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Abstract 

This thesis presents planning approaches adapted for high spatial resolution data 
from remote sensing and evaluate whether such approaches can enhance the 
provision of ecosystem services from forests. The presented methods are compared 
with conventional, stand-level methods. The main focus lies on the planning concept 
of dynamic treatment units (DTU), where treatments in small units for modelling 
ecosystem processes and forest management are clustered spatiotemporally to form 
treatment units realistic in practical forestry. The methodological foundation of the 
thesis is mainly airborne laser scanning data (raster cells 12.5x12.5 m2), different 
optimization methods and the forest decision support system Heureka. Paper I 
demonstrates a mixed-integer programming model for DTU planning, and the results 
highlight the economic advances of clustering harvests. Paper II and III presents an 
addition to a DTU heuristic from the literature and further evaluates its performance. 
Results show that direct modelling of fixed costs for harvest operations can improve 
plans and that DTU planning enhances the economic outcome of forestry. The higher 
spatial resolution of data in the DTU approach enables the planning model to assign 
management with higher precision than if stand-based planning is applied. Paper IV 
evaluates whether this phenomenon is also valid for ecological values. Here, an 
approach adapted for cell-level data is compared to a schematic approach, dealing 
with stand-level data, for the purpose of allocating retention patches. The evaluation 
of economic and ecological values indicate that high spatial resolution data and an 
adapted planning approach increased the ecological values, while differences in 
economy were small. In conclusion, the studies in this thesis demonstrate how forest 
planning can utilize high spatial resolution data from remote sensing, and the results 
suggest that there is a potential to increase the overall provision of ecosystem 
services if such methods are applied. 

Keywords: cellular automata, forest decision support systems, forest ecosystem 
services, heuristics, mixed-integer programming, remote sensing, retention forestry, 
spatial optimization   
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Sammanfattning 

Denna avhandling presenterar ansatser för skoglig planering anpassade för rumsligt 
högupplösta data från fjärranalys och utvärderar huruvida sådana ansatser kan öka 
leveransen av skogliga ekosystemtjänster. De presenterade modellerna jämförs med 
konventionella skogliga planeringsansatser med data och beslut på beståndsnivå. 
Avhandlingen fokuserar främst på dynamiska åtgärdsenheter (dynamic treatment 
units (DTU)), där skötsel av små enheter klustras för att formera åtgärdsenheter. 
Metodologiskt baseras avhandlingen främst på data från flygburen laserskanning 
(rasterdata med 12.5x12.5 m2 upplösning), olika optimeringsmetoder och det 
skogliga beslutsstödsystemet Heureka. Studie I presenterar en heltalsmodell för 
DTU-ändamål och resultaten understryker ekonomiska förtjänster i att klustra 
avverkning. Studie II och III presenterar ett tillägg till en befintlig heuristisk modell 
för DTU utvärderar dess utfall. Resultaten visar att lösningar kan förbättras om fasta 
kostnader modelleras direkt istället för indirekt samt att högre ekonomiska värden 
kan genereras med DTU, eftersom ansatsen kan bestämma optimal skogsskötsel med 
högre precision än beståndsbaserad planering. Studie IV utreder om det sistnämnda 
gäller även för andra värden än ekonomiska och presenterar en ansats baserad på 
högupplöst data för att allokera områden för generell hänsyn. Utvärderingen av 
ekonomiska och ekologiska värden indikerar att högupplösta data och en anpassad 
planeringsansats ger högre ekologiska värden än traditionell ansats, medan 
skillnaderna i ekonomiskt utfall är små. Sammanfattningsvis visar studierna i denna 
avhandling hur högupplösta data från fjärranalys kan användas tillsammans med 
rumsligt explicita planeringsmodeller och resultaten antyder att det finns möjligheter 
att överlag öka leveransen av ekosystemtjänster från skogar om sådana metoder 
utnyttjas. 

Nyckelord: cellulär automata, fjärranalys, generell hänsyn, heltalsprogrammering, 
heuristik, rumslig optimering, skogliga beslutsstödsystem, skogliga 
ekosystemtjänster  

Skoglig planering med rumsligt högupplöst 
data 



To my grandparents Elsy, Verner, Margareta, and Kjell,  
who lived by and with the forests of Västerbotten. 

  

Dedication 



 
  



List of publications ............................................................................. 9 

Abbreviations ................................................................................... 11 

1. Introduction ............................................................................ 13 
1.1 Forest planning ........................................................................... 13 
1.2 Decision support systems ........................................................... 16 
1.3 Optimization in forest planning .................................................... 18 

1.3.1 Exact solution methods................................................... 18 
1.3.2 Heuristics ........................................................................ 19 

1.4 Remote sensing and high spatial resolution forest data ............. 20 
1.5 Dynamic treatment units ............................................................. 21 
1.6 Retention forestry ........................................................................ 22 

2. Thesis objectives ................................................................... 25 

3. Materials and methods .......................................................... 27 
3.1 Remote sensing data (I-IV) and the estimation of the initial state on 

segment- and stand-level (II-IV)............................................................. 28 
3.2 Heureka PlanWise (I-IV) ............................................................. 30 
3.3 Mapping of treatment units (I-III) ................................................. 31 
3.4 Cellular automata (II-III) .............................................................. 32 
3.5 Further material and method details on included studies ........... 37 

3.5.1 Paper I ............................................................................ 37 
3.5.2 Paper II ........................................................................... 39 
3.5.3 Paper IV .......................................................................... 47 

4. Results ................................................................................... 53 
4.1 Applying an MIP model to DTU forest planning problems (Paper I)

 53 
4.2 The advantages of directly quantifying the economic incentive to 

cluster treatments (Paper II) .................................................................. 55 

Contents 



4.3 The provision of economic values as a result of different planning 

approaches (Paper III) ........................................................................... 56 
4.4 The provision of ecological values as a result of different 

approaches to allocating retention (Paper IV) ....................................... 59 

5. Discussion & conclusions ...................................................... 65 
5.1 The efficiency of forest ecosystem services provision ................ 65 
5.2 The presented cellular automata heuristic .................................. 67 
5.3 Uncertainties ............................................................................... 69 
5.4 DTU planning – possibilities and challenges in Sweden ............. 71 
5.5 Conclusions ................................................................................ 72 
5.6 Future research ........................................................................... 73 

References ...................................................................................... 75 

Popular science summary ............................................................... 87 

Populärvetenskaplig sammanfattning ............................................. 91 

Acknowledgements ......................................................................... 95 



 

 
 

9 

This thesis is based on the work contained in the following papers, referred 
to by Roman numerals in the text: 

I. Wilhelmsson P., Sjödin E., Wästlund A., Wallerman J., Lämås T., 
Öhman K. (2021). Dynamic treatment units in forest planning 
using cell proximity. Canadian Journal of Forest Research, 
51(7):1065–1071, https://doi.org/10.1139/cjfr-2020-0210 

II. Wilhelmsson, P., Lämås, T., Wallerman, J., Eggers, J., Öhman, 
K. (2022). Improving dynamic treatment units forest planning with 
cellular automata heuristics. European Journal of Forest 
Research, 141(5): 887-900, https://doi.org/10.1007/s10342-022-
01479-z 

III. Wilhelmsson, P., Wallerman, J., Lämås, T., Öhman, K. Dynamic 
treatment units in forest planning improves economic 
performance over stand based planning. (manuscript) 

IV. Wilhelmsson, P., Lundström, J., Wallerman, J., Lämås, T., 
Öhman, K. Utilizing high-resolution in long-term forest planning 
for cost effective promotion of biodiversity in retention forestry. 
(manuscript) 

Papers I-II are reproduced with the permission of the publishers. 
 
 
 

List of publications 



10 

The contribution of doctoral student Pär Wilhelmsson to the papers included 
in this thesis is documented as follows: 

I. Conducted parts of the analysis and wrote the manuscript with 
support from the co-authors. 

II. Developed the research idea, wrote the code, conducted the 
analysis and wrote the manuscript with support from the co-
authors. 

III. Developed the research idea, wrote the code, conducted the 
analysis and wrote the manuscript with support from the co-
authors. 

IV. Developed the research idea together with the co-authors, 
prepared parts of the data, conducted the analysis and wrote the 
manuscript with support from the co-authors. 

10



11 

Abbreviations 

 

 
ALS Airborne laser scanning 

CA Cellular automata 

DU Description unit 

DSS Decision support system 

DTU Dynamic treatment unit 

EC Entry cost 

IL Inoptimal loss 

LP Linear programming 

MIP Mixed-integer programming 

NFI National forest inventory 

NPV Net present value 

TU Treatment unit 

 





13 

Ecosystem services are defined as the human or environmental benefits
from e.g. forests, directly or indirectly (MEA, 2005). Forest ecosystem 
services comprise, among other things, the production of merchantable 
timber, sequestration and storage of carbon, species habitat, and recreational 
values. The goals of forestry are thus to achieve preferred combinations of 
ecosystem services. The activity of forest planning aims at specifying where, 
when and how to conduct management activities to align the provision of 
ecosystem services with landowner’s, stakeholders’, or society’s goals. 
Forest planning research aims to develop and evaluate models applicable to 
solving forest planning problems, as well as investigate the provision of 
ecosystem services over space and time, given different management 
scenarios. The research summarized in this thesis focuses on forest planning 
utilizing high spatial resolution data, made available by advances in remote 
sensing techniques and increased computer capacity, to store huge data sets 
as well as perform large and complex calculations. High spatial resolution 
data describing forests’ present state and projected development, combined 
with improved optimization procedures, enables higher precision forest 
management compared to traditional approaches.  Thus, the employment of 
these data and methods offers a potential for increased efficiency in the 
utilization of forest resources. This potential is one of the incentives for the 
present research. 

1.1 Forest planning 

Documentation of systematized forest planning exist from the century shift 
at year 1800 (af Ström, 1822; Cotta, 1804; Hartig, 1795). These early ideas 
were based on the periodic block system, in which the rotation age and total 

1. Introduction
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area of forest determines an annual area for forest treatments such as final 
felling. The reasoning was that employing this strategy will eventually 
achieve an even age-class distribution and thereby even flow of timber over 
time. The term “rotation age” implies even-aged forestry (time between two 
subsequent final fellings) but the same principle to obtain an even flow of 
timber can be applied in continuous cover forestry, where the term “cutting 
cycle” is used for the interval between two selection fellings. Forest research 
has proposed several other methods for decision making on how and when 
trees ought to be harvested. Such methods can be characterized by the level 
of which they operate: tree-level, stand-level or forest-level. 

Operating at the arguably finest level relevant for forest management 
(Bettinger et al., 2016), tree-level planning deals with decision making 
concerning the harvest for individual trees, see e.g. (Pascual and Guerra-
Hernández, 2022; Vauhkonen and Pukkala, 2016). 

Stand-level planning deals with finding the optimal timing and manner of 
silvicultural treatments for an individual forest stand (Bettinger et al. 2016). 
The concept of stands has been an important concept in the facilitation of 
forest planning for a very long time (af Ström, 1822; Faustmann, 1849; 
Nilsson et al., 2012). O’Hara and Nagel (2013) cites the American 
Dictionary of Forestry (Helms, 1998) to note that stands, in a silvicultural 
sense, are “contiguous groups of trees sufficiently uniform in age-class 
distribution, composition, and structure and growing on a site of sufficiently 
uniform quality”. Forest planning has often utilized stands as the smallest 
unit for the collection and storage of data, as well as modelling of ecosystem 
processes such as growth and mortality. When forest planning is conducted, 
stands are usually assumed homogeneous in terms of tree layer and site 
characteristics, and the delineation is then considered rigid over time (Davis 
et al., 2005; Nelson and Brodie, 1990; Ståhl et al., 1994). An important 
feature of stands is that they are large enough to be managed individually 
and without further spatial consideration, e.g. of the management of nearby 
stands. Quite naturally these assumptions are simplifications (Holmgren and 
Thuresson, 1997), as within-stand variations occur (Ståhl, 1992). 
Historically, stands have been delineated by interpretation of analogous and 
(later) digital aerial images (O’Hara and Nagel, 2013). It is also possible to 
delineate stands in an automated fashion from remote sensing data (Jia et al., 
2020; Olofsson and Holmgren, 2014; Pascual and Tóth, 2022; Pukkala, 
2021; 2020). 

14
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The largest spatial scale, which this thesis concerns, is forest-level 
planning. It aims to align forest management on the property-level with the 
goals by defining a set of potential management alternatives for all stands 
and deciding the best combination of management alternatives for all stands 
(Yoshimoto et al., 2016). The advantage of forest-level planning is that it 
enables the pursuit and satisfaction of forest-level goals such as the 
appropriate size of adjacent areas for final felling or annual yield from the 
entire forest. Such goals are unlikely to be satisfied if planning deals with 
trees or stands in an isolated manner (Wikström, 2000). 

Forest planning problems are recognized as complex and ill-structured 
due to long time-horizons, the complex production system of forests, 
multiple goals and the various ways to manage forests. As a measure to cope 
with these, the practice of dividing forest planning problems into sub-
problems in a hierarchy is widely acknowledged by large-scale forest owners 
(Bettinger et al., 2016; Borges et al., 2014; Duvemo et al., 2014; Eyvindson 
et al., 2018; Kangas et al., 2015; Martell et al., 1998; Nilsson et al., 2012; 
Ulvdal et al., 2022; Weintraub and Cholaky, 1991). The literature offers the 
nomenclature of long-, medium- and short-term planning (Borges et al., 
2014; Nilsson, 2013) but we will adhere to the stages as strategic, tactical 
and operational planning (Bettinger et al., 2016; Ulvdal et al., 2022). 
Although occasionally questioned in research (Eriksson et al., 2014; Tittler 
et al., 2001), the hierarchical approach is widely accepted among forest 
organizations. While the exact scope, horizon and outputs of each phase in 
the hierarchy are not strict, here follows a general outline of them. Strategic 
planning investigates the long-term (typically coinciding with the length of 
one rotation, i.e., ca. 100 years in a boreal setting) pursuit of management 
goals. The highest sustainable timber yield or highest economic yield in 
terms of NPV are typically the core answers sought from strategic planning. 
The tactical planning phase aims at geographically allocating the 
management activities to meet the output of the strategic planning, for the 
coming 3-10 years. The operational planning is typically conducted monthly 
and has the shortest time scope, usually 3-6 months. Here, the planning is 
involved with logistics and the scheduling of management treatment in the 
specific stands selected in the tactical planning. Two properties are clear 
here. First is the routine of repeating a planning phase with a time interval 
shorter than the planning horizon of the phase. This serves as an adaptation 
to an intricate system afflicted with uncertainties with regard to, e.g., 
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markets, models and natural disturbances. Second, the sequential, top-
bottom structure provides an environment in which a forest organization can 
allow top-down steering. The planning problem itself is also broken down 
into sub-problems, which decreases its complexity. Relating to stands, the 
strategic planning process can be carried out in different ways and 
characterized by the coverage, origin and resolution of the data. Strategic 
planning as conducted by industrial forest owners in Sweden has long been 
dominated by the strata-based approach (in the form of sample-based 
planning, see Jonsson et al., 1993). Here, a stratified sample (with regards to 
age, standing stock, productivity etc.) of the stands representing the forest is 
selected and surveyed in the field in an objective manner. The optimal 
management over time is then found for each stratum, thus answering 
strategic questions regarding what harvest levels are sustainable over time, 
thinning and fertilization regimes, and the extent and characteristics of 
retention and other environmental concerns. The alternative to the strata-
based approach is area-based planning (Ulvdal et al., 2022). Here, the entire 
geographical extent of the forest is represented by stands in a so-called wall-
to-wall data, and the optimal management is decided for all stands. The 
approaches come with different drawbacks and advantages. The strata-based 
approach is unable to deal with explicitly spatial issues (Daust and Nelson, 
1993), since geographical relations are unknown. Furthermore, the strata of 
stands may be skewed if sampling is not conducted with due diligence in the 
strata-approach. A drawback of the area-based approach is that the stand 
register data used to conduct the analysis often have low or unknown quality 
(Duvemo et al., 2014) and application of stands drastically increases the size 
and complexity of the planning problem. 

1.2 Decision support systems 

Tools often employed to deal with complex forest planning problems are 
forest decision support systems (DSSs), which facilitates the employment of 
sophisticated methods for determining location, timing and manner of forest 
management activities. Several definitions exist in the literature regarding 
what a DSS is. The following definition, describing both the functional and 
technical nature of existing forest DSSs is suggested by Vacik and Lexer 
(2014): “computer-based tools which provide support to solve ill-structured 
decision problems by integrating database management systems with 

16
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analytical and operational research models, graphic display, tabular reporting 
capabilities and the expert knowledge of scientists, managers and decision 
makers to assist in specific decision-making activities”. Forest DSS can be 
classified as simulating or optimizing. Simulating systems use a set of 
management rules to simulate a single future management alternative for 
each stand, and project the resulting output from and development of forests. 
Optimizing systems also incorporate management rules in order to, firstly, 
generate a set of potential management alternatives for each stand in the 
forest. Secondly, the optimizing system uses user set goals, constraints and 
optimization techniques to find the best possible combination of stand 
management alternatives. The papers in this thesis are involved with 
evaluating and developing new methods for forest DSS of the optimizing 
kind. 

A large number of forest DSSs exist internationally (Borges et al., 2014; 
Packalen et al., 2013; see also a compilation of systems on 
www.forestdss.org). Until quite recently, forest management focused on the 
pursuit of economic goals, e.g. timber production. An example of this can be 
found in the documentation of the Forest Management Planning Package 
(Jonsson et al., 1993): “in forest management, the goal is to achieve the 
highest possible yield”. However, introduced in the 1960s in the US (e.g., 
The Multiple Use Sustained Yield Act, passed in 1960, see also (Hoogstra-
Klein et al., 2017) for the European context), a more holistic view with the 
acknowledgement of the multi-functions of forests has had an increasing 
impact on the development of forest DSS (Nordström et al., 2019). The 
pillars of sustainability are now widely acknowledged as economic, social 
and biological (see e.g. United Nations (1992)). Additionally, their role in 
climate change mitigation and adaptation has been added to the list of 
functions forests are expected to fulfill (European Union, 2018). The concept 
of sustainability is now central in forest management (Hahn and Knoke, 
2010) and has reached global acknowledgement among governments, 
industry and communities (MacDicken et al., 2015). Aspects of participatory 
planning involving forest owners, indigenous people, communities are also 
to be added (Nilsson et al., 2016). Furthermore, forest planning problems 
may include elements of uncertainty such as natural disturbances and 
changing markets (Pasalodos-Tato et al., 2013). Altogether, the aspects that 
forest planning problems now deal with, have added to the complexity that 
DSS are expected to handle. This results in a wider scope of forest 
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management issues, which Vacik and Lexer (2014) identify as important 
drivers of DSS development, alongside advances in models, methods, and 
technology. The latter two are of particular relevance for this thesis, namely 
methodological and technological advances in remote sensing and in 
optimization. 

1.3 Optimization in forest planning 

1.3.1 Exact solution methods 

An influential solution method for decision support in forestry, often used in 
different DSS is linear programming (LP) (Kaya et al., 2016; Weintraub and 
Romero, 2006), a milestone for which was the simplex algorithm (Dantzig, 
1951). The application of LP to a decision problem is based on four 
assumptions: proportionality, additivity, divisibility and certainty (Bettinger 
et al., 2016). LP can solve planning problems given that involved functions 
are linear, a goal function is stated, and a set of constraints is formulated as 
equalities or inequalities. The method allocates management alternatives in 
time and space using mathematical theory and guarantees optimality. 
Combined with its robustness and ability to solve large problems, the method 
has been implemented in forest planning for decennia all over the world 
(Davis and Johnson, 1987; Dykstra, 1984; Kilkki, 1985). Specific LP 
formulations for forest planning were proposed by Johnson and Scheurmann 
(1977), presenting the so-called Model 1 and Model 2. Model 1 has had a 
great influence on Swedish forestry, with implementations in the widely used 
Heureka DSS (Wikström et al., 2011) and former Forest Management 
Planning Package (Jonsson et al., 1993), the latter after the implementation 
of the JLP optimization routine (Lappi, 1992). Model 1 uses a set of potential 
alternatives for each management unit, with the associated growing stock, 
age, yield etc., over the entire planning horizon. Model 2 on the other hand, 
reallocates the area of management units that are harvested within a given 
time period into specific strata – containers for management units – which 
are then used for further calculations. While Model 1 is arguably easier to set 
up and Model 2 may demand fewer constraints, McDill et al. (2016) show 
that Model 1 performs better for problems with a few time periods whereas 
Model 2 is more efficient in solving problems with many time periods. 

18
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The simple and robust nature of LP formulations also has limitations. A 
problem may not satisfy the four assumptions demanded for the application 
of LP, which calls for other solution methods. Due to the fact that non-integer 
decision variables are needed, LP is unable to deal with spatially explicit 
problems. Such planning problems have been imposed by, e.g., legislation 
(Bettinger and Sessions, 2003; Dahlin and Sallnäs, 1993) and motivated by 
sociological and ecological aspects (Öhman and Eriksson, 2002) or 
economic incentives (Borges et al., 2017). This shortcoming of the LP 
optimization method has motivated the use of mixed-integer programming 
(MIP) and heuristics. A planning problem is classified as MIP if one or more 
of the variables in the model are defined as integer (including binary), which 
is necessary when dealing with spatial problems. Here, the simplex algorithm 
used for solving LP problems is no longer applicable. MIP has been applied 
in spatial forest planning, with the advantage of managing spatiality and the 
ability to produce solutions where the maximum distance from the true 
optima is known. Efforts have improved the well-known slow solution times 
of MIP algorithms (Constantino et al., 2008; Goycoolea et al., 2005; Toth et 
al., 2012). Still, as reported by Bettinger et al. (2009), the drawbacks of LP 
and or MIP involve of a) the inability to deal with non-linear relationships, 
b) slow solution times, and c) limitations on the number of constraints which 
has led researchers to turn to heuristics to solve forest planning problems. 

1.3.2 Heuristics 

Heuristics are solution methods often characterized as optimization 
techniques, although they are not exact solution methods. These approaches 
use the power of computers to search the solution space of a problem 
according to some logical principle. Heuristics are able to provide solutions 
within a reasonable time, but do so without providing certain knowledge of 
the quality of an acquired solution, i.e. there is no guarantee that the optimal 
solution is found and the distance from the optimum of a solution is 
unknown. Where LP and MIP may be described as solving an approximation 
of the problem in an exact manner, heuristics may solve a more exact form 
of the problem approximately. Heuristics applied in forest planning research 
include, but are not limited to, simulated annealing (Lockwood and Moore, 
1993), tabu search (Murray and Church, 1995), genetic algorithm (Lu and 
Eriksson, 2000), threshold accepting (Dueck and Scheuer, 1990), reduced 
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cost method (Hoganson and Rose, 1984), and cellular automata (Strange et 
al., 2001), the latter being the heuristic used in this thesis. 

