008; Nelson et al., 2009a; Margolis et al., 2015) and small footprint
ALS data (e.g. Nelson et al., 2017; Holm et al., 2017) have been utilized.

Back in 2018, NASA (National Air and Space Administration)
launched two new spaceborne lidar sensors that are capable of direct
tree height measurements. The GEDI (Global Ecosystem Dynamic In-
vestigation) sensor was especially designed for tree height and AGB
estimation (Dubayah et al., 2020). However, due to its mounting on
the International Space Station, it does not acquire data above 52◦N,
which leaves unmeasured the northern tier of the circumpolar boreal
forest. On the other hand, the ICESat −2 (Ice, Cloud and land Elevation
Satellite 2) was designed for snow and ice monitoring (Markus et al.,
2017). It is in a polar orbit that provides excellent coverage of the entire
boreal forest zone.
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The ICESat −2 ATLAS (Advanced Topographic Laser Altimeter Sys-
tem) is a profiling lidar sensor that operates at visible green wavelength
(532 nm). Instead of providing wall-to-wall coverage, profiling sensors
record strip samples of terrain height measurements using multiple
beams. The 532 nm wavelength provides strong backscattering from
snow and ice, but the reflectance from vegetation is considerably
weaker compared to GEDI that operates at 1064 nm wavelength. In ad-
dition, ATLAS is a photon counting lidar, and therefore subject to solar
noise photons reflected from the atmosphere, which must be filtered
from the data before it can be used (Popescu et al., 2018). Each ATLAS
ground track consists of three pairs of strong and weak lidar beams. The
weak beams, one-fourth the power of the strong beams, permit mea-
surement of local across-track slope on glaciers and snowfields (Markus
et al., 2017; Neumann et al., 2019). Thus, the capability of weak beams
to observe canopy heights can be poor (Neuenschwander et al., 2020).
Regardless of these limitations, initial studies have shown that ICESat
−2 strong beams can provide relatively accurate estimates of forest
canopy height (Neuenschwander et al., 2020) and AGB (Narine et al.,
2020). The spatial resolution of estimation is however considerably
poorer compared to GEDI or airborne lidar sensors, because the num-
ber of photons per meter of ground track is low (c. 0–20 photons,
depending on the surface reflectance) (Neumann et al., 2021).

Spaceborne lidar sensors have an advantage in that new data are
recorded throughout the year whenever the sky is clear. However, most
studies on forest attribute estimation with spaceborne lidars have been
conducted with data captured in snowless leaf-on conditions, often due
to having a significant deciduous component in the study area. Further-
more, there is little information on how the commonly used airborne
lidars perform in the estimation of forest attributes when there is snow.
In boreal forests, the snowy season can last roughly from October to
May. Snow accumulates both on the forest floor and the trees, which
increases the forest reflectance at the 532 nm wavelength compared
to summer conditions. This could be beneficial to estimation of forest
variables using ATLAS data, especially using weak beams. However, if
there is plenty of snow, the allometric relationships between AGB and
observed canopy heights and densities could also be affected, especially
if the ground elevation is estimated directly from the ATLAS data. One
research question, therefore, is if the ATLAS data obtained from snowy
boreal forests can be used in combination with snow-free data from the
same area.

Another topic to consider is the performance of noise filtering
when using day and night data sets in a same model. The ATLAS
photon coordinate data is delivered in the ATL03 Global Geolocated
Photon product. Each ATL03 photon is classified as noise, ground,
or canopy, and this classification is stored in the ATL08 Land and
Vegetation Height product. Day data has more solar noise photons,
thus night data is expected to perform better in the estimation of forest
parameters (Narine et al., 2019). The performance of the default noise
classification with data from different times-of-day and beam strengths
should also be clarified when the objective is to estimate boreal forest
AGB.

Our objective in this study is to investigate and clarify how the
effects of time of day, beam strength and snow cover should be con-
sidered when constructing models for evergreen boreal forest AGB
estimation using ICESat −2 data. Furthermore, we evaluate if ICESat
−2 data obtained in different acquisition conditions (snowy or snow-
free, day or night) and with different beam strengths can be fused into
a single AGB prediction model without losing accuracy. While ICESat
−2 canopy height product has been previously validated in snowy
conditions (Neuenschwander et al., 2020), to our knowledge, this is the
first study where satellite lidar AGB modeling is tested in the presence
2

of snow.
2. Materials & methods

Because ATLAS is a profiling lidar sensor, the ATLAS footprints are
unlikely to overlap with the available field plots. Thus, we employ
multi-phase modeling similar to e.g. Boudreau et al. (2008), Nelson
et al. (2017), Saarela et al. (2018): (1) The AGB of field plots is
calculated based on allometric models. (2) The field-measured AGB is
linked with ALS data to produce a model to predict AGB from ALS data
using the area-based approach. (3) The ALS model is used to predict
AGB at ICESat −2 track locations. (4) An AGB model is constructed
sing ALS-derived AGB and ICESat −2 photon metrics. The workflow

of the study is charted in Fig. 1.

