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Abstract: Protein-based biostimulants (PBBs) are derived from the hydrolysis of protein-rich raw
materials of plant and/or animal origins, usually by-products or wastes from agro-industries. The
active ingredients (AIs) produced by hydrolysis have the capacity to influence physiological and
metabolic processes in plants, leading to enhanced growth, nutrient and water-use efficiency, tolerance
to abiotic and biotic stresses, and improved crop yield and quality. This paper reviews the state-of-
the-art and future opportunities for use of PBBs, based on potential effects on the soil, crops, and
sustainability (social, economic, environmental). In this case, two examples of PBBs (hydrolyzed
wheat gluten and potato protein) and their effects on the early growth of three sugar beet varieties
are described and discussed. Both PBBs have a significant stimulating effect on early sugar beet
growth and development. The opportunity to develop PBBs into superabsorbent polymers (SAPs) is
discussed. To conclude, PBBs/SAPs developed from agro-industrial wastes have the potential for
sustainably supplying water and nutrients in agricultural systems and for enhancing plant growth
and development over a substantial period.

Keywords: biostimulant; hydrolyzed wheat gluten; potato protein; sugar beet; sustainable develop-
ment; agro-industrial wastes; superabsorbent polymers

1. Introduction to Biostimulants—Definition and Categories

Biostimulants are natural products that originate from plants, animals, or microorgan-
isms and, when applied to plants (foliage or rhizosphere) in small quantities, stimulate
natural processes that enhance growth, crop quality, nutrient-use efficiency, and tolerance to
biotic and abiotic stresses [1–7]. Thus, the use of biostimulants can facilitate a reduced use
of agrochemicals (especially fertilizers) in agriculture, without compromising crop produc-
tivity and quality, while also providing protection against abiotic and biotic stresses [1,3,8].
The use of biostimulants may not necessarily provide nutrients directly to plants or target
pathogens, rather they regulate physiological processes that lead to enhanced growth and
tolerance to abiotic and biotic stresses [2,3,5]. The current high use of agrochemicals in
agriculture and food production poses risks to human health and the environment [1,2].
Biostimulants could form part of a solution to mitigate such risks deriving from the use of
agrochemicals [8,9].

The use of biostimulants in commercial cropping settings is becoming increasingly
popular, as the high content of bioactive components offers different benefits, whereas
their mode of action is largely yet unknown [10]. They promote crop growth and reduce
the impacts of agriculture on human health and the environment [10] and can thus be an
important component in climate-smart agriculture (CSA) [7,11]. CSA is an approach that
pushes for green and climate-resilient agri-food systems. Biostimulants are categorized
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into seaweed extracts, humic and fulvic acids, beneficial chemical elements (e.g., silicon,
selenium, sodium, cobalt, aluminum), chitin and chitosan derivatives, beneficial microor-
ganisms, inorganic salts (phosphite), and protein-based biostimulants (peptides and amino
acids) [5,11,12].

The protein-based biostimulants (PBBs) are an important group because of the abun-
dance and accessibility of protein-rich side-streams from agro-industries that can be used
as raw materials for PBB production [13,14]. PBBs are commonly derived from individual
organic materials or a combination of organic materials, most commonly obtained from
agro-industries [15]. These industries often generate tons of waste and side-stream prod-
ucts, most of which have a high content of proteins and other bioactive compounds [3,13].
According to available statistics, the wastes generated annually by agriculture and agro-
industries include 9000 tons of dairy protein [16], 3 million tons of seafood waste [17], and
8 million tons of livestock protein [18]. Converting these wastes into useful products, e.g.,
biostimulants, would thus address sustainability issues by contributing to a reduction in
the environmental footprint, providing economic benefits from the use of novel products,
and improving human and environmental health and food quality [3,9,19].

The aims of this review were to describe the current state-of-the-art of PBBs and to
outline possible future directions for the research and development of PBBs. Many research
groups are currently evaluating opportunities to use agricultural and food wastes/side-
streams as alternative products, with the development of novel biostimulants being one
option [15]. However, the current knowledge of the use of PBBs, especially from wheat and
potato industries side streams, has not been summarized until now, and future perspectives
in relation to their uses have not been given. Therefore, in this paper, we review current
knowledge on (i) how PBBs are produced, (ii) the effects of PBBs on soil and crops, and
(iii) the sustainability (social, economic, environmental) of use of PBBs in agriculture. As
examples, we evaluate and discuss the effects of two types of PBBs on sugar beet growth.
Based on the findings, we consider future directions for research.