1.4 Remote sensing and high spatial resolution forest 
data 

Over the recent decades, methodological advances in remote sensing, i.e. 
techniques for measuring forest metrics from platforms such as satellites, 
aircrafts and drones using sensors like radar (Persson and Fransson, 2014), 
cameras (Bohlin et al., 2017), and laser (Axelsson et al., 2018), has 
revolutionized the data available for forest planning and DSS. Specifically, 
airborne laser scanning (ALS, see Næsset, 2002) has become widely used for 
forestry applications. Early experiments performed in 1970s in the Soviet 
Union found that trees could be measured using lasers and the conclusion 
was made that devices could be attached to aircrafts to remotely measure 
forests (Nelson, 2013). The working principle of ALS techniques is that if 
the position of the sensor, the angle and timing of an emitted light pulse, the 
time it takes for the light pulse to return to the sensor as it is reflected by an 
object, and the speed of light is known, a 3D point cloud can be generated. 
If a laser is mounted on an aircraft, the vertical distribution metrics of the 
produced 3D point cloud are useful for measuring the tree canopy. In the 
area-based approach for remote sensing (Næsset, 2002) regression analysis 
is conducted to find a correlation between the ALS data metrics and 
georeferenced field plot data with measurements of e.g. tree height, diameter, 
and biomass (Holmgren, 2004). The elaborated models are then applied on 
the ALS data for the area of interest, enabling representation of forests by 
fine-grained raster cells. Thus, instead of relying on stand-level data as in the 
past, it is now possible to describe the forest (e.g. variables such as tree 
species distribution, height, volume, etc.) at the raster cell level, i.e. areas 
that are, for example, 12.5x12.5 m2. The accuracy of this procedure is on 
stand level comparable (Nilsson et al., 2017) or superior (Persson et al., 
2022) to that of traditional subjective field surveys. The routine has been 
applied to produce forest data for entire landscapes in, among other places, 
Scandinavia (Breidenbach et al., 2020; Kotivuori et al., 2016; Nilsson et al., 
2017), Switzerland (Waser et al., 2017) and North-America (White et al., 
2013). These strides made in remote sensing have opened new possibilities 
for forest planning. High-resolution and wall-to-wall data has historically 

20
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been expensive and difficult to obtain and store but has now arrived and are 
utilized by forest and forestry related decision-makers and stakeholders. 

1.5 Dynamic treatment units 

The combined advances in remote sensing, forest DSS and optimization 
techniques have opened possibilities for a more flexible and dynamic 
handling of treatment units in forest planning compared to the traditional 
stand-based approach. In a new approach, typically named dynamic 
treatment unit (DTU) planning, the concept of spatially and temporarily rigid 
stands are not used. Conventional stands are relatively large areas (normally 
1-20 ha), used as both the smallest unit for data storage and modelling of 
ecosystem processes (description units), and as units for modelling and 
scheduling treatments (treatment units). DTU planning instead maintains a 
high spatial resolution of forest data through the planning process, and each 
treatment unit consists of many small description units temporarily clustered 
into areas of comparable sizes as traditional stands. The advantage of DTU 
planning is that the solution space is increased, and treatment units are 
formed as a result of the goal function, rather than by the pre-defined and 
fixed stands (Heinonen and Pukkala, 2007; Holmgren and Thuresson, 1997). 
Additionally, DTU planning facilitates the establishment of new plans when 
conditions change (shifts in prices, stakeholder’s goals, and policy or when 
natural disturbances occur) compared to stand-based planning, since the 
formation of treatment units are, to a lesser extent, the result of stand 
delineation. However, an application in the optimization process of forest 
planning of the non-spatial Model 1 to high-resolution description units 
would result in small, scattered treatment units not realistic in practical 
forestry. Thus, spatially explicit solution methods such as MIP or heuristics 
are necessary in DTU planning. While MIP models have been applied in 
spatial forest planning for decades with so-called area-restriction models and 
unit-restriction models (Augustynczik et al., 2016; Goycoolea et al., 2005; 
McDill et al., 2002; Toth et al., 2012) for solving problems connected to 
limiting the contiguous areas of final felling areas, the use of MIP is rare in 
the DTU planning literature (although see (Öhman, 2001; Pascual and de-
Miguel, 2022), possibly due to concern with long solution times (see e.g. 
Augustynczik et al. 2016; Borges et al. 2017). Instead, various heuristics 
have been applied, including threshold accepting (Heinonen et al., 2007), 



22 

reduced cost (Heinonen et al., 2018; Packalen et al., 2011; Pukkala et al., 
2009), genetic algorithm (Lu and Eriksson, 2000), simulated annealing (de 
Miguel Magaña et al., 2013), and cellular automata (Heinonen and Pukkala, 
2007; Mathey et al., 2007; 2005; Pascual et al., 2019; 2018). 

However, even if the are many studies about DTU planning the core 
question of whether DTU planning results in more efficient use of forest 
resource compared to stand based approaches has rarely been addressed. One 
exception is a study by Holmgren and Thuresson (1997). They found when 
solving a tactical planning problem of one period, that compared to plans 
produced based on the stand approach, DTU plans have higher NPV due to 
lower inoptimal loss from suboptimal decisions caused by the spatial 
resolution of data. Another important finding was that optimal allocation of 
treatment units change when timber prices changes. The authors noted that 
while the findings on inoptimal loss were relevant, methodological 
differences between the DTU model and the stand based model limited 
conclusions on the supposed superiority of DTU. Nevertheless, the findings 
(Holmgren and Thuresson, 1997) support the reasoning that DTU planning 
should enable a “more efficient utilization of the production potential” of the 
forest (Heinonen et al., 2007). The economic output of DTUs compared to 
stands were highlighted when Heinonen et al. (2007) found that a higher 
amount of harvest (timber volumes) can be maintained for a given total area 
of old forest or vice versa, if DTU planning is applied instead of stand-based 
planning. In their study, different spatial objectives were investigated, 
similar to other DTU studies. Common boundary length has been used for 
this purpose (Heinonen et al., 2007; Heinonen and Pukkala, 2007; Pascual et 
al., 2019, 2018), as has been the number of description units in the proximity 
with common management or properties (Heinonen et al., 2018; Holmgren 
and Thuresson, 1997; Mathey et al., 2007). These are ways to model the 
incentive to cluster management and e.g. old forest, due to economic, social 
and ecological advantages. Another possibility would be to directly model 
the economic incentive to cluster by including a full mapping of treatment 
units and applying the fixed cost directly to each of them. 

1.6 Retention forestry 

The general reasoning among DTU researchers, namely that a high-
resolution description of the forest should enable better decisions, is founded 
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on optimization theory. Increasing the solution space will lead to equal or 
improved solutions. This phenomenon is not specific to economics but is 
valid in a biodiversity context as well. This is relevant for the allocation of 
retention patches in retention forestry (RF). RF is a strategy to balance 
conflicting goals in forest management by retaining or creating forest 
structures at the time of harvest (Gustafsson et al., 2012) to achieve a 
significant level of continuity in forest structure, complexity and 
composition (Lindenmayer et al., 2012), and securing biological legacies 
(Mori and Kitagawa, 2014). Furthermore, RF increases the social 
acceptability of forestry (Putz et al., 2008; Ribe, 2005) and enhances 
aesthetic values (Shelby et al., 2005). RF was introduced in parallel in both 
North America (under the name New Forestry, see Franklin (1989)) and 
Northern Europe during the 1980s and 1990s (Simonsson et al., 2015). This 
reached full scale implementation when certification schemes became 
widespread (Gustafsson and Perhans, 2010) and RF is now practiced on 
several continents (e.g. Europe (Gustafsson and Perhans, 2010; Kuuluvainen 
et al., 2019; Shorohova et al., 2019), South America (Pastur et al., 2009),  
Australia (Baker and Read, 2011), and North America (Palik and D’Amato, 
2019)) and is applicable in both even-aged and un-even aged forest 
management systems (Gustafsson et al., 2019). Similar to how DTU 
planning aims at achieving higher efficiency in forest resource use, one may 
identify a potential to increase the ecological function of retention patches if 
the decision of where to allocate these structures is based on high-resolution 
data, increasing the solution space and allowing for higher precision forestry. 
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The objective of this thesis is to develop methods applicable to forest 
planning with high spatial resolution data and evaluate the potential gains of 
such data and methods, as compared to conventional practices, with respect 
to the provision of ecosystem services. The main focus lies on the planning 
approach of dynamic treatment units.  

 
Here follows a list of the aim of the respective papers: 
 
Paper I: The objective of this paper is to provide a method applicable to 
DTU planning problems based on an exact solution method, MIP. The aim 
is also to provide added flexibility in the formation of treatment units, by 
regarding adjacent areas as included in the treatment unit, not only 
immediately adjacent ones. 

 
Paper II: The objective of this paper is to improve a heuristic method 
applied to DTU planning problems in the literature. The heuristic is cellular 
automata and the paper adds a third phase to an existing algorithm. In this 
added phase, direct ECs are calculated in high detail, rather than estimated 
using spatial proxy variables.  

 
Paper III: The objective of this paper is to evaluate whether the DTU 
approach to forest planning can lead to a more efficient use of the forest 
resource in economic terms, compared to the traditional stand approach. This 
is conducted by solving a spatial planning problem where ECs are applied to 
treatment units.  

 

2. Thesis objectives 
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Paper IV: The objective of this paper is to present an approach to utilize 
high spatial resolution data and spatially explicit planning tools for the 
allocation of retention patches in long-term forest planning. The approach is 
in a case study compared to a schematic stand-based allocation of retention 
patches with regard to the resulting provision of economic and ecological 
ecosystem services. 
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The following section offers an overview of the methodology of the papers 
(summarized in Table 1), the geographical location of the analysis areas (see 
Figure 1) as well as a description of the materials and methods used in two 
or more papers. For materials and methods used in specific papers, see their 
respective subsections and chapters. 
Table 1. Summary of forest data, solution methods, and decision support systems used 
in the papers included in the thesis 

Paper DU type Avg size 
(ha) 

Analysis 
area 
(ha) 

No of 
DUs 

Solution 
method 

Decision 
support systems 

I Cells 0.015625 56 3587 MIP Heureka, 
external solver 

II Segments 0.28 1192 4218 CA Heureka, 
external solver 

III Cells 0.015625 4479 286553 CA Heureka, 
external solver 

 Segments 0.27 4477 16477 CA Heureka, 
external solver 

 Stands 5.2 4477 861 LP Heureka 
IV Cells 0.015625 9250 591759 LP Heureka, 

Zonation 
 Stands 5.43 9250 1702 LP Heureka 

 

3. Materials and methods 
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Figure 1. Locations of analysis areas for the papers in the thesis. Paper I in the county of 
Västra Götaland and Paper II-IV in the county of Västernorrland. 

3.1 Remote sensing data (I-IV) and the estimation of the 
initial state on segment- and stand-level (II-IV) 

Remote sensing was a crucial source of data for the estimation of the initial 
state of the forest in all four papers. The Swedish Land Survey and the 
Swedish University of Agricultural Sciences (SLU) cooperates to conduct a 
nationwide ALS which is then combined with NFI plots to output estimations 
for Swedish forests. The compiled 12.5x12.5 m2 raster data are available in 
open-access, provided by The Swedish Forest Agency (SFA) (SFA, 2022a; 
see also Nilsson et al., 2017). This source provided all papers included in the 
thesis with raster data on Lorey’s mean height, diameter, basal area and 
volume, which on the plot-level (10m radius) has relative root mean square 
errors of 9.8-11.2%, 16.4-17.1%, 20.4-26.7%, and 19.2-25.1%, respectively 
(Nilsson et al., 2017). Estimations of soil moisture class was also provided 
by SFA (SFA, 2022a). Moisture classes are given in a 5-graded scale of dry, 
mesic, mesic-moist, moist, and wet. The moisture map is based on digital 
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terrain indices and machine learning technique as presented by Ågren et al. 
(2021). 

In papers II-IV, besides raster data, forest data in the form of traditional 
stands and/or segments were also used. Segmentation algorithms merge 
similar, small units into larger units by some spatial principle (see, e.g., 
Olofsson and Holmgren, 2014). For details on the stand data and two 
segmentation algorithms forming segments used in Paper II and Paper III, 
see their respective subsection. After applying the segmentation algorithm, 
the following routine was applied to estimate segment- or stand-level data 
(i.e., covering an area of more than a single 12.5x12.5 m2 raster cell) 
(summary in Table 2). First, each cell (containing data records for all values 
necessary for further analysis) was converted into centroids (i.e., point data). 
Second, an intersection analysis GIS associated each centroid by their 
geographical location to a segment or stand. Finally, variable-specific 
metrics (e.g., mean, median, or most frequent) of the centroids intersecting 
each segment or stand as defined in Table 2 were set to represent each 
description unit. 
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Table 2. Summary of forest variables used for import to Heureka PlanWise and the 
statistical metrics used to compute the initial state of description units (papers II – IV). 

Forest attributes Data sources for 
estimation in cells 

Statistical metrics for 
estimation in segments 
and stands 

Lorey’s mean height (m) Skogliga grunddata1 Median 
Tree diameter (cm) Skogliga grunddata1 Median 
Volume (m3 ha-1) Skogliga grunddata1 Median 
Basal area (m2 ha-1) Skogliga grunddata1 Median 
Volume spruce (%) SLU Forest Map2 Mean 
Volume pine (%) SLU Forest Map2 Mean 
Volume broadleaves (%) SLU Forest Map2 Mean 
Site index species (pine 
or spruce) 

Closest matching NFI plot Most frequent 

Site index Closest matching NFI plot Most frequent 
Vegetation type Closest matching NFI plot Most frequent 
Mean age (yrs) Closest matching NFI plot Median 
Soil moisture class Soil moisture map3 Most frequent 

1 Derived from airborne laser scanning (SFA, 2022a), see also Nilsson et al. (2017). 
2 Derived from satellite imagery (SLU, 2022a), see also Wallerman et al. (2021). 
3 Derived from airborne laser scanning, see Ågren et al. (2021). 

3.2 Heureka PlanWise (I-IV) 

The Heureka PlanWise software (Wikström et al., 2011) was used in all four 
papers in the thesis. The Heureka forest DSS, developed at SLU, contains a 
suite of software. PlanWise is one of four applications in the Heureka system, 
applicable to different scales with respect to geographical range and 
stakeholder involvement. PlanWise has a widespread use in research, 
education and commercial forestry. While it is applicable to forest-level 
planning problems, PlanWise is designed to find the optimal forest 
management on the estate-level. In principle, PlanWise consists of two 
modules; a simulation module and an optimization module. The core of the 
simulation module, shared with the other applications in the Heureka system 
handling forest dynamics, is a set of models for the prediction of, e.g., 
growth, mortality and ingrowth. For growth there are both empirical and 
process-based models and mortality there are deterministic as well as 
stochastic models to choose from for projecting future tree-layer state. 
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PlanWise lets the user define a forest management framework with both the 
selection of forest management system (even-aged, uneven-aged and 
unmanaged) as well as settings for regeneration, pre-commercial thinning, 
thinning, selection felling, final felling, fertilization, nature conservation 
efforts, etc. Given the framework, the system software generates a set of 
potential treatment programs (TPs) for each description unit. A TP is a 
sequence of treatments (or non-treatments) over the planning horizon (the 
timeframe that is set by the user), which is divided into five-year periods. A 
typical planning horizon used in boreal forest contexts is 100 years, i.e. a 
rotation period. In the optimization module, the user defines the objective 
function and a set of constraints for steering the selection of TP for each 
planning unit, following the form of Model 1. Thus, PlanWise finds the 
combination of the description unit specific TPs that best fulfills the 
objective while also satisfying the constraints. Depending on the definition 
of variables in the problem, LP or MIP is applied as solution method. Finally, 
the system offers functionality for reporting numerous result variables, e.g. 
harvest yield, amount of old forest or standing stock. 

The use of Heureka PlanWise differed among the papers in this thesis. In 
all papers, PlanWise was used to project calculate the initial forest state, to 
generate TPs, and to simulate forest management with the projected future 
state of the forest given the TP. The simulations generated TPs within the 
even-aged management system in all papers. The optimization module in 
Heureka PlanWise was used in papers III and IV. LP in the form of Model 1 
(Johnson and Scheurman, 1977) was applied. The decision variable of Model 
1 assigns a specific TP out of the potential ones to each treatment unit or to 
shares of treatment units. For details on objective function and constraints, 
see the subsections for respective papers. 

3.3 Mapping of treatment units (I-III) 

The geographical delineation of treatment units is a central concept in papers 
I-III, the concept being based on defining a neighborhood for each 
description unit (DU). Two DUs are considered neighbors if their closest 
points are within a specified maximum distance, referred to as neighborhood 
distance. In practical forestry, treatment units do not necessarily need to be 
coherent. To reflect this in our models, we mapped the treatment units with 
the following routine: Two DUs are part of the same treatment unit (TU) as 
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long as they are interconnected in the same network of neighbors where the 
same type of treatment coincides in time. Equivalently, in a specific time 
period, two treatment units are distinctly separate if no DU in one TU is 
neighbor to any DU in the second TU (see Figure 2). 

 
Figure 2. Mapping of treatment units in papers I-III. Consider all colored 12.5x12.5 m2 
cells scheduled for final felling in a given period. Each color mark distinct treatment 
units, as mapped with a 50 m neighborhood distance (left) and mapped with a 200 m 
neighborhood distance (right). Note that both maps show the same landscape and 
management plan. 

3.4 Cellular automata (II-III) 

Papers II and III applied cellular automata (CA) as solution method. The CA 
heuristic is an iterative search algorithm first introduced by von Neumann 
(1966). In its generic form, a CA consists of a grid of cells, each cell with a 
finite number of states. Cells change states over the progression of the 
algorithm, subject to rules that depend on a utility function and the states of 
the neighboring cells, which belong to a subset of cells typically adjacent to 
or within a defined distance from the subject cell. To my knowledge, CA was 
introduced in natural resource management research when Strange et al. 
(2002, 2001) applied it to allocate different land uses. In a forest planning 
setting, a cell corresponds to a DU (a cell, segment or stand), whose states 
are assigned TPs. The spatiality of the presented CA model lies in the 
calculation of entry cost (EC), which is the fixed costs associated with 
conducting treatments like thinning or final felling. EC represents 
preparatory measures, e.g, fieldwork, road maintenance, moving machinery 
and personnel, and administrative work (Borges et al., 2017). The EC is 
shared among nearby DU with the same type of treatment coinciding in time. 
By considering each contiguous cluster as part of the same treatment unit and 
applying the EC to each defined treatment unit, the model is incentivized to 
cluster treatments in time and space, and DTUs being formed as a result (see 
Figure 3). This process corresponds to what Mathey et al. (2007) refers to by 
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claiming that in CA, large-scale patterns emerge due to local spatial rules. 
Another useful property of CA is that different spatial scales can be 
integrated (Mathey et al., 2007). CA is a decentralized system which means 
that the entire system does not have to be calculated anew when changes 
occur in a single cell, and this leads to faster solution times (Pukkala et al., 
2014, 2009). CA has been applied in DTU planning several times in the past 
decades (Heinonen and Pukkala, 2007; Mathey et al., 2007, 2005; Pascual et 
al., 2019, 2018). 

 
Figure 3. Visualization of how cellular automata clusters treatments over its phases for 
an example landscape of 1521 segments. Top left: randomized starting plan. Top right: 
end of local phase. Bottom left: end of global phase. Bottom right: end of final phase. 

In the DTU planning literature (Heinonen and Pukkala, 2007; Mathey et al., 
2007, 2005; Pascual et al., 2019, 2018), CA consists of two phases where the 
output plan from the first, local phase, is used as input in the second, global 
phase. The output of the global phase represents the solution to the problem. 
Each phase ends after a fixed set of iterations or by using a stopping criterion. 
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Starting from a state where all DU have a randomly selected TP among the 
available ones, the local phase aims to generate a local-level optimized plan, 
under simplified assumptions. Such local-level optimization does not 
guarantee the satisfaction of forest-level goals however (Wikström, 2000). 
Therefore, the global phase introduces consideration to such constraints, here 
total yield (harvest level). The algorithm used in papers II and III is inspired 
by previous works (Heinonen and Pukkala, 2007; Mathey et al., 2007; 
Strange et al., 2002, 2001. We have, however, added a third phase in the 
algorithm, the “final phase”. Here, DTUs are mapped in a high-detail manner 
and explicit, fixed ECs associated with harvest operations are included in the 
utility function, while maintaining consideration to the harvest level. This 
has not been implemented in earlier studies found in the literature and is the 
main contribution of Paper II. While the local and global phases use a fixed 
moving window to define neighbors and cluster treatments under simplified 
assumptions (local phase), as well as refine the solution to include forest-
level goals (global phase), the final phase conducts calculation of EC where 
the exact extent of every TU is mapped (see Figure 4 and subsection 3.3). In 
Paper II, three different neighborhood distances (closest points) were used – 
1 m (which corresponds to immediate adjacency using units no smaller than 
12.5x12.5 m2), 50 m and 200 m. In Paper III, two neighborhood distances 
were used – 1 m and 49 m. 

 
Figure 4. Visual representation of the spatial scope of the local and global phase (left) 
and the final phase (right) of the CA algorithm of papers II-III. Consider the grid a 
representation of a forest, as managed in a certain period. In the local and global phase, 
the blue marked cell will be charged as a share of a downscaled EC proportionate to the 
number of cells within the neighborhood scheduled for the same treatment. In the final 
phase, the full extent of the treatment unit is mapped, and the full-scale EC is divided 
among the DUs constituting the DTU. 

The different spatial scopes of the phases have implications for the 
calculation of EC. Especially for short neighborhood distances, only a small 
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subset of those cells in the neighborhood may share the EC in the local and 
global phases. For this reason, the EC was scaled down by multiplying it 
with a factor of 0.02, the factor chosen after trial runs. When the final phase 
starts, the full EC is charged from each DTU. 