2.1. Study area and field measurements

The study site is an approximately 60 × 50 km area located near
Valtimo, Finland (N 63◦46′ E 28◦13′, see Fig. 2), consisting of bo-
eal forest. The area is dominated by Scots pine (Pinus sylvestris L.),
orway spruce (Picea abies (L.) Karst) and birches (Betula spp.). The

snowy season typically lasts from late November to late April. ALS-
based forest management inventory was conducted in the area by
the Finnish Forest Centre during the summer 2019, which included
acquisition of ALS data and aerial images in cooperation with the
National Land Survey. The distribution of the field plots in the study
area is shown in Fig. 3. The field plot data and ALS data are openly
available at https://www.metsaan.fi/karttapalvelut (in Finnish) and
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta, respectively.

The field data contained 797 circular plots with radius of either
5.64 m, 9.00 m, or 12.62 m depending on the forest maturity. Diameter
at breast height (DBH) was measured for each tree with DBH≥ 5 cm.

he height of a sample tree of each tree species was recorded on each
lot and a calibrated height model (Eerikäinen, 2009) was then used
o predict the height for the rest of the trees. Using the measured
ree diameters and predicted tree heights, the plot level AGB (Mg/ha)
as calculated by summing up the individual tree biomass estimates
roduced by Repola’s species-specific biomass models (Repola, 2008,
009).

.2. ALS data

The ALS data were collected 7 June–9 July 2019 using a Leica
LS 80HP scanner at 1700 m above ground level, which resulted in
nominal pulse density of 5 pts/m2 and a footprint diameter of 39 cm.
owever, the publicly distributed data was only available at resampled
.5 pts/m2 pulse density, which was still sufficient for AGB modeling
sing the area-based approach (ABA) (Kotivuori et al., 2016).

The ALS echoes were height normalized using LAStools (rapidlasso
mbH) and erroneous echoes with canopy heights higher than 40 m
bove-ground height were discarded. Onwards ALS height refers to
eight at above-ground level. Canopy metrics were then computed for
ach plot using two sets of echoes: first of many + only echoes, and last-
f-many + only echoes. The metrics included average and maximum
eights, standard deviation of heights, height percentiles 𝑝5, 𝑝10, 𝑝20,… ,

𝑝90, 𝑝95, 𝑝99, canopy density percentiles 𝑏5, 𝑏10, 𝑏20,… , 𝑏90, 𝑏95, canopy
cover, and the average and standard deviation of intensities.

2.3. Sentinel-2 data

We used a Sentinel-2 image captured on June 14th 2019. At-
mospheric correction of the Sentinel-2 image was performed using
Sen2Cor (Main-Knorn et al., 2017). The atmospheric bands (bands 1,
9, and 10) were omitted after this phase. The pixel values extracted
from the rest of bands were used as predictors in the AGB models. In

addition, several common spectral vegetation indices were calculated.

https://www.metsaan.fi/karttapalvelut
https://tiedostopalvelu.maanmittauslaitos.fi/tp/kartta
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Fig. 1. Workflow for the ICESat −2 AGB modeling.
2.4. ALS-based biomass model

The field plot AGB measurements, ALS metrics and Sentinel-2 bands
were used to produce a biomass model to predict AGB from ALS and
Sentinel-2 data. We formulated a quadratic model between AGB and
four predictors 𝑥𝑖:

AGBproxy =

(

𝑏0 +
4
∑

𝑖=1
𝑏𝑖𝑥𝑖

)2

, (1)

where 𝑏𝑖 are the model coefficients. We used a simulated annealing
based variable selection (Packalen et al., 2012) to choose the four
predictors 𝑥𝑖 freely from the ALS and Sentinel-2 metrics. Simulated
annealing is a heuristic optimization algorithm that uses a stochastic
process to find an approximate global optimum. In each iteration of
the simulated annealing, model (1) was fitted to the training data using
nonlinear least squares (function gnls in the R package nlme (Pin-
heiro et al., 2020)) and the predictors selected at that iteration. The
goodness of fit was evaluated using root mean square error (RMSE).
Simulated annealing was run for 10 000 iterations to find the predictors
that produced the lowest RMSE.

2.5. ICESat −2 data

All ATL03 (Neumann et al., 2021) and ATL08 (Neuenschwander
et al., 2021) data (version 4) captured from the study area during the
years 2018 and 2019 were used in this study, covering the period from
October 2018 to December 2019. These ICESat −2 tracks are shown
in Fig. 3. Data was available on 29 discrete dates, resulting in a good
temporal and spatial coverage of the study area.
3

The snow cover flag from ATL08 was replaced by a 10 km resolution
national daily snow depth raster produced by the Finnish meteorolog-
ical institute (Aalto et al., 2016). While the snow cover info from the
national raster corresponded exactly with the ATL08 snow cover flag
during the core winter season, there was a significant divergence in
autumn during the first snowfalls, and in spring during the snow melt
season (Fig. 4).

2.6. ICESat −2 track segmentation

ICESat −2 tracks were split into 90 × 15 m track segments. Each
segment consisted of six 15 × 15 m cells (Fig. 5), for which the AGBs
were predicted using the ALS model. The centers of the 90 m segments
were placed on locations of the ATL08 100 m segments, to facilitate
the concurrent use of ATL03 and ATL08 data.

To discard 90 m track segments that were not fully forested, a
forest mask was created by combining the CORINE land cover prod-
uct (European Environment Agency (EEA), 2018) and a canopy height
mask derived from the wall-to-wall ALS data. The ALS height mask was
constructed using the maximum ALS echo heights with the primary
purpose of removing clear cut areas classified as forest in CORINE.
If the maximum height was less than 2 m, the CORINE pixel was
reclassified as not forested.