2. Protein-Based Biostimulants
2.1. Production

Protein-based biostimulants are basically mixtures of peptides and amino acids [2,20].
Most PBB products are derived from protein-rich substances (plant or animal origins) that
have been enzymatically or chemically treated or subjected to thermal hydrolysis. The prod-
ucts are, therefore, often referred to as protein hydrolysates (PHs) [2,3,11,21]. They contain
peptides and free essential and non-essential amino acids present in different quantities, de-
pending on the protein source, processing methods utilized and degree of hydrolysis [2,13]
(Figure 1). The active ingredients (peptides and amino acids) in the PHs, contribute to an
increased uptake of beneficial elements into plant tissues via the leaves or roots [3,11]. Cur-
rently, more than 90% of commercially available PHs are derived from chemical hydrolysis
of animal proteins, e.g., collagen, fish by-products, blood meal, chicken feathers, etc. [20,22].
Commercially available animal-derived PH products include Siapton [3], Pepton [23], and
Hydrostim [24]. However, there are restrictions on the use of PBBs derived from animal
by-products in the European Union (EU), where animal-derived products can only be used
as raw material for biostimulants at the endpoint of the manufacturing chain, and with a
particular focus on the safety of humans, animals, and the environment [25]. Under current
EU regulations, biostimulants from animal-derived products may also not be applied
directly to edible plant parts and the maximum concentration of heavy metals must be
non-detectable [25]. Sweden, as an EU country, is following EU regulations. Commercial
plant-derived PHs, e.g., Coveron [26] and Trainer [21], are also available in different forms
(liquid, water-soluble powder, granules) and can be applied as foliar spray, seed, root,
or soil treatments [11,22]. However, plant biostimulants are a recently emerging field of
research with an increasing number of publications from 2015 and onwards [5] and the
research on PBBs and PHs is keeping track of that development [2–4]. As an increasing
number of commercial plant- and animal protein-based biostimulants will enter the market
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as a result of the increasing research activities, additional regulations on the use of the
products are expected.

Agronomy 2022, 12, x FOR PEER REVIEW 3 of 14 
 

 

applied as foliar spray, seed, root, or soil treatments [11,22]. However, plant biostimulants 

are a recently emerging field of research with an increasing number of publications from 

2015 and onwards [5] and the research on PBBs and PHs is keeping track of that develop-

ment [2–4]. As an increasing number of commercial plant- and animal protein-based bi-

ostimulants will enter the market as a result of the increasing research activities, addi-

tional regulations on the use of the products are expected. 

 

Figure 1. Possible active ingredients in protein-based biostimulants (PBBs). Compounds in white 

and black are large molecules, while active ingredients in colored hexagons are low molecular 

weight components of proteins [27]. 

2.2. Effects of PBBs on Soil and on Agronomic, Physiological, and Molecular Plant Parameters 

Research on PBBs and their commercial use in agricultural and horticultural applica-

tions are of a rather recent origin, with most development having taken place during the 

past two decades [11]. Most of the PBBs evaluated to date have been shown to have a 

broad-spectrum effect on the biochemical properties and microbial community of the soil. 

They have also been found to have a significant effect on plant growth and health, as 

summarized in Table 1. As a result, PBBs have been used in soil bioremediation activities, 

for soil restoration, and for preventing soil erosion [28]. Studies have indicated that a high 

nitrogen content (>50%) and a high percentage (>60%) of peptides with low molecular 

weight (<3 kDa) are beneficial in PBBs used as an amendment to semi-arid soil [28]. 

Furthermore, PBBs have a positive impact on the metabolic processes of plants, as 

they enhance root and shoot growth, photosynthesis rate, and crop quality [3,12,22,29,30]. 

PBBs are reported to regulate biochemical processes that boost the tolerance of crops 

against abiotic stresses (drought, salinity, and heavy metals) [12]. They have also been 

found to stimulate nutrient uptake and nutrient use efficiency in crops, largely due to their 

growth-enhancing effects on roots [12]. In addition, PBBs can have indirect effects on 

plants by enhancing uptake and efficient use of macro- and micronutrients [12,30]. Most 

biostimulating effects have been linked to the presence of soluble peptides and free amino 

acids in PHs, which in many cases, act as precursors for the biosynthesis of phytohor-

mones (plant-growth regulators) and other metabolically important bioactive compounds 

which then contribute to the plant-growth enhancement [3,8,22]. These soluble peptides 

and free amino acids are easily absorbed by soil microorganisms, which helps to improve 

soil structure, soil organic matter content, and nutrient availability [28]. 