One of the main drawbacks with heuristics is that they may not guarantee 
optimal solutions, and distance to the global optima for a given solution is 
unknown. Therefore, mechanisms may be included in efforts to prevent 
algorithms from getting stuck in local optima (e.g. n-opt moves (Bettinger et 
al., 1999) and search reversion (Bettinger et al., 2015)). Therefore 
“mutation” and “innovation” are included as probability events in CA. 
Mutation refers to an event when a random DU is selected for a DU from the 
available TPs, without regard for the utility function. Innovation refers to 
selecting the best TP according to the utility function. There is also a 
probability of leaving a DU unchanged but updating the utility of the current 
TP (Figure 5). The algorithm used in papers II and III processes over a fixed 
number of predefined iterations, where all DUs undergo innovation or 
mutation, or are left unchanged according to probabilities set by the user (in 
the papers presented here 90%, 5% and 5%, respectively). The final phase 
ends with a single iteration where all DUs are innovated to avoid the final 
plan from containing scattered treatments as the result of mutation. 
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Figure 5. Conceptual flowchart of the cellular automata heuristic used in papers II and 
III. The blue area marks events within the same iteration and the orange area marks the 
events within the same phase. 
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3.5 Further material and method details on included 
studies 

3.5.1 Paper I 

The paper presents an MIP model applied to solve a planning problem of 50 
years with a DTU approach. The analysis area consists of 3587 12.5x12.5 m2 
DUs, representing a small forest of 56 ha, which approximately corresponds 
to the average size of non-industrial private forest estates in Sweden (Haugen 
et al., 2016). The analysis area in Paper I is located in southern Sweden (see 
Figure 1). The growing stock is dominated by Norway spruce (Picea abies, 
84.1%) and the rest consists of Scots pine (Pinus sylvestris, 5.6%) and a mix 
of broadleaf trees (alder (Alnus incana), willow (Salix caprea), and rowan 
(Sorbus aucuparia), 10.3%). 

ALS data were used for import to Heureka PlanWise where, firstly, 
estimation of the initial state of the forest was made. Site index was 
calculated as the mean of two existing forest plans and tree species 
distribution (as represented by percentages of the growing stock) was 
collected from one of the plans. Age was not available in neither ALS data 
nor the plans, thus an approximation was made. The site index and age were 
assumed correct and using an iterative method, the age between 0 and 200 
years that best matched height development functions (Johansson et al., 
2013), was chosen. Secondly, even-aged forestry was simulated in all DUs, 
including the treatments soil preparation, planting, pre-commercial thinning, 
thinning and final felling. The site index dependent minimum allowed final 
felling age was set to match that of Swedish legislation and the upper limit 
was 30 years above the legal minimum limit. A TP without treatments was 
also simulated for all DUs. The simulations generated 42 957 potential TPs 
in total for the 3587 DUs, resulting in an average of 11.98 per DU. The real 
interest rate was set to 3%. 

The model decides forest management by assigning TP to all DUs within 
the forest. The goal function maximizes NPV from future forest management 
under an infinite time horizon while satisfying constraints on the total 
harvested volume in each of the 10 five-year time periods, as well as the 
spatial allocation of harvest activities under the first three five-year time 
periods. The constraint on harvested volume is defined such that the total 
harvest must not decrease from one period to the next one, which in 
combination with the goal function of maximum net present value, typically 
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leads to a reasonably even flow of harvest over time. The spatial constraint 
guarantees that a minimum proportion (a, set to 90% in cases 1-4) of cells 
treated with thinning or final felling in a given time period is considered 
clustered. A DU i is clustered when thinning or final felling occurs in DU i 
as well as in a minimum number of cells (T) with the closest distance of their 
perimeter within specified a distance (r) from the centroid of DU i in the 
same time period (see Figure 6). 

 
Figure 6. Classification of clustered DU in Paper I. Consider the grid a representation of 
a forest. Green cells mark the DUs that are scheduled for thinning in period p. Given a 
radius of 12 m and a T-value of 4, thinning must occur in at least 4 of the closest 9 
neighbors (including DU i) for DU i to be classified as clustered. C-marked DUs show 
DUs that are clustered given the stated settings. The parameter a, used to constrain the 
model with regards to clustering, represent the share of the green cells that must be 
clustered in a feasible solution. 

The paper consists of five case studies, where the value of r and T varies (see 
Table 3). Case 0 is a reference case where the spatial constraint was not 
included in the optimization. The motive for using different values on r and 
T was to demonstrate flexibility in the creation of spatial layouts of thinning 
and final felling and quantify the economic effects of varying degrees of 
clustering. For the full mathematical notation of the MIP model, the reader 
is referred to the published paper (Wilhelmsson et al., 2021). 
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Table 3. Settings for the five cases analyzed in Paper I. 

Case Radius (r, m) Neighbors within 
radius r 

Neighbors 
required for 
‘clustered’ status 
(T-value) 

0 - reference n/a n/a n/a 
1 12 9 3 
2 12 9 5 
3 30 25 5 
4 30 25 10 

NPV from costs and income from future forest management is presented in 
the different cases. To include not only the income of future forest 
management but also quantify the gains of clustering treatment units, we 
further analyze the economic performance of the case studies by performing 
a post-optimization mapping of DTUs, in line with the routine described in 
the subsection Mapping of treatment units (I-III). The cases are evaluated by 
mapping using two different neighborhood distances – 50 m and 100 m, 
respectively. Thus, individual DTUs representing thinning or final felling are 
identified, and each of them are charged 10 000 SEK in EC. We also report 
the number of individual DTUs in the periods the spatial constraint was 
active (periods 1-3), the harvested volume, and the solution times of the MIP 
model. All cases were solved using a branch-and-bound algorithm with a 
tolerance gap of 0.1%. The problem was formulated using AIMMS and 
solved using CPLEX version 12.7 on a PC with 64-bit Windows 10, a 3.4 
GHz Pentium 4 processor, and 16 GB of RAM. 

3.5.2 Paper II 

The heuristic CA algorithm presented above is applied to a DTU planning 
problem in Paper II. The heuristic solves a planning problem for a forest 
represented by segments. The segmentation procedure used for forming 
segments is based on ALS data (Nilsson et al., 2017) and performed in two 
steps, segmentation and minimization of within-segment deviation. Starting 
from a grid with 12.5x12.5 m2 cells, the segmentation algorithm (a region 
growing method, see Grilli et al. (2017)) merges adjacent cells or segments 
by considering their similarity with regards to five forest attributes - the basal 
area, Lorey’s mean height, proportion of growing stock of pine, spruce, and 
broadleaves, respectively. The region-growing model repeats merging until 
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the smallest difference between two merging-candidates (cells or segments) 
is larger than a user-set value. The second step in the segmentation routine 
deals with limiting the size of the largest segments, as they may have grown 
very large when merged. Here, an MIP model selects segments from a set of 
possible ones by minimizing the sum of standard deviation within segments, 
while two constraints are satisfied – (1) each cell must belong to a segment 
and (2) the maximum size of segments must not surpass the user-set limit, 
here set to 1 ha. The segmentation resulted in 4218 segments with an average 
size of 0.28 ha. 

The analysis area, owned by the industrial forest company SCA and 
located in mid-Sweden some 30 km northwest of Sundsvall, encompasses 
1192 ha. The average productivity is 4.9 m3 ha-1 year-1 and the average age 
is 58 years. The forest is comprised of Norway spruce (Picea abies, 49% of 
the growing stock), Scots pine (Pinus sylvestris, 30%), and birch (Betula 
pubescens and Betula pendula, 19%). A larger dataset (forest area) was 
available, and the area used for the paper was selected with a reasonably even 
age class distribution in mind. The estimation of the initial state of each 
segment, as required for import to Heureka PlanWise, was carried out in 
accordance with Table 2. The generation of TPs for all DUs was also 
conducted using PlanWise. In total, 53 473 TPs were generated for an 
average of 12.7 TPs per DU. 

The main contribution of Paper II is the added final phase in the CA 
algorithm. DUs change treatment programs over three phases, for a 
predefined number of iterations, which in turn processes all DUs one time. 
DUs are processed (with innovation, mutation or no change) one at a time 
and the TPs of all other DUs are considered fixed when the evaluation of a 
subject DU’s TPs is conducted. The evaluation is carried out with respect to 
the utility function. The utility function is the NPV from future forest 
management for an infinite time horizon, including a fixed EC within the 
planning horizon (10 five-year periods). The contribution to NPV from 
harvest in a specific TP and period, including ECs, is multiplied with a factor 
relating to the distribution of harvested volume over time and a user set 
harvest goal. Henceforth, the factor is referred to as the harvest coefficient. 
The harvest coefficient takes on a value between 0 and 1, depending on the 
harvested volume in each period due to the selection of a certain TP for the 
current DU. Thus, the harvest coefficient is specific for the DU i, TP j, and 
period p, and is denoted ui,j,p. The harvest coefficient ui,j,p takes the value 
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1  if hp ≤ tp 

1 – (hp – tp) / (1.1 * tp – tp) if tp < hp ≤ 1.1 * tp, and 
0  if 1.1 * tp < hp 

where hp is the harvested volume in period p and tp is the target volume 
in period p. The consequence of defining the harvest coefficient as such and 
including it in the utility function, is that the utility of actions that lead to 
overharvest (more than the set harvest goal) will be punished in proportion 
to the surplus of harvest, and the utility of serious overharvest (exceeding 
more than 110% of the harvest goal) will be set to 0. If all TPs have the utility 
of zero, the model will select the TP without thinning or final felling, and 
overharvest is thereby prevented. The harvest coefficient is included in the 
global and final phases. 

When evaluating the utility of TPs for a given DU, the EC is distributed 
among the DUs constituting the DTU in proportion to their respective area. 
This design aims to prevent a scenario where a treatment in a small DU with 
low total income would be regarded as not economically viable, while the 
rest of the DUs constituting the DTU would still be scheduled for cutting and 
thus, EC would be charged.  

The CA model was run in asynchronous (sequential) mode, which in 
general terms means that when the changing of state occurs for a cell in the 
system, knowledge of the rest of the system is perfectly up to date. In the 
specific case of Paper II, it means that the DTUs are all mapped anew when 
the calculation of utility occurs. The opposite is synchronous (parallel) mode, 
where the system acts upon information that may be outdated, since it is only 
updated at the start of an iteration (see Paper III). 

Two properties of heuristics motivate further investigation of solutions: 
the element of chance, here caused by DUs changing TP in a random manner 
when mutation occurs, and the fact that the distance from the global optima 
is unknown. Bettinger et al. (2009) suggest a six-level framework for the 
validation of heuristics with regards to variation in solutions. Corresponding 
to level two in the presented framework, spread in NPV and utility function 
value were reported. We also report the impact of this randomness by 
investigating how consistently the CA selects TPs for each DU when run 
repeatedly. “Stability” refers to how consistently TPs were selected by the 
CA and Table 4 offers an example of how stability was computed. The 
average stability is reported for each analysis with 20-40 repeated runs. 
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Finally, solutions found by the CA algorithm are compared with solutions 
for a similar problem, formulated and solved with LP technique. 
Table 4. Example of how stability is computed for three DUs given six repetitions and 
the selected TPs. 

 Repetition   
DU 
no. 

1 2 3 4 5 6 Most frequent 
TP 

Stability 
(%) 

1 TP12 TP12 TP13 TP12 TP13 TP12 TP12 67 
2 TP25 TP23 TP24 TP21 TP23 TP24 TP23, TP24 33 
3 TP34 TP31 TP34 TP34 TP34 TP34 TP34 83 
       Avg 61 

Paper III 
Paper III evaluates the economic performance of the DTU planning 
approach, compared to the traditional stand approach, when maximizing the 
NPV including EC while maintaining an even harvest flow over time. The 
CA presented in Paper II is applied in eight different cases (see Table 5) on 
a 4478 ha forest area, each case with its combination of neighborhood 
distance allowed when forming DTUs and planning approach. Planning 
approaches are distinct with respect to (1) the type of DU - data used for 
storing information and modelling ecosystem processes and forest 
management, as well as (2) the solution method applied to solve the planning 
problem. Cases 1a and 1b use the CA model to conduct DTU planning on 
cells (12.5x12.5 m2) as DUs. Cases 2a and 2b use the same CA model but 
use segments as DUs. Suffixes a and b refer to the neighborhood distances 
used; 1 and 49 m, respectively. Cases 3-1a, 3-1b, 3-2a and 3-2b use stands 
as DUs and an LP model is applied to solve the planning problem (Table 5). 
Each stand case name starts with “3-“ and ends with the name of the DTU 
approach solution it is compared to. 
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Table 5. Summary of Paper III cases and their respective datasets, the solution methods 
applied and the neighborhood distance used when mapping treatment units. 

Case DU type Avg size 
(ha) 

Solution method Neighborhood 
distance (m) 

1a Cells 0.015625 CA 1 
1b Cells 0.015625 CA 49 
2a Segments 0.27 CA 1 
2b Segments 0.27 CA 49 
3-1a Stands 5.2 LP 1 
3-1b Stands 5.2 LP 49 
3-2a Stands 5.2 LP 1 
3-2b Stands 5.2 LP 49 

The cell data are compiled from the sources in Table 2. In this dataset, the 
analysis area is represented by 286 553 cells for which Heureka PlanWise 
generated 10.25 million TPs in total. The cell data were also used to estimate 
the initial state of the forest for the other two datasets used – segments and 
stands. 

Segments were formed by merging cells into segments with an iterative 
segmentation algorithm originally intended for the delineation of stands 
based on single-tree data (Olofsson and Holmgren, 2014). For 
methodological reasons (described below), segments were not allowed to 
cross the borders of stands. Thus, there is an association between each 
segment and the stand it was formed within (Figure 7). The procedure 
resulted in 16 477 segments with an average size of 0.27 ha. The initial state 
of the forest in each segment was derived from the cells, in accordance with 
Table 2. 

Stand borders (polygons) were collected from a stand register provided 
by the forest owner, the industrial company SCA. Practitioners such as SCA 
manually delineate stands and update borders e.g. in conjunction with forest 
operations, by interpretation or processing of remote sensing data, or simply 
when personnel visit nearby stands. An important property of the stand 
delineation is that the quality and date may be unknown and may vary greatly 
between stands within the same dataset, as is the case with our stand data. 
Stand registers typically contain data needed for forest management, such as 
height and standing stock, but only the stand borders were used in this 
research. The estimation of forest attributes was performed as shown in 
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Table 2. In total, 861 stands represented the forest, for an average size of 5.2 
ha, which can be considered typical for mid-Swedish forestry. 
Table 6. Summary of the initial state of the three datasets representing the same forest in 
Paper III. Note how the routine to estimate e.g. age results in different results for cells 
and stands. 

 Cells Segments Stands 
No. of DU 286 553 16 477 861 
Avg DU size (ha) 0.015625 0.27 5.2 
Total area (ha) 4477.4 4477.9 4479.5 
Initial growing stock (m3 ha-1) 205 209 212 
Age (yrs, mean) 66.8 61.9 60.7 
Initial productivity (m3 ha-1 yr-1) 4.31 4.41 4.68 

 

 
Figure 7. Overview of the location of the analysis area, and the three datasets used in 
Paper III. The three datasets cover the same area, and the right map displays stands 
(green), segments (black) and cells (blue). 

The CA heuristic presented in Paper III was applied in cases 1a, 1b, 2a, and 
2b. In comparison to Paper II the design was modified in four ways: 
1) the harvest coefficient from Paper II was not used since it did not 
guarantee an even flow of harvest but only prevented overharvest. Instead, 
the utility function used to evaluate TPs includes a penalty to deviations from 
a stated harvest goal, formulated such that its impact is near 0 in the first 
iteration, and increases exponentially towards 1 over the global phase. The 
mathematical notation of the harvest penalty is 

𝐹𝐹 = 0.05 ∗ (
𝑖𝑖
𝐼𝐼
)2�(𝑇𝑇 − ℎ𝑝𝑝)2

𝑃𝑃

𝑝𝑝=1
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where  
F  is the harvest deviation penalty, 
i  is the current iteration of the global phase, 
I  is the total number of iterations in the global phase, 
T  is the harvest goal, and 
hp  is the harvest in period p. 
The constant of 0.05 was set after a set of trial runs. 
2) the EC was linearly progressive – contrary to the constant in Paper II – 
over the iterations in the final phase, reaching its full scale only in the last 
iteration of the final phase, including the final iteration when all DUs are 
innovated.  
3) the EC was distributed among the DUs in a DTU in linear proportion to 
the income from harvesting each DU – contrary to Paper II, where it was 
distributed in linear proportion to the area of each DU. After changes 2 and 
3, the mathematical notation of the EC in the final phase is  
eci = EC * (k/Kf) * ni / N  
where  
eci is the EC charged from DU i,  
EC is the base EC of 10 000 SEK,  
k is the current iteration of the final phase, 
Kf is the total number of iterations in the final phase, 
N is the total income from the DTU that includes DU i, 
nj is the income from the treatment (thinning or final felling) in 
DU j. 
4) the CA was applied in synchronous (parallel) mode meaning that the 
mapping of DTUs occurred only at the beginning of each iteration – 
contrary to asynchronous (sequential) mode, which means that DTUs are 
mapped at the time of e.g. innovation for a cell or segment, as in Paper II. 

The motive for change 2-4 was to deal with specific challenges with 
complexity and runtime encountered when solving the problem using cell 
data. Change 2 and 3 was specifically aimed towards mitigating the effect of 
switching the simplified calculation of EC as in the local and global phase to 
the detailed calculation as in the final phase. When applied to cell data in 
trial runs, the CA design used in Paper II produced output from the global 
that the full mapping conducted in the final phase considered as small, 
scattered, and non-profitable. The changes in EC calculation enables a 
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transition where DTUs are gradually made larger and larger under an 
increased incentive to cluster treatments. 

The harvest goal was set by solving a long-term planning problem on the 
stand data, where NPV from forest management under an infinite time 
horizon was maximized under two constraints – (1) that the growing stock 
after 100 years must be equal to or greater than that of the initial state and 
(2) that all periods must have the exact same amount of harvest (m3). This 
analysis found that a sustained harvest level of 129 979 m3 was possible for 
the forest, which set the harvest goal for the CA model. 

The CA was applied to the planning problems using the cell data in cases 
1a and 1b and the segments in cases 2a and 2b, suffixes a and b referring to 
neighborhood distances of 1 m and 49 m, respectively. The goal function 
maximizes the NPV from future forest management including an explicit 
inclusion of the ECs. Each case results in, among other things, estimations 
of NPV, allocations of DTUs, and a harvest level over time. The harvested 
volume from each of the four cases 1a, 1b, 2a, and 2b was used as input to 
the corresponding stand approach cases 3-1a, 3-1b, 3-2a, and 3-2b. The latter 
cases were solved using LP where the goal function was to maximize the 
NPV from future forest management, but without any calculation of EC, 
since it is not possible to perform the same type of mapping as conducted in 
the DTU analyses. The LP model also had a constraint, which stated that 
each case must have the same harvested volume in each period as a 
corresponding DTU solution. This means that case 3-1a was forced to have 
a periodical harvest profile equal to that of case 1a, and so on. The motive 
for this design is that it is not possible to use the formulation of harvest 
deviations as the sum of deviations squared in a LP model. There were some 
variations in initial state caused by the preparation of data (see Table 6). To 
mitigate this source of error and estimate inoptimal loss from rough spatial 
resolution of decisions and forest data, the TPs of each stand in stand 
approach cases were applied by force on the cells associated with the stand 
to finalize case 3-1a and 3-1b and the corresponding was performed on 
segments in case 3-2a and 3-2b. Since this is a spatial process, the assignment 
of treatment programs must be binary. Thus, the decision variable in the 
solution found with LP, xi,j, which was continuous in the solving of the 
problem and represents the share of each DU i that is treated with TP j, was 
rounded to the nearest binary number. The analysis is finalized by mapping 
the treatment units in cases 3-1a, 3-1b, 3-2a, and 3-2b, with the neighborhood 
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distance used in their corresponding DTU case. Next, EC is charged from 
each treatment unit using the same neighborhood distance as the 
corresponding DTU approach cases. This enables an appliance of the 
management that is found using stands as DUs, onto the corresponding DUs 
with higher spatial resolution, and estimations of potential gains or losses in 
economic terms are possible. 

3.5.3 Paper IV 

Paper IV compares methods for the allocation of retention patches in 
forest planning, distinct in their usage of decision support systems and spatial 
resolution of data, and evaluates the resulting provision of economic and 
ecological ecosystem services. The two approaches compared are hereafter 
called the cell approach and the stand approach. The paper also evaluates the 
potential effects of allocating the retention patches by considering the present 
attributes of the forest and as well as considering the possible development 
of forest attributes over 100 years, given no management of the retention 
patches. 

The analyzed area spans 9250 ha north of Sundsvall, Sweden (Figure 1). 
The data foundation of the paper was polygons in a systematic 12.5x12.5 m2 
grid, cell attributes compiled from various remote sensing raster data 
sources, listed in Table 2. The non-productive areas (estimated mean annual 
increment of below 1 m3 ha-1 yr-1) were excluded before analysis. Two 
variables needed for the analyses were not included in these data – 
distribution between deciduous species and the amount of deadwood. The 
distribution between birch (79.8%) and other deciduous trees (here aspen, 
alder, willow, and rowan (20.1%)) in each cell was set as proportionate to 
the regional estimates of NFI plots (SLU, 2022b). Deadwood was estimated 
using an imputation technique using 1710 NFI plots from productive, non-
protected areas within Västernorrland county, surveyed 2017-2021. Lorey’s 
mean height and the tree diameter in each cell was normalized against the 
standard deviation in each dataset. The same computations were conducted 
for the NFI plots before the imputation step. The deadwood of the closest 
matching NFI plot, with regards to the Euclidean distance in the two-
dimensional space of standardized variables mentioned, was applied to each 
cell. This statistical technique is also known as kNN (Tomppo et al., 2008). 
If two or more NFI plots were best matches, a random plot was drawn from 
this subset. 
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Using Heureka PlanWise for the entire process, the stand approach 
conducts a schematic allocation of retention patches by assigning a share (10 
or 20%, respectively) of each stand’s area as retention. Stand polygons were 
provided by the forest owner, the industrial forest company SCA. The stand 
data provided by SCA contained parameters for e.g. tree height, stand age, 
species distribution etc. but stand attributes from the forest owner’s stand 
register were not used, only the geographical shape of the stands (5.43 
hectares in average size) was used in the paper. The present state of each 
stand, after defining retention patches, was estimated by compiling metrics 
for the cells in each stand, in accordance with Table 2. Forest attributes were 
described using stand-level mean values. Before the simulation of treatment 
programs, retention patches were drawn in a schematic manner as rectangles 
around the centroid of each stand using the built-in tool in Heureka 
PlanWise. The retention patch inherited the data from the original stand and 
since the spatial distribution attributes within the stand was not known, the 
stand and the retention patch were identical in terms of tree height, standing 
stock etc. before simulation of forest development began. Therefore, the 
stand approach represents a routine for allocating retention patches based on 
data with lower spatial resolution compared to the cell approach. After 
retention patches were established, PlanWise was used to simulate forest 
management in all stands according to their respective management regime. 
Retention patches were left unmanaged for the entire planning horizon of 
100 years, and a set of even-aged forestry TPs was simulated in each of the 
original stands (retention patches excluded). Finally, to produce a long-term 
forest plan, management was decided for all stands by maximizing NPV such 
that the harvest yield did not decrease from one period to the next (for periods 
1-20). 

