Initial effects of post-harvest ditch cleaning on greenhouse gas fluxes in a hemiboreal peatland forest

Cheuk Hei Marcus Tong a,*, Mats B. Nilsson a, Ulf Sikström c, Eva Ring c, Andreas Drott d, Karin Eklöf b, Martyn N. Futter b, Mike Peacock b, c, Joel Segersten d, Matthias Peichl a

a Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 910 83 Umeå, Sweden
b Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
c The Forestry Research Institute of Sweden (Skogforsk), 751 83 Uppsala, Sweden
d The Swedish Forest Agency, 903 25 Umeå, Sweden
* School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK

A R T I C L E I N F O
Handling Editor: Daniel Said-Pullicino

Keywords:
Carbon dioxide
Closed chamber
Clear-cut
Drainage
Methane
Nitrous oxide

A B S T R A C T

Ditch cleaning (DC) is a well-established forestry practice across Fennoscandia to lower water table levels (WTL) and thereby facilitate the establishment of tree seedlings following clear-cutting. However, the implications from these activities for ecosystem-atmosphere greenhouse gas (GHG) exchanges are poorly understood at present. We assessed the initial DC effects on the GHG fluxes in a forest clear-cut on a drained fertile peatland in hemiboreal Sweden, by comparing chamber measurements of carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) fluxes from soil and ditches in DC and uncleaned (UC) areas over the first two post-harvest years. We also evaluated spatial effects by comparing fluxes at 4 m and 40 m from ditches. We found that 2 years after DC, mean (±standard error) WTL of −65 ± 2 cm was significantly lower in the DC area compared to −56 ± 2 cm in the UC area. We further observed lower gross primary production and ecosystem respiration in the first year after DC which coincided with delayed development of herbaceous ground vegetation. We also found higher CH₄ uptake but no difference in N₂O fluxes after DC. Greater CH₄ uptake occurred at 4 m compared to 40 m away from both cleaned and uncleaned ditches. Model extrapolation suggests that total annual GHG emissions in the second year were reduced from 49.4 ± 17.0 CO₂-eq ha⁻¹ year⁻¹ in the UC area to 27.8 ± 10.3 CO₂-eq ha⁻¹ year⁻¹ in the DC area. A flux partitioning approach suggested that this was likely caused by decreased heterotrophic respiration, possibly because of enhanced soil dryness following DC during the dry meteorological conditions. CH₄ and N₂O fluxes from clear-cut areas contributed <2 % to the total (soil, ditches) GHG budget. Similarly the area-weighted contributions by CO₂ and CH₄ emissions from both cleaned and uncleaned ditches were <2 %. Thus, our study highlights that DC may considerably alter the post-harvest GHG fluxes of drained peatland forests. However, long-term observations under various site conditions and forest rotation stages are warranted to better understand DC effects on the forest GHG balance.

1. Introduction

Northern peatlands represent an important sink for atmospheric carbon dioxide (CO₂) and constitute a major global store of soil carbon (270–621 Gt C) (Adams and Faure, 1998, Loisel et al., 2014; Turunen et al., 2002; Yu, 2012). However, during the past century large areas of pristine mires were drained for forestry activities in Fennoscandia, the Baltics, Canada, USA and Russia (Minkkinnen et al., 2008; Paavilainen and Paivänen, 1995; Paivänen and Hännel, 2012). Today, many forests on drained peatlands have reached the end of their rotation age and are subject to harvest. Following final harvest (i.e. clear-cutting), ditch cleaning (DC) is a common practise in northern Europe (Finland, Sweden, Estonia and Latvia) to improve drainage and thereby facilitate tree seedling establishment (Bergquist et al., 2016; Finer et al., 2018; Paivänen and Hännel, 2012; Tomppo, 2005). According to The Swedish National Forest Inventory (NFI), the 5-year average rate of forest area subject to DC activities in Sweden has increased by a factor of four, from 2600 ha year⁻¹ in 2005–2009 to 10400 ha year⁻¹ in 2015–2019.

* Corresponding author.
E-mail address: cheuk.hei.tong@slu.se (C.H.M. Tong).
While DC may be a beneficial measure for supporting seedling establishment and tree growth, a deeper water table level (WTL) after DC might alter the GHG balance significantly through its impact on ecosystem hydrology. While DC effects on the GHG balance have been recently explored for a forest clearcut on wet mineral soil in boreal Sweden (Tong et al., 2022), such assessment is currently lacking for the nutrient-rich peat soils in the hemiboreal region. Based on a paired experimental setup including adjacent DC and UC areas, the aim of this study was therefore to investigate the impact of post-harvest DC on GHG fluxes in response to DC; and (3) assess DC effects on the annual GHG balances including fluxes from clear-cut areas and ditches.

2. Material and methods

2.1. Site description and experimental design

This study was conducted at the Skogforsk experimental field site 303 Tobo which is located approximately 40 km north of Uppsala city, Sweden (60°15′54″N, 17°37′00″E, 40 m a.s.l.). Climate normals for 1991–2020 recorded at a nearby (~15 km) weather station (Film) by the Swedish Meteorological and Hydrological Institute (SMHI; https://www.smhi.se), had annual mean air temperature and precipitation of 6.2 °C and 603 mm respectively, and a snow cover period (mean snow depth at least 5 cm) lasting from November to April. The study area was originally a minerotrophic mire which was drained with a ditch network for agricultural use (Fig. 1). In the beginning of the 1970s Norway spruce (Picea abies) seedlings were planted at the site. According to the national SLU Soil Moisture Map (Agren et al., 2021), the hydrological site conditions at Tobo in 2011 (i.e., prior to harvest) were similar to those of other nearby peatland forest areas (Fig. A.2).

In September 2017, the ca. 45-year-old stand consisting of about 90 % Norway spruce and 10 % birch (Betula pendula) was harvested. In July 2016, a total of 11 main experimental plots were installed as a split-plot experiment with ditch cleaning as the main treatment (UC = uncleaned; DC = ditch cleaned) and site preparation (mounding) as sub-treatment (No mounding or mounding). Each main plot (60 m × 80 m) included two different sub-treatment plots (30 m × 80 m; hereafter subplots) located perpendicular to the ditches (short side parallel to the ditch). In this study, 10 of these 11 subplots with no mounding as sub-treatment were used, with five of them located next to uncleaned ditches (UC ditches) and cleaned ditches (DC ditches), respectively, which were evenly distributed over the area (Fig. 1). Ditch cleaning was undertaken using an excavator during the first week of November 2017. Norway spruce seedlings (15–25 cm in height) were subsequently planted (with a spacing of 2.15 m × 2.15 m) in the beginning of May 2018. Due to high seeding mortality and browsing damage during 2018, the plots were fully replanted in the beginning of May 2019 with similar Norway spruce seedlings and at the same spacing as in 2018. However, replanting of the subplots was carried out only within the first 45 m from the ditch.
The ditch network system at the site consists of a central main ditch running north–south across the entire site, in connection with perpendicular tributary ditches, four of which are situated east of the central main ditch at about 185 m intervals, and two situated west of the central ditch. There is also a drainage ditch at the southern edge of the site (Fig. 1). DC was performed in the central ditch, two of the eastern perpendicular tributary ditches and both western tributary ditches (Fig. 1). The site lies on a relatively flat area, but has a gentle slope (~0.3 %) due to which drainage water flows southward along the central ditch.