After the non-forested 90 m track segments were removed, the ALS
data were intersected with the 15 m segment subcells and processed
as in Section 2.2. Sentinel-2 reflectances were then extracted for the
15 m subcells. Next, the ALS-based biomass model (Eq. (5)) was used to
predict AGBALS on the subcells. The final reference AGB for the 90 m
track segments was obtained by averaging the predictions of the six
subcells.
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Fig. 2. Location of Valtimo study area in Finland.

2.7. ICESat −2 biomass modeling

We used the ATL03 Global Geolocated Photon Data (Neumann
et al., 2021) and ATL08 Land and Vegetation Height (Neuenschwander
et al., 2021) data products (version 4). The ATL03 product contains
the geolocated photons, i.e. location and height of each measured
photon. The ATL08 product includes, in addition to the vegetation
height products at 100 m resolution, photon classifications to noise,
ground, canopy or top of canopy for each ATL03 photon. Thus, the first
step in the ICESat −2 data processing was to link the individual photon
classifications from ATL08 with ATL03 photon locations.

After linking the ATL08 photon classifications with the correspond-
ing ATL03 photons, the ATL03 photons unclassified in ATL08 were
omitted. The resulting photon clouds containing only the ATL08 classi-
fied photons were then clipped to the 90 m track segments. Using the
ATL08 classified ground photons, ellipsoidal photon heights relative
to the WGS84 ellipsoid were normalized to heights above ground
level. A set of ABA metrics were finally calculated without a height
threshold. These included the number of photons (canopy only 𝑛c
and total 𝑛all), average photon height, standard deviation, maximum,
height percentiles 𝑝5, 𝑝10, 𝑝20,… , 𝑝90, 𝑝95, 𝑝99, canopy density percentiles
𝑏 , 𝑏 , 𝑏 ,… , 𝑏 , 𝑏 , and average square height (qav).
4

5 10 20 90 95
Fig. 3. Locations of field plots (green dots) and ICESat −2 tracks in the study area,
superimposed on canopy height model.

Fig. 4. Comparison of ATL08 and FMI snow cover data by imaging date. Match % is
the percentage of track segments with a similar snow status in ATL08 and the FMI
snow rasters by date.

To omit segments with either poor quality data or too few photons,
we first calculated the fraction of photons with a high ATL03 photon
signal confidence flag (signal_conf_ph) for each segment. This
quality measure was then applied with the number of ATL08 classified
photons on each segment. Segments with a fraction of high confidence
photons less than 0.6 or less than 100 classified photons were omitted.

For modeling, the data were further subdivided based on the pres-
ence of snow on the ground, time of day (night/day, based on nautical
dawn i.e. sun elevation less than −12◦), and weak or strong ATLAS
beam. The combination snowless/night/weak (𝑛 = 13) was omitted due
to the low number of segments satisfying the quality threshold.

Linear mixed effect models between square-root transformed ALS
and Sentinel-2 -predicted proxy AGB and ICESat −2 predictors were



Remote Sensing of Environment 280 (2022) 113174P. Varvia et al.
Fig. 5. ICESat −2 track segmentation scheme: one 90 m × 15 m track segment consists
of six 15 m × 15 m cells for which the reference AGBs were predicted using ALS and
Sentinel-2 data. ATL03 photons are colored by classification.

then formulated:
√

ÂGBproxy = 𝑏0 +
5
∑

𝑖=1
𝑏𝑖𝑥𝑖 + 𝑏6𝛼𝑠 + 𝑏7𝑑snow + 𝑏8strong + 𝜇𝑗 , (2)

The fixed part of each model included intercept, five ICESat −2 ABA
metrics 𝑥𝑖 (either untransformed or square-root transformed), sun ele-
vation angle 𝛼𝑠 ∈ [−90◦, 90◦], and when applicable, snow depth 𝑑snow
in centimeters from the FMI snow depth raster. Strong/weak beam was
included as a dummy variable (strong) in models that combined strong
and weak beam data. Random intercept 𝜇𝑗 in the model was grouped by
acquisition date 𝑗 to account for varying weather and seasonal effects.
The five predictor variables of each model were selected using simu-
lated annealing (Packalen et al., 2012). In the annealing, optimization
was first performed using only the fixed part for 10 000 iterations,
which was repeated 10 times. The best solution was then used as a
starting point for the variable selection of the full mixed model, which
was further annealed for 3 repetitions of 10 000 iterations. In each
iteration, the model (2) was fit using restricted maximum likelihood
with the function lme from the R package nlme and the goodness of
fit was evaluated using RMSE. Finally, the predicted

√

ÂGBproxy were
back-transformed and bias corrected (Gregoire et al., 2008).