The cell approach used data with high spatial resolution, namely cells in 
12.5x12.5 m2 format, as well as the stand polygons provided by SCA, and 
combined Heureka and the Zonation conservation planning tool (Moilanen, 
2007) to allocate retention patches. The cell data were imported to Heureka 
PlanWise and forest development was then simulated under two 
management regimes: even-aged forestry, and no management. Retention 
indicators in raster data format was compiled from projections in the Heureka 
simulation – NPV (given even-aged forestry and a 3% discount rate) was 
used as indicator of the economic value of a cell. Indicators for biodiversity 
(given no management) were deadwood (m3 ha-1), volume of deciduous trees 
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(m3 ha-1), number of large trees (minimum diameter of 35 cm for deciduous 
trees and 45 cm for conifers) (stems ha-1), and mean age. These five 
indicators were compiled in two sets of raster files. The first set of raster files 
was based on the present state in the forest (albeit NPV is estimated for all 
future income and costs under an infinite time horizon), used in cases named 
“Present” (see Table 7). The second set of raster files was based on the future 
development of the retention indicators – as average values over the coming 
100 years given no management – and used in cases named “Future” in Table 
7. To indicate that cells with low potential income from forestry are 
preferable for retention, the NPV raster file was multiplied by -1. 

In the next step, the data records in all the raster files were normalized 
such that,  

xki = yki / zk 
where  

xki is the normalized value of indicator k in cell i, 
yki is the absolute value of indicator k in cell i, and  
zk is the highest absolute value of indicator k in the entire landscape of 
591 759 cells. 
The produced raster files were imported to the Zonation tool, used in the cell 
approach to allocate retention patches. The Zonation algorithm starts by 
selecting the entire landscape for retention, and removes raster cells by their 
priority for retention, until no cells remain. Only edge cells were eligible for 
removal in the study. The algorithm outputs raster data containing values 
between 0 and 1 for each cell where a value close to 1 indicates that the cell 
has a high priority for retention. Zonation offers different algorithms for 
conducting the priority ranking. The additive benefit function was used, 
which ranks cells based on the weighted sum of overlapping data records 
across all raster files for the subject cell, thus promoting a high sum. Zonation 
was run four times, with different boundary length penalties for retention 
patches and temporal scope of input files, resulting in four priority files. 
Including boundary length penalty enables clustering of retention patches. 
Each output file was used to delineate retention patches of two extents – the 
raster cells with the highest priority, their accumulated area corresponding to 
10% and 20% of the total area, respectively. The cases are summarized in 
Table 7. 
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Table 7. Overview of cases in Paper IV. Temporal scope refers to how the Zonation input 
raster data were compiled - either by present state or by future development of 
biodiversity indicators. 

Case Case name Temporal 
scope 

Border 
length 
penalty 

Retention 
level (%) 

1 Present, 10 Present 0.000 10 
2 Present, spatial, 10 Present 0.250 10 
3 Future, 10 Future 0.000 10 
4 Future, spatial, 10 Future 0.250 10 
5 Stands, 10 n/a n/a 10 
6 Present, 20 Present 0.000 20 
7 Present, spatial, 20 Present 0.250 20 
8 Future, 20 Future 0.000 20 
9 Future, spatial, 20 Future 0.250 20 
10 Stands, 20 n/a n/a 20 

When the retention patches for a case had been decided, all cells marked for 
retention were merged into a multi-polygon, which was clipped with the 
stand polygons in GIS. The result is a set of case-specific stands, each 
assigned for either even-aged forestry (hereby referred to as production 
stands, where 0% retention level is applied) or retention (hereby referred to 
as retention stands, where the entire stand is left unmanaged). The initial state 
of both production and retention stands was then estimated in terms of stand-
level values as defined in Table 2. In some rare cases, when a stand (had been 
separated from the retention patch as identified by Zonation, formed a 
narrow shape and) did not intersect with any centroids, the cell polygons 
were buffered with -1 meters, and metrics were computed for the buffered 
cells intersecting with the stand. Next, the forest data were imported into 
Heureka PlanWise, where forest management was simulated following the 
same principle as the stand approach. A single, no-management treatment 
program was simulated in retention stands and a set of even-aged forestry 
TPs was simulated in production stands. Finally, the optimal combination of 
treatment programs for all stands was found (in the same way as in the stand 
approach) by maximizing the NPV subject to a constraint that guarantees a 
non-declining harvest yield over the 20 periods that constitute the planning 
horizon. Thus, (while the resulting cell approach DUs may be as large as the 
original stands) the cell approach utilizes high resolution data to allocate 
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retention patches, and differences in the provision of economic and 
ecological ecosystem services emerge, when compared to the stand 
approach. 

Heureka can evaluate the amount of suitable habitat for different species 
within a forest landscape. A habitat model converts the stand data to raster 
format and evaluates the structure in each cell along with the nearby area, 
demanding a specified amount of preferred structures for a given species. We 
selected Hazel grouse (Bonasa bonasia) and Siberian jay (Perisoreus 
infaustus) as example species. We also added a fictitious species. The 
amount of suitable habitat for each species is reported in the results. 

The provision of economic and ecological value was estimated for each 
case with a normalized overall score. Economic score was established by 
dividing the NPV of each case with the highest NPV of any case, resulting 
in values between 0 and 1. The ecological performance of the forestry in each 
case was evaluated using habitat models and biodiversity indicators 
corresponding to Sweden’s environmental goals called Living forests 
(Swedish Environmental Protection Agency, 2022). These include forest 
with high abundance of dead wood1, old deciduous forest2, and abundance 
of large trees3, respectively. Since biodiversity indicators develop over time, 
the ecological score was computed with the following routine. We compute 
the average of periodical values of each biodiversity indicator (periods 1-20 
included) for all cases. Second, we normalize the average value of each 
indicator by dividing the case specific average value with the highest average 
value observed for any case for the given indicator, resulting in case specific 
values between 0 and 1. Finally, we take the average values of biodiversity 
indicator indices, which ranges from 0 to 1 and establish the biodiversity 
score of a case. The total score for a case is the sum of the economic score 
and the biodiversity score. 

 
1 Stands where dead trees with a minimum diameter of 20 cm constitute at least 20 m3 ha -1. 
2 Stands with a mean minimum age of 80 years where deciduous trees constitute least 30% of 
the basal area. 
3 Stands with at least 60 large trees (counting only deciduous trees with minimum diameter of 
35 cm and conifers with a minimum diameter of 45 cm). 
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4.1 Applying an MIP model to DTU forest planning 
problems (Paper I) 

Paper I presents an MIP model for DTU planning application. Economic 
output in plans found with the spatial constraint active (cases 1-4) generally 
indicate that spatial clustering of treatments is beneficial if ECs are applied. 
Without mapping DTUs and charging ECs, cases 1-4 resulted in decreased 
NPV compared to the reference case (case 0), see Table 8. Additionally, a 
higher T-value for a given radius resulted in lower NPV without ECs. 
Table 8. Summary of the economic results. NPV decrease represents the relative decrease 
in NPV for each case compared to the best case for the given neighborhood distance. 

 Case 
 0 1 2 3 4 
Radius (m) n/a 12 12 30 30 
T-value n/a 3 5 5 10 
 No EC, no post-optimization mapping of DTU 
NPV (SEK ha-1) 80 204 80 146 80 132 80 196 80 070 
NPV decrease (%) 0.00 0.07 0.09 0.01 0.17 
 Including EC, 50 m neighborhood distance  
NPV (SEK ha-1) 75 256 74 239 76 656 74 599 77 581 
NPV decrease (%) 4.28 4.31 1.19 3.84 0.00 
No. of DTUs (p 1-3) 40 40 24 38 17 
 Including EC, 200 m neighborhood distance 
NPV (SEK ha-1) 78 005 77 972 78 093 78 285 78 447 
NPV decrease (%) 0.56 0.61 0.45 0.21 0.00 
No. of DTUs (p 1-3) 15 15 14 13 11 

4. Results 
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When mapping of DTU was included and ECs charged accordingly, the 
reference case (case 0) had the second lowest NPV using both neighborhood 
distances (Table 8). Case 4 had the highest NPV, with the other cases 
showing a decrease in NPV of up to 4.31% and 0.61%, respectively. Case 4 
also had the lowest number of treatment units for both neighborhood 
distances. 

Comparison of cases with a given radius shows that an increased T-value 
resulted in higher NPV when ECs were included, in contrast to the ECs being 
excluded. 

The solution times varied, where the reference case (without any spatial 
constraints) was solved the fastest (2.2 s) and case 4 was the slowest (2552 
s). The variation in harvested volume was negligible, ranging from 6.31 to 
6.32 m3 ha-1 year-1. 

Visual inspection of harvest activity spatial layout (see Figure 8) indicates 
that treatments units were the most compact in case 2, where 5 of 9 or 55.6% 
of neighboring cells need to be harvested within a given time period, as well 
as the subject cell, for the subject cell to be classified as clustered. This case 
had the highest degree of clustering, compared to case 0 (reference, no 
clustering), case 1 (3 of 9 or 33.3% cells needed), case 3 (5 of 25 or 25% 
cells needed) and case 4 (10 of 25 or 40% cells needed). 
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Figure 8. Layout of harvest activities (green) in the 56 ha analysis area (Paper I). 

4.2 The advantages of directly quantifying the economic 
incentive to cluster treatments (Paper II) 

Paper II aims to improve an existing CA heuristic for DTU planning by 
adding a third phase to the algorithm, where treatment units are mapped in 
high detail. The added phase in the algorithm increased both the utility (1.5-
32.2%) and NPV (3.6-33.8%) (see Table 9). These estimations are based on 
a mode of the algorithm where a full EC is calculated (along with the 
associated high-detail mapping of DTUs) in parallel to the simplified 
mapping and downscaled EC that guides the search process in the global 
phase. The lion’s share of the improvement presented in the Delta-column 
(representing the improvements on NPV and utility in the final phase) took 
place in the first few iterations of the final phase, with some contributions in 
the last iteration, where all DUs are innovated. The model produced results 
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with consistency, as indicated by the average stability of 87% for all 
analyses, as well as the coefficients of variations (all below 0.0161). 
Table 9. Results for repeated runs of the algorithm in Paper II. Delta represents the 
increase in utility and NPV (the latter in SEK) from the end of the global phase to the 
end of the (added) final phase. 

  Global 
phase 

 Final  
phase 

Neighbor-
hood  
distance 

 Avg 
(M) 

 Avg 
(M) 

Delta 
(%) 

SD 
(k) 

Coeff. of 
variation 

Stability 
(%) 

11 Utility 37.3  49.9 32.2 80.4 0.0161 87 
 NPV 38.5  51.0 33.8 65.1 0.0013  
501 Utility 47.5  53.1 11.7 15.6 0.0029 87 
 NPV 48.9  53.5 9.2 60.8 0.0011  
2002 Utility 51.0  51.7 1.5 61.1 0.0118 87 
 NPV 52.5  54.4 3.6 45.4 0.0008  

140 repetitions; 220 repetitions. 

Utility, NPV, and harvested volume increased with increased neighborhood 
distance, see Table 10. In contrast, the number of DTUs decreased with 
increased neighborhood distance. The average size of DTU was between 
2.04 and 12.7 ha, depending on neighborhood distance. 
Table 10. Basic results for the three cases in Paper II. 

Neighborhood  
distance 

Utility 
(M) 

NPV 
(MSEK) 

Avg DTU 
size (ha) 

No of 
DTUs 

per 
period 

Harvested 
volume  
(m3 ha-1 yr-1) 

1 50.3 50.9 2.04 49.6 7.4 
50 51.2 53.4 5.90 19.4 8.1 
200 53.9 54.4 12.7 9.8 8.3 

4.3 The provision of economic values as a result of 
different planning approaches (Paper III) 

Paper III aims to compare the economic performance of plans produced 
with the model for DTU planning presented in Paper II with a conventional 
stand approach planning procedure. Plans found with the DTU approach 
consistently outperformed plans produced with the stand approach. The NPV 
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of stand approach plans was 2.7-5.2% lower than the corresponding DTU 
plans (Table 11). Most of the differences between DTU approach plans and 
stand approach plans were the result of lower IL, even though EC were also 
lower in the DTU approach plans. 
Table 11. Economic summary of results for the eight case studies. Estimations of NPV 
includes IL and EC, which are both discounted using a 3% rate (Paper III). 

Case Data Neighbor-
hood 
dist. (m) 

NPV 
(Rel.) 

NPV 
(SEK 
ha-1) 

IL  
(SEK  
ha-1) 

EC 
(SEK 
ha-1) 

1a Cells1 1 1.000 45898 4338 1459 
3-1a Stands & cells2 1 0.963 44222 5850 1662 
1b Cells1 49 1.000 47425 3446 822 
3-1b Stands & Cells2 49 0.948 44972 5829 894 
2a Segments1 1 1.000 47422 4402 1077 
3-2a Stands & Segments2 1 0.973 46133 5166 1602 
2b Segments1 49 1.000 48212 3965 742 
3-2b Stands & segments2 49 0.972 46846 5158 898 

1 Solution found with CA heuristic. 
2 Solution found with LP and management of each stand applied to underlying cells or 
segments. 

The small differences in EC between the planning approaches were also 
reflected in small differences in the total number of treatment units between 
comparable plans. The average size of treatment units was between 3.28 and 
6.60 ha over all cases (Table 12). The total area to total perimeter ratio (A:P 
ratio) revealed that stand approach plans consistently had more compact 
treatment units than plans produced with the DTU solution method, 
particularly for DTU plans based on cells. The spatial patterns of treatment 
units are visualized in Figure 9 and Figure 10, where the varying degree of 
compactness can be seen. Finding DTU solutions was time consuming using 
cells (286 553 DU and 10.25 M TP), with the planning model requiring up 
to 4 days, 21 hours and 37 seconds. Using segments, solutions were found 
within 43 minutes (excluding the time for the segmentation) and the stand-
based solutions were found within 7 seconds (excluding the time for post-
optimization mapping of treatment units). 
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Table 12. Spatial metrics for treatment units in the case studies. A:P ratio represents 
compactness and is computed as the total area of treatment units (m2) divided by the total 
perimeter of treatment units (m). 

Case Data No of 
TUs 

No of TUs 
< 0.25 ha 

Avg TU 
area 

A:P 
ratio 

1a Cells 1211 707 3.29 15.7 
3-1a Stands & cells 1383 468 3.28 29.2 
1b Cells 706 534 6.10 6.0 
3-1b Stands & Cells 738 71 6.17 29.4 
2a Segments 974 210 4.27 24.0 
3-2a Stands & segments 1363 447 3.34 29.9 
2b Segments 657 134 6.60 17.2 
3-2b Stands & segments 741 71 6.16 29.9 

 

 
Figure 9. Maps showing the treatment units (distinct colors mark distinct treatment units) 
in period two in a subarea of the forest analyzed. Cell based plans, with the DTU 
approach plans to the left and stand approach plans to the right (Paper III). 
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Figure 10. Maps showing the treatment units (distinct colors mark distinct treatment 
units) in period two in a subarea of the forest analyzed. Segment based plans, with the 
DTU approach plans to the left and stand approach plans to the right (Paper III). 

4.4 The provision of ecological values as a result of 
different approaches to allocating retention (Paper 
IV) 

Figure 11 displays the retention patches as allocated in the different cases. 
The clustering in spatial cases is clear from visual inspection, as is the 
schematic allocation of the stand approach.

 
Figure 11. Allocation of retention patches in a northern part of the analysis area for the 
10 cases of Paper IV. Top row: 10% retention level. Bottom row: 20% retention level. 
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The spatial cell approach case based on future development of forest 
attributes with a retention level of 20% received the highest total score, 
indicating the highest overall provision of ecosystem services (Table 13). 
This case was by a clear margin the best for biodiversity, recording the 
highest normalized average value for four of the six indicators that constitute 
the biodiversity score. While this case was the second worst for the economic 
outcome, the differences in economic score were much smaller than those 
for biodiversity score. The results of Table 13 indicate that the economy 
deteriorated, and the biodiversity improved when the retention level 
increased from 10% to 20% for all cases. The stand approach cases provided 
the lowest total score, but the highest scores for forest with abundance of 
deadwood and habitat for Siberian jay. 
Table 13. Metrics for the estimation of ecosystem services provision in Paper IV. 
Biodiversity indicators are a derivative from mean values for periods 1-20 (rows 2-7). 
For rows 8-10, economic score is equal to NPV (row 1) and biodiversity score is the 
average of indicators in rows 2-7. Total score is the sum of economic and biodiversity 
scores. For a detailed clarification on the computations, see subsection of Material & 
methods. Bold figures indicate the highest values for each indicator. 
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Figure 12. Net present value given a 3% real interest rate. 

Increasing the retention level from 10 to 20% resulted in a consistent 
decrease in NPV (see Figure 12). Comparison across other types of cases 
(stand and cell approach cases, spatial and non-spatial cell approach cases, 
etc.) did not show consistent differences. 

 
Figure 13. Area of forest where the amount of deadwood exceeds 20 m3 ha-1. In 
accordance with Sweden’s environmental goals, only downed or standing trees with a 
minimum diameter of 20 cm are included. 

Quantities in Figures 13-15 correspond to indicators of Sweden’s 
environmental goals Living forests. All cases had an increase in forest with 
abundance of deadwood from the initial values, with peaks in period 11 or 
12 (Figure 13). Figure 13 also shows that the area of forest with an abundance 
of dead wood was largest in the stand approach cases, which is also visible 
in Figure 11. 
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Figure 14. Area of forest where the number of large trees exceed 60 stems per hectare. 
The minimum diameter in breast height is 45 cm for conifers and 35 cm for deciduous 
trees, as per the definition in Sweden’s environmental goals. 

All cases had a very low amount of forest with an abundance of large trees 
in the initial state (Figure 14), and this forest type gradually increased over 
time. Cell approach cases based on the future outperformed the other cases 
with respect to this environmental goal, and the stand approach cases 
provided the least amount of this forest type with a clear margin. The 
differences between spatial and non-spatial cell approach cases were 
ambiguous. 

 
Figure 15. Area of old, deciduous forest. In accordance with Sweden’s environmental 
goals, the mean stand age must be at least 80 years and broadleaves must constitute at 
least 30% of the stand’s basal area. 

Old forest with an abundance of deciduous volume declined in early periods 
in all cases (Figure 15). This forest type recovered back up to the initial levels 
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only in cell approach cases based on future forest attributes and with 20% 
retention level. The non-spatial cell approach cases provided more old forest 
with abundance of deciduous trees than its spatial counterpart, and the stand 
approach cases consistently had the smallest area of this forest type through 
the entire analysis period. 

 
Figure 16. Area of forest suitable for Hazel grouse (Bonasa bonasia). The habitat model 
demands a 20% share of the nearby 100 ha of forest with a tree species mix of spruce 
and deciduous trees, as well as a mean tree age of minimum 20 years. For further details 
on the habitat model, see Paper IV manuscript. 

 
Figure 17. Area of forest suitable for Siberian jay (Perisoreus infaustus). The habitat 
model demands that a 50% share of the nearby 200 hectares are dominated by conifers 
and having a minimum age of 30 years. For further details on the habitat model, see Paper 
IV’s manuscript. 
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Figure 18. Area of forest suitable for the fictitious species. The habitat model demands a 
25% share of the nearby 3.14 hectares being minimum 100 years of age, with abundance 
of deciduous trees. For further details on the habitat model, see Paper IV manuscript. 

Table 13, Figure 16 and Figure 17 show that the habitat area for Hazel grouse 
and Siberian jay declined over time in all cases, and the differences between 
cases were relatively small. In general, the stand approach provided the most 
habitat for Siberian jay among the different cases while, on the other hand, 
this approach provided the least habitat for Hazel grouse (Figure 16 and 
Figure 17, respectively). The habitat model for our fictitious species, which 
emphasizes old forest in a small nearby area (100 m radius), indicated that 
the stands approach consistently provided the smallest amount of suitable 
habitats (Figure 18). The Future cases, with some exceptions, provided the 
largest areas of suitable habitat (Table 13).  
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5.1 The efficiency of forest ecosystem services provision 

The main research topic in this thesis is how to use high spatial resolution 
forest data in long-term forest planning and whether such data used with 
adapted planning methods can increase forests’ provision of ecosystem 
services. The emphasis lies on economic values and the DTU planning 
approach, compared to stand-based planning. One of the essential results is 
found in Table 11, indicating that DTU planning based on small DUs can 
outperform stand based planning in economic terms. The explanation for this 
outcome has earlier been hypothesized by forest planning researchers: DTU-
planning should lead to “more efficient utilization of the production potential 
of the forest” (Heinonen et al., 2007). From an optimization-theoretical 
standpoint, DTU planning using small DU represents an increase of the 
solution space when compared to larger stands, which may only result in 
equal or better solutions (Lundgren et al., 2010). From a forest management 
standpoint, the explanation is that high spatial resolution data allows models 
to find management activities better adapted for the local conditions of the 
forest. This is indicated by Table 11, showing that most of the NPV increase 
when DTU planning was applied came from a lower IL. This result is a 
reiteration of the findings made by Holmgren and Thuresson (1997). While 
papers I-III focus on possible economic gain from the use of DTU, the 
principle of better solutions due to a larger solution space is general, and not 
exclusive to monetary qualities. The possible gains in ecological values from 
planning based on high-resolution data and adapted planning methods were 
evaluated in Paper IV. Similar results appeared, as an indication was given 
of a higher potential for the provision of ecosystem services when the overall 

5. Discussion & conclusions 
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score of cell approach cases outperformed the stand approach cases 
consistently (Table 13). Differences in economic score were small or 
ambiguous between cell approach and stand approach cases. The difference 
in overall score was instead caused by a clear increase in biodiversity score 
for cell approach cases. The presented cell approach is a sequential routine 
where the Zonation-algorithm (a heuristic of sorts) was enabled to cherry-
pick the most valuable areas for biodiversity. Thus, locally adapted forest 
management increased the provision of ecosystem services. 

To elaborate on an increased solution space, we return to the example of 
DTU planning. In short, this planning approach may result in higher 
precision when performing forest activities, compared to stand based 
planning. Note the expression “may result” and not “will result”, because 
while an increased solution space should lead to better solutions, DTU 
planning also warrants a shift away from traditional solution methods such 
as LP to MIP or heuristics, with their respective challenges thereby inherited. 
For MIP, the main concern is long solution times, which was highlighted in 
Paper I as solution times grew rapidly when the problems increased in size, 
and again in Paper III with the huge cell data. Research results show a 
potential to reduce solution times in MIP, see e.g. Constantino et al. (2008), 
Könnyű and Tóth (2013), McDill and Braze (2001), and Toth et al. (2012). 
The challenge for heuristics is (not limited to but includes) consistently 
searching the solution space in a relevant and efficient enough manner for 
better solutions to be found. The design of heuristics must consider the 
specifics of the problem that is to be solved, and appropriate techniques and 
parameter settings may both reduce run times and improve solutions 
(Bettinger et al., 2015, 1999). 