The field-vegetation type according to Hänell (1986), assessed in August 2019, was predominantly classified as a tall-herb type indicating a site quality that corresponds to a predicted stem wood production of 10.2 m³ ha⁻¹ year⁻¹. Herbaceous species including Chelidonium majus, Cirsium spp., Deschampsia cespitosa, Lactuca muralis, Ranunculus repens, Senecio sylvaticus, Taraxacum sp., Urtica dioica and Vaccinium spp. had established across the site during the first two years following harvest, contributing to a total dry weight of 30 ± 2.0 ton ha⁻¹ collected at all 10 subplots in September 2020. Eriophorum vaginatum and Juncus spp. were occasionally found in the uncleaned ditches and likely existed also in the cleaned ditches before DC. The degree of humification of the peat was H8·H9 (von Post scale; von Post, 1922) at the peat depth of 0 – 30 cm. Peat depth was > 100 cm within all subplots used in this study. The mean (±standard error) soil carbon and nitrogen contents determined for all 10 subplots in September 2020 were 50.4 ± 0.6 and 3.06 ± 0.04 % (i.e. C:N ratio: 16.5 ± 0.3), respectively, without significant difference between UC and DC areas (Table A.1 and Fig. A.3). While site-specific information is lacking, data from the Swedish Forest Soil Inventory (SFSI) suggest that soil pH ranges between 5.8 and 6.1 in this region. The pH of ditch water samples was measured to be 7.0 ± 0.2. Prior to ditch cleaning (i.e. between the harvest in September to early November 2017), the mean WTL was –35 ± 3 cm in the UC area and –33 ± 4 cm in the DC area, revealing statistically insignificant difference (p = 0.74) with each other (Fig. A.3). Thus, although the relatively short period between harvest and ditch cleaning did not allow for extensive pre-treatment measurements, the similar soil chemistry and pre-treatment WTL data across the study site suggest that no bias in local environmental conditions was present that could confound the assessment of ditch cleaning effects.

2.2. Greenhouse gas flux measurements

Within each subplot, we selected GHG flux sampling locations at 4 m and 40 m on both sides of the ditches (hereafter fluxes in the clear-cut area) (Fig. 1). In addition, CO₂ and CH₄ were measured in the UC and DC ditches (hereafter fluxes in the ditches). In the clear-cut area, we carried out CO₂ and CH₄ flux measurements every second week using the closed dynamic chamber method (Livingston and Hutchinson, 1995) during daytime from May to November in 2018 and 2019, i.e., during the first two years after clear-cutting and DC. In late April 2018, i.e. one month before the first flux measurement, square aluminium frames (48.5 × 48.5 cm) were permanently installed at each sampling location. The frame base was inserted down to 5 cm below the soil surface. At each frame, measurements were conducted first with a transparent chamber (light transmission rate 81 %) to estimate the net ecosystem CO₂ exchange (NEE). The chamber was then covered with an opaque and light-reflective shroud to estimate the ecosystem respiration (Rₑ) during dark conditions. The gross primary productivity (GPP) was then calculated by subtracting Rₑ from NEE. In the first year (2018), we used a chamber with the dimensions of 48.5 × 48.5 × 30 cm whereas in the second year (2019), a taller chamber (48.5 × 48.5 × 50 cm) of the same material was required to cover the herbaceous vegetation growing within the frames. While the headspace air in the smaller chamber was mixed by the continuous sample air return flow from the analyser (see below), this larger chamber was equipped with a small fan to further support air mixing in the larger and densely vegetated headspace. A comparison of repeated (i.e., within < 5 min) fluxes measured with the two different chamber sizes indicated good agreement for CO₂ (r² = 0.95) and CH₄ (r² = 0.58) fluxes respectively (Fig. A.4). The lower r² for the CH₄ flux was likely caused by the disturbance from the first measurement which may have altered the relatively small CH₄ concentration gradient prior to the subsequent measurements. In any case, while the different chamber type might have potentially affected the between-year comparison (i.e., 2018 vs 2019), it had no effect on the assessment of DC effects since the same chamber was used in both treatments within each of the two years. During each measurement, the chamber was placed on the frame for 180–240 s. The chamber was connected to an Ultraportable Los Gatos Research (LGR) greenhouse gas analyser (Model 915-0011; San Jose, CA, USA) with a built-in sampling pump drawing and returning air between chamber and analyser at a flow rate of 0.8 standard L min⁻¹. The analyser determined chamber CO₂ and CH₄ concentrations at 2 s intervals with accuracy levels of ± 300 ppb and ± 2 ppb, respectively. To eliminate the effect of water vapour on volumetric dilution and spectroscopic line broadening, the dry air mole fraction was used.

The slope of the change in CO₂ and CH₄ concentration over time (dC/dt, ppb s⁻¹) was estimated by a simple linear regression over a chosen data range. Specifically, after discarding the first 20 s concentration data (dead bands), the slopes for all possible 100 s windows (or 60 s if H₂O has reached saturation during measurement) over the measurement period were calculated and the slope with the highest
coefficient of determination (r^2) was chosen as dC/dt. The flux rate was then calculated based on dC/dt and the ideal gas law (Eq. (1)):

$$ F = \frac{dC}{dt} = \frac{V \times p}{R \times T_a \times A} $$

(1)

where F is the measured flux (μm$^{-2}$ s$^{-1}$), dC/dt is the linear slope with the highest r^2 of concentration change over time (ppm s$^{-1}$), V is chamber headspace volume (m3), p is the atmospheric pressure (approximated by a constant value of 101,325 Pa), R is the universal gas constant of 8.3143 (m3 Pa K$^{-1}$ mol$^{-1}$), T_a is the mean air temperature (K) during the measurement, and A is the frame area (m2).

N_2O fluxes were measured every second week with a separate set of opaque chambers (48.5 \times 48.5 \times 50 cm) from May to November 2019. Each of these chambers was equipped with a small fan for maintaining air circulation and a Hobo® pendant temperature logger (Onset Computers, Bourne, MA, USA) for monitoring air temperature in the chamber headspace. The chambers were placed on the frames for 75 min during which four 60 ml gas samples were taken from the chamber with plastic syringes at 0, 25, 50 and 75 min after closure. The gas samples were injected into 20 ml evacuated glass vials and analysed for their N_2O concentration within seven days using a headspace sampler (TurboMatrix 110; Perkin-Elmer, MA, USA) and a gas chromatograph (GC) system (Clarus 580, PerkinElmer Inc, USA) fitted with two identical 30 m \times 0.53 mm idimeters megapolar capillary porous Layer Open Tubular columns (Elite PLOT Q) maintained at 30°C (detection limit: $N_2O < 1$ ppb). The GC system was equipped with an electron capture detector (ECD) operated at 375°C for N_2O analysis. The linear increase of N_2O concentrations inside the chamber over time was then converted into a flux estimate using Eq. (1).