2.7.1. Model evaluation
The performance of the ICESat −2 biomass models was evaluated by

calculating RMSE and the relative RMSE (RMSE%) of the fitted model
values to the proxy AGB. RMSE and RMSE% are defined as:

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

ÂGB − ÂGBproxy

)2
(3)

RMSE% = RMSE
1
𝑛
∑𝑛

𝑖=1 ÂGBproxy

(4)

3. Results and discussion

3.1. ALS-based biomass model

First, the proxy biomass model was fitted to the training data as
described in Section 2.4. The resultant model was

ÂGBproxy =(0.44 avg𝑓 + 0.34 avg𝑙 − 0.0013 NIR
2

(5)
5

− 0.0012 SWIR1 + 8.52) ,
Fig. 6. Scatter density plot of the field-plot AGB vs. AGB predicted from ALS using
model (5).

where avg𝑓 and avg𝑙 are the average ALS heights calculated from first
of many and only, and from last of many and only echoes, respectively.
NIR and SWIR1 are the Sentinel-2 reflectances from the near-infrared
and first shortwave-infrared bands. The resultant model had an RMSE
of 15.1 Mg/ha for AGB (RMSE% 20.2%). The scatter plot of the fitted
ALS biomass model is shown in Fig. 6.

3.2. ICESat −2 biomass model

The RMSEs of the submodels are listed in Table 1 in a descending
order of accuracy. The table also includes the number of 90 m track
segments, the number of different imaging dates and the standard
deviation of the random intercept. Due to the omittance of snow-
less/night/weak class, some general combinations are missing, for
example the snowless/weak class that is equivalent to the snow-
less/day/weak class. Snowless/night/strong submodel had the best
RMSE% performance at 26.9%. In general, the specific submodels
had lower RMSE, with, for example, the model using all the data
having relatively poor RMSE% of 36.7%. Snowless (31.4%) produced
considerably better results than snowy data (36.9%). Furthermore,
strong beam data (34.0%) was better than weak beam data (39.0%),
and night data (34.3%) had a slightly better performance than day data
(36.4%). RMSE% of the combined models when applied to the specific
subsets are shown in Table 2 and density scatter plots of the submodels
are shown in Fig. 7. The significance of including the random intercept
was tested using likelihood ratio test (e.g. Mehtätalo and Lappi, 2020).
The inclusion of random effect was significant in all cases, except
snow/night/weak and snowless/day/weak.

Based on the performance of the submodels, the best results are
obtained in snowless conditions using strong beam data captured dur-
ing night. The merged models showed worse performance than specific
models across the line when applied to the specific subsets. For exam-
ple, the RMSE% of the best merged model, snowless/strong (30.2%),
was better than the RMSE% of subset model snowless/day/strong
(34.1%). However, when this merged model was applied to the snow-
less/day/strong data (Table 2), its performance was slightly worse at
35.3%.

The selected variables and the fixed part weights are in Table 3.
Most commonly chosen predictor variables included the average (avg)
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Table 1
RMSE and relative RMSE of the submodels in a descending order of RMSE%. The number of 90 m track segments and imaging
dates per subset are shown. The column

√

Var(𝜇𝑗 ) shows the absolute magnitude of the standard deviation of the random
intercept, the standard deviation relative to the fixed intercept is shown in parentheses. Significance of the random intercept
was tested using likelihood ratio test, shown below the

√

Var(𝜇𝑗 ) values: ns = non-significant, * = 𝑝 ≤ 0.05, ** = 𝑝 ≤ 0.01,
*** = 𝑝 ≤ 0.001.
Data RMSE [Mg/ha] (RMSE%) 𝑛 𝑛𝑑𝑎𝑡𝑒

√

Var(𝜇𝑗 )

Snowless/night/strong 16.2 (26.9%) 3589 4 0.1 (0.03)
∗∗∗

Snowless/strong 17.7 (30.2%) 5091 14 1.0 (0.4)
∗∗∗

Snow/night/strong 18.6 (30.4%) 2699 5 1.2 (0.1)
∗

Night/strong 18.6 (30.7%) 6288 9 2.5 (0.4)
∗∗∗

Snow/night/weak 19.2 (31.0%) 2567 3 0.0 (0.0)
𝑛𝑠

Snowless 18.4 (31.4%) 5412 14 0.6 (0.1)
∗∗∗

Snow/strong 19.4 (32.8%) 8922 16 0.7 (0.1)
∗∗∗

Snow/day/strong 19.5 (33.5%) 6223 11 0.6 (0.1)
∗∗∗

Strong 20.0 (34.0%) 14013 29 1.2 (0.2)
∗∗∗

Snowless/day/strong 18.8 (34.1%) 1502 10 0.9 (1.2)
∗∗∗

Night 20.9 (34.3%) 8868 9 3.5 (1.4)
∗∗∗

Day/strong 20.1 (34.9%) 7725 20 0.9 (0.1)
∗∗∗

Snow/day 20.4 (35.6%) 8025 11 0.8 (0.1)
∗∗∗

Snow/night 22.0 (35.8%) 5266 5 15.5 (0.4)
∗∗∗

Day 20.8 (36.4%) 9835 20 1.0 (0.2)
∗∗∗

Snow/weak 21.5 (36.5%) 4369 12 1.1 (0.1)
∗∗∗

All 21.6 (36.7%) 18703 29 1.4 (0.2)
∗∗∗

Snow 21.8 (36.9%) 13291 16 0.9 (0.1)
∗∗∗

Snowless/day 20.7 (37.2%) 1810 10 0.5 (0.1)
∗∗∗

Weak 23.0 (39.0%) 4690 23 1.2 (0.1)
∗∗∗

Snow/day/weak 22.1 (40.3%) 1802 9 1.5 (0.2)
∗∗∗

Day/weak 23.3 (42.2%) 2110 16 1.0 (0.1)
∗∗∗

Snowless/day/weak 25.6 (44.3%) 308 8 0.0 (0.0)
𝑛𝑠
Table 2
RMSE% of the combined models when applied to each subset. For example, snowless/strong model has RMSE% of 28.2%
when applied only to snowless/night/strong data.