Enhanced shoot and root growth have been reported, e.g., in kiwi and snapdragon 

plants to which PBBs were applied at a low dosage [26,31,32]. Increased coleoptile length 

in maize has been reported, although a relatively high concentration of PBBs was needed 

Polyamines
Protein 
hydrolysates

Peptides

Enzymatic 
extracts

Proteins
Amino 
acids

Nitrogenous 
compounds

PolypeptidesOthers

Figure 1. Possible active ingredients in protein-based biostimulants (PBBs). Compounds in white
and black are large molecules, while active ingredients in colored hexagons are low molecular weight
components of proteins [27].

2.2. Effects of PBBs on Soil and on Agronomic, Physiological, and Molecular Plant Parameters

Research on PBBs and their commercial use in agricultural and horticultural appli-
cations are of a rather recent origin, with most development having taken place during
the past two decades [11]. Most of the PBBs evaluated to date have been shown to have
a broad-spectrum effect on the biochemical properties and microbial community of the
soil. They have also been found to have a significant effect on plant growth and health, as
summarized in Table 1. As a result, PBBs have been used in soil bioremediation activities,
for soil restoration, and for preventing soil erosion [28]. Studies have indicated that a high
nitrogen content (>50%) and a high percentage (>60%) of peptides with low molecular
weight (<3 kDa) are beneficial in PBBs used as an amendment to semi-arid soil [28].

Furthermore, PBBs have a positive impact on the metabolic processes of plants, as
they enhance root and shoot growth, photosynthesis rate, and crop quality [3,12,22,29,30].
PBBs are reported to regulate biochemical processes that boost the tolerance of crops
against abiotic stresses (drought, salinity, and heavy metals) [12]. They have also been
found to stimulate nutrient uptake and nutrient use efficiency in crops, largely due to
their growth-enhancing effects on roots [12]. In addition, PBBs can have indirect effects on
plants by enhancing uptake and efficient use of macro- and micronutrients [12,30]. Most
biostimulating effects have been linked to the presence of soluble peptides and free amino
acids in PHs, which in many cases, act as precursors for the biosynthesis of phytohormones
(plant-growth regulators) and other metabolically important bioactive compounds which
then contribute to the plant-growth enhancement [3,8,22]. These soluble peptides and
free amino acids are easily absorbed by soil microorganisms, which helps to improve soil
structure, soil organic matter content, and nutrient availability [28].

Enhanced shoot and root growth have been reported, e.g., in kiwi and snapdragon
plants to which PBBs were applied at a low dosage [26,31,32]. Increased coleoptile length
in maize has been reported, although a relatively high concentration of PBBs was needed
to obtain that effect [11]. Soy PBB incorporated into broccoli seed pellets has been found to
enhance plant height [6]. Similarly, enhanced plant height and plant canopy area have been
obtained in maize [33] and tomato [34] through the use of PBBs. Moreover, the use of PBBs
has been found to enhance the biomass production of broccoli, maize, lettuce [6,30,35],
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banana, and rocket [36,37]. In one study, plant height and total biomass of hibiscus plants
were increased by applying PBBs from two urban biowaste materials [38].

In addition to the effect on plant growth, PBBs have been found to be involved in
several molecular and physiological processes in plants [12]. For example, the nitrogen
content in maize and cucumber plants has been found to be increased by treatment with
plant-derived PHs and hydrolyzed collagen, respectively [39,40]. Furthermore, PBB treat-
ment of maize has been shown to induce the secretion of enzymes involved in carbon and
nitrogen metabolism [33,41].

Several studies have demonstrated that PBBs can improve crop tolerance to abiotic
stresses [22], e.g., calcium protein hydrolysate has been found to reduce chloride uptake in
Oriental persimmon (Diospyros kaki L.) [42]. Furthermore, gelatin-treated cucumber plants
have been shown to exhibit higher salinity tolerance than untreated plants [43], while the
foliar application of PH to lettuce can enhance the tolerance to low temperatures [44]. Paul
et al. [45] observed an increased growth in tomatoes treated with PHs under drought stress.
Others have observed a reduction in anti-nutritional content (nitrate) in leaves of lettuce
treated with PH (both foliar and root application) compared with untreated plants [46]. The
ability of plants to tolerate abiotic stresses following PH treatment has been attributed to
genes being induced that contribute to enhanced growth, improved nutrient status, greater
cell structure stability, osmolite and antioxidant accumulation, and enzyme activation by
PHs [22].