Poor quality flux data, defined by the root-mean-square error (RMSE) and r^2 of the chosen slope of dC/dt, were filtered out before further analysis. Specifically, in the clear-cut area, CO_2 fluxes with RMSE >2.5 ppm and $r^2 < 0.90$, CH_4 fluxes with RMSE >2.5 ppb and $r^2 < 0.90$, and N_2O fluxes with RMSE >10 ppb and $r^2 < 0.90$ were removed. These thresholds were identified based on visual examination of the data (Fig. A.5). These quality control procedures led to the removal of about 2%, 5%, and 8% of all CO_2, CH_4 and N_2O fluxes measured, respectively. Note that the sign convention in this study is such that positive and negative values indicate that the ecosystem is a source and sink, respectively.

$Ditch CO_2$ and CH_4 fluxes were measured monthly with opaque floating chambers (diameter 31.5 cm, volume 9.56 L) in 2018 and 2019 from seven ditches, using a Picarro G4301 GasScouter (Picarro, Santa Clara, CA, USA) at a sampling interval of 1 s and accuracies of ±400 ppb and ±3 ppb for CO_2 and CH_4 concentrations, respectively. Ditch water levels were recorded simultaneously during each measurement using a ruler. On some occasions when the ditches were dry, the chamber was gently pushed into the sediment to create a seal as commonly applied in recent studies (Peacock et al., 2021a; Peacock et al., 2021b). In addition, since it was not possible to fit the floating chamber over some of the tall vegetation species (e.g., $Juncus$ spp.) growing sporadically in some of the ditches, we were not able to account for their GPP and autotrophic respiration (R_a). Thus, our ditch measurements represent the ditch water (or sediment) surface-atmosphere flux. Low quality ditch fluxes were removed with the threshold RMSE >6 ppm and $r^2 < 0.90$ for CO_2 fluxes, and RMSE >5 ppb and $r^2 < 0.90$ for CH_4 fluxes (Fig. A.6). Ditch N_2O fluxes were not determined in this study, however, their magnitudes are commonly very low (Peacock et al., 2017).

2.3. Environmental variables

Environmental conditions were recorded both manually during each flux sampling campaign and continuously in hourly intervals through the entire year. The manually recorded data was used to i) investigate the environmental drivers of the measured fluxes through statistical analyses and ii) to calibrate the continuous data which served as input for the models to estimate annual fluxes (see Section 3.5). Manual WTL measurements were taken inside PVC groundwater tubes ($\theta = 32$ mm external and 26 mm inside, 125 cm long with 3 mm holes every 2.5 cm) adjacent to each measurement frame and inserted to about 1 m depth into the peat. Air temperature (T_a) along with soil temperature at 5 and 10 cm depth (T_{s5}, T_{s10}) outside the frame were recorded manually during each flux measurement using a handheld thermometer (shaded from direct sunlight during T_a measurement). In 2019, photo-synthetically active radiation (PAR) was measured with a handheld radiometer (QSO-S PAR Photon Flux Sensor connected with ProCheck data logger, both by Decagon Devices, Pullman, WA, USA) and soil moisture within the upper 5 cm (SM) was measured at three sides around the frame during each flux measurement using a G3S combined moisture-temperature sensor (Decagon Devices, Pullman, WA, USA) connected to the ProCheck data logger.

Continuous hourly data as input for the models to estimate annual GHG fluxes were obtained at the site and from nearby weather stations. Specifically, the WTL was monitored at an hourly interval using WT-HR 1000 probes (TruTrack ltd, Christchurch, New Zealand) placed inside the PVC groundwater tubes adjacent to each frame. In addition, automated soil temperature and moisture sensors (CS655; Campbell Scientific, Logan, USA) connected to a data logger (CR1000X; Campbell Scientific, Logan, USA), were installed at one location near the centre of the study area to monitor the temporal variations at hourly intervals (Fig. 1). Continuous hourly PAR and T_a data were obtained from the nearest available weather stations ICOS-Norunda (~21 km away) and the SMHI meteorological station in Film (~15 km away), respectively. For all environmental variables (i.e., WTL, PAR and T_a), the linear correlations between manual and automated sensor data were strong ($r^2 > 0.90$, Fig. A.7). The continuous environmental data were therefore calibrated with the manual measurements to obtain hourly model input data adjusted to the study site conditions.

2.4. Vegetation data

To assess the effects of vegetation development on GHG fluxes, we determined the ground vegetation areal coverage defined as the projected area of vegetation over a unit of land (m^2 m^{-2}). In addition, we took overhead images of each frame in October 2018 and in July 2019 to derive a vegetation greenness index defined by the green chromatic coordinate (g_{cc}) (Järveoja et al., 2016a; Peichl et al., 2015; Sonnentag et al., 2012) (Eq. (2)).

$$ g_{cc} = G / (R + G + B) $$

(2)

where g_{cc} refers to the greenness index from the image taken on the frame; R, G and B denote intensity (0–255) of the red, green and blue image channels. The RGB values were averaged for each image pixel located within the chamber frame. To describe the growing season phenology as model input for estimating annual GHG balances in 2019, a Gaussian curve was fitted as a function of number of days away from the assumed day of peak vegetation growth (Riutta et al., 2007; Wilson et al., 2007) (Eq. (3)).

$$ g_{cc}(JD) = g_{cc,max} \times \exp{-0.5 \times ((JD - JD_{max})/b)^2} $$

(3)

where $g_{cc}(JD)$ denotes the greenness index on the particular Julian day (JD; day of year numbered from 1 to 365); $g_{cc,max}$ refers to the maximum greenness index (see Eq. (2)) which was estimated to be reached in early July 2019 ($JD_{max} = 189$ on visual field observations of plant development throughout growing season; Parameter b denotes the width of the curve). In July 2019, vegetation growth outside the frames was also examined by measuring ground vegetation height, areal coverage and g_{cc} at 12 spots evenly distributed within 15 m around each frame, in order to provide information on (1) whether the vegetation inside the chamber.
frames was representative of the surrounding area, and (2) DC effects on ground vegetation growth.

2.5. Modelling of annual GHG budgets

To estimate the annual CO₂ and CH₄ balances, we developed nonlinear regression models to predict hourly fluxes in response to environmental parameters and vegetation development following Järveoja et al. (2016a, 2016b), Kandel et al. (2013) and Olson et al. (2013). Particularly, GPP from each frame was fitted to hourly mean PAR using a hyperbolic function modified with normalised frame-specific g_{cc} which represents seasonal changes in vegetation biomass (Eq. (4)):

$$GPP_{\text{fr-frame}} = \left(\alpha \times P_{\text{max}} \times \text{PAR} \times g_{\text{norm}} \right) / \left(\alpha \times \text{PAR} + P_{\text{max}} \times g_{\text{norm}} \right)$$

where GPP denotes the hourly gross primary production (mg m⁻² h⁻¹ of CO₂-C); α denotes model fitted value of the initial slope of the light-use efficiency of photosynthesis (µmol photons⁻¹ of CO₂-C); PAR denotes the hourly mean photosynthetically active radiation (µmol m⁻² s⁻¹); P_{max} denotes the modelled fitted value of maximum photosynthesis under light saturation (mg m⁻² h⁻¹ of CO₂-C); and g_{norm} is the daily estimated frame-specific chromatic greenness index (g_{cc}/JD) normalized to scale between 0 and 1.