RMSE%

Data subset Specific Combined models All

Night/strong Snowless/strong Snowless/night
Snowless/night/strong 26.9% 29.1% 28.1% 26.9% 33.1%

Night/strong Snow/strong Snow/night
Snow/night/strong 30.4% 32.5% 30.8% 34.1% 33.3%

Night/weak Snow/weak Snow/night
Snow/night/weak 31.0% – 32.9% 37.6% 39.3%

Day/strong Snow/strong Snow/day
Snow/day/strong 33.5% 34.2% 33.7% 33.6% 36.6%

Day/strong Snowless/strong Snowless/day
Snowless/day/strong 34.1% 37.7% 35.3% 34.5% 38.7%

Day/weak Snow/weak Snow/day
Snow/day/weak 40.3% 41.1% 42.0% 42.3% 43.7%

Day/weak Snowless/weak Snowless/day
Snowless/day/weak 44.3% 47.9% – 47.3% 76.7%
d

and average square height (qav), and their transformations. Further-
ore, every submodel except snowless/night/strong and snow/day/
eak included some form of a photon count metric, 𝑛c or 𝑛all, in several

cases both.
The standard deviations of the date-specific random intercepts

√

Var(𝜇𝑗 ) (Table 1) showed some variation when compared relatively
to the fixed intercepts (Table 3). In most cases, the standard deviations
were relatively small compared to the fixed intercepts, but on the
submodels snowless/day/strong and night, the standard deviation was
larger than the fixed intercept. As the random intercept was grouped by
the acquisition date, large standard deviation of the random intercept
compared to the fixed intercept means that there is more variation
between the data captured on different dates. On the other hand,
the two cases (snowless/night/strong and snow/day/weak) where the
random intercept was found to be non-significant and having a standard
6

deviation close to zero, implies that temporal differences in the data
were smaller.

Table 4 presents the predicted proxy AGBs of the subclasses, ICE-
Sat −2 𝑝99 calculated from the ATL08-classified ATL03 photons, ALS-
erived (first of many and only echoes) 𝑝99, used as a proxy for

predicted dominant height, and canopy cover from ALS. The 10th and
90th percentiles of the variables are shown in parentheses. AGBALS and
canopy cover showed slight variation between the subclasses due to
uneven geographic distribution, but did not show any clear relationship
with the model performance. Comparison between the ICESat −2 and
ALS-derived 𝑝99 showed that good performance is likely, when these
distributions are close. In the worst performing submodels there was
a noticeable tendency that ICESat −2 𝑝99 is circa 4 meters lower than
its ALS equivalent. The effect was pronouced in the 10th percentiles:

the ICESat −2 derived 𝑝99 were close to 3 meters for the majority
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Table 3
Fixed parts of the fitted submodels. In the same order as Table 1. Statistical significance of each model parameter is shown
under the parameter: ns = non-significant, * = 𝑝 ≤ 0.05, ** = 𝑝 ≤ 0.01, *** = 𝑝 ≤ 0.001.
Snowless/night/strong 2.9