Forest planning must somehow deal with spatial aspects for plans to be 
relevant (see e.g. the unrealistic harvest plans of Case 0 and Case 3, Figure 
8). Perhaps not obviously, the delineation of stands is a technique for 
managing this. Pascual et al. (2019) noted that use of segments, compared to 
cells, is a form of spatiotemporal clustering even if no spatial constraints are 
included when forming treatment units. The same thing can be said about 
stands, which together with LP have been serviceable for solving forest 
planning methods for a long time (Davis and Johnson, 1987; Dykstra, 1984; 
Johnson and Scheurman, 1977; Kilkki, 1985), during a period when high 
resolution forest data have been difficult and expensive to obtain, to store 
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and to use in analysis. Helms (1998) defines silvicultural stands for 
silvicultural practices as  

a contiguous group of trees sufficiently uniform with regards to attributes and site 
properties.  

A key word here is “sufficiently” which I argue is determined by whether 
the unit is appropriate for uniform management which, in turn, is dependent 
on the goals of the forest owner or stakeholder as well as technical and 
economic factors. This is an argument for establishing the goals first and 
delineating stands second. Also, as Holmgren and Thuresson (1997) suggest, 
the optimal allocation of treatment units change when outside factors such 
as timber prices change. This is similar to how Borges et al. (2017) find that 
the optimal allocation of harvests is subject to road opening costs. Thus, there 
are motives to update forest plans and TU (stand) borders when factors such 
as prices or policies changes. Such revision actions may be facilitated if high-
resolution data and spatial planning models are utilized. 

Regardless of how spatiality is handled in forest planning, there should 
be no doubt that ecosystem processes have spatial dependency, e.g., the 
growth, ingrowth and mortality of trees is a function not only of the tree 
itself, but also its surroundings (Larocque, 2016). Forests’ provision of 
ecosystem services is also spatially dependent (e.g., forest operations are 
more cost-efficient when clustered (Borges et al., 2017), and in cases 
protection of fewer and larger areas is considered better (Ranius et al., 2022) 
in comparison to many small areas). An increase in spatial resolution of 
forest data will increase the need for spatial planning models in forest 
planning even more. This is highlighted in Paper I, when plans without 
spatial constraints were outperformed when including ECs (Table 8), and in 
Paper IV, when spatially explicit approaches to the allocation of retention 
patches provided more suitable habitat for some species (Table 13). 

5.2 The presented cellular automata heuristic 

The presented CA model is inspired by the literature (Heinonen and Pukkala, 
2007; Mathey et al., 2007, 2005; Pascual et al., 2019, 2018; Strange et al., 
2002, 2001), where it has proven successful in solving spatial forest planning 
problems and forming DTU. The model here added a phase to the algorithm 
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(Paper II) and was evaluated for the purpose of generating forest plans with 
DTU and compared to a planning approach based on stands and LP (Paper 
III). Limitations in these studies motivate critically highlighting the model. 
Parameterization was given only smaller efforts, which is typically a concern 
for heuristics (Bettinger and Boston, 2017), e.g., the main result from Paper 
II, the increase in utility function and NPV over the final phase of the CA 
algorithm, is highly dependent on parameterization (and design). If 
clustering would have been further incentivized in the local and global phase 
by downscaling the full EC with a larger factor (than 0.02), the input into the 
final phase would likely have included larger treatment units, and the 
improvements on utility and NPV during the final phase would likely have 
been smaller. The parameters needed for our model also include probabilities 
for innovation and mutation, and a scalar for EC. The probabilities (0.9 for 
innovation, 0.05 for mutation and 0.05 for no change in papers II and III) 
were initially influenced by the literature and finalized after trial runs. 
Contrary to previous works, where progressive and decreasing probabilities 
for innovation and mutation have been used (Heinonen and Pukkala, 2007; 
Strange et al., 2002), our probabilities were constant over the iterations. The 
EC scalar of 0.02 in the local and global phase was set after inspecting the 
data and finding that some treatment programs of very small DUs would 
never be considered economically viable given the simplified mapping of 
DTUs in these phases of the algorithm. Such behavior would cause the 
algorithm to refrain from forming treatment units in the local and global 
phases and risk getting stuck in local optima. Since heuristics are sensitive 
to parameterization and no analyses were carried out on the matter, our CA 
may potentially provide better solutions if parameterization is done more 
thoroughly.  

On this topic, one might add that modelling the ECs directly rather than 
by spatial proxy variables, reduces the need for parameterization and expert-
knowledge in users. The design of the harvest coefficient used in Paper II 
specifically aimed at preventing the model to choose treatment programs 
where harvests would be conducted just outside the planning horizon, thus 
resulting in a moderate NPV but without being charged with an EC. Finally, 
since results showed that the harvest coefficient of Paper II did not achieve 
an even harvest flow, we decided to change it for Paper III. The harvest 
volume deviation penalty of Paper III punishes not only overharvest, but also 
low harvest activities. The mapping of treatment units and EC was used to 
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explicitly quantify the economic gains of spatiotemporal clustering, instead 
of applying spatial proxy variables, e.g. common border (Pascual et al., 2019, 
2018; Pukkala et al., 2014). As argued by Heinonen et al. (2018), the use of 
adjacency constraints in spatial forest planning may lead to unwanted 
outcomes when narrow objects such as roads or mires separate nearby stands. 
Results indicate that the high-detail mapping of DTU improved solutions 
(Table 9) but at a considerable computational burden. In order to generate 
more compact treatment units, it may be relevant to combine the direct 
quantification of costs with use of spatial proxy variables, e.g. the common 
border between simultaneously treated and adjacent units. Heuristics aims to 
provide “high quality solutions in shorts amount of time” (Bettinger et al., 
2002) for large and combinatorial problems. Therefore, the solution times 
displayed in the studies are arguably underwhelming. Inclusion of stop 
criteria may be relevant here, especially since the utility function culminated 
after only a few iterations in each phase. 

5.3 Uncertainties 

The research in this thesis relies heavily on the accuracy of remote sensing 
techniques to estimate forest attributes and forest DSS for projecting forests’ 
future attributes and provision of ecosystem services. The key aspects of the 
methodological foundation of these techniques deserve further discussion. 
As previously noted, the ALS data prevalent in the papers have accuracy on 
stand level similar to or higher than forest data collected in field survey with 
objective methods (Nilsson et al. (2017) compares the results from their 
study with e.g. Ståhl (1992)). Note that all papers presented in the thesis used 
estimations for much smaller areas than stands, for which the accuracy is 
lower. The plot (circular, with 5-10 m radius) level relative RMSE for 
predictions on stem volume, basal area, mean tree height and mean tree 
diameter are 19.2-22.2%, 20.4-21.3%, 9.8-11.2%, and 16.4-17.1%, 
respectively, for the different geographical regions in the data (Nilsson et al., 
2017). The accuracy is higher on the stand-level, where the corresponding 
metrics are 17.2-22.0%, 13.9-18.2%, 5.4-9.5%, and 8.7-13.1%, respectively. 
To fill the gaps of the datasets compiled from remote sensing sources, 
imputation techniques were applied. By matching a DU with an NFI-plot 
subject to the shortest Euclidean distance in an n-dimensional space, missing 
data records for e.g. site index (papers II-IV) and deadwood (Paper IV) were 
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applied to the data. This routine provides datasets that should at best be 
regarded as serviceable for case studies. However, the accuracy in terms of 
estimating the true state of the actual forest analyzed in the papers is 
unknown. Therefore, the absence of the mentioned quantities represents a 
source of error in the papers. 

The projections in Heureka PlanWise were based on a set of empirical 
models to estimate e.g. growth. The growth models are created and validated 
using NFI plot data, which means that historical trends in managed forests 
are extrapolated into the future, which is associated with numerous 
uncertainties. The expected effects of climate change include increased 
growth (SOU, 2007), and research has concluded that such changes have 
already impacted how trees grow in Swedish forests (Appiah Mensah, 2022). 
Moreover, disturbance regimes are expected to change with a changing 
climate (SOU, 2007), whose stochastic properties are more difficult to 
model. While Heureka offers indices for some disturbances, e.g. wind throw, 
such events do not occur in the modelling environment used to estimate the 
effects of forestry in this thesis. 

Furthermore, even-aged management dominates Swedish forestry (only 
728 000 ha, or ~3% of the productive forestland is managed with continuous-
cover forestry, (SFA, 2022b)) where treatment units are several hectares in 
size on average (3.8 ha for final fellings during 2021, (SFA, 2022b)). The 
analyses in all papers produced management plans where edge effects 
(between mature forest and regeneration areas) are very likely more 
prevalent than in practical forestry (see Table 12, where A:P ratios were 
higher for DTU plans based on cells, and Figure 9 and Figure 10, where this 
effect is visible). Application of the empirical models of Heureka (which are 
created and validated in the context of Swedish forestry) in solutions with 
more prevalent edge effects are thus extrapolations. The studies may have 
underestimated some effects, including i) skewed growth between young and 
mature forests and hampered regeneration due to competition, and ii) 
increased risk of e.g. wind throw (Zeng et al., 2004) on the mature stands, 
both due to larger areas under edge effects. Also, iii) increased costs in 
harvest operations due to lower efficiency in less compact harvests. 
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5.4 DTU planning – possibilities and challenges in 
Sweden 

Modern remote sensing techniques are today operational in several countries 
and produce high-resolution wall-to-wall data for forests on national level 
(Breidenbach et al., 2020; Kotivuori et al., 2016; Nilsson et al., 2017; Waser 
et al., 2017; White et al., 2013). Given the possibility to combine remote 
sensing data with segmentation algorithms, such as in papers II and III, 
means that the door for automation of stand delineation is wide open. 
Nevertheless, some pieces of the puzzle of full implementation of automated 
forest plans may still be missing. While remote sensing can deliver 
estimations for parameters connected to tree phenology, forest DSS may 
need more information to reliably project development of forests and to 
quantify ecosystem services. For the example of Heureka PlanWise, site 
index and mean age is used in growth models, and deadwood is an important 
indicator for biodiversity, all of which are currently lacking in the available 
remotely sensed data (see SFA (2022a). Concerning site index and age, 
research has suggested bitemporal ALS to estimate site index age-
independently (Noordermeer et al., 2018), and estimations of age would 
thereafter be obtainable as a derivative of height and site index. Yet another 
possibility for well-organized foresters with large amounts of data would be 
to combine data from various sources (e.g. remote sensing and stand register 
data) in so called data assimilation (Kalman, 1960; Lindgren et al., 2017). 
However, as long as these data are lacking for Swedish forests, this is a 
challenge for Swedish practitioners that fully rely on remote sensing data for 
conducting forest planning. 

The classical hierarchy of strategic-tactical-operational planning has 
dominated historically (Jonsson et al., 1993) and still does (Ulvdal et al., 
2022) among large forest-owning companies in Sweden. Ulvdal et al. (2022) 
reports that sophisticated methods are largely only applied in the strategic 
planning stage, in the so-called strata-based approach. Fully relying on 
remote sensing data, the segmentation of DU and spatial models in forest 
planning would be a paradigm shift for Swedish forest practitioners. It is also 
not clear where high-resolution data and spatial methods best fit into the 
conventional planning hierarchy (and the papers in this thesis do not 
specifically deal with this aspect). Potentially, it might induce the merging 
of some levels in the hierarchy, such as the merging of the strategic and 
tactical levels. The burdens of large datasets and long computation times are, 
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however, an argument for full introduction of high-resolution data and spatial 
planning models in the later stages of the planning process, when harvest 
levels are set, geographical areas smaller and planning horizons shorter. Such 
a trade-off between level of detail and complexity is nothing new in forest 
planning, where techniques for dealing with complexity are already relevant 
(Bettinger et al., 2016; Borges et al., 2014; Duvemo et al., 2014; Eyvindson 
et al., 2018; Kangas et al., 2015; Martell et al., 1998; Nilsson, 2013; 
Weintraub and Cholaky, 1991). Finally, the solution methods available in 
forest DSS may be a challenge. While the Heureka DSS provides 
functionality for LP and MIP but not heuristics, an international outlook 
shows that heuristics can be used to solve forest planning methods. Either by 
forest DSS with integrated optimization modules using heuristics (e.g. 
Pukkala, 2004) or by using forest DSS to generate management alternatives, 
and solving the planning problem in an external software (e.g. Öhman and 
Eriksson (2002)). 

The effects of shifting planning approaches may transcend beyond the 
provision of ecosystem services, the modelling of which was the basis for 
analyses in this thesis. Cost-plus-loss analysis (see, e.g., Duvemo et al., 
2014) provides an economic framework for estimating the cost of an 
inventory method and its data. The main principle here is that the inventory 
cost consists of two components: the cost of obtaining the data, and the cost 
from inoptimal decisions. This relates to Swedish forest organizations’ 
reasoning behind the choice of strata-based planning (over area-based 
planning) for the strategic planning phase. Strata-based planning entails costs 
for assembling the data through sampling and field survey, but planners 
estimate that the gains in inoptimal loss from more reliable data makes the 
approach preferable to the area-based approach that would depend on the 
uncertain quality of the stand register (Ulvdal et al., 2022). This thesis 
concerns the possible improvement on decisions, but not the cost for data 
collection. 

5.5 Conclusions 

The main aim of this thesis is to develop methods applicable to forest 
planning with high spatial resolution data and to evaluate if there are 
potential gains in provision of ecosystem services when such planning 
approaches are applied. The results are presented from four studies where 
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ALS data and the forest DSS Heureka were employed. Overall, the results in 
this thesis suggest that the provision of ecosystem services from forests can 
be improved, if high spatial resolution data is utilized with spatial planning 
models. This thesis demonstrates suggestions on how to utilize the vast 
amounts of data produced by remote sensing to improve planning of forest 
management. 

Paper I confirms that there is an economic need to cluster treatments in 
time and space if high spatial resolution data is used as basis for forest 
planning and fixed costs for harvest operations are included. The study also 
successfully solved a DTU problem with an exact solution method. Such 
models have often been discarded in DTU context for the sake of long 
solution times but progress on this issue has been made and MIP models may 
gain relevance in the future. Paper II shows that there is a potential to 
improve solutions by modelling the economic incentive to cluster directly, 
by explicitly mapping treatment units and applying fixed costs accordingly. 
However, the mapping process in papers II and III was a considerable 
computational burden. Paper III addresses the core question of the argued 
superiority of DTU planning that several DTU researchers adhere to. The 
results indicate that the economic performance of forestry may improve if 
DTU planning replaces stand-based planning, due to lower inoptimal loss 
and ECs in forest management and an increased solution space. Paper IV 
focuses on the allocation of retention patches in forestry. The results indicate 
that there is a potential to improve the ecological values of forests if retention 
patches are allocated by using an adapted and high-detailed approach, 
compared to the stand-based approach. 

5.6 Future research 

The research in this thesis largely focuses on the planning approach of DTUs. 
Papers II and, in particular Paper III, suggests that stand-based planning 
entails more suboptimal forest management than DTU-planning due to the 
spatial resolution of data and decisions inherited from stands. While this 
research focuses on the spatial resolution of forest planning, it might be the 
case that a higher temporal resolution of decision making in forestry may 
enhance provision of forest ecosystem services. This topic is an opportunity 
for future work. 
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Most previous work on DTUs have studied economically oriented 
problems (although see Heinonen et al. (2007) for a multi-objective setting). 
Except for paper IV, the papers of this thesis are no exception. The main aim 
of the studies was to provide insights on whether a more efficient use of the 
forest resource is achievable with DTU planning. The choice of focusing on 
economic value was motivated by the fact that economy is relatively 
straightforward to quantify, whereas ecological and social values are more 
challenging in this regard. Future efforts may provide further insights on how 
to model and promote economic, ecological and social values in the DTU 
approach. 

The hierarchy of forest planning in larger organizations is established, 
constituted by the strategic, tactical and operational stages. DTU planning 
may deal with long time horizons and the question of harvest level over time, 
which are characteristics of strategic planning. At the same time, the DTU 
approach focuses on the geographical allocation of treatments, which is 
typically dealt with in the tactical stage. Future research may investigate how 
and where in the planning process it is proper to utilize DTU planning and 
high spatial resolution data. 
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The aim of forest planning is to suggest the location, timing and manner of 
forest management activities. Activities are carried out in order to provide us 
with benefits from forests – forest ecosystem services (e.g. timber 
production, sequestration and storage of carbon, conservation of threatened 
species, and promotion of recreational values). Forest planning is performed 
to fulfill the goals of the forest owner, stakeholders, or society. The 
traditional planning approach is based on stands. A stand is a geographically 
defined area where the height, diameter, and species distribution of trees is 
homogeneous. The stand is considered uniform and to be managed 
uniformly. In principle, stands should also be of sufficient sizes, such that 
conventional forestry can be carried out in the stand without regard to the 
management of nearby stands. Stands are the smallest unit for modelling 
both ecosystem processes such as growth and mortality. The stand-based 
approach has dominated forest planning in both Sweden and internationally, 
and its use has so far been appropriate. Forest data with a higher spatial 
resolution has historically been difficult and expensive to obtain, store, and 
use in analyses. 

Advances in remote sensing techniques have changed this. Today, forest 
data with significantly higher spatial resolution can be obtained by e.g. 
airborne laser scanning. The capacity of computers has increased manifold, 
enabling storage of large datasets and extensive calculations. Altogether, this 
opens possibilities for forest planning that were not realistic some decades 
ago. By using modern technology, a higher spatial resolution description of 
forests is now widely available. Thereby, there is a potential for high 
precision forestry where the best action is taken at the right place at the right 
time. Unfortunately, the traditional forest planning models are not applicable 
on high spatial resolution data, if the plans produced are to be realistic. 

Popular science summary 
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Spatial considerations in planning models are necessary to cluster harvest 
activities or conservation of valuable habitat. In this thesis, such planning 
models are presented and evaluated. This thesis presents models, adapted for 
high spatial resolution data produced with remote sensing techniques. The 
models handle spatial aspects and enable improved forestry compared to 
traditional planning models. 

The thesis is comprised of case studies for forests in southern (Paper I) 
and central (Papers II-IV) Sweden, where airborne laser scanning has been 
utilized to estimate the current state of the forest. The decision support 
system Heureka has been applied to project the development of the forests 
and the provision of ecosystem services over time, given different 
management alternatives. Moreover, different optimization methods have 
been used to decide optimal management 

The importance of including spatial aspects in planning models is 
highlighted in Paper I, which presents an optimization model for clustering 
of harvest operations. The resulting forest management is compared to that 
suggested with traditional methods. The study shows that there are economic 
gains from clustering harvests when fixed costs associated with e.g. moving 
machinery to the site are included in the calculations of economic value. 
Paper II presents an alternative model to solve problems similar to that of 
Paper I. The presented model in Paper II directly (instead of indirectly) 
quantifies the economic incentive to cluster harvests. The model is an 
adaptation to a previously presented one. The addition to the algorithm 
improved the economic performance of forestry in the case study. Paper III 
is a further evaluation of the model presented in Paper II. The study 
investigates whether the planning algorithm better achieves economic goals 
when high spatial resolution data is used, compared to a traditional approach 
that uses stand-based data. The results indicate that higher economic values 
are created when the optimal forest management is decided using high spatial 
resolution data and spatial planning models. The reason for this is that the 
forest management can be adapted after the local properties of the forest (e.g. 
growing stock and site productivity) to a higher extent than when applying 
stand-based planning. Another explanation is that the number of potential 
management alternatives available is larger when conducting high spatial 
resolution planning. Thereby, it is likely that a better combination of 
management alternatives can be found. This line of reasoning is valid for 
other goals of forestry than the economic ones. Therefore, Paper IV aims to 
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evaluate the gains in economic and ecological values if high spatial 
resolution data and a spatially explicit planning model are combined to 
allocate retention patches. Retention forestry means that patches of forest are 
retained for the long-term at the time of harvest, to mitigate harvests’ 
negative effects on ecological and social values. The results suggest that 
ecological values can be promoted with adapted planning approaches, while 
the economic values were similar to that of plans produced based on stand-
based planning. 

The results in this thesis suggest that utilization of high spatial resolution 
and adapted planning models can increase the provision of ecosystem 
services from forests. There are clear possibilities to conduct practical forest 
planning as demonstrated in the papers. Such data is already widely available 
and remote sensing techniques will likely provide estimations of more forest 
attributes in the future. A challenge for planners of large-scale forestry lies 
in the adaptation of well-established forest management planning routines. 
This comprehensive and hierarchical process involves several people and 
deal with long time horizons in an uncertain future. 
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Den skogliga planeringsprocessen syfte är att utse var, när och hur olika 
skogliga åtgärder ska utföras. Åtgärderna - alternativt inga åtgärder - görs för 
att skogen ska bidra med en rad ekosystemtjänster, alltså sådant som vi på 
något sätt har nytta av (t.ex. produktion av virke, inlagring och lagerhållande 
av kol, bevarande av hotade arter och främjande av rekreationella värden). 
Planeringen görs för att på bästa sätt möta skogsägarens, andra intressenters 
eller samhällets mål med skogsbruket. Den traditionella planeringsansatsen 
bygger på att skogen hanteras som ett antal enskilda bestånd. Ett bestånd är 
ett geografiskt avgränsat område där skogen är homogen vad gäller 
egenskaper som trädens höjd, stamdiameter och blandningen av trädslag. 
Beståndet antas vara så likformigt så att det kan skötas på enhetligt sätt.  För 
att bedriva ett konventionellt skogsbruk ska bestånden vara så stora så att de 
kan skötas – med tanke på flyttkostnader för maskiner m.m. – utan hänsyn 
till vad som sker i närliggande bestånd.  I planeringsprocessen är bestånden 
den minsta enheten för modellering av ekosystemprocesser som tillväxt, 
inväxning och mortalitet. Beståndsansatsen har varit dominerande både i 
Sverige och internationellt och har så här långt varit ändamålsenlig. Data om 
skogen med en bättre detaljeringsgrad än på beståndsnivå har hittills varit 
svåra och dyra att såväl inhämta, lagra som att använda i analyser.  

Framsteg inom fjärranalysen har nu förändrat förutsättningarna. Idag kan 
skogsdata inhämtas med en betydligt högre detaljeringsgrad än på 
beståndsnivå via bland annat flygburen laserskanning. Dessutom har 
kapaciteten i datorer ökat mångfaldigt vilket gör att data kan lagras utan 
större ansträngning och omfattande beräkningar kan göras på kort tid. 
Sammantaget ger detta nya möjligheter för skoglig planering, möjligheter 
som inte fanns för ett par decennier sedan. Genom att nyttja modern teknik 
kan beskrivningen av skogen ges en högre rumslig detaljering än det 

Populärvetenskaplig sammanfattning 
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traditionella beståndet vilket ger fler valmöjligheter när det gäller att 
bestämma skogens framtida skötsel. I allt högre grad kan rätt åtgärd utföras 
på rätt plats vid rätt tidpunkt. Skogsbruket kan därför planeras med högre 
precision jämfört med det traditionella förfarandet baserat på data om 
bestånd. En nackdel är dock att de traditionella metoderna som används för 
att lösa skogliga planeringsproblem  inte kan användas på högupplösta data 
om resultatet, dvs själva planen, ska vara realistisk. För att hantera t.ex. 
stordriftsfördelar i avverkningar, eller för att bevara habitat för arter, behöver 
man ta hänsyn till hur olika åtgärder eller olika skogstyper fördelas rumsligt 
i landskapet. I denna avhandling presenteras och utvärderas sådana 
planeringsmodeller, som anpassats till de högupplösta data som dagens 
fjärranalystekniker kan leverera. Modellerna kan också hantera rumsliga 
aspekter och sammantaget gör de det möjligt att bedriva skogsbruket på ett 
bättre sätt i jämförelse med tidigare planeringsansatser. 