In the R_{eco} model, we used an exponential relationship with T_{a} based on Lloyd and Taylor (1994) modified with the normalised frame-specific g_{cc}, as second explanatory variable (Eq. (5)):

$$R_{\text{eco,fr-frame}} = R_{0} \times \exp^{\beta T_{a}} + \left(\beta \times R_{\text{norm}} \right) \times \exp^{\gamma T_{a}}$$

where R_{eco} denotes hourly ecosystem respiration (mg m⁻² h⁻¹ of CO₂-C); T_{a} denotes air temperature (°C); R_{0} which denotes R_{norm} at 0 °C (mg m⁻² h⁻¹ of CO₂-C), b which denotes sensitivity of respiration to T_{a}, and β which is a scaling parameter for plant development representing the contribution of plant autotrophic respiration (R_{a}) to R_{norm}. Using continuous hourly mean T_{a} and ambient PAR data from the nearby weather station as well as g_{cc} of the frame surrounding area as input variables to the respective models, diel hourly R_{eco} and GPP were modelled and summed up for the entire year.

To estimate annual autotrophic and heterotrophic respiration (R_{a} and R_{h}) contributions to R_{norm}, we assumed a carbon use efficiency (CUE) of 0.5 to derive $R_{a} = GPP \times \text{CUE}$ and $R_{h} = R_{\text{norm}} - R_{a}$ (Waring et al., 1998; Gifford, 2003). During winter periods (i.e., November to April) the model estimated low-temperature fluxes mainly based on R_{a}. It is further noteworthy that modelling nighttime respiration based on the nighttime temperature assumes a constant diel temperature sensitivity.

Hourly estimates of CH₄ fluxes were modelled using an exponential relationship with WTL and soil temperature at 10 cm depth (Olson et al., 2013) (Eq. (6)):

$$CH_{4,\text{fr-frame}} = \exp^{b_{1} + b_{2} \times \text{WTL} + b_{3} \times T_{10}}$$

where CH₄ denotes hourly CH₄ flux (g m⁻² h⁻¹ of CH₄-C); b_{1} and b_{2} denote the model fitted sensitivity of CH₄ flux to water table level (WTL, cm) and soil temperature at 10 cm depth (T_{10}), respectively; b_{0} denotes the intercept of the model. Site-level data of continuous WTL and T_{10} were used as input for modelling hourly CH₄ fluxes.

We applied Monte Carlo simulations to evaluate the uncertainty of the annual flux budgets estimated by the model extrapolations (Smith and Heath, 2001). For this purpose, a normal distribution was assigned to each model input parameter based on its mean and standard deviation derived during model development (Table 1). Then, a large number (10000) of possible scenarios were generated using random values from the normal distribution of each model parameter. The standard deviation for the set of 10000 predicted annual sums was then used to describe the uncertainty of the annual flux budget estimates.

Separate models were developed for UC and DC areas with the determination of coefficient (R^{2}) as the criteria for selecting the best final models. The model parameters for the two areas and study years are summarized in Table 1. The comparisons between measured and model fitted values from all nonlinear models are presented in Fig. A.8. Due to the weak response of soil N₂O as well as ditch CO₂ and CH₄ emissions to environmental variables, annual sums of these fluxes were estimated by scaling the median of the measured fluxes to the entire year. Modelled estimates of CH₄ and N₂O were transformed into CO₂ₐ equivalents (CO₂ eq) by applying their global warming potential (GWP) of 34 and 298 over a 100 year timeframe, respectively (IPCC, 2013). The median rather than the mean of the measured CH₄ and N₂O fluxes was used to avoid overestimating the annual sum due to episodic high fluxes.

2.6. Statistical analysis

We first performed a principal component analysis (PCA) to explore the overall coherence structures among all the variables, including the CO₂ and CH₄ fluxes, environmental factors and treatments (DC and distance). The relationship of N₂O fluxes with potential factors were analysed in separated PCA analysis. The input variables to the PCA were normalized to zero mean values by subtracting the mean and to unit variance by dividing the values by the standard deviation of the variable (Jolliffe, 1995). Significant principal components were selected and presented using the broken-stick model (Jackson, 1993). The variable loading, defined as the correlation between each variable and PC, was used as a criterion to determine the relationships (Cadima and Jolliffe, 1995).

Next, since PCA did not provide information on the significance level on the treatment effect on the study variables, we applied mixed effect models with repeated measures to quantify the statistical significance level of the treatment effects (i.e., DC treatment and distance to ditch) on the spatio-temporal variation of environmental (i.e., T_{a}, T_{10}, T_{s}, SM or WTL) and GHG flux (i.e. GPP, R_{eco} NEE, CH₄ or N₂O) variables (Eq. (7)).
These models included a spatial covariance structure where correlations decline over time (Phillips et al., 2001). The statistical models applied were as follows:

\[y_{ijk} = \mu + T_j + D_k + TD_{jk} + S_{ik} + \varepsilon_{ijk} \]

(7)

where \(y_{ijk} \) denotes the environmental or GHG flux variable for sampling occasion \(i \) with DC treatment \(j \) (\(j = \text{UC or DC} \)) at distance to ditch \(k \) (\(k = 4 \text{ m or} 40 \text{ m} \)); \(\mu \) denotes the overall mean of the environmental or GHG flux variable; \(T_j \) denotes the fixed effect of DC treatment \(j \); \(D_k \) denotes the fixed effect of distance to ditch \(k \); \(TD_{jk} \) denotes the two-way interaction between the effects of the treatment \(j \) and distance to ditch \(k \); \(S_{ik} \) denotes the random effect of sampling occasion \(i \); \(\varepsilon_{ijk} \) denotes the random error for sampling occasion \(i \) with treatment \(j \) at distance to ditch \(k \). Mixed effect models were proven robust to different data distributions (Schielzeth et al., 2020). Statistical results from the mixed effect models were considered significant if \(p < 0.05 \). The standard error (\(\pm SE \)) of the sample averages was used as a measure of uncertainty throughout this paper. All statistical analysis was conducted using the Mathworks Matlab software R2019b.

3. Results

3.1. Environmental data

The annual mean air temperatures in 2018 and 2019 at the nearby SMHI weather station were 6.8 and 6.7 °C, which are close to the 30-year long-term average (1991–2020) of 6.2 °C. However, May 2018 was an unusually warm month based on both local site data (Fig. 2) and SMHI weather station data (2018: 14.3 °C; 1991–2020: 10.0 °C). The annual precipitation in 2018 (522 mm) and 2019 (703 mm) measured at the SMHI weather station was below and above the long-term average (606 mm), respectively. Except during July and August 2018 with 37% to 41% higher precipitation amounts than the 30-year normal, the monthly precipitation sums during 2018 were 21% to 83% less than the 30-year normal. The temporal dynamics and magnitudes of photosynthetically active radiation (PAR) were similar in both years (Fig. 2).