∗∗∗
+ 2.5avg

∗∗∗
− 0.06qav

∗∗∗
+ 1.1std

∗∗∗
+ 0.2

√

𝑛𝑐
∗∗∗

− 5.6
√

avg
∗∗∗

− 0.05𝛼𝑠
∗∗∗

Snowless/strong 2.6
∗∗∗

+ 0.002𝑛all
∗∗∗

− 0.3𝑝20
∗∗∗

+ 0.1
√

𝑛𝑐
∗∗∗

+ 0.8
√

qav
∗∗∗

− 0.3
√

𝑝90
∗∗∗

+ 0.006𝛼𝑠
𝑛𝑠

Snow/night/strong 11.6
∗∗∗

− 0.006𝑛all
∗∗∗

− 0.02qav
∗∗∗

+ 0.4
√

𝑛𝑐
∗∗∗

− 8.1
√

avg
∗∗∗

+ 2.4
√

qav
∗∗∗

− 0.04𝑑snow
∗

+ 0.1𝛼𝑠
𝑛𝑠

Night/strong 6.7
∗∗∗

− 0.005𝑛all
∗∗∗

− 0.02𝑏30
∗∗∗

+ 0.4
√

𝑛𝑐
∗∗∗

− 4.0
√

avg
∗∗∗

+ 1.3
√

qav
∗∗∗

− 0.03𝑑snow
∗

− 0.003𝛼𝑠
𝑛𝑠

Snow/night/weak −2.7
𝑛𝑠

− 0.1𝑛all
∗∗∗

+ 0.6std
∗∗∗

− 0.02𝑏10
∗∗∗

+ 2.4
√

𝑛all
∗∗∗

+ 0.5
√

max
∗∗∗

+ 0.02𝑑snow
∗∗∗

+ 0.08𝛼𝑠
∗∗∗

Snowless 6.5
∗∗∗

+ 1.3avg
∗∗∗

− 0.07qav
∗∗∗

+ 0.2
√

𝑛𝑐
∗∗∗

− 6.0
√

avg
∗∗∗

+ 1.9
√

qav
∗∗∗

− 2.3strong
∗∗∗

+ 0.006𝛼𝑠
𝑛𝑠

Snow/strong 6.5
∗∗∗

− 0.005𝑛all
∗∗∗

− 0.03qav
∗∗∗

+ 0.4
√

𝑛𝑐
∗∗∗

− 7.0
√

avg
∗∗∗

+ 2.3
√

qav
∗∗∗

+ 0.001𝑑snow
𝑛𝑠

+ 0.01𝛼𝑠
𝑛𝑠

Snow/day/strong 8.2
∗∗∗

− 0.04qav
∗∗∗

+ 0.4
√

𝑛𝑐
∗∗∗

− 0.2
√

𝑛all
∗∗∗

− 6.8
√

avg
∗∗∗

+ 2.3
√

qav
∗∗∗

+ 0.01𝑑snow
𝑛𝑠

+ 0.08𝛼𝑠
∗

Strong 6.4
∗∗∗

− 0.004𝑛all
∗∗∗

− 0.01𝑏30
∗∗∗

+ 0.3
√

𝑛𝑐
∗∗∗

− 4.5
√

avg
∗∗∗

+ 1.5
√

qav
∗∗∗

− 0.002𝑑snow
𝑛𝑠

+ 0.01𝛼𝑠
𝑛𝑠

Snowless/day/strong 0.8
𝑛𝑠

− 0.003𝑛all
∗∗

− 0.4𝑝20
∗∗∗

+ 0.04𝑝99
∗∗

+ 0.3
√

𝑛all
∗∗∗

+ 0.7
√

qav
∗∗∗

− 0.03𝛼𝑠
𝑛𝑠

Night −2.6
𝑛𝑠

+ 1.1std
∗∗∗

+ 0.2
√

𝑛𝑐
∗∗∗

− 0.2
√

𝑛all
∗∗∗

+ 0.4
√

𝑝50
∗∗∗

− 0.7
√

𝑝95
∗∗∗

− 0.04𝑑snow
∗∗

+ 2.1strong
∗∗∗

− 0.3𝛼𝑠
∗∗

Day/strong 7.4
∗∗∗

− 0.03qav
∗∗∗

+ 0.3
√

𝑛𝑐
∗∗∗

− 0.2
√

𝑛all
∗∗∗

− 5.8
√

avg
∗∗∗

+ 2.0
√

qav
∗∗∗

− 0.0002𝑑snow
𝑛𝑠

− 0.05𝛼𝑠
𝑛𝑠

Snow/day 7.7
∗∗∗

− 0.04qav
∗∗∗

+ 0.4
√

𝑛𝑐
∗∗∗

− 0.2
√

𝑛all
∗∗∗

− 6.3
√

avg
∗∗∗

+ 2.2
√

qav
∗∗∗

+ 3𝑒 − 04𝑑snow
𝑛𝑠

+ 0.7strong
∗∗∗

+ 0.09𝛼𝑠
∗

Snow/night −40.7
∗∗∗

+ 1.7std
∗∗∗

+ 0.2
√

𝑛𝑐
∗∗∗

− 0.3
√

𝑛all
∗∗∗

+ 0.6
√

max
∗∗∗

− 4.1
√

std
∗∗∗

− 0.009𝑑snow
𝑛𝑠

+ 2.5strong
∗∗∗

− 1.3𝛼𝑠
∗∗∗

Day 5.8
∗∗∗

− 0.004𝑛all
∗∗∗

− 0.03qav
∗∗∗

+ 0.3
√

𝑛𝑐
∗∗∗

− 5.6
√

avg
∗∗∗

+ 2.0
√

qav
∗∗∗

− 0.02𝑑snow
𝑛𝑠

+ 0.1strong
∗

− 0.009𝛼𝑠
𝑛𝑠

Snow/weak 9.1
∗∗∗

− 0.02𝑛all
∗∗∗

+ 1.5std
∗∗∗

+ 0.2
√

𝑛𝑐
∗∗∗

+ 0.8
√

max
∗∗∗

− 3.5
√

std
∗∗∗

+ 0.002𝑑snow
𝑛𝑠

+ 0.02𝛼𝑠
𝑛𝑠

All 6.5
∗∗∗

+ 1.8std
∗∗∗

+ 0.2
√

𝑛𝑐
∗∗∗

− 0.1
√

𝑛all
∗∗∗

+ 0.5
√

max
∗∗∗

− 4.3
√

std
∗∗∗

− 0.01𝑑snow
∗

+ 0.8strong
∗∗∗

+ 0.0004𝛼𝑠
𝑛𝑠

Snow 7.6
∗∗∗

+ 1.7std
∗∗∗

+ 0.01𝑏05
∗∗∗

+ 0.3
√

𝑛𝑐
∗∗∗

− 0.2
√

𝑛all
∗∗∗

− 3.4
√

std
∗∗∗

− 0.005𝑑snow
𝑛𝑠

+ 1.0strong
∗∗∗

+ 0.01𝛼𝑠
𝑛𝑠

Snowless/day 5.7
∗∗∗

− 0.04qav
∗∗∗

+ 0.08
√

𝑛all
∗∗∗

− 3.1
√

avg
∗∗∗

+ 1.9
√

qav
∗∗∗

+ 0.3
√

𝑝60
∗∗∗

− 2.6strong
∗∗∗

− 0.01𝛼𝑠
𝑛𝑠

Weak 9.7
∗∗∗

− 0.03𝑛𝑐
∗∗∗

+ 0.7std
∗∗∗

+ 0.6
√

𝑛𝑐
∗∗∗

− 0.3
√

𝑛all
∗∗∗

− 0.2
√

𝑏20
∗∗∗

− 0.03𝑑snow
∗∗

+ 0.03𝛼𝑠
∗

Snow/day/weak 7.2
∗∗∗

− 0.01𝑛all
∗∗∗

+ 0.8std
∗∗∗

+ 0.1𝑏05
∗∗∗

+ 0.3
√

𝑛𝑐
∗∗∗

− 1.0
√

𝑏05
∗∗∗