Generally, the effect of PBBs depends on the source and characteristics of the PBB, the
crop (species and cultivars) on which the PBB is utilized, the age or growth stage of the
crop, growing conditions, PBB concentration, timing and mode of application (soil, seed, or
foliar treatment), PBB solubility, and leaf permeability [22].

There have only been a few comparative studies on the efficiency of PBBs and other
categories of biostimulants and chemical fertilizers [47–50]. One major principle of biostim-
ulants is that they help to reduce the quantity of fertilizer required, rather than replacing
chemical fertilizers [51]. Dudas [47] achieved enhanced growth and biochemical concentra-
tions in lettuce by using biostimulants and fertilizer, compared with an untreated control.
The specific effects of PBBs and other categories of biostimulants are largely based on the
different bioactive components present in their molecules [49,50,52]. These specific effects
include the enhancement of antioxidant content, antibiotic effect, abiotic tolerance, etc. [20].
The comparative efficiency of different categories of biostimulants in relation to chemical
fertilizers can be established using different omics approaches [53].

Table 1. Reported effect on crop performance of different protein hydrolysates (PHs) used as protein-
based biostimulants (PBBs).

SN PBB Effect Source

1 PH, plant source Improves yield and quality of
perennial wall rocket

Caruso et al. [21]
https://www.mdpi.com/2223-7747/8/7/208

Accessed 23 July 2022

2 PH, plant source Enhances plant physiology and
stimulates soil microbiome

Colla et al. [22]
https://www.frontiersin.org/article/10.3389/

fpls.2017.02202 Accessed 23 July 2022

3 PH, animal source (Pepton)
Improves salicylic acid and

growth of tomato roots under
abiotic stress

Casadesus et al. [23]
https://www.mdpi.com/2223-7747/8/7/208

Accessed 23 July 2022

4 PH, animal source
Improves growth and

microelement concentration in
hydroponically grown maize

Ertani et al. [31]
https://doi.org/10.1002/jpln.201200020

Accessed 23 July 2022

https://www.mdpi.com/2223-7747/8/7/208
https://www.frontiersin.org/article/10.3389/fpls.2017.02202
https://www.frontiersin.org/article/10.3389/fpls.2017.02202
https://www.mdpi.com/2223-7747/8/7/208
https://doi.org/10.1002/jpln.201200020
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Table 1. Cont.

SN PBB Effect Source

5 PH, plant source Enhances growth and nitrogen
metabolism of maize

Ertani et al. [33]
https://doi.org/10.1002/jpln.200800174

Accessed 23 July 2022

6 PH, plant source
Improves agronomic,

physiological and yield
parameters of baby rocket plant

Di-Mola et al. [37]
https://doi.org/10.3390/plants8110522

Accessed 23 July 2022

7 PH, plant source (Trainer) Improves performance of maize
and lettuce

Colla et al. [39]
https:

//doi.org/10.17660/ActaHortic.2013.1009.21
Accessed 23 July 2022

8 PH, animal source (gelatin) Improves plant performance
Wilson et al. [40]

https://www.frontiersin.org/article/10.3389/
fpls.2018.01006 Accessed 23 July 2022

