Skip to main content
SLU publication database (SLUpub)

Research article2023Peer reviewedOpen access

The size of clearings for charcoal production in miombo woodlands affects soil hydrological properties and soil organic carbon

Lulandala, Lufunyo; Bargues Tobella, Aida; Masao, Catherine A.; Nyberg, Gert; Ilstedt, Ulrik

Abstract

Charcoal production is a major driver of forest degradation in miombo woodlands. Forests play a crucial role in regulating the hydrological cycle, so it is critical to understand how forest degradation and management practices impact water availability, particularly in drylands. Few studies have examined the effect of forest clearing size on the hydrological functioning of soil, particularly under real-world conditions where, following clearing, forests are subject to multiple and prolonged anthropogenic disturbances, as occurs in miombo woodlands which are cleared for charcoal production and commonly used for livestock grazing. The pilot project Transforming Tanzania's Charcoal Sector was established in 2012 with the aim of establishing a sustainable wood harvesting system for charcoal production based on rotational harvesting cycles that allow for natural forest regeneration. Two clearing sizes were established: large clearings (300 × 300 m) harvested by clear-felling, and small clearings (50 × 50 m) harvested in a checkerboard pattern. We examined the effect of these two clearing sizes on soil hydrological properties and soil organic carbon (SOC) in Kilosa district, Morogoro, Tanzania. Our analysis included four treatments: large clearings, small clearings, small intact plots (unharvested plots within the checkboard pattern), and village land forest reserve. For each treatment we assessed the tree cover and measured soil infiltration capacity, soil bulk density, SOC stock, and texture. We also examined the relationship between these variables and the distance to the closest road to better understand the impact of livestock and human disturbance. Our results show that large clearings had the lowest mean infiltration capacity (121 ± 3 mm h−1) and SOC stock content (12 ± 0.2 tonnes ha−1), and the highest bulk density (1.6 ± 0.005 g cm−3) of all the treatments. We found a positive relationship between infiltration capacity and basal area (R2 = 0.71) across all treatments. We also found that infiltration capacity, SOC stock and tree basal area increased with increasing distance from the closest road, while bulk density decreased. We conclude that, in terms of their impact on soil hydrological functioning and SOC stock, small clearings, while not completely unaffected, are better than larger ones. In small clearings, concurrent reductions in tree cover and a relatively low impact on soil hydrological properties could result in increased soil and groundwater recharge compared to unharvested forest areas. Controlling livestock grazing can further minimize soil degradation, producing additional gains.

Keywords

Hydrological properties; Steady-state infiltration capacity; Miombo woodlands; Forest harvesting; Soil carbon

Published in

Forest Ecology and Management
2023, Volume: 529, article number: 120701