Avhandlingen utgörs av fallstudier för skogar i södra (Studie I) och 
mellersta (Studie II-IV) Sverige, där data från flygburen laserskanning 
använts för att skatta skogens tillstånd idag. Beslutsstödsystemet Heureka 
har använts för att skatta skogens utveckling samt utfallet av 
ekosystemtjänster över tid givet olika typer av skötsel av skogen. Även olika 
optimeringsmetoder har använts för att bestämma optimal skötsel givet olika 
mål. 

Vikten av att inkludera rumsliga aspekter i planeringsmodeller visas i 
Studie I där en ny optimeringsmodell för att aggregera åtgärder i tid och rum 
presenteras. Planen som är resultatet av den nya optimeringsmodellen 
jämförs med en plan framställd med en traditionell optimeringsmodell. Om 
fasta kostnader förknippade med t.ex. maskinflytt inkluderas så visar studien 
att det finns ekonomiska vinster med att klustra avverkningar (samla dem 
rumsligt) när planeringen utförs med högupplöst data. Studie II presenterar 
en alternativ optimeringsmodell för att lösa problem som liknar det Studie I 
fokuserar på. Medan tidigare studier har representerat den rumsliga 
problematiken med stordriftsfördelar indirekt, så presenterar Studie II en 
ansats för att direkt hantera ekonomiska faktorer och styra klustring av 
avverkningar i tid och rum. Ansatsen är en vidareutveckling av en befintlig 
ansats.  Det tillägg som gjordes i planeringsalgoritmen förbättrade planerna 
med avseende på ekonomi, vilket visades i en fallstudie. Studie III är en 
utvärdering av planeringsmodellen från Studie II. I studien undersöks om 
modellen kan hitta skogsskötsel som bättre uppfyller ekonomiska 
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målsättningar, jämfört med en traditionell optimeringsmodell baserad på 
beståndsdata. Utvärderingen indikerar att högre ekonomiska värden skapas 
när optimal skogsskötsel bestäms med hjälp av högupplösta data och 
rumsliga planeringsmodeller. Orsaken är att planeringsmodellen i högre grad 
kan anpassa skogsskötseln efter lokala förhållanden, såsom markens 
bördighet, virkesförråd, etc. En annan orsak är att antalet möjliga 
handlingsalternativ ökar för optimeringsmodellen att välja mellan. En bättre 
kombination av handlingsalternativ kan därmed hittas, jämfört med när 
traditionella data och planeringsansatser används. Resonemanget är 
allmängiltigt och gäller inte enbart för ekonomiska värden. Studie IV syftar 
därför till att presentera och utreda nyttan i ekonomiska och ekologiska 
termer av en modell för planering av generell hänsyn baserat på högupplösta 
data. Generell hänsyn innebär att man av naturvårdsmässiga skäl undantar 
enskilda träd eller mindre skogsområden från skogsbruk. Resultaten visar att 
de ekologiska värdena kan höjas med anpassad planering, medan de 
ekonomiska värdena blev ungefär desamma jämfört med en traditionell 
planeringsansats. 

Sammantaget visar studierna i avhandlingen att högupplösta data från 
fjärranalys tillsammans med rumsliga planeringsmodeller kan göra det 
möjligt att öka mängden av ett flertal ekosystemtjänster från skogen. Det 
finns också bra förutsättningar för att använda de nya typerna av data och 
planeringsmodeller i praktiskt skogsbruk. Redan idag används 
fjärranalysdata i stor utsträckning i skogsbruket och möjligheterna ökar i 
framtiden. Vad som utgör en utmaning för det storskaliga skogsbruket är att 
bestämma var i den etablerade och hierarkiska planeringskedjan dessa typer 
av data och analyser bäst hör hemma. Det rör sig om en lång beslutskedja 
från att bestämma mål till att genomföra skogliga åtgärder, det engagerar 
många människor och behandlar långa tidshorisonter i en osäker framtid. 
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ARTICLE

Dynamic treatment units in forest planning using cell
proximity
PärWilhelmsson, Edward Sjödin, AndréWästlund, JörgenWallerman, Tomas Lämås, and Karin Öhman

Abstract: In forest management planning, the dynamic treatment unit (DTU) approach has become an increasingly relevant
alternative to the traditional planning approach using fixed stands, due to improved remote sensing techniques and opti-
mization procedures, with the potential for the higher goal fulfillment of forest activities. For the DTU approach, the tradi-
tional concept of fixed stands is disregarded, and forest data are kept in units with a high spatial resolution. Forest
operations are planned by clustering cells to form treatment units for harvest operations. This paper presents a new model
with an exact optimization technique for forming DTUs in forest planning. In comparison with most previous models, this
model aims for increased flexibility by modelling the spatial dimension according to cell proximity rather than immediate
adjacency. The model is evaluated using a case study with harvest flow constraints for a forest estate in southern Sweden,
represented by 3587 cells. The parameter settings differed between cases, resulting in varying degrees of clustered DTUs,
which caused relative net present value losses of up to 4.3%. The case without clustering had the lowest net present value
when considering entry costs. The solution times varied between 2.2 s and 42 min 6 s and grew rapidly with increasing
problem size.

Key words: dynamic treatment units, mixed integer programming, optimization, remote sensing, spatial forest planning.

Résumé : En planification de la gestion forestière, l’approche par unité de traitement dynamique (UTD) est devenue une al-
ternative de plus en plus pertinente à l’approche de gestion traditionnelle fondée sur des peuplements fixes. Cela est rendu
possible grâce à l’amélioration des techniques de télédétection et des procédures d’optimisation et offre la possibilité d’une
meilleure réalisation des objectifs des activités forestières. Avec l’approche par UTD, on ignore le concept traditionnel de
peuplements fixes et les données forestières sont conservées dans des unités à grande résolution spatiale. Les opérations
forestières sont planifiées en regroupant les cellules pour former des unités de traitement pour les opérations de récolte.
Cet article présente un nouveau modèle avec une technique d’optimisation exacte pour former les UTD en planification for-
estière. Comparativement à la plupart des modèles précédents, ce modèle vise à augmenter la flexibilité en modélisant la
dimension spatiale en fonction de la proximité des cellules plutôt que de leur contiguïté. Le modèle est évalué à l’aide
d’une étude de cas comportant des contraintes de flux de récolte sur un domaine forestier situé dans le sud de la Suède,
représenté par 3587 cellules. L’ajustement des paramètres différait selon le cas, ce qui se traduit par différents degrés de
regroupement d’UTD, causant des pertes de valeur actualisée nette relative allant jusqu’à 4,3 %. Le cas qui ne comporte
aucun regroupement avait la plus faible valeur actualisée nette lorsqu’on considère les coûts d’entrée. Le temps requis pour
trouver la solution variait de 2,2 s à 42 min 6 s et augmentait rapidement avec l’augmentation de la taille du problème.
[Traduit par la Rédaction]

Mots-clés : unités de traitement dynamiques, programmation partiellement en nombres entiers, optimisation, télédétection,
gestion forestière spatiale.

Introduction

In forest management planning, the concept of stands has been
of central importance for a long time (e.g., af Ström 1829). In this
context, a stand is a geographically confined area of forest suited
for common forest management due to the stand being uniform
with respect to site conditions, tree layer state, economic factors,
age, or timber extraction properties. In a planning process based
on the stand approach, the stands act as description units (DUs),
which we define as the smallest unit for storing forest data, model-
ling ecosystem processes, and simulating treatments. Treatment

units (TUs) on their part are defined as geographically confined
areas scheduled for forest operations (Holmgren and Thuresson
1997). A TU can be composed of one or more DUs. Typically, stands
act as both DUs and TUs in planning processes and forest opera-
tions (Bettinger et al. 2009). While stand borders may be changed
over time in practical forestry, they are often permanent during
the entire planning horizon in the analysis (Nelson and Brodie
1990; Ståhl et al. 1994; Davis et al. 2001). For decades, the delinea-
tion of stands has been conducted by aerial photo interpretation in
combination with field surveys. Applications of forest planning
typically use the stand approach and offer a powerful model for
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long-term forest planning, which is able to solve large problems.
However, there are drawbacks to the stand approach. Despite the
intent to delineate stands into homogeneous units, variations in
tree layer and site properties will occur within stands over time
and space (Gunnarsson et al. 1998; Ståhl 1992). Such variation could
lead to poor management decisions in planning processes when
using stand mean values, compared with an approach that uses
datawith a higher spatial resolution. Fixed and permanent delinea-
tions and stand mean values do not maintain spatial information
within the stand, limiting the planning flexibility and utilization of
the forest resources (Holmgren and Thuresson 1997).
Until recently, high-resolution data has been difficult and

expensive to obtain and store. However, advances in remote-
sensing techniques have facilitated new inventory methods.
Light detection and ranging (LiDAR) is one such technique. Statis-
tical models can be applied to produce high-resolution data over
very large areas (Nilsson et al. 2017; Wulder et al. 2012). Assuming
a given total analysis area, using high-resolution data (such as
10 m � 10 m raster cells) instead of stands in forest planning
increases the number of description units. This in turn increases
the number of decision variables and demands for spatial consid-
eration, since small and isolated harvest units are not realistic.
The need for spatial consideration makes the problem hard to
solve via linear optimization approaches that are traditionally
used in long-term forest planning, e.g., linear programming
approaches (Johnson and Scheurman 1977). This facilitates new
planning approaches that do not use traditional stands as the ba-
sic planning units. An example of this is the dynamic treatment
unit (DTU) approach (Holmgren and Thuresson 1997). Here, the
concept of stands as 10–20 ha areas fixed over the planning hori-
zon does not exist. Instead, cells corresponding to a very small
area (<0.5 ha) act as DUs. The DUs can be systematically patterned
(grid, hexagons, etc.) or segmented into microstands. In the
planning process, the TUs exist only momentarily and are
formed dynamically (hence DTUs) by clustering treatments so
that nearby DUs are treated similarly and simultaneously, and
most importantly, as a result of the stakeholder’s goals. Forest
planning based on DTUs has been subject to research for decades
(e.g., Holmgren and Thuresson 1997; Heinonen and Pukkala 2007;
Pascual et al. 2018). Authors of past studies have argued that the
DTU approach facilitates a higher goal achievement, since it is not
limited by the rigidity of permanent stands and since dynamically
formed TUs will better adapt to the forest’s variation in time and
space (Holmgren and Thuresson 1997; Heinonen et al. 2007). The
traditional stands are typically delineated in such a way that they
may be treated regardless of the treatments of neighboring stands.
Large stands are economically viable, since the income from
harvesting one stand may carry fixed costs associated with said
harvesting. This is contrary to the DUs in the DTU approach. In
the DTU approach, the utility of a treatment activity, such as final
felling or thinning for a small patch of forest (<0.5 ha), is highly
dependent upon what treatments are to be conducted in nearby
areas. The need to cluster treatments in time and space is there-
fore apparent in the DTU approach. One solution to the cluster-
ing problem is to include a metric for the spatial dimension in
the planning problem formulation and subsequent optimization
model. Previous DTU planning studies have handled this with
various spatial variables. One of the spatial variables used to
drive clustering is the conditional shared border (Heinonen and
Pukkala 2007; Packalén et al. 2011; Pascual et al. 2018). Condi-
tional shared borders may be defined as the length of a DU’s
border that is shared with a neighboring DU, often with the con-
dition that neighboring pairs of DUs share a useful property,
such as simultaneous treatment or stand age. Another approach
is to use indicator variables, which take on a certain value if
neighboring DUs share a useful property (e.g., Mathey et al. 2007;
Öhman and Lämås 2003). Clustering is driven by letting the spa-
tial variable contribute to the goal function or to include it in a

constraint. A drawback for both the shared borders and indicator
variables is that the spatial metrics are often defined such that
two DUs (cells, pixels, hexagons, and stands) have to be immedi-
ately neighboring for the metric to take effect. When forming
DTUs, it may be feasible to select DUs that are close but not
directly neighboring for simultaneous harvest activity. Heinonen
et al. (2018) used a decentralized optimization technique to con-
duct DTU planning and improved the goal function value by
clustering nearby (up to 300 m) DUs rather than demanding im-
mediate adjacency. An exact solution method for spatial plan-
ning problems in a forestry and nature conservation setting was
presented by Öhman et al. (2011). The aim of the model was not to
form DTUs but to consider suitable habitats, including a land-
scape-scale component, for hazel grouse (Tetrastes bonasia) in a har-
vest scheduling model. However, conceptually this model could
also be applied for DTU planning purposes. The model consisted of
two parts: suitability assessments of stand-wise conditions and of
spatial conditions. In the model, the spatial conditions demanded
that a certain percentage of the area within a certain radius from
the centroid of a focal stand should fulfill the specified stand condi-
tions. Hence, there were no demands that units had to be immedi-
ately neighboring as long as theywerewithin the specified radius.
A drawback with the DTU approach is that the spatial consider-

ation increases the size of the planning problem. If the spatial
location of DUs is considered, traditional linear programming
with continuous decision variables is not applicable. Instead, var-
ious heuristics have been used more frequently to solve DTU
planning problems, e.g., simulated annealing (Lind 2000; Öhman
and Eriksson 2002; de Miguel Magaña et al. 2013), threshold
accepting (Heinonen et al. 2007), cost reduction (Holmgren and
Thuresson 1997), reduced cost (Packalén et al. 2011; Pukkala et al.
2009; Heinonen et al. 2018), and cellular automata (Mathey et al.
2007; Heinonen and Pukkala 2007; Pukkala et al. 2009; Pascual
et al. 2018). The advantage of heuristic methods is that they can
tackle nonlinear relationships and complex problems while solv-
ing the problem within reasonable time. However, heuristics
may not guarantee an optimal solution. To guarantee optimality,
an exact solution method such as integer programming (IP), e.g.,
with a branch and bound algorithm (Williams 1985; McDill and
Braze 2001), must be used. Traditionally, one limitation when
using exact solutionmethods has been the time required for solv-
ing complex problems and, connected to this, limitation of prob-
lem size. However, past research have improved the performance
of such models (Constantino et al. 2008; McDill and Braze 2001;
Tóth et al. 2013; Könnyu† et al. 2014), which alongside develop-
ments in optimization software systems and computer hardware
have improved the possibilities for solving large-scale problems
within a reasonable time. Unfortunately, even if IP or mixed
integer programming (MIP) with a branch and bound algorithm
has been used in other types of spatial problems, e.g., in the
unit restriction model (URM) and area restriction model (ARM)
for solving adjacency problems where the contiguous final felled
area is limited (see e.g., Tóth et al. 2013), examples with using IP
for DTU problems are rare.

Objective
The objective of the present study is to present a newmodel for

forming DTUs in forest planning, from which the resulting opti-
mization problem can be solved with an exact technique. The
model aims to provide increased flexibility when forming the
dynamic treatment units by regarding not only immediate neigh-
bors but also nearby DUs (neighbors by proximity). Forest plans
elaborated by the model are evaluated by mapping and charging
each DTU with a fixed entry cost. For this, a case study of
3587 DUs, representing a 56 ha forest estate in southern Sweden,
is used.
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Materials andmethods
The model for forming DTUs solves a long-term forest planning

problem consisting of selectingmanagement actions (e.g., cleaning,
thinning, or final felling) for each DU in the study area. The net
present value (NPV) for futuremanagement activities ismaximized,
while the harvested volume does not decrease from any one period
to the next. The formulation of the optimization model is based on
the concept of a treatment program, which is the sequence of treat-
ments from the first planning period to the end of the planning ho-
rizon. The planning horizon is composed of ten 5-year periods. The
treatments include regeneration, cleaning, thinning, and final fell-
ing. Thus, the model is an example of a standard Model I formula-
tion (Johnson and Scheurman 1977), with the addition of the spatial
aspects connected to the layout of the harvested DUs. The NPV is
calculated for every DU and potential treatment program as the
sum of the discounted net income (revenues minus costs) for an in-
finite time horizon. Revenues and costs for treatments in one DU
are not affected by actions taken in surrounding DUs. Other poten-
tial economic gains for clustering DUs, e.g., reduced costs for the
transport of machinery, are not considered. Therefore, maximizing
the NPV without spatial considerations will lead to the selection of
DUs for unviable harvesting operations. Consequently, the model
includes a demand that a certain proportion of the DUs selected for
thinning or final felling in a certain number of planning periods
must be defined as clustered. A DU is clustered if the DU itself is
selected for thinning or final felling and if a certain number of DUs
within the neighboring area are selected for thinning or final fell-
ing in the same period. The neighboring area is defined as the num-
ber of DUs within a specified radius from the centroid of the DU
(Fig. 1). A DU is included in the neighboring area if any part of the
DU iswithin the circle.This formulation for creatingDTUs is similar
to the optimization model suggested by Öhman et al. (2011) for
including hazel grouse habitats in a forest planning problem, in
which traditional standsmade upDUs and TUs.
Themathematical formulation of the problem is as follows:

ð1Þ max Z ¼
X

i2I

X

j2Ji
Nijxij

Subject to

ð2Þ hip �
X

j2Ji
Mijpxij 8i 2 I 8p 2 C

ð3Þ Thip �
X

l2Li

X

j2Jl
Mljpxlj 8i 2 I 8p 2 C

ð4Þ
X

i2I
hip � a

X

i2I

X

j2Ji
Mijpxij 8p 2 C

ð5Þ
X

i2I

X

j2Ji
Vijpþ1xij �

X

i2I

X

j2Ji
Vijpxij 8p 2 P� 1

ð6Þ
X

j2Ji
xij ¼ 1 8i 2 I

ð7Þ hip ¼ f0; 1g 8i 2 I 8p 2 C

xij = proportion of DU i assigned to treatment program j
hip = indicator variable that takes the value of 1 if DU i fulfills the

definition of being included in a cluster in period p, otherwise 0

Mijp = parameter that takes the value of 1 if DU i is assigned to a
treatment program j that in period p includes thinning or final
felling, otherwise 0
Mljp = parameter that takes the value of 1 if DU l and treatment

program j in period p consists of thinning or final felling, other-
wise 0
I = set of DUs in the landscape
Li = set of DUs that are included in the neighboring area for DU i
Ji = set of treatment programs for DU i
P = set of periods in the planning horizon
C = set of periods affected by parameter a
Nij = NPV from period 1 to infinity for DU i and treatment pro-

gram j
Vijp = volume harvested from DU i and treatment program j in

period p
T = the minimum number of simultaneously harvested DUs

within the neighboring area of a given DU in order for the given
DU to be defined as clustered
a = the minimum proportion of all cut (thinned or final felled)

DUs that must be defined as clustered

Equation 1 expresses the objective function, i.e., maximizing
the NPV for the future forest management of all DUs in the land-
scape. Equations 2, 3, 4, and 7 are connected to the formation of
DTUs. To identify whether a DU is part of a DTU, an indicator vari-
able (hip) is used. DU i is defined as clustered in period p when hip
takes the value 1. Equation 2 specifies that the variable hip can
only take the value of 1 if DU i is managed with treatment pro-
grams that entails final harvest or thinning in period p. Equation
3 ensures that hip can only take the value of 1 if a minimum total
number of DUs within the neighboring area of DU i are managed
with treatment programs that consist of thinning or final felling.
Both eqs. 2 and 3 must be fulfilled before DU i is defined as clus-
tered and then part of a DTU, which would cause hip to take the

Fig. 1. Neighboring area of a focal description unit (DU) as a
function of the radius from the central DU’s centroid. All DUs
with any part inside the specified radius from the centroid of the
focal DU were included. Two cases are shown: radius of 12 (with
neighboring area in dark grey) and 30 m (with neighboring area in
dark grey and grey).
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value of 1. Equation 4 ensures that a certain proportion of the
DUs selected for thinning or final felling in period p counts as
clustered. Equation 7 specifies that the variable hip can only take
the values of 0 or 1. Equation 5 ensures that the harvest volume is
always equal to or larger than the previous period during the
planning horizon. Finally, eq. 6 ensures that all DUs are assigned
a total of one treatment program. Here, it should be noted that
there are no demands that xij should be an integer. This means
that parts of a DU could be associated with one treatment
program, while other parts could be associated with another
program. However, hip is defined as an integer, which means that
a DU can only be defined as clustered if the entire DU is thinned
or final felled and there are a certain number of neighboring DUs
that are managed with treatment programs that consist of thin-
ning or final felling.

Case study area, forest data, and simulation of treatment
programs
The use of the model is illustrated by solving a management

problem for a test area consisting of 3587 square DUs (i.e., set I),
each 12.5 m� 12.5 m (all productive forest with amean annual in-
crement of ≥1 m3·ha�1·year�1) that together represents a 56 ha
property in southern Sweden. The growing stock consists of Nor-
way spruce (Picea abies, 84.1%), Scots pine (Pinus sylvestris, 5.6%),
and a variety of broadleaf trees (alder (Alnus incana), willow (Salix
caprea), and rowan (Sorbus aucuparia), 10.3%). The forest variables
and site characteristics originated from three different sources,
namely airborne laser scanning data and two different available
forest plans (forest maps and accompanying stand data). Data
from these sources were selected and merged into a single data-
set, which was used for the subsequent analysis. The volume,
basal area, basal area weighted mean stem diameter, and Lorey’s
mean tree height were collected from nationwide estimations
made by the Swedish University of Agricultural Science at the
request of the Swedish Forest Agency (Nilsson et al. 2017), which
were based on LiDAR data acquired by the Swedish Land Survey.
The tree species distribution was collected from one of the avail-
able forest plans. The site index was derived as the mean value
from the two forest plans. The age was derived using the esti-
mated tree heights, site index, and height development func-
tions (Johansson et al. 2013). The site index and tree heights were
assumed to be correct and the best matching age between 0 and
200 years was selected. Other variables necessary for the simula-
tion of treatment programs were collected from the forest plans.
The PlanWise software within the Heureka system (Wikström

et al. 2011) was used for the simulation of the initial state and pro-
jections of the future forest state for each DU and treatment pro-
gram. Heureka is a decision support system for forestry, which
was developed at the Swedish University of Agricultural Sciences.
The initial forest conditions, ecosystem processes, and simulated
forest treatments are used to predict the future forest state as
well as numerous outcome variables, such as harvested volume,
NPV, and amount of dead wood. In the present study, Heureka
PlanWise was used to simulate a set of possible treatment pro-
grams for each of the 3587 DUs. The forest management system
was even-aged forestry. The possible treatments were soil prepa-
ration, planting, cleaning, thinning, and final felling. The lowest
accepted final cutting age was set according to the Forestry Act of
Sweden with respect to the site index for a DU. The maximal final
cutting age was set to 30 years above the lowest accepted final
cutting age. It was also possible to leave a DU untreated for the
entire planning horizon. In total, 42 957 schedules were gener-
ated (on average 11.98 per DU). The planning horizonwas 50 years.
The real interest rate was set to 3%.