9 PH, plant source
Enhances gene expression,

enzymes and nitrogen
metabolism in maize

Schiavon et al. [41]
https://doi.org/10.1021/jf802362g Accessed 23

July 2022

10 Calcium, PH Improves salinity tolerance and
leaf necrosis in Diospyros kaki L.

Visconti et al. [42]
https://doi.org/10.1016/j.scienta.2015.01.028

Accessed 23 July 2022

2.3. Social, Economic, and Environmental Aspects of PBBs

Through their direct and indirect effects on crop yield and quality, nutrient-use effi-
ciency, and tolerance to biotic and abiotic stresses, PBBs have the potential to contribute
to socioeconomic development [54–56]. First, the production and use of protein-rich side-
streams from agro-industries create novel jobs and novel products, which in turn provide
novel income opportunities [54]. The sustainable use of more side-streams from agro-
industries contributes to (i) social development in societies involved in the business, (ii)
economic development and growth through product development, and (iii) environmental
benefits from more complete use of natural resources [56]. Farm income is increased due
to increases in crop yield and quality resulting from use of PBBs [56,57]. Economic bene-
fits from the use of plant-based biostimulants, due to the increase in the yield have been
reported for a range of crops, including perennial wall rocket and lamb’s lettuce [58,59].
However, the economic return of using plant side-streams for additional products is al-
ways decreasing as soon as an extra harvesting or processing step is introduced into their
production [57]. Thus, a benefit of using PBBs from side streams of the food industry (e.g.,
wheat gluten or potato protein) is that these substances are readily available at a reasonable
price from the industry [14]. Furthermore, the use of PBBs may lead to the production of
healthier crops and more nutritious food, which will enhance the health of consumers [56].
PBBs might improve land-use efficiency by enhancing crop yield, quality, and profitability
per acre [60].

The economic efficiency of various types of biostimulants has been limitedly evaluated.
Most studies report a certain increase in crop yield or plant development, often given in %
of increase as related to a control treatment. For PBBs, the comparison of effects between
different types or to other types of biostimulants, e.g., other biological, chemical or fertilizer
compounds, is mainly lacking; although, a high effect has been reported in few studies [61].

The use of PBBs may also lead to the production of healthier crops and more nutritious
food, improving consumer health [56]. Additionally, PBBs may improve land use efficiency
by enhancing crop yield, quality, and profitability per acre [58].

The use of biostimulants has been proven to have positive effects on the environ-
ment by improving the nutrient-use efficiency of crops, thereby reducing the quantities
of agrochemicals needed in food production by up to 50% [3,4]. PBBs also improve soil

https://doi.org/10.1002/jpln.200800174
https://doi.org/10.3390/plants8110522
https://doi.org/10.17660/ActaHortic.2013.1009.21
https://doi.org/10.17660/ActaHortic.2013.1009.21
https://www.frontiersin.org/article/10.3389/fpls.2018.01006
https://www.frontiersin.org/article/10.3389/fpls.2018.01006
https://doi.org/10.1021/jf802362g
https://doi.org/10.1016/j.scienta.2015.01.028
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health, by boosting the communities of beneficial soil microorganisms present [54] and
by strengthening soil structure and increasing soil water-holding capacity, thus prevent-
ing soil erosion [55]. The small quantity of biostimulants required for crop growth and
development improvements means that there are no residues left in crops and soil [2,37].
There is, thus, a limited risk of PBBs causing environmental problems in food, soil, or water
bodies [2,37,62–66]. The fact that most PBBs are highly biodegradable also results in the
safety of life on land and in water [3,9]. Thus, the use of PBBs could result in improved
surface water quality and lower carbon emissions [29].

The recycling and conversion of protein-rich wastes or side streams products from
agriculture and agro-allied industries into PBBs, pave the way for a more resilient use
of natural resources [3,67–71]. The food industry is one of the major contributors to
greenhouse gas emissions contributing to climate change, and the increased use of side
streams from food production is seen as important to mitigate climate change [68]. This
leads to a strong focus in the plant biologicals industries to continue to develop novel
natural active ingredients (biostimulants) from agro-industrial wastes [70].

3. Hydrolyzed Wheat Gluten (HWG) and Potato Protein (PP) as Possible PBBs
3.1. Hydrolyzed Wheat Gluten (HWG)

Wheat gluten is defined as the rubbery mass of proteins, obtained when wheat flour is
washed with water to remove starch and other water-soluble components [72–74]. Wheat
gluten is available in large quantities and at low cost as a result of large-scale industrial
starch extraction from wheat flour [71–80]. Some industrially produced gluten is used
as a co-product for several purposes, e.g., within the baking industry [78]. However, the
quantities of wheat gluten produced leave much scope for additional uses [72,81–83]. To
increase the applicability of wheat gluten, structural modification to enhance its functional
properties is often required [71,72], as it is highly polymerized in its native state [14,74,77,81].
The most common way to modify its structure is by enzymatic or thermal treatment or
chemical hydrolysis, or a combination of these processes [71,72,78].

Like many other plant PHs, HWG has a wide set of applications in the food industry,
particularly as an ingredient since it resembles glutamate in terms of taste [71,78]. As HWG
is a hydrolyzed protein-rich co-stream from starch production, it most likely (based on the
above discussion) has properties that make it suitable as a biostimulant within agriculture
and horticulture [72]. However, to our knowledge, HWG has, until now, not been evaluated
as a source to be used in agricultural applications. Similar to other PHs (biostimulants), the
hydrolysis of wheat gluten results in a breakdown of the protein into peptides and a large
amount of free amino acids, which are beneficial for plant growth and health [71,76–80].