In 2018, the seasonal variation in the spatial means (i.e., averaging 4 m and 40 m locations) of WTL varied from −44 to −62 cm and −49 to −65 cm in the UC and DC area, respectively (Fig. 2), with means of −54 ± 1 and −57 ± 1 cm (\(p > 0.05 \)) for the entire monitoring period, May - November (Table A.2). In 2019, the seasonal variation in the spatial mean WTL spanned from −36 to −74 cm and from −42 to −89 cm in the UC and DC area, respectively, being significantly lower for DC with −65 ± 2 cm compared to −56 ± 2 cm for UC (\(p < 0.01 \); Table A.2) over the 2019 monitoring period. The lowest WTL occurred from early July to the end of September, during which time the WTL difference between UC and DC sampling locations became largest (varying between 5 and 20 cm). In both years 2018 and 2019, the mean WTL at sampling locations located 4 m from ditches was significantly lower (\(p < 0.01 \)) than at 40 m distance in both UC and DC areas (Table A.2).

In 2019, similar patterns were observed for soil moisture, with a significantly higher (\(p < 0.01 \)) growing season mean of 0.34 ± 0.01 m³ m⁻³ in the UC area than 0.30 ± 0.01 m³ m⁻³ in the DC area (Fig. 2 and Table A.2). The lowest soil moisture level occurred in July and August, when the difference in soil moisture levels between UC and DC sampling locations reached up to 0.11 m³ m⁻³.

![Fig. 2. Environmental variables monitored at the sampling locations (shown as means of 4 m and 40 m from ditch) during GHG flux measurements averaged for each sampling occasion during year 2018 and 2019. The variables include (a) air (\(T_a \)) and soil temperature (\(T_s, 5 \text{ cm} \) and \(T_s, 10 \text{ cm} \) depth), (b) ambient photosynthetically active radiation (PAR), (c) soil moisture at 5 cm depth (SM), (d) water table level. For (c) and (d), data were grouped by ditch treatment uncleaned (UC) and cleaned (DC). Means of each sampling occasion ± standard error (SE) for both UC and DC areas (\(n = 10 \)), respectively. As manual SM measurements were not conducted in 2018, SM values from the automated sensors, calibrated using 2019 data, are presented to illustrate the mean SM level near the center of the site (See Fig. 1).](image-url)
3.2. Ground vegetation areal coverage and composition

In October 2018, the presence of in-frame vegetation was significantly greater in the UC area (mean areal coverage: 47 ± 13 %; mean greenness index: 0.37 ± 0.01) than in the DC area (mean areal coverage: 13 ± 5 %; mean greenness index: 0.34 ± 0.00) (Fig. 3 and Table A.2). Although there were about 30 % of measurement frames without significant vegetation (areal coverage <10 %) in both UC and DC areas, half of the measurement frames in UC area was comprised of substantial amounts of vegetation (areal coverage >60 %) leading to a larger range of vegetation areal coverage and greenness index particularly within the UC area (Fig. 3). In July 2019, ground vegetation became more abundant spreading across the entire site. At that time, similar in-frame mean vegetation areal coverage values were recorded for the UC area (51 ± 12 %) and DC area (46 ± 8 %), and also for the mean in-frame greenness index, UC (0.38 ± 0.01) and DC (0.38 ± 0.01) (Fig. 3 and Table A.2). Comparing in-frame vegetation with the surrounding area, we observed similar greenness indices in the surrounding UC and DC areas (UC: 0.38 ± 0.01; DC: 0.38 ± 0.01) in July 2019. Similarly, vegetation coverage was not significantly different (p > 0.05) between the surrounding UC and DC areas (UC: 54 ± 6 %; DC: 59 ± 4 %), which is consistent with in-frame vegetation coverage. There was a large spatial variation of vegetation development within the same treatment area, but we found no significant difference (p > 0.05) in vegetation coverage between sampling locations at 4 m and 40 m from the nearest ditch, for both DC treatments in both years (Table A.2).

3.3. Greenhouse gas fluxes in clear-cut area

The seasonal variations of daytime CO₂ flux partitions (NEE, GPP, and R_\text{eco}) were relatively larger in 2019 than in 2018 for both UC and DC areas (Fig. 4a-c). In 2018, the average daytime NEE resulted in emissions of up to 214 and 150 mg m\(^{-2}\) h\(^{-1}\) of CO₂ C at UC and DC areas, respectively. In 2019, average daytime NEE switched to net uptake with maximum values of −36 and −176 mg m\(^{-2}\) h\(^{-1}\) of CO₂ C at the UC and DC areas, respectively (Fig. 4a). In both UC and DC areas, peak season GPP increased by two to three times from 2018 to 2019. Similarly, R_\text{eco} increased by nearly-two times in both UC and DC areas from 2018 to 2019. The peaks of GPP and R_\text{eco} were recorded in late-July to mid-August for both years. There was higher pronounced seasonal variability of GPP and R_\text{eco} at the sampling locations with higher mean growing season fluxes (Fig. A.9). In comparison, the temporal patterns of daytime NEE showed relatively limited seasonal variation in both years. It is further noteworthy that the enhanced spatial variability, in response to vigorous but patchy ground vegetation establishment, considerably increased the uncertainty range of the mean fluxes in 2019.

During the first two years following DC, a net uptake of CH₄ of similar magnitude ranging from −32 to −126 µg C m\(^{-2}\) h\(^{-1}\) was observed across both UC and DC areas at the respective sampling occasion (Fig. 4d). Peak uptake was observed in July and August for both years, with similar ranges of spatial variation within the same treatment area for both years. Compared to CO₂, the spatial variability was similar in both years and caused by the range of consistently higher or lower fluxes occurring throughout the year at specific chamber measurements locations (Fig. A.10). N₂O fluxes in 2019 occurred mostly within the 10–90 percentile range of −14 to 34 µg N m\(^{-2}\) h\(^{-1}\) across both UC and DC areas, respectively (Fig. 4e). In contrast to CH₄, the spatial variability in N₂O fluxes was caused by sporadic high and low fluxes at a given measurement location.

3.3.1. Biotic and abiotic controls of temporal and spatial variations of GHG fluxes in clear-cut area

The PCA for the CO₂ and CH₄ fluxes based on 2018 and 2019 data revealed two significant principal components (PCs) from each year, explaining 63.4 % and 56.6 % of the total variance for the two years, respectively (Fig. 5). In 2018, the CO₂ component fluxes (GPP, R_\text{eco}, and NEE) had the largest association with vegetation greenness index (g_C) relative to other environmental variables of WTL and soil temperature. The component loadings of ditch cleaning (DC) at PC1 and PC2 aligned at the same direction with these variables indicating its negative relationships with g_C and R_\text{eco} along with positive relationships with GPP and NEE. The other variables, namely soil temperature, WTL distance to ditch and CH₄ flux, were instead aligned in the relatively perpendicular direction at PC1 and PC2 (Fig. 5). Particularly, high loading of CH₄ flux (i.e., small uptake of CH₄) was associated with high WTL, low soil temperature, and greater distance to ditches. In 2019, the strong association between g_C and CO₂ component fluxes (GPP, R_\text{eco}, and NEE) persisted which was mostly presented in PC1, but DC became relatively independent from these variables with its negligible contribution to PC 1. Instead, DC became more associated to lower CH₄ flux (i.e., high uptake of CH₄) together with lower WTL and shorter distance to ditches, all of which are positioned along the similar degree of directions.