− 0.04𝑑snow
∗

+ 0.2𝛼𝑠
𝑛𝑠

Day/weak 8.6
∗∗∗

+ 0.008𝑛𝑐
∗∗∗

+ 1.8std
∗∗∗

− 0.2
√

𝑛all
∗∗∗

+ 1.4
√

max
∗∗∗

− 5.3
√

std
∗∗∗

− 0.04𝑑snow
∗∗

+ 0.08𝛼𝑠
∗

Snowless/day/weak 6.9
∗∗∗

+ 0.1max
∗∗∗

− 4.1avg
∗∗∗

+ 0.3qav
∗∗∗

+ 3.3
√

𝑝30
∗∗

+ 0.8
√

𝑝80
∗

+ 0.01𝛼𝑠
𝑛𝑠
Table 4
The averages of proxy AGB, ICESat-2 𝑝99, ALS 𝑝99, and ALS-derived canopy cover (CC) for the submodels. 10th and 90th percentiles of the
parameters are in parentheses. Order of the submodels is the same as in Table 1.
Data RMSE% AGBALS [Mg/ha] I2 p99 [m] ALS p99 [m] ALS CC [%]

Snowless/night/strong 26.9% 60.1 (20.1,105.3) 14.6 (8.4,19.6) 16.1 (10.6,20.9) 63.6 (36.9,86.9)
Snowless/strong 30.2% 58.6 (19.4,103.7) 14.0 (7.6,19.2) 15.9 (10.4,20.7) 63.3 (36.1,86.3)
Snow/night/strong 30.4% 61.2 (21.9,103.2) 10.4 (1.2,18.0) 16.3 (11.1,21.0) 65.4 (40.3,86.1)
Night/strong 30.7% 60.6 (21.1,104.6) 12.8 (2.2,19.1) 16.2 (10.8,20.9) 64.4 (38.2,86.5)
Snow/night/weak 31.0% 61.8 (23.3,103.5) 13.4 (6.0,19.1) 16.5 (11.3,21.0) 65.3 (41.0,86.2)
Snowless 31.4% 58.6 (19.4,103.7) 14.0 (7.6,19.2) 15.9 (10.4,20.7) 63.3 (36.1,86.3)
Snow/strong 32.8% 59.1 (21.7,98.2) 11.3 (1.7,17.9) 16.1 (10.9,20.5) 64.3 (39.0,85.9)
Snow/day/strong 33.5% 58.1 (21.7,96.2) 11.7 (2.6,17.8) 16.0 (10.9,20.4) 63.8 (38.7,85.7)
Strong 34.0% 58.9 (21.1,100.1) 12.3 (2.6,18.4) 16.0 (10.7,20.6) 63.9 (38.2,86.0)
Snowless/day/strong 34.1% 55.1 (17.5,95.8) 12.5 (5.7,18.0) 15.3 (9.9,20.2) 62.6 (34.8,85.3)
Night 34.3% 61.0 (21.5,104.6) 13.0 (3.4,19.1) 16.3 (11.0,20.9) 64.7 (39.1,86.4)
Day/strong 34.9% 57.5 (21.0,96.1) 11.9 (2.9,17.9) 15.8 (10.6,20.4) 63.6 (38.1,85.6)
Snow/day 35.6% 57.4 (20.6,95.8) 11.6 (2.6,17.9) 15.9 (10.7,20.4) 63.3 (37.5,85.7)
Snow/night 35.8% 61.5 (22.4,103.3) 11.9 (1.9,18.6) 16.4 (11.2,21.0) 65.4 (40.6,86.2)
Day 36.4% 57.0 (20.3,95.8) 11.7 (2.9,17.9) 15.8 (10.5,20.4) 63.2 (37.2,85.6)
Snow/weak 36.5% 58.9 (20.5,99.6) 12.5 (4.7,18.7) 16.1 (10.8,20.8) 63.7 (38.1,85.9)
All 36.7% 58.9 (20.9,100.0) 12.3 (3.0,18.5) 16.0 (10.7,20.6) 63.9 (38.2,86.0)
Snow 36.9% 59.0 (21.3,98.7) 11.7 (2.1,18.1) 16.1 (10.9,20.6) 64.1 (38.7,85.9)
Snowless/day 37.2% 55.1 (17.5,95.8) 12.5 (5.7,18.0) 15.3 (9.9,20.2) 62.6 (34.8,85.3)
Weak 39.0% 58.9 (20.5,99.6) 12.5 (4.7,18.7) 16.1 (10.8,20.8) 63.7 (38.1,85.9)
Snow/day/weak 40.3% 54.8 (18.0,93.8) 11.1 (2.7,17.9) 15.6 (9.9,20.4) 61.4 (34.0,85.6)
Day/weak 42.2% 54.8 (18.0,93.8) 11.1 (2.7,17.9) 15.6 (9.9,20.4) 61.4 (34.0,85.6)
Snowless/day/weak 44.3% 57.7 (22.3,90.7) 4.3 (0.0,11.9) 15.7 (11.5,19.6) 64.3 (40.5,86.2)
of the submodels, while the 10th percentiles 𝑝99 were close to 10
meters in the ALS data. The underestimation of canopy heights in
a similar boreal setting was previously reported by Neuenschwander
et al. (2020), where data captured during snowy conditions similarly
showed larger underestimation than snowless data.