Case settings
The model solved five different cases, see Table 1. All cases

included a restriction on a nondeclining harvest volume (eq. 5).

Case 0 acts as a reference with no spatial constraints (eqs. 1 and
5–7 only). Cases 1–4 evaluated the planning problem for different
sets of spatial constraints (eq. 1–7). For deciding the neighbor-
hood of a focal DU, all DUs with any part inside a specified radius
from the centroid of the focal DU were included (Fig. 1). For cases
1 and 2, the radius was set at 12 m, which resulted in up to nine
DUs in the neighboring area for a DU (Fig. 1). Here, the model
effectively demands immediate adjacency for a DU to be counted
as neighboring to a focal DU. In cases 3 and 4, the radius was
increased to 30 m, which increased the number of neighboring
DUs to 25 (Fig. 1). These cases include increased flexibility, as DUs
are considered to be part of the same DTU as long as they are
within the circle, even if they are not immediately adjacent.
T defines the number of DUs in the neighboring area that must
be harvested simultaneously with the central DU for the central
DU to be classified as clustered. Thus, a higher T value demands a
higher number of neighboring DUs harvested in the same period
as the central DU for the central DU to be considered as clustered.
T was set to 3 in case 1, 5 in cases 2 and 3, and 10 in case 4. The
motive for using different T values was to demonstrate the
increased flexibility when creating spatial layouts with different
degrees of clustering of the harvest activities. In all cases, a (the
minimum proportion of all cut (thinned or final felled) DUs that
must be defined as clustered) was set to 0.9. We aim to provide a
model for long-term forest planning where sustainability in
harvest yield is maintained. Therefore, Pwas set to 10 in all cases,
i.e., the planning horizon is 50 years in all cases. To reduce the
problem size, Cwas set to 3, i.e., the spatial layout was considered
in periods 1–3.
All cases were solved using an exact solution technique involv-

ing a traditional branch and bound algorithm (McDill and Braze
2001) with a convergence bound of 0.1%. The optimization model
was formulated with the AIMMS software and solved using Cplex
version 12.7. Processing was made using a PC with 64-bit Win-
dows 10, a 3.4 GHz Pentium 4 processor, and 16.0 GB of RAM.

Post-optimizationmapping of DTUs
The incentive to cluster treatments in time and space in practical

forestry comes from reducing fixed forest operation costs. How-
ever, the model presented does not quantify the contribution of

Table 1. Summary of the economic results.

Case 0 Case 1 Case 2 Case 3 Case 4

Radius (m) NA 12 12 30 30
T value* NA 3 5 5 10

No entry cost, no post-optimizationmapping of DTU
NPV·ha�1 (SEK) 80 204 80 146 80 132 80 196 80 070
NPV decrease 0.00% 0.07% 0.09% 0.01% 0.17%

Including entry cost, DTU breakpoint 50m
NPV·ha�1 (SEK) 75 256 74 239 76 656 74 599 77 581
NPV decrease 4.28% 4.31% 1.19% 3.84% 0.00%
No. of DTUs (periods 1–3) 40 40 24 38 17

Including entry cost, DTU breakpoint 100m
NPV·ha�1 (SEK) 78 005 77 972 78 093 78 285 78 447
NPV decrease 0.56% 0.61% 0.45% 0.21% 0.00%
No. of DTUs (periods 1–3) 15 15 14 13 11

Note: Data are the results from the optimization (excluding entry costs) and
subsequent mapping of dynamic treatment units (DTUs) (including entry costs).
Net present value (NPV) decrease is the relative decrease in NPV for each case
compared with the case with the highest NPV for a given breakpoint distance.
Entry cost is 10 000 SEK (Swedish krona) for all cuttings.

*T value is the minimum number of simultaneously harvested description units

(DUs) within the neighboring area of a given DU for the given DU to be defined as

clustered.
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clustering to the NPV. In fact, a higher degree of clustering could
never increase the NPV defined in the model, since higher cluster-
ing is achieved by imposing constraints, which decreases the solu-
tion space of the problem. Therefore, a post-optimization mapping
of DTUs was conducted with the aim of evaluating the model and
the solutions from the optimization for each case. This mapping
was conducted as follows. It was assumed that DUs harvested in the
same periodwere part of the sameDTU, as long as theywerewithin
a certain distance. The rationale for this is that separate areas
scheduled for a forest operation but divided by narrow areas
(streams, roads, or narrow mires) may be part of the same TU in
practical forestry. Two distances, 50 and 100m, were used as break-
ing points for when two DUs may no longer belong to the same
DTU. The distance refers to a straight line between the closest
points of two DUs. For cuttings, a fixed entry cost of 10000 SEK
(Swedish krona) was applied to each DTU, distributed evenly over
the DUs, and included in theNPV calculation for eachDU.Themap-
ping of DTUs was carried out in periods 1–3 and conducted the
sameway for cases 0–4.

Results
Without entry costs, cases 1–4 showed a decrease in theNPV com-

pared with the reference case 0 (Table 1). For cases 1–4, the relative
loss was <0.2% compared with case 0. Within a given radius, NPVs
decreased with increasing T values, that is, case 4 had a lower NPV
than case 3 and case 2 had a lower NPV than case 1.

When applying entry costs, case 4 had the highest NPV, which
was true for both breakpoint distances. Compared with case 4,
the other cases had NPV decreases of up to 4.31% and 0.61% with
50 and 100 m breakpoint distances, respectively. Cases had up to
40 DTUs in periods 1–3 (cases 0 and 1) and the cases with more
DTUs had a lower NPV.
Comparing cases with a given radius showed that a higher T

value resulted in higher NPVs for both 12 and 30m radiuses, which
is contrary to the outcomewhen no entry costs were applied. These
cases also had a lower total number of DTUs in periods 1–3.
The spatial layout of the harvest activities is visualized in Fig. 2.

The figure includes the three periods in which the spatial condi-
tions were active and the DTUs were mapped. In cases with low
T values (cases 1 and 3), treatments appear to be scattered. Here,
the relaxed spatial restriction allows the model to select scattered
DUs from across the study area. Case 2 had the most restricted
spatial constraint and visually appears to be the case with themost
clustered harvest pattern.
The solution time varied between cases (Table 2). The reference

case was the fastest (2.2 s, i.e., without any spatial constraints
active), while case 4 was the slowest (2526 s). The variation in the
mean harvested volume among the different caseswas negligible.

Discussion
In this paper, we present a new modelling approach for form-

ing DTUs in forest planning. The DTU planning approach aims

Fig. 2. Visualization of harvest activities in the 56 ha case study area (red) for the three periods when the spatial conditions were not
active (case 0) and active (cases 1–4). [Colour online.]
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for more effective utilization of forest resources by increasing
and preserving the spatial resolution of decision-making com-
pared with traditional stand approach planning. Past studies
have presented several methods aiming to achieve this goal. The
current study adds to the collection of methods, with the contri-
bution of increased spatial flexibility as well as the use of an exact
solution method. In addition, many forest decision systems are
based on exact solution methods, which highlights the need for
models such as the one presented here.
The presented model could be used for forming DTUs in forest

planning with an exact solution method without demanding
that the DUs are immediately neighboring, as long as they are
within a given distance from each other. The model enables the
decision maker to test a range of plans with different spatial
layouts, which may be of interest if operations are not subject to
significant fixed costs. The results from the current study also
provide some insight into how an exact solution method with
proxy variables performs when solving a forest planning prob-
lem using a DTU approach. Even while the model does guarantee
the optimal solution, the formulated problem is an approxima-
tion, which is highlighted when including entry cost a posteriori
by performing the post-optimization mapping of DTUs. To find
the best parameter settings for a certain forest holding, decision
maker, and cell size, it would be necessary to produce several
plans with different settings and evaluate them all with the
post-optimization mapping. It is of interest to model economic
incentives directly to drive clustering of DTUs. Using an MIP
methodology, this would be possible by, for example, identifying
subareas within the analysis area where all cells scheduled for
cutting in a subarea would comprise a DTU. A fixed entry cost
would then be applied for each subarea that includes one or
more cells scheduled for cutting.
The optimization showed that the reference scenario (no spatial

considerations active) had the highest NPV when entry costs were
excluded. The aim of applying an entry cost in the postoptimiza-
tionmapping of the DTUs was to quantify the economic gains from
clustering DTUs, which is relevant in practical forestry. The postop-
timization mapping showed that the use of spatial clustering
increased the NPV when fixed costs were included in the analysis
(Table 1). Case 4 had the highest NPV here. The reference case had
the lowest and second lowest NPVs, depending upon the break-
point distance. There was also an association between a higher
number of DTUs and lower total NPV. All of this highlights the
economic incentive to cluster treatments in time and space when
using high-resolution forest data. Forest operations must be con-
ducted on coherent areas with sufficient size for them to be eco-
nomically feasible. Assumptions were made with regards to how a
DTU may and may not be formed. The breakpoint distances of
50 and 100m refer to a straight line between twoDUs and disregard
all other relevant information, e.g., obstacles in the terrain or
location of roads. Assumptions on how DTUs can be formed can be

enhanced by using geographical information in the analysis.
Longer distances may also be of relevance. Heinonen et al. (2018)
used the reduced cost method (presented by Pukkala et al. 2009)
and allowed microstands scheduled for cutting in the same time
period to be separated by up to 300 m and still be included in the
sameDTU.
All cases had an a of 0.9, which means that 90% of all DUs cut

(thinned or final felled) in each period must be clustered (and
consequently, no more than 10% may be cut but not clustered).
However, cases had different radiuses and T values, which
resulted in different degrees of clustering. Case 1 had a radius of
12 m, resulting in a nine DU neighborhood, and T value of 3,
meaning that three of the nine (33.3%) DUs must be cut simulta-
neously for the central DU to be clustered. The corresponding
percentages for the other cases (apart from case 0, with no spatial
considerations active) were 55.6% for case 2 (5 of 9), 20% for case 3
(5 of 25), and 40% for case 4 (10 of 25). This is consistent with the
visual interpretations, as the harvest pattern of case 2 appears
the most clustered. A high value of a ensures that a high portion
of DUs scheduled for treatments have other DUs nearby also
scheduled for the same treatment simultaneously, which is desir-
able from an economic standpoint. Nevertheless, small areas of
forest that differ from their surroundings exist, which makes
them suited for different management. Therefore, we refrained
from setting a to 1. An analysis area with fragmented patches of
forest may be suited for lower values of a. C was set to 3 for all
cases, meaning that clustering took place in periods 1–3. As DTU
planning engages in tasks traditionally dealt with in tactical
or operational planning, reducing the problem size is relevant.
Heinonen et al. (2018) reduced the temporal solution after the
first quarter of the planning horizon. Clustering of DTUs is not
irrelevant in the later periods, but the level of detail is more im-
portant in the early years of a plan. Setting C to 3 was a way to
reduce the size of the problem. Further investigation could have
determined the parameter settings that resulted in the highest
NPV and the point at which the NPV started to decrease, but no
such analysis conducted.
The results raise a few issues that needs to be discussed. The solu-

tion time varied between 2.2 and 2526 s, growing with increased
degree of clustering. Model runtime is a concern when solving
large problems using MIP (Bettinger et al. 1999), and DTU planning
is relevant for larger data sets than the one used here. Note, how-
ever, that while the analysis area was small, 56 corresponds to an
average private owned forest estate in Sweden (Haugen et al. 2016)
and the number of DUs— 3587— is an adequate number. Each DU
had an average of 11.98 treatment programs generated resulting in
42957 treatment programs for the whole case study, which is what
affects the problem size (along with constraints). Heinonen et al.
(2018) solved a DTU planning problem using a heuristic method.
The average runtime of their reduced cost algorithm, about 2000 s
on average, was comparable to the runtime for our case 4, but they
solved a larger problem (254823 treatment programs and a higher
temporal solution). This highlights the ability of heuristics to pro-
duce solutionswithin reasonable time for large problems,while our
modelmay guarantee a solutionwithin 0.1% of the global optima.
Larger numbers of DUs and treatment programs increase the

size of the problem and the solution time. However, a relatively
large number of treatment programs is necessary, since varia-
tions regarding the timing of the treatments is important when
planning a DTU approach, to avoid small, isolated, and expensive
harvest operations. Several options are possible to apply the cur-
rent model on a larger analysis area. It is possible to increase the
size of the DUs, for example, by aggregating raster elements into
microstands before the simulation of treatment programs, as
done by others (Pascual et al. 2018; Heinonen et al. 2018). More-
over, McDill et al. (2002) showed that increasing the tolerance
gap in the optimization decreases the solution time while still
achieving high objective function values. Heinonen et al. (2018)

Table 2. Results concerning the model runtime, harvest, and
number of divided description units (DUs).

Case Radius T value*
Solution
time (s)

Average harvest
volume
(m3·ha�1·year�1)

No. of
divided
DUs†

0 0 0 2.2 6.320 3
1 12 3 4.9 6.318 6
2 12 5 211.5 6.314 12
3 30 5 37.9 6.320 10
4 30 10 2526.0 6.308 11

*T value is the minimum number of simultaneously harvested DUs within

the neighboring area of a given DU for the given DU to be defined as clustered.
†The “No. of divided DUs” is the number of DUs managed by more than one

treatment program.
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decreased the temporal resolution in the later part of the analy-
sis. It is also possible to use geographical information to divide
the analysis area into subareas and conduct the DTU planning on
each subarea.
The next issue that needs to be discussed is the initial data. In

this study, the volume, basal area, basal area weighted mean stem
diameter, and Lorey’s mean tree height were estimated using lin-
ear regression models and LiDAR data, in accordance with Nilsson
et al. (2017). The age and site index were calculated in more uncon-
ventional ways. The site index was derived in a two-step process.
First, the mean of two pre-existing forest plans was calculated for
each DU. Second, the resulting raster data were used to provide
each DUwith the average value of a 5� 5 DU grid. Then, the result-
ing site index was used to estimate the age. An iterative method
tested ages from 0 to 200 years, and the best matching tree height
development curve (Johansson et al. 2013) was assigned. The pur-
pose of this was not to obtain the true state of the forest but to
allow the data to represent the productivity gradient that naturally
occurs in the forest in a fictional dataset. This decreases the homog-
enizing effects of the original stand data for site index and age but
is an obvious source of error. It is possible that the solutions are
influenced by the site index and age preparation. However, no anal-
ysis was conducted to decide whether this was the case.

Conclusion
Here, a model for forest planning using a DTU approach was pre-

sented. Past studies have similarly focused on formulating DTUs
using a variety of methods. The present study contributed to this
collection amodel based on true optimization with increased flexi-
bility concerning the spatial dimension, which has the potential to
improve goal achievement. Future research is needed for compar-
ing the goal achievement of models using the DTU approach with
models using the traditional fixed stand approach. It may also be of
interest to model economic incentives directly to drive clustering
of DTUs, instead of using proxy variables.
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Abstract
We present a model for conducting dynamic treatment unit (DTU) forest planning using a heuristic cellular automata (CA) 
approach. The clustering of DTUs is driven by entry costs associated with treatments, thus we directly model the economic 
incentive to cluster. The model is based on the work presented in the literature but enhanced by adding a third phase to the 
CA algorithm where DTUs are mapped in high detail. The model allows separate but nearby forest areas to be included in the 
same DTU and shares the entry cost if they are within a defined distance. The model is applied to a typical long-term forest 
planning problem for a 1 182 ha landscape in northern Sweden, represented by 4 218 microsegments with an average size of 
0.28 ha. The added phase increased the utility by 1.5–32.2%. The model produced consistent solutions—more than half of all 
microsegments were managed with the same treatment program in 95% of all solutions when multiple solutions were found.

Keywords Entry cost · Forest planning · High-resolution data · Spatial optimization

Introduction

Forest management planning aims at efficient and sustain-
able use of the forest resource over time, whether it be for 
economical, social, biological, or other purposes. In this 
pursuit, the concept of stands has been used in even-aged 
forest management planning for a very long time (see, e.g., 
af Ström 1822; Faustmann 1849; Nilsson et al. 2012). A 
stand is a delimited area where the forest is homogeneous in 
some regard, making the whole stand suitable for the same 
forest management. Stands are typically used as descrip-
tion units (DUs), which we define as the smallest unit for 
collection and storage of data, and modeling of ecosystem 

processes. Moreover, stands also act as treatment units as it 
is the unit used for modeling and planning treatments which 
on holding level are aligned to fullfil stakeholder goals. An 
important property of the traditional stand approach is that 
the stand borders are usually fixed and permanent during the 
planning horizon in planning processes (Nelson and Brodie 
1990; Davis et al. 2001). Furthermore, stands are generally 
large enough and delineated such that they may be treated 
individually; spatial clustering of stand management activi-
ties is not a prerequisite for practical forestry. This makes 
linear programming (LP) a suitable and powerful method for 
solving the resulting optimization problem in forest manage-
ment planning using the stand approach (see, e.g., Johnson 
and Scheurman 1977).

The development of remote sensing techniques for data 
collection has changed and enhanced the conditions for 
forestry and forest planning (Maltamo et al. 2014). Objec-
tive wall-to-wall data with high spatial resolution based on 
combinations of remote sensing and field surveys are com-
piled nationwide in, e.g., Finland (Kotivuori et al. 2016) 
and Sweden (Nilsson et al. 2017). Even if such data may be 
useful, transforming fine-grained data into stand-wise data 
will result in loss of information and consequently subop-
timal use of the forest resource (Holmgren and Thuresson 
1997). An alternative approach to planning forestry based 
on the stand-wise approach is therefore to utilize dynamic 
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treatment units (DTU). DTU planning aims at more efficient 
use of the forest resource by maintaining high spatial reso-
lution in both the forest data and throughout the planning 
process. This is attempted by using DUs much smaller than 
traditional stands and forming DTUs in the planning pro-
cess by clustering DUs into larger areas in the optimization. 
Treatments in specific DTUs do not necessarily reoccur. 
Thus, DTU are dynamic and exist only momentarily in time.

Previous research has studied the concept and perfor-
mance of DTUs and presented various models for conduct-
ing this type of forest planning (e.g., Pascual et al. 2018; 
Heinonen et al. 2018; Wilhelmsson et al. 2021). The eco-
nomic incentive to cluster treatments lies in the entry cost for 
forest operations. The entry cost is defined as the fixed cost 
associated with a contiguous cluster scheduled for treatment 
at a specific time point and includes costs for preparatory 
fieldwork, road maintenance, moving machinery or person-
nel to the site, and administrative work (Borges et al. 2017). 
Borges et al. (2017) showed that the entry cost influences 
the optimal treatment unit size, which has been a concern 
for past studies concerned with DTU. However, instead of 
directly modeling the entry cost, most DTU studies have 
used proxy variables such as conditional common borders 
in combination with distance from the nearest road (Pascual 
et al. 2018). Their model tracked the cut-to-cut and cut-to-
uncut borders, and metrics were included in the utility func-
tion to drive the clustering of treatments.

Forest planning problems with a DTU approach have sel-
dom been solved with exact solution methods (Wilhelmsson 
et al. 2021), but due to the combinatorial and complex nature 
of DTU planning, most often solved with heuristics. Puk-
kala (2009) showed that heuristic methods can successfully 
handle large spatial problems. This was shown for DTU pur-
poses by Heinonen et al. (2007) and was further highlighted 
by Pascual et al. (2018). Noteworthy heuristics applied to 
DTU problems are threshold accepting (Heinonen et al. 
2007), reduced cost (Heinonen et al. 2018; Packalén et al. 
2011; Pukkala et al. 2009), genetic algorithm (Lu and Eriks-
son 2000) and simulated annealing (de Miguel and Pukkala 
2013; Öhman 2001). One heuristic that has been argued 
to be particularly well suited for solving forest planning 
problems in general, and forest planning problems using a 
DTU approach in particular, is cellular automata (CA). CA 
was first presented by von Neumann (1966) and introduced 
in forest planning contexts by Strange et al. (2002). It has 
been used to solve forest planning problems with a DTU 
approach in several studies (Heinonen and Pukkala 2007; 
Mathey et al. 2007; Pascual et al. 2018; Pukkala 2019). In 
the general form, a CA is constituted of a lattice of cells 
where each cell may take on a finite set of states. Rules 
decide how cells may change states, which is dependent on 
a utility function and spatial relations between the given cell 
and a subset of the other cells (neighbors). In a DTU forest 

planning context, a cell in the lattice represents a DU. A 
state is equivalent to a treatment program (TP), which is 
a sequence of treatments over the entire planning horizon 
and the resulting development of the forest. Thus, a CA 
algorithm forms DTUs by swapping TPs for segments of 
forest with regard to treatments planned in spatially nearby 
DUs, clustering treatments in space and time. Mathey et al. 
(2007) argued that two properties make CA particularly well 
suited for solving forest planning problems: (1) the way that 
different spatial scales can be integrated into a CA model, 
and (2) the way that landscape scale patterns emerge due 
to local spatial rules determining the change in DU state. 
While in-depth comparisons with other heuristics are lack-
ing, previous studies have shown potential in CA compared 
to simulated annealing in computational speed, the number 
of iterations needed when using stop criteria, and solution 
quality (Mathey et al. 2007; Heinonen and Pukkala 2007).

This study aims to improve long-term forest planning 
with a DTU approach using CA by introducing explicit 
entry costs. The first and second phase of the algorithm is 
inspired by the literature. However, a third phase is added 
to the CA algorithm where the economic incentive to clus-
ter treatments is modeled directly by calculating entry costs 
in high detail for potential DTUs. The approach is applied 
in a planning problem for a 1 192 ha landscape in north-
ern Sweden where the forest is described with high spatial 
resolution data using DUs much smaller than the area of 
traditional stands.

