Skip to main content
SLU publication database (SLUpub)
Research article - Peer-reviewed, 2022

Tailoring a bio-based adsorbent for sequestration of late transition and rare earth elements

Breijaert, Troy C.; Budnyak, Tetyana M.; Kessler, Vadim K.; Seisenbaeva, Gulaim A.

Abstract

The demand for new renewable energy sources, improved energy storage and exhaust-free transportation requires the use of large quantities of rare earth (REE) and late transition (LTM, group 8-12) elements. In order to achieve sustainability in their use, an efficient green recycling technology is required. Here, an approach, a synthetic route and an evaluation of the designed bio-based material are reported. Cotton-derived nano cellulose particles were functionalized with a polyamino ligand, tris(2-aminoethyl) amine (TAEA), achieving ligand content of up to ca. 0.8 mmol g(-1). The morphology and structure of the produced adsorbent were revealed by PXRD, SEM-EDS, AFM and FTIR techniques. The adsorption capacity and kinetics of REE and LTM were investigated by conductometric photometric titrations, revealing quick uptake, high adsorption capacity and pronounced selectivity for LTM compared to REE. Molecular insights into the mode of action of the adsorbent were obtained via the investigation of the molecular structure of the Ni(ii)-TAEA complex by an X-ray single crystal study. The bio-based adsorbent nanomaterial demonstrated in this work opens up a perspective for tailoring specific adsorbents in the sequestration of REE and LTM for their sustainable recycling.

Published in

Dalton Transactions
2022, Volume: 51, number: 47, pages: 17978-17986
Publisher: ROYAL SOC CHEMISTRY