The PCA for the N₂O fluxes also revealed two significant PCs (Fig. A.11), explaining altogether 49.6 % of the total variance (Fig. A.11). Small component loadings N₂O fluxes in both PC1 and PC2 indicate that the other studied variables did not have strong covariations with N₂O. N₂O contributed slightly to PC1 that its high score represents mainly high WTL and low soil temperatures, but with minor representation to DC and distance effects.

Fig. 3. Ground vegetation (a) areal coverage and (b) greenness index inside the frames at each flux sampling location in October 2018 and in July 2019, grouped by ditch cleaning treatment (DC = cleaned; UC = uncleaned). In July 2019, mean vegetation areal coverage and greenness index of the surrounding areas within 15 m of each flux sampling location are also given. The error bars denote standard error (SE) from the mean (i.e., the centre horizontal line) and the symbols indicate the individual frame values.
3.3.2. DC treatment effects on the GHG fluxes in clear-cut area

The mixed effect models suggested that DC significantly reduced R_{eco} in both years ($p < 0.02$), as well as the in-frame vegetation area cover and GPP in 2018 ($p < 0.05$) (Table 2). However, NEE was not significantly affected by DC in both years ($p > 0.05$). The mixed effect models further suggested that CH$_4$ uptake at 4 m distance from both UC and DC ditches was significantly ($p < 0.01$) higher than at 40 m distance (Table 2). Results from mixed effect model showed no statistically significant variation in N$_2$O fluxes neither to temporal variation nor to DC treatment and distance to ditch variables, while suggesting a significant effect from the treatment-distance interaction ($p = 0.03$), in response to the high fluxes recorded at 40 m from uncleaned ditches (Table 2).

3.4. Ditch CO$_2$ and CH$_4$ fluxes

During both 2018 and 2019, the ditch water level in May and early June was around 4 to 27 cm higher ($p < 0.05$) in the uncleaned than in the cleaned ditches, and all ditches dried out during June to August (Fig. 6a). The 10–90 percentile range of CO$_2$ emission from DC ditches was 0.2 to 150 mg C m$^{-2}$ h$^{-1}$ and higher compared to 0.1 and
9

110 mg C m⁻² h⁻¹ observed at the UC ditches during the two study years (Fig. 6b). The annual mean (median) CO₂ emission rate in 2018 was 61 ± 18 (44) and 55 ± 11 (24) mg C m⁻² h⁻¹ at UC and DC ditches, and in 2019 was 52 ± 12 (31) and 59 ± 14 (30) mg C m⁻² h⁻¹ at UC and DC ditches, respectively.

Ditch CH₄ emissions were highly variable in the UC ditches, particularly during the occurrence of higher ditch water levels during the wet spring season, with the 10–90 percentile range between –2.9 to 109 µg C m⁻² h⁻¹ during the two study years (Fig. 6c). In comparison, the 10–90 percentile range of the CH₄ flux from the DC ditches ranged from -11 to 22 µg C m⁻² h⁻¹. Annual mean (median) ditch CH₄ emission rates of 168 ± 128 (0.0) and 67 ± 50 (0.6) µg C m⁻² h⁻¹ in 2018 and 2019 were estimated for UC ditches, in comparison to 12 ± 6 (3.5) and 2 ± 2 (0.0) µg C m⁻² h⁻¹ in 2018 and 2019 for DC ditches.

3.5. Total annual greenhouse gas balance

Our model estimates suggested that DC reduced the annual GHG emissions by a mean of 44 % in the second year after ditch cleaning (i.e., 2019) relative to the UC area (Table 3). In absolute terms, CO₂ contributed the most to the total GHG budget with 99 and 98 % in UC and DC clear-cut areas, respectively. CH₄ contributed 0.6 and 1.0 %, and N₂O contributed 0.5 and 1.3 %, to the total GHG budget in UC and DC areas, respectively. Annual GPP was 25 % lower in the DC area than in the UC area. Also, Rₑₒ was 25 % lower in the DC area, estimated using a range of carbon use efficiencies of 0.5. The estimate remains at 25 to 26 % under various carbon use efficiencies from 0.4 to 0.6 (Table A.3). The modelled annual CH₄ uptake in CO₂ eq ha⁻¹ year⁻¹ was slightly but significantly higher in the DC area than in the UC area. The annual emission of N₂O in the DC area was statistically not different from that in the UC area.

Table 2

<table>
<thead>
<tr>
<th>N</th>
<th>Mean ± SE</th>
<th>p values from the mixed effect models</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ (mg C m⁻² h⁻¹)</td>
<td>UC4</td>
<td>UC4</td>
</tr>
<tr>
<td>NEE</td>
<td>2018</td>
<td>225</td>
</tr>
<tr>
<td>2019</td>
<td>209</td>
<td>–2 ± 36</td>
</tr>
<tr>
<td>Rₑₒ</td>
<td>2018</td>
<td>225</td>
</tr>
<tr>
<td>2019</td>
<td>209</td>
<td>226 ± 29</td>
</tr>
<tr>
<td>GPP</td>
<td>2018</td>
<td>225</td>
</tr>
<tr>
<td>2019</td>
<td>209</td>
<td>–328 ± 44</td>
</tr>
<tr>
<td>CH₄ (µg C m⁻² h⁻¹)</td>
<td>2018</td>
<td>226</td>
</tr>
<tr>
<td>2019</td>
<td>206</td>
<td>–100 ± 6</td>
</tr>
<tr>
<td>N₂O (µg N m⁻² h⁻¹)</td>
<td>2019</td>
<td>111</td>
</tr>
</tbody>
</table>

Note: Degrees of freedom (df 1, df 2) = 1, N-4 for mixed effect model statistics of all variables. At each sampling occasion, treatment and distance category, the number of replicates were 5. Asterisk indicates statistical significance at α = 0.05.
The annual ditch CO\textsubscript{2} emission was similar for UC and DC ditches. In comparison, the annual ditch CH\textsubscript{4} emission remained negligible for both UC and DC ditches in terms of the GHG balance. Although the absolute values for the proportion of ditch to clear-cut area fluxes were 50.2 % and 6.5 % for CO\textsubscript{2} and CH\textsubscript{4} flux, respectively, the total contribution of ditch fluxes to the area-weighed GHG balance was minor, since the areal coverage of ditches was small (2.4 %) relative to the clear-cut area.

4. Discussion

4.1. Initial effects on spatio-temporal variations of GHG fluxes following DC

Our measurements demonstrate that among the three studied GHGs, the CO\textsubscript{2} flux was the dominant component, with pronounced differences between UC and DC areas observed for both GPP and R\textsubscript{eco}. The similar daytime NEE observed in UC and DC areas during both 2018 and 2019 could be because the decreased magnitude of daytime GPP at the DC area was offset by the concurrent decrease in R\textsubscript{eco}. Lower daytime GPP in the DC area in 2018 was likely associated with the delayed development of in-frame vegetation. Unfortunately, vegetation data from the surrounding area was lacking in 2018 to confirm that this pattern was a general feature and not specific to our measurement frames. However, the good agreement between in-frame and surrounding vegetation growth in 2019 suggests that in-frame vegetation also represented the general vegetation development at the site in 2018.