3.2. Potato Protein (PP)

Potato fruit juice (PFJ) is a massive protein-rich side-stream generated in starch
extraction from potatoes [14]. In 2018, the amount of PFJ obtained after starch extrac-
tion represented around ~1% (3.5 million tons) of the total global potato production
(>360 million tons) [81,84,85]. In the past, PFJ was regarded as waste and was released
into nearby streams and other water bodies, resulting in environmental pollution [82,83].
However, potato protein (PP) is a potentially valuable product that can be produced from
PFJ through acidification and harsh thermal processing [14,86]. These processes result in
intensive coagulation and protein recovery [14,82]. In theory, a total of 200,000 tons of
PP could be generated from the 3.5 million tons of PFJ made available annually world-
wide [73,79]. Some studies have indicated that PP is one of the largest under-utilized
agro-industrial protein-rich side-streams in the world [14]. PP has the potential to act as
a ready source of organic nitrogen for crops, as the protein content of PP is >80% [14]. A
sustainable way of using PP would be through its application as a PBB. To our knowledge,
PP has been limitedly evaluated for its use in agriculture, although, trials to use it as a
functional food component are ongoing [87,88].
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4. Biostimulating Effect of HWG and PP; Sugar Beet as an Example

A range of bioactive molecules, such as biochar, humic and fulvic acids, chitosan,
phosphites, essential amino acids, soil bacteria, phytoextracts, and extracts of algae or
other plant parts, have been evaluated as biostimulants on sugar beet as well as other
crops [6,89–91]. In a previous study by our research group, we observed a biostimulating
effect of HWG and PP on young sugar beet plants (cultivars Volga, Armesa, and Mustang)
when applied to soil in different concentrations (0–10 g/kg soil) [61].

The results we obtained for sugar beet showed slight variations in genotypic responses
to HWG and PP treatment (1–10 g/kg) [84], but in most cases, we observed the enhancement
of plant growth (plant height, fresh weight, plant canopy area) compared with an untreated
control (Table 2, Figure 2). Applying lower concentrations (1 and 2 g/kg soil) of either
HWG or PP resulted in the tallest plants across all three cultivars of sugar beet tested
(Table 2). The HWG and PP treatments also increased the total fresh weight of the three
sugar beet cultivars [61], with an increase of 88–150% compared with the control across
all three cultivars (Table 2). As seen for plant height, the greatest increases in fresh weight
were obtained for application rates of 1 and 2 g/kg of soil [61]. Furthermore, HWG and PP
at 1 or 2 g/kg enhanced the plant canopy area of all three cultivars compared with the other
doses tested (Figure 2). Thus, an enhancing effect on early growth and establishment of
young sugar beet plants was achieved at a relatively low concentration of PBB, irrespective
of whether the PBB was added as bottom-dressing or as a soil mixture [61]. The increase in
growth of the young sugar beet plants following the use of PBB was substantial and well in
accordance with the effects of other types of biostimulants used on other crops [61]. The
decrease in plant height, plant canopy area, and fresh weight of sugar beet observed in PBB
treatments (HWG and PP) at higher concentrations (5 and 10 g/kg of soil) might have been
due to toxicity effects due to high N concentrations from the PBBs.

Table 2. Plant height and total fresh weight of sugar beet cultivars (Volga, Armesa, Mustang) treated
with hydrolyzed wheat gluten (HWG) and potato protein (PP). Source: Jolayemi et al. [61].

Conc. (g/kg)
Sugar Beet Plant Height (cm) Total Fresh Weight (g/plant)

Volga Armesa Mustang Volga Armesa Mustang

Control 0 7.6d 6.9c 6.7c 2.43d 2.47c 3.13e

HWG

1 15.5a 13.3a 15.2a 7.00a 6.77a 10.25b
2 15.2a 13.2a 13.2a 6.11b 7.30a 11.96a
5 11.6b 9.1b 8.8b 3.92c 3.04b 4.24d

10 8.2c 7.0bc 10.4b 1.26e 3.54b 5.25c

Mean 12.6a 10.6b 11.9a 4.57c 5.16b 7.92a

PP

1 13.8a 14.4a 14.4a 6.03a 8.51a 9.15a
2 14.8ab 12.9b 14.4a 6.17a 6.19b 9.55a
5 10.5c 8.4c 11.1b 3.17c 4.12d 5.12b

10 11.7bc 9.7c 10.6b 4.11b 4.69c 4.41c

Mean 12.7a 11.4b 12.6a 4.87c 5.88b 7.06a

Each value is an average of five plants. Means were separated using Tukey’s method. Means within columns with
different superscript letters differ significantly (p < 0.05).
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Figure 2. Effect of varying concentrations of hydrolyzed wheat gluten (HWG) and potato protein
(PP) on plant canopy area in the sugar beet cultivars Volga, Armesa, and Mustang.