Night data being generally better than day data was expected, as
the increased solar noise during daytime will make noise filtering
more difficult. However, as recently reported by Neuenschwander et al.
7

(2022), day data generally has fewer signal photons than night data
in snowless forest conditions, with the most pronounced discrepancy
in weak beam data. Our results indicate that similar behavior likely
happens also in snowy conditions: while snow/night/weak data work
quite well with RMSE of 31.0%, snow/day/weak is one of the worst
performing subsets at RMSE of 40.3%.

Due to ATLAS instrument operating in the visible green spectrum
(532 nm), strong backscattering from snow can be expected, which
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Fig. 7. Density scatter plots of the submodels, in the same order as in Table 1.
makes data captured from snowy forests different from data captured
on snowless conditions. The ratio of canopy and ground reflectance is
thus expected to vary strongly between snowless and snowy conditions
(e.g. Duong et al., 2008), which in a photon counting setting like ICESat
−2 can strongly affect canopy metrics, such as canopy cover (Neuen-
schwander et al., 2022). The average number of ground and canopy
photons per segment versus the day of the year is shown in Fig. 8.
While there is variation in the photon rates due to weather effects and
different spatial distributions of the segments, the winter data have
significantly more photons than snowless data. Yet, submodels using
data from snowy season have worse performance. Possible explanation
8

may be that the reflectance difference is further affected by presence
of frost or snow on the trees, which usually is much less permanent
than snow on the ground. Possible evidence of this is the larger canopy
photon counts seen in the beginning of the year in Fig. 8. The varying
canopy frost and snow conditions could thus make winter data more
heterogeneous and harder to model. The presence of heavy snow load
in the canopy could also affect tree allometry and canopy cover, which
can further obfuscate the relationship between forest AGB and ICESat
−2 data. While the study area is dominated by evergreen conifers,
there is some deciduous admixture. In winter, the deciduous trees can
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Fig. 8. Average number of ground (black square) and canopy (green triangle) photons
per segment versus day of the year. Dates with less than 100 segments were omitted.

be expected to scatter fewer photons, due to the smaller surface area
caused by the absence of leaves.

Another possible aspect is the increased cloud cover during the
winter months. In general, the quality thresholding used in this study
seemed to remove most of the cloud-contaminated data based on the
ATLAS cloud confidence flag of the remaining track segments, but
some potentially clouded segments remained. During the course of
research, we tested discarding also the remaining segments with a cloud
confidence flag higher than 1, but it did not improve the performance
clearly.

The application of quality criteria to clean the data of unreliable
observations is crucial for obtaining reliable AGB estimates from ICESat
−2 data. More stringent photon number or canopy photon number
thresholding can improve the model performance by discarding track
segments with a poor canopy signal, but as a drawback the number of
segments is also reduced. Furthermore, given the different radiometric
properties of e.g. sapling stands and mature forests, too stringent qual-
ity thresholding may result in an unbalanced representation of forest
types.

4. Conclusions

In this study, we investigated the effects of acquisition time of
day (day/night), beam strength and snow cover on boreal forest AGB
estimation using ICESat −2 data. We also examined how merging data
acquired in different conditions affected the model performance. This
study used a multi-phase modeling framework, where ALS and Sentinel-
2 based AGB model was used to produce proxy AGB values on the
ICESat −2 track locations. Mixed effect models were then constructed
for each data subset and evaluated.

The results indicated that strong beam night data from snow-free
conditions performed best, with the clearly smallest RMSE of 26.9%.
However, in the boreal forest zone the availability of such data could
be limited, because in the midsummer the sun will stay the above the
horizon or just barely under it throughout the night. Only four out of
thirty passes from our study area represented this type of data. The next
best data subsets were snow/night/strong (30.4%), snow/night/weak
(31.0%), snow/day/strong (33.5%), and snowless/day/strong (34.2%).

In general, we found that models built for the specific data subset
are superior to the merged models. While some of the merged models,
such as snowless/strong (30.2%), represented a middle ground between
the respective subset models, they performed slightly worse than the
specific models when applied to the respective data subset. Further-
more, we found that data captured in snowless conditions performed
better than snowy data, night data was slightly better than day data,
and strong beam data was superior to weak beam data. While snowy
data did not produce the best model performance, the results support
9

that ICESat −2 data captured in snowy conditions could be utilized for
AGB estimation in evergreen boreal forests.

A typical spaceborne lidar application scenario would involve pre-
diction of AGB outside of the area where the model was trained,
i.e. a model transfer scenario, which will be our objective for the next
study. In the next study, we will also explore inference and uncertainty
quantification of the predicted AGB.
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