The mechanism of the delayed herbaceous vegetation development following DC in our study remains uncertain, however, it is to be noted that the upper part of the soil profile at the site was relatively dry with a mean WTL of −54 to −56 cm in all our sampling locations in the two sampling years (Table A.2) which is in contrast to previous studies in boreal mineral soil forests (e.g. Tong et al., 2022) and drained peatland forests with shallower mean WTLs of −30 to −40 cm (e.g. Leppä et al., 2020; Lohila et al., 2011; Ojanen and Minkkinen, 2019). One possible explanation is that the meteorological drought stress combined with the additional soil water reduction following DC might have made it more difficult for herbaceous plants species to establish in the first year. Similarly, the lower R\textsubscript{eco} in DC area in both years (2018 and 2019) was likely due to lower R\textsubscript{a} from the decreased amount of in-frame vegetation biomass, possibly in combination with subsequently decreased plant litter input in both 2018 and 2019, limiting microbial decomposition (i.e., R\textsubscript{h}). Alternatively, the observed differences in herbaceous plant establishment might also result from other unknown, partly stochastic factors regulating seed dispersal and germination. While a thorough examination on the vegetation responses to DC was beyond the current scope, further studies are encouraged to explore in more detail how DC affects the establishment of herbaceous plants species. It is further noteworthy that DC lowered the mean WTL by <10 cm in 2019 and the DC effect on WTL in 2018 was not significant (Table A.2). Possibly, enhanced transpiration from the earlier and more developed herbaceous vegetation in the UC area might have counterbalanced the difference occurring due to the drainage effect from DC. Moreover, although the effect of DC on WTL was relatively small and occurring at a lower soil depth, the change in WTL was significantly correlated (p < 0.05) with the reduction of soil moisture in the surface layer. This indicates the potential importance of herbaceous vegetation on the water regulation along the soil profile (Ruseckas et al., 2015). Such WTL-SM-gcc interactions were also revealed by PCA results from both years which highlight the potential consequences of the vegetation and soil water dynamics on the CO\textsubscript{2} exchange. Hence, it is important to consider the
pre-drainage WTL condition when evaluating the potential DC effect on the vegetation growth and thus CO₂ exchange dynamics. The drainage function commonly diminishes with distance from the ditch (Prévost et al., 1997) and consequently spatial variations in DC effects on GHG fluxes may occur. Our mixed effect model results demonstrated a significant treatment effect from ditch distance on WTL at 4 m relative to 40 m from ditches, however, there was no effect of distance to ditch on CO₂ fluxes in neither DC nor UC areas within the ditch network (Table A.2). Roy et al. (2000) found that the effect of distance to ditch on ground vegetation growth was pronounced only from the third year after clear-cut, which indicates that our initial two years of measurements might not have captured the effect of distance to ditch on vegetation growth that may become evident only several years after DC.

Compared to the CO₂ fluxes, the CH₄ uptake in DC area did not deviate substantially from the UC area and the increase was only apparent in the second year (2019) following DC. This might be explained by the delayed effect of DC on lowering WTL, the latter being a major control of CH₄ fluxes (Maljanen et al., 2010; Ojanen et al., 2010) as further evident from the PCA results and additional single-factor correlation analysis (Fig. A.12), which was significant only in 2019 (p < 0.01). The net uptake of CH₄ decreased (p < 0.01) with distance from both UC and DC ditches in both growing seasons. In the DC area, the lower WTL and soil moisture observed at 4 m compared to 40 m might explain the greater CH₄ uptake near the ditch (Table 2 and Table A.2).

Given the nutrient rich conditions (C:N ratio = 16 ± 1.3), the small N₂O emissions were unexpected since earlier studies have shown a high potential for N₂O emissions for drained organic soils with C:N ratios below 25 (Gundersen et al., 1998; Klemedtsson et al., 2005). The small N₂O emissions at this site were possibly also the result of the relatively low soil moisture content associated with a low WTL compared to other studies in drained peatland forest clear-cuts (e.g. Saari et al., 2010), since suppressed denitrification was previously observed at WTL below ~30 cm (Hefting et al., 2004). Also, since the production and emission of N₂O is commonly highly variable in both space and time as it depends on a complex series of different processes and pathways (Robertson and Tiedje, 1987; Webster and Hopkins, 1996), it is also possible that our biweekly sampling campaigns failed to capture occasional emission events (Smith and Dobbie, 2001). Thus, high spatial and temporal resolution measurements (i.e., using automated chamber or eddy covariance flux systems) are encouraged to study the response of N₂O emissions to post-harvest DC on drained peat soils in more detail (Piilatie et al., 2005).

Ditch emissions of CO₂ and CH₄ were higher and lower, respectively, compared to the range (CO₂: 21–46 mg C m⁻² h⁻¹; CH₄: 188–6838 µg C m⁻² h⁻¹) reported previously from ditches in other drained peatland forests (Ball et al., 2007; Peacock et al., 2021c; von Arnold et al., 2005). In comparison to previously studied ditches in drained peatland forest sites (e.g. Minkkinen et al., 1997; Peacock et al., 2017), the conditions in both UC and DC ditches were relatively dry which may have enhanced soil aeration, resulting in increased CO₂ respiration and aerobic CH₄ oxidation while suppressing anaerobic CH₄ production (Nykänen et al. 1998). It is however noteworthy that the CH₄ emission spikes occurring in the UC ditches during wet spring periods were not observed in the DC ditches. The CH₄ emission spikes in the UC ditches might have been facilitated by the water-logged conditions, which create a favourable anaerobic environment for CH₄ production. Furthermore, the presence of herbaceous species in the UC ditches may have enhanced root-derived substrate supply thereby supporting greater CH₄ production (Zhang et al., 2002).
the dominating component of the total GHG balance, from the DC area. The dominating contribution of the CO\textsubscript{2} exchange to the ecosystem GHG balance (over a 100 year time frame) is in line with earlier studies of the GHG balance in clear-cut sites on drained peatlands (e.g. Korkiakoski et al., 2019; Vestin et al., 2020).

Our mass balance approach assuming a plant CUE of 0.5 at the annual scale (to derive R\textsubscript{a} from GPP, and R\textsubscript{b} from the difference of R\textsubscript{eco} and R\textsubscript{a}) suggests that a considerable decrease in R\textsubscript{a} (by 34 %) was likely the main reason for the decrease in the total GHG balances after DC. It is noteworthy that we arrived at the same results when assuming a plant CUE of 0.4 or 0.6 (Table A.3), the latter spanning the commonly reported range in CUE (DeLucia et al., 2007). A decrease in R\textsubscript{a} following WTL draw-down seems at first counter-intuitive since numerous studies previously suggested that drainage of wet peat soils enhances microbial decomposition of soil organic matter (Maljanen et al., 2010; Ojanen et al., 2013; van Huissteden et al., 2006). However, since our study site appeared relatively dry with the lowest WTL reaching ~107 cm during the summer 2019, it is possible that the increased dryness following DC at our specific site might have contributed to drought-induced inhibition of microbial activity and reduced R\textsubscript{a} (Drymula et al., 2016, Manzoni et al, 2012). In addition, the extensive cover of herbaceous plants species (e.g., Chelidonium majus) established within the UC area might have supported heterotrophic decomposition by providing enhanced input of easily decomposable organic matter (Thormann et al., 2001). Altogether, this indicates that the enhanced drought stress after DC activities might have suppressed rather than stimulated R\textsubscript{a} and net CO\textsubscript{2} emissions at our site, which was characterized by relatively low pre-DC WTL and experienced a meteorological drought in the study year 2018. These findings are in contrast to DC effects at wetter sites where a reduction in WTL following DC might enhance soil mineralization and CO\textsubscript{2} emission rates (Maljanen et al., 2010; Ojanen et al., 2013; van Huissteden et al., 2006). Thus, DC effects on the CO\textsubscript{2} balance might vary across different sites in dependence of the combined effects from the effectiveness of the pre-DC ditch drainage function, weather patterns and site hydrological conditions.