PBBs are known to consist of a mixture of peptides and amino acids [2], which should
also be the case for HWG, a hydrolyzed protein source [70]. On the other hand, PP is known
to contain 40% patatin, which is mainly water-soluble [14] and is known to aggregate due
to the harsh treatment during PJI fractionation into PP [81]. Since PBBs normally contain
N-rich sources such as peptides and amino acids, part of their growth-enhancing effect
might be explained by the extra N supply they contribute to plants. However, part of their
effect has also been attributed to their hormone-like activities [8]. The low molecular weight
forms of organic N obtained from PBBs are easily taken up by plant roots, and then used by
the plant as precursors in the biosynthesis of plant hormones that stimulate plant growth
and development [22]. In our previous study [61], we compared the enhancing effect of
HWG and PP on sugar beet with that of a nutrient solution with a comparable amount of
N as in those two PBBs. Although the nutrient solution enhanced plant growth, it did not
do so to the same extent as the PBBs, so the effect of the PBBs on sugar beet growth could
not be explained solely by increased nutrient supply [61]. For a fuller understanding of the
background and reasons for the growth-enhancing effects of PBBs such as HWG and PP,
additional research needs to be carried out.

Furthermore, no studies have evaluated the long-term effect of HWG and PP as
biostimulants for yield and sugar content in sugar beet. Such studies should be carried out
to evaluate the full potential of the use of HWG and PP on sugar beet. However, early and
strong plant development indicates a potential for high yield in a crop.

5. Opportunities and Future Directions for Use of PBBs

Having established the benefits of PBBs for crop growth and environmental safety,
innovative solutions for their production, use, and application are needed [3,12,28]. One
application of PBBs (as with other biostimulants) is use in seed treatment techniques such
as seed coating, seed pelleting, and seed priming. Crops with small seeds can be primed,
coated, or pelleted with PBBs, for enhanced establishment and productivity [92]. However,
a more innovative way to use PBBs would be to develop superabsorbent polymers (SAPs)
in a sustainable approach that could also help tackle the problems of abiotic stresses such as
drought and soil nutrient issues [93]. SAPs, which can be either natural or synthetic, have
the ability to swell in an aqueous solution by retaining water in their network and do not
dissolve in water [86,92–96]. There are many potential areas of application for SAPs, due to
their high water-absorbing capacity, rapid biodegradability, and low cost [86]. Synthetic
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SAPs (usually from petroleum resources) are widely utilized due to their high absorption
capacity, availability in a wide variety of raw materials, and long-lasting durability, but
they are non-biodegradable [76,93]. Recent studies have shown that SAPs can be produced
from agro-industrial protein side-streams using HWG and PP with a non-toxic dianhydride
(EDTAD) [14]. This method is sustainable and eco-friendly, because it ensures the delivery
of nutrients (peptides and amino acids from the protein), while water molecules are retained
in the SAP network [77]. Therefore, the development of SAPs from agro-industrial wastes
or side-streams is a promising future option. These products are eco-friendly, as they are
developed using climate-smart technology and non-toxic components and can ultimately
address the problems of soil nutrient and water deficits [70,77] (Figure 3).
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6. Conclusions