Compared to the CO\textsubscript{2} fluxes, the contribution of soil CH\textsubscript{4} and N\textsubscript{2}O fluxes to the total GHG balance remained limited despite their considerably higher warming potential over a 100-year time frame. Even if considering the warming potential for CH\textsubscript{4} of 86 over only a 20-year time frame (Myhre et al., 2013), its contribution was < 2 %. The negligible contribution of CH\textsubscript{4} fluxes to the total annual GHG budget noted in our study is in line with previous studies on recent forest clear-cuts (e.g. Korkiakoski et al., 2019; Vestin et al., 2020). However, under wetter conditions the response of CH\textsubscript{4} fluxes after clear-cutting might be higher (Bradford et al., 2000) compared to the dry conditions at the studied site. Furthermore, due to the slow recovery of the methanotrophs to water table fluctuations (Adamsen and King, 1993), the contribution of CH\textsubscript{4} uptake might become more pronounced in later years (Koschorreck and Conrad, 1993; Whalen and Reeburgh, 1996; Gulledge and Schimel, 1998). Similarly, the small contribution of N\textsubscript{2}O to the total GHG balance (<1.5 %) might be the result of the dry conditions at this site whereas in wetter (and nutrient-rich) sites a greater contribution and response to DC could be expected (Martikainen et al., 1993; Regina et al., 1996; Regina et al., 1998), but more spatio-temporal replication is needed to capture the influence of potential spatial and temporal emission hotspots on the total GHG balance.

Previous studies suggested that GHG emissions from ditches may considerably affect the ecosystem GHG balance, predominantly through high N\textsubscript{2}O emissions (Hyninen et al., 2013; Minkkinen and Laine, 2006; Peacock et al., 2017; Peacock et al., 2021c; Schrier-Uijl et al., 2010; Teh et al., 2011). At this site, however, the lack of high GHG fluxes from ditches in combination with the small ditch area (2.4 %) resulted in minor area-weighted contributions from ditch CO\textsubscript{2} (1.5 %) and CH\textsubscript{4} (<1%) emissions to the total GHG budget. The minor contribution of ditch CH\textsubscript{4} emissions to the total GHG balance was likely because the ditches at our dry site frequently dried out during the study period, which resulted even in occasional CH\textsubscript{4} uptake.

To our knowledge, there is only one published study to date that explored DC effects on the forest GHG balance which was carried out in a forest clear-cut on wet mineral soil in boreal Sweden (Tong et al., 2022). This study reported insignificant effects of DC on C and GHG balances and vegetation development, despite changes in WTL due to DC. Given the contrasting results from this northern site compared to ours, additional studies across a range of varying site characteristics are therefore urgently needed to obtain a more generalized understanding of DC impacts on forest GHG dynamics. Furthermore, while our study only addressed the initial responses, additional effects from the enhanced tree growth might further modify the DC impact on the forest GHG balance over an entire stand rotation. These impacts may include further soil water reduction due to increased evapotranspiration, increased photosynthetic CO\textsubscript{2} uptake by trees but also greater canopy shading effects on soil temperature and moisture levels. In addition, the recently cleaned ditches might degrade over time and eventually lose their drainage function which will feedback on the soil water dynamics and hence GHG dynamics. Thus, more empirical data are needed to fully understand the long-term DC effects on the forest ecosystem GHG balance. Given the steady increase of DC activities within Fennoscandia, a better understanding of its effects on the forest ecosystem-atmosphere exchange of GHGs is urgently needed to support the development of appropriate forest management strategies to mitigate climate change.

5. Conclusions

We examined post-harvest ditch cleaning (DC) effects on CO\textsubscript{2}, CH\textsubscript{4} and N\textsubscript{2}O fluxes from clear-cut area and ditches in a drained fertile peatland forest site in hemiboreal Sweden over two years after clear-cutting and DC. Based on our findings we conclude that:

1. The effect of distance to ditch was insignificant for CO\textsubscript{2} and N\textsubscript{2}O fluxes while being small but significant for CH\textsubscript{4} fluxes during these two initial study years. Particularly for the CO\textsubscript{2} exchange, the lack of a clear spatial response to ditch location was likely due to overshadowing effects from the high spatial variability in ground vegetation establishment.

2. Soil water dynamics (i.e., WTL and soil moisture) and ground vegetation coverage were identified as the main controls on the spatial variations of measured CH\textsubscript{4} uptake and CO\textsubscript{2} component fluxes (R\textsubscript{eco} and GPP), respectively. Specifically, lower soil water content and the delayed vegetation development in the DC area coincided with larger CH\textsubscript{4} uptake and smaller CO\textsubscript{2} component fluxes (i.e., production and respiration), respectively, relative to the UC area.

3. Model extrapolations suggest that, in the second year following clear-cutting, the drained peat soil acted as considerably GHG source, however, with 44 % lower emissions from the DC area (27.8 ± 10.3 t CO\textsubscript{2}-eq ha-1 year-1) compared to the UC area (49.4 ± 17.0 t CO\textsubscript{2}-eq ha-1 year-1). While direct evidence is lacking, we propose a decrease in R\textsubscript{a} (by 34 %) due to enhanced soil water stress at the relatively dry study site as a potential reason for the reduction of total GHG emission in the DC area, relative to the UC area.

4. Overall the ecosystem GHG balance was dominated by the CO\textsubscript{2} exchange. The contribution from fluxes of CH\textsubscript{4} and N\textsubscript{2}O from the clear-cut area as well as CH\textsubscript{4} fluxes from ditches (N\textsubscript{2}O not sampled) were negligible.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Data availability
Data will be made available on request.

Acknowledgements
This study was financed by grants from Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS, grant # 2016-01289) and the Oscar och Lili Lamms Minne Foundation (grant # 2017.4.1-68). Additional financial support for ancillary soil environmental measurements was received from the FORMAS grant # 2017-00974. We also acknowledge funding from Brattåsstiftelsen (grant # 2017-14) and Stiftelsen Skogsskötsel (grant # 2020-766) for supporting the establishment and maintenance of the experimental site. We are grateful to the Swedish Meteorological and Hydrological Institute (SMHI) for providing the local meteorological data. We also thank Lars Högbom for providing detailed site information, as well as Roger Valdén and Axel Benchetrit for their help with the field data collection. Support from the SLU Unit for Field-Based Forest Research in the maintenance of the flux measurement equipment is also acknowledged.

Appendix A. Supplementary material
Supplementary data to this article can be found online at https://doi.org/10.1016/j.geoderma.2022.116055.

References