The production of PBBs from agro-industrial wastes or side-streams is a sustainable
way of addressing the problems of waste disposal and environmental pollution resulting
from waste generation. PBBs can improve the agronomic and physiological performance
of a wide variety of crops, as confirmed by metabolic and molecular data. They can also
improve crop quantity and quality under different environmental conditions. Overall,
PBBs have social, economic, and environmental benefits, by providing extra sources of
income to agro-industries and other players along the value chain and improving soil
structure. In socioeconomic terms, the costs of producing PBBs are covered by the higher
crop yields obtained at harvest, although further cost–benefit analyses are required. The
benefits of PBBs for the environment, apart from improvement of soil structure, include
boosts to microbial communities and prevention of soil erosion. Tests on HWG and PP as
possible PBBs for sugar beet crops have revealed greater plant height, plant canopy area,
and biomass. PBBs are currently applied directly to soil or plant foliage, or through seed
treatments such as priming, coating, and pelleting. A new future direction for the use of
PBBs would be the development of SAPs to ensure the delivery of organic nitrogen (in
the form of peptides), amino acids, and water to crop plants under normal and stressed
conditions.
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90. Rašovský, M.; Pačuta, V.; Ducsay, L.; Lenická. Quantity and Quality Changes in Sugar Beet (Be-ta vulgaris Provar. Altissima
Doel) Induced by Different Sources of Biostimulants. Plants 2022, 11, 2222. [CrossRef] [PubMed]

91. Akram, N.A.; Saleem, M.H.; Shafiq, S.; Naz, H.; Farid-Ul-Haq, M.; Ali, B.; Shafiq, F.; Iqbal, M.; Jaremko, M.; Qureshi, K.A.
Phytoextracts as Crop Biostimulants and Natural Protective Agents—A Critical Review. Sustainability 2022, 14, 14498. [CrossRef]

92. Afzal, I.; Javed, T.; Amirkhani, M.; Taylor, A. Modern Seed Technology: Seed Coating Delivery Systems for Enhancing Seed and
Crop Performance. Agriculture 2020, 10, 526. [CrossRef]

93. Behera, S.; Mahanwar, P.A. Superabsorbent polymers in agriculture and other applications: A review. Polym. Technol. Mater. 2019,
59, 341–356. [CrossRef]

94. Zohourian, M.M.; Kabiri, K. Superabsorbent polymer materials: A review. Iran. Polym. J. 2008, 17, 451–477. Available online:
www.journal.ippi.ac.ir (accessed on 23 July 2022).

http://doi.org/10.3390/su13052710
http://doi.org/10.1186/s40538-017-0089-5
www.bpia.com
http://doi.org/10.1134/S0003683818090107
http://doi.org/10.1016/j.foodchem.2006.06.062
http://doi.org/10.1007/BF02671482
http://doi.org/10.3390/biom10081095
http://doi.org/10.1016/j.indcrop.2013.08.077
http://doi.org/10.1021/acs.biomac.9b01646
http://www.ncbi.nlm.nih.gov/pubmed/31899621
http://doi.org/10.1094/CCHEM-08-12-0105-FI
http://doi.org/10.1021/jf010989o
http://doi.org/10.1016/j.foodchem.2006.04.024
http://doi.org/10.1007/s11540-019-9414-7
http://doi.org/10.1016/j.wasman.2015.08.010
http://www.starch.eu/wp-content/uploads/2012/09/2012-08-Eco-profile-of-starch-products-summary-report.pdf
http://www.starch.eu/wp-content/uploads/2012/09/2012-08-Eco-profile-of-starch-products-summary-report.pdf
http://doi.org/10.1021/acssuschemeng.9b04352
http://doi.org/10.3390/nu10020259
http://doi.org/10.1177/1082013218814605
http://www.ncbi.nlm.nih.gov/pubmed/30509131
http://doi.org/10.3390/plants11172222
http://www.ncbi.nlm.nih.gov/pubmed/36079604
http://doi.org/10.3390/su142114498
http://doi.org/10.3390/agriculture10110526
http://doi.org/10.1080/25740881.2019.1647239
www.journal.ippi.ac.ir


Agronomy 2022, 12, 3211 14 of 14

95. Fidelia, N.; Chris, B. Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J. Soil Sci.
Environ. Manag. 2011, 2, 206–211.

96. Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [CrossRef]

http://doi.org/10.1016/j.jare.2013.07.006

	Introduction to Biostimulants—Definition and Categories 
	Protein-Based Biostimulants 
	Production 
	Effects of PBBs on Soil and on Agronomic, Physiological, and Molecular Plant Parameters 
	Social, Economic, and Environmental Aspects of PBBs 

	Hydrolyzed Wheat Gluten (HWG) and Potato Protein (PP) as Possible PBBs 
	Hydrolyzed Wheat Gluten (HWG) 
	Potato Protein (PP) 

	Biostimulating Effect of HWG and PP; Sugar Beet as an Example 
	Opportunities and Future Directions for Use of PBBs 
	Conclusions 
	References