Method

Overview of the cellular automata algorithm

Our approach is based on the CA model presented by 
Strange et al. (2002), which was improved by Mathey et al. 
(2007) and Heinonen and Pukkala (2007). The CA evaluated 
here is a set of DUs representing a forest. The states are (DU 
specific) TPs. The CA algorithm consists of three phases: 
local, global and final, each with a number of iterations. The 
algorithm starts by randomly selecting a TP for all DUs. All 
phases follow a similar procedure. In each iteration, a ran-
dom number is drawn from a uniform distribution between 
0 and 1 for each DU. Depending on the number, one of three 
things occur in accordance to probabilities set by the user. 
The DU is either mutated, innovated, or remain unchanged. 
A DU being unchanged means that the current TP remains 
the same. If a mutation occurs, the TP is swapped for a ran-
domly selected one. If innovation occurs, all potential TPs 
for the DU are evaluated, and the model swaps to the best 
TP with regard to a utility function stated by the user. DUs 
are processed in this manner one at a time until all DUs have 
been processed, at which point the iteration is completed 
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and the next iteration begins by starting over from the first 
DU. When the predefined number of iterations is done, the 
phase is completed and the next phase is initiated by start-
ing over from the first DU, meaning that the output plan 
from a phase acts as starting point for the next phase. What 
separates the phases from each other is the utility function. 
This is elaborated below. All DUs are processed until the 
last DU of the last iteration of the last phase is processed, at 
which point all DU are innovated one last time. When this is 
done, the algorithm is complete and the solution exported. A 
conceptual visualization of the algorithm is shown in Fig. 1.

An essential component of the utility function used here 
is the net present value (NPV) of a TP, which is calculated 
by discounting income and costs from different management 
activities, both within the planning horizon and beyond for 
an infinite time horizon (Faustmann 1849). In addition to the 
productivity-based costs for treating a DU, the fixed entry 
cost is applied to all DTUs within the planning horizon and 
included in the calculation of NPV. The calculation of entry 
cost is one of two properties that changes over the phases 
of the CA algorithm (see Table 1), thus affecting the NPV. 
A simplified entry cost calculation is conducted in the local 
and global phases, whereas a higher detail mapping of the 
DTUs and calculation of entry cost are carried out in the 
final phase. The other property that changes over the phases 
is the inclusion of a harvest coefficient. This coefficient is 
excluded in the local phase but included in the global and 
final phases. The purpose of the harvest coefficient is to 
prevent the model from overharvesting, which is a concern 
when spatiotemporal clustering is beneficial, and the use of 
NPV may drive the model to harvest large volumes in early 
periods.

The mapping of DTUs is based on the concept of 
neighbors. DUs are considered neighbors if the minimum 
distance between their edges is below a specified distance 
(neighborhood distance), i.e., neighbors are not neces-
sarily immediately adjacent. In the local phase, the fixed 
entry cost is calculated using a local scope (see Fig. 2). 
The entry cost used here is scaled down from a realistic 
value by multiplying it by 0.02. The local phase is fol-
lowed by the global phase, which uses the output plan 
from the local phase as input. Here, the same local scope 
is used for calculating entry cost, but the utility function 
is changed to account for harvested volume over time by 
introducing the harvest coefficient (Fig. 3). coefficient is 
period-specific and punishes solutions with harvest vol-
umes larger than the harvest target. The resulting plan 
from the global phase is used as input in the final phase. 
The final phase, introduced in the current study, main-
tains consideration to forest level goals using the harvest 
coefficient but the calculation of NPV changes, as the 
DTUs are fully mapped in each iteration (see Fig. 4). The 
complete mapping means that the potential number of 

Fig. 1  Conceptual flowchart of the cellular automata approach used 
in the study

Table 1  How input, output, spatial scope and forest level goals 
change over the phases over the CA algorithm

Phase Local Global Final

Input Random start Plan L Plan G
Entry cost Simplified Simplified High detail
Harvest coefficient Not included Included Included
Output Plan L Plan G Plan F
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DUs that constitute the DTU and share the entry cost is 
increased manyfold. The entry cost is therefore increased 
to a realistic value to model the true costs as accurately 
as possible and let that cost drive the clustering. Each 
phase ends after the predefined number of iterations is 
completed. In one final iteration, all DUs are innovated 
in order to remove isolated and small DTUs, which may 
be the result of chance via mutation. The resulting plan 
is exported as the solution.

Phases and the spatial rule

Here follows a model formulation for the cellular autom-
ata as it progresses over the three phases, as shown in 
Fig. 1.

Local phase: forming simple DTUs

All phases aim to maximize the value of the utility func-
tion. In the local phase, it is defined as follows:

where xi,j = {0,1}, the share of DU i managed with TP j; 
mp = midperiod year of period p; gi,j,p = gross revenue in 
period p of TP j in DU i; ci,j,p = spatially independent cost 
in period p of TP j in DU i; ni,j,p = entry cost in period p 
of TP j in DU i; r = discount rate; vi,j = terminal value; the 
discounted value of the forest management beyond the last 
planning period; I = set of DUs; Ji = set of TPs for DU i.

The definition of  ni,j,p changes over the phases. In the 
local and global phases, it is defined as

where e = fixed entry cost; di,j,p = number of DUs in DU i’s 
neighborhood treated with the same treatment in period p as 
DU i in TP j in period p.

The variable di,j,p is visualized in Fig. 2. This is what 
drives clustering in the local and global phase of the CA.

(1)MaxZ =

I
∑

i=1

Ji
∑

j=1

zi,j ∗ xi,j

(2)zi,j =
∑P

p=1

gi,j,p −
(

ci,j,p + ni,j,p
)

(1 + r)mp
+ vi,j

(3)

ni,j,p =

(

e

di,j,p

)

if DU i has a treatment in period p, TPj, otherwise 0

Fig. 2  Consider the lattice a representation of a forest. Treatments in 
period p is shown, where c represents cutting. The red square marks 
the neighborhood of the blue DU. In the local and global phases, di,j,p 
represents the number of DUs in the neighborhood of DU i (blue) 
prescribed for the same treatment in period p of treatment program 
j as the blue DU (including the centering DU itself, here 5). The 
entry cost ni,j,p is shared equally among the DUs marked with cutting 
within the neighborhood (see Eq. 3)

Fig. 3  Graphical representation of the relation between ui,j,p, tp and 
bp. The utility coefficient ui,j,p will have a value of 1 between 0 and 
tp  m3 harvested volume, at which point it linearly declines toward 0, 
which it reaches at bp  m3 harvested volume. For harvests levels even 
higher, ui,j,p will have a value of 0, considering attempted contribu-
tions to the utility function from such harvests as worthless

Fig. 4  Consider the lattice a representation of a forest. The lattice 
shows the treatments in a time period p, where “C” represents cut-
ting. The red shape shows the DTU. In the final phase, the variable D 
represents the total area of DUs included in the DTU (red area) and  ai 
represents the area of DU I (blue). The entry cost ni,j,p is distributed 
among the DUs constituting the DTU in proportion to their area (see 
Eq. 5)
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Global phase: introduction of forest level goals

Optimizing the utility function with a local scope does not 
always lead to solutions that satisfy forest level goals and 
constraints. Hence, Mathey et al. (2007) introduced the 
inclusion of forest level goals in a CA model. The present 
study deals with the flow of harvested volumes over time. 
In the global phase, the utility function is therefore defined 
as follows:

where zi,j = utility of TP j for DU i; gi,j,p = gross income in 
period p of TP j in DU i; ci,j,p = spatially independent cost in 
period p of TP j in DU i; ni,j,p = entry cost in period p of TP 
j in DU i; r = discount rate; vi,j = present value of net revenue 
from beyond the last planning period (P) to infinity of TP j 
for DU i; tp = harvest target in period p; bp = upper harvest 
bound in period p; ui,j,p = utility coefficient in period p of TP 
j of DU i. The parameter takes the value

where hp is harvested volume in period p; wi,j = min{ui,j,p} 
of any period p for the given DU i and TP j; mp = midperiod 
year of period p.

The inclusion of the harvest coefficient, ui,j,p, in the model 
means that the utility of a TP is lowered if that TP results in 
overharvesting within the planning period. Thus, while there 
are no constraints (besides the decision variable xi,j being 
binary), the inclusion of the harvest coefficient will effec-
tively constrain harvest levels. The parameter wi,j is included 
since the harvest in each period is connected to the net rev-
enue in each period using the harvest coefficient (ui,j,p), when 
meantime, the NPV from beyond the planning horizon is 
not connected to any harvest level. wi,j prevents the model 
from selecting solutions leading to overharvest within the 
planning horizon in the search for NPV from beyond the 
planning horizon (terminal value vij). In such solutions, wi,j 
will assume the value of 0, which is multiplied with the 
NPV from beyond the planning horizon. If all TPs available 
in a DU have the utility of 0, the model will choose the TP 
without treatments, and overharvest is avoided.

The entry cost is estimated in the global phase using the 
same spatial scope as the local phase (see Fig. 2).

Final phase: high detail mapping of DTUs

The final phase of the algorithm will maintain the consid-
eration of harvested volumes introduced in the global phase 
as defined by Eq. 4. What changes is the spatial scope of 

(4)zi,j =
∑P

p=1

gi,j,p −
(

ci,j,p + ni,j,p
)

(1 + r)mp
∗ ui,j,p + vi,j ∗ wi,j

1 if hp ≤ tp,

1 −
(

hp−tp
)

∕
(

tp−bp
)

if tp < hp ≤ bp, and

0 if bp < hp,

the calculation of entry cost. Instead of looking only at the 
window defined by the neighborhood distance around the 
DU, the model checks if simultaneous treatments are found 
in a neighboring DU and if so, looks onward into the neigh-
bor’s neighbors and so on (into infinity, in theory). Thus, 
complete mapping of the DTU is conducted, and the entry 
cost is divided among the DUs constituting the DTU. Step-
ping stone effects may appear as the model allows separate 
(non-adjacent) areas to be part of the same DTU as long as 
all subareas are connected to another subarea according to 
the definition of neighbor. This change in the definition of 
entry cost is stated in Eq. 5 and visualized in Fig. 4. Each 
DU is charged with a share of the entry cost in proportion to 
its share of the total area of the DTU.

if DU i has a treatment in period p in TP j, otherwise 0.
where E = constant representing the entry cost; ai = area 

of DU i; D = area of the DTU, which DU i is part of in 
period p for TP j (according to principle shown in Fig. 4).

Note that, the value of D may be high, as the model maps 
the full area constituting the DTU.

Analysis area, segmentation of DUs, and simulation 
of treatment programs

The model was evaluated by developing long term plans for 
a forest of 1192 ha located northwest of Sundsvall, Sweden. 
The forest is represented by 4218 microsegments, where 
each microsegment represents a DU with an average size 
of 0.28 ha. The microsegments are derived from remote 
sensing data in a two-step process. First, a region growing 
expansion model (Grilli et al. 2017) merges adjacent and 
similar 12.5 × 12.5  m2 raster elements into possible DUs. 
Similarity is measured as distance in a 5D space with basal 
area, Lorey’s mean height, proportion of pine, proportion 
of spruce, and proportion of broadleaves as dimensions. 
Merging is repeated until the smallest difference between 
neighboring microsegments is higher than a user defined 
level. This does not limit the size of segments, however, and 
they may become very large. Therefore, the second step is 
carried out using mixed integer programming (MIP). The 
MIP model selects microsegments from a large set of pos-
sible ones generated with the region growing method. The 
goal function of the MIP model is to minimize the sum of 
standard deviation within segments. The constraints are (1) 
each raster element must be assigned to a microsegment and 
(2) the maximum size of microsegments must not exceed 
a user defined limit. The MIP solution is the final spatial 
layout for microsegments (DUs). The wall-to-wall ALS data 

(5)ni,j,p =

(

E
ai

D

)
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used for the segmentation were provided by the Swedish 
Forest Agency and were described by Nilsson et al. (2017).

Initial state

The analysis area forest is comprised mainly of Norway 
spruce (Picea abies, 49% of the standing volume), but also 
of Scots pine (Pinus sylvestris, 30%) and birch (Betula pube-
scens and Betula pendula, 19%). The mean productivity is 
4.9  m3  ha−1  year−1 in the initial state, and the mean age is 
58 years. The distribution between age classes is shown in 
Fig. 5. The case study area was chosen from a larger area, 
and a reasonably even age distribution was sought after.

Generation of TPs

The generation of TPs for each DU over the 50 years plan-
ning horizon was conducted with the PlanWise application 
in the Heureka decision support system (Wikström et al. 
2011). Associated with each TP is a projected state of the 
DU in each period, including, e.g., growing stock and har-
vested volume. The core of the Heureka system is a col-
lection of empirical models for projecting stand dynamics, 
e.g., growth, mortality and yield, in 5 year time steps. Heu-
reka PlanWise generates a set of TPs for each DU within a 

user-defined forest management framework. The manage-
ment system was set to even-aged silviculture for all DUs, 
and the TPs differ with regard to the timing and manner of 
soil preparation, planting, pre-commercial thinning, thin-
nings, and final felling. A TP without any treatments was 
also generated for all DUs. On average, 12.7 potential TPs 
were generated for each of the 4218 DUs, that is, a total of 
53 473 TPs.

Model settings and hardware

The cellular automata algorithm for solving the management 
problem was written in the programming language Python 
v3.8 using the IDE IntelliJ Pycharm v2019.3.3. The model 
was run on a Intel Core i7 2.8 GHz computer with 32 GB 
RAM and 64-bit Windows 10 as operating system. The 
model was run using three different neighborhood distances; 
1 m, 50 m, and 200 m. These are henceforth called “cases.” 
Because of the stochastic nature of the cellular automata 
algorithm, where optimal solutions are not guaranteed, the 
solving procedure was repeated 40 times for the 1 m and 
50 m neighborhood cases and 20 times for the 200 m neigh-
borhood case. These sets of solutions are henceforth called 
“analyses.”

All cases and analyses used the following parameter set-
tings. Each phase included 50 iterations. The harvest target, 
i.e., tp, was set to 50,000  m3 and the harvest bound, i.e., bp, 
was set to 55 000  m3. The probability of mutation and inno-
vation was set to 5% and 90%, respectively, leaving a 5% 
probability that the TP for a given DU remains unchanged in 
an iteration. A discount rate of 3.0% was used for calculating 
the NPV, i.e., r was set to 0.03.

Model stability

There is an element of chance in the solutions produced since 
mutation means that a TP is randomly drawn from the set of 
available ones for a given DU. We investigated the impact 
of said chance on final plans by studying how consistently 
the model selected TPs for each DU when the model is run 
repeatedly. We call the consistency in TP selection “stabil-
ity” and Table 2 shows how this was investigated.

We describe model stability by reporting descriptive sta-
tistics from the column named Stability in Table 6.Fig. 5  Initial age class distribution of the analysis area

Table 2  Example of how 
stability is measured for three 
DUs given six repetitions and 
the selected TPs

DU Repetition Most frequent TP Stability (%)

1 2 3 4 5 6

1 TP12 TP12 TP13 TP12 TP13 TP12 TP12 67
2 TP25 TP23 TP24 TP23 TP21 TP24 TP23,  TP24 33
3 TP34 TP31 TP34 TP34 TP34 TP34 TP34 83

Average 61
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Stand‑based planning with linear programming

The CA solutions were compared with the outcome of 
long-term planning problems based on the traditional stand 
approach and solved by LP (Johnson and Scheurman 1977). 
The same DUs were used in the LP planning problem. 
Maximum NPV was used as objective function, and the LP 
problem was solved using the optimization tool available in 
Heureka PlanWise. Four different solutions were produced 
using different constraints on harvested volume. One solu-
tion had no constraints, and the other three were forced to 
follow the period-specific harvest profile of each of the three 
corresponding solutions found with the CA. Note that, the 
LP solutions do not include entry fixed costs in the manner 
that the CA does, therefore no clustering is conducted here.

Results

Cases

Table 3 show how utility and NPV increased with higher 
neighborhood distance. Harvested volume followed the 
same pattern. The different cases also resulted in different 
spatial layouts of treatments. The final plans from each 
case are visualized by showing the treatments and DTUs 
in the northeast corner of the analysis area in period 2 
(Figs. 6, 7, 8). With an increase in the neighborhood dis-
tance, the DTUs became larger and fewer but were also 
more dispersed over the landscape. An example of this 
can be seen when comparing Figs. 6, 7, 8: The striped 

Table 3  Summary of results for 
the three cases

Neighborhood 
distance (m)

Utility (million) NPV (mil-
lion SEK)

Average DTU 
size (ha)

No. of DTUs 
per period

Harvested 
volume  (m3 
 ha−1  year−1)

1 50.3 50.9 2.04 49.6 7.4
50 51.2 53.4 5.90 19.4 8.1
200 53.9 54.4 12.7 9.8 8.3

Fig. 6  Spatial layout of DTUs in the second five-year period in the 
northeast corner of the analysis area, using 1  m neighborhood dis-
tance. Filled DUs are scheduled for final felling, striped DUs are 

scheduled for thinning and dotted DUs are scheduled for pre-com-
mercial thinning (PCT). Individual DTUs are colored the same and 
non-marked polygons are micro sements (DUs) or non-forest
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thinnings in the middle of Fig. 6 are considered separate 
DTUs when using 1 m neighborhood distance (Fig. 6), 
whereas the cases with 50 and 200 m, respectively, mapped 
this area as a single, but dispersed DTU (Figs. 7 and 8). 
Small, isolated DTUs did occur in all cases (see Fig. 6).

Analysis of the cellular automata algorithm

The final phase contributed to both utility and NPV (see 
Table  4). Utility increased with 1.5–32.2% and NPV 
increased with 3.6–33.8% depending on neighborhood 
distance. The coefficient of variation (standard deviation 
divided by the mean) varied with neighborhood distance 
but was 0.0161 or lower for the utility function and 0.0013 
or lower for the NPV.

Utility and NPV increased in only the few first iterations 
of each phase, see Figs. 9, 10, 11, 12. The overall trends 
were the same for all analyses. Improvements in later itera-
tions were very small. The last iteration of the final phase 
(innovation of all DUs) made noticeable contributions to 
both the NPV and the utility function.

Local phase solutions showed clear overharvest in the 
first period (see Fig. 12, line P1) and a shortage of harvests 
in the following couple of periods. The introduction of 

the harvest coefficient in the global phase mitigated this, 
but the final phase further decreased harvests, i.e., after 
introducing full entry costs, in some periods (see Fig. 13, 
lines P2 and P4).

Model runtime

Runtimes increased with longer neighborhood distances, 
which is logical since the computational burden increases 
for our model when mapping DTUs that are large in terms 
of the number of included DUs. The final phase was com-
putationally time demanding, especially so when using 50 
and 200 m neighborhoods. The model needed 800–6500 s 
per plan (repetition) depending on neighborhood distance 
(Table 5).

Model stability

We investigated the stability of each analysis. On average, 
the model selected the same TP in ~ 87% of solutions for 
any neighborhood distance (see Table 6).

Fig. 7  Spatial layout of DTUs in the second five-year period in the 
northeast corner of the analysis area, using 50 m neighborhood dis-
tance. Filled DUs are scheduled for final felling, striped DUs are 

scheduled for thinning and dotted DUs are scheduled for pre-com-
mercial thinning (PCT). Individual DTUs are colored the same and 
non-marked polygons are micro sements (DUs) or non-forest
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Comparison with linear programming

Table 7 shows the NPV and harvested volume when using 
the heuristic and a traditional LP approach to solve similar 
planning problems. The relative NPV in solutions found 
by the CA algorithm (including entry costs) were within 
91.4–97.5% of the theoretical maximum found using LP 
(including neither entry costs nor harvest constraints). Three 
LP solutions were also found including a constraint stating 
that the harvest profile had to match the harvest profile from 

each CA solution. When comparing solutions produced by 
CA to these LP solutions, the relative NPV from CA then 
rose to 94.3–98.1%.

Discussion

This study is an attempt to improve forest planning with 
a DTU approach using a cellular automata algorithm. 
Clustering treatments is necessary for forest management 

Fig. 8  Spatial layout of DTUs in the second five-year period in the 
northeast corner of the analysis area, using 200  m neighborhood 
distance. Filled DUs are scheduled for final felling, striped DUs are 

scheduled for thinning and dotted DUs are scheduled for pre-com-
mercial thinning (PCT). Individual DTUs are colored the same and 
non-marked polygons are micro sements (DUs) or non-forest

Table 4  Utility and NPV in the analyses (20–40 solutions). Delta represents changes in solutions achieved by the final phase

1 40 solutions; 220 solutions

Global phase Final phase

Neighborhood 
distance (m)

Utility or NPV 
(SEK)

Average value Average value Delta SD Coeff of variation

11 Utility 37.3 M 49.9 M 32.2% 804 936 0.0161
NPV 38.5 M 51.0 M 33.8% 65 129 0.0013

501 Utility 47.5 M 53.1 M 11.7% 156 174 0.0029
NPV 48.9 M 53.5 M 9.2% 60 844 0.0011

2002 Utility 51.0 M 51.7 M 1.5% 611,017 0.0118
NPV 5.25 M 54.4 M 3.6% 45 424 0.0008
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planning when using DUs of high spatial resolution 
(Heinonen et al. 2018). From an economic standpoint, 
clustering is needed due to the fixed costs associated with 
treatments, e.g., for moving harvest machinery. In contrast 
to comparable studies in the literature, this study explic-
itly modeled the economic incentive to cluster harvest 

activities, in a high-detail manner in the final phase of the 
algorithm.

The model successfully solved the planning problem 
using different parameter settings and neighborhood dis-
tances. The model succeeded in the sense that (i) the plans 
had clustered treatments (ii) overharvesting did not occur, 
and (iii) all CA-produced plans (including entry cost) were 
within 5.7% of the comparable plans found with LP (exclud-
ing entry costs). The final phase improved the solutions in 
terms of both utility function value (1.5–32.2%) and NPV 
(3.8–32.4%), see Table 4. The model was successful in pre-
venting overharvests compared to the harvest level set by the 
harvest coefficient. Thus, the effect of including the harvest 
coefficient was similar to inclusion of a constraint limiting 
harvest. However, the model did not result in even harvest 
flow in all periods (Fig. 13), which may be a concern for 
some forest owners. This may be achieved by decreasing 
the target volume (variable tp), possibly in combination with 
increasing the upper bound (bp).

A high number of iterations in each phase do not seem to 
be necessary since the culmination of NPV and utility func-
tion values were observed after only a few iterations. Past 
studies using cellular automata models have had utility cul-
minate later during the iterations (e.g., Pascual et al. 2019), 
possibly because those models shifted utility weighting lin-
early over the iterations, whereas our model changes the 
utility function abruptly when a new phase starts. The final 
phase was the most time-consuming. The presented model 
solved the planning problem for 1 192 ha (4218 DUs) in 

Fig. 9  Utility function values in the local phase, relative to the maxi-
mum value in the displayed dataset, for the 50 m neighborhood dis-
tance case. Boxplots representing results from the 40 repetitions of 
the CA algorithm. The utility function changes over phases, hence 
values are not comparable between Figs.  9, 10, and 11. Iteration 0 
showing data from the randomly selected initial plan

Fig. 10  Utility function values in the global phase, relative to the 
maximum value in the displayed dataset, for the 50 m neighborhood 
distance case. Boxplots representing results from the 40 repetitions of 
the CA algorithm. Utility function changes over phases, hence values 
are not comparable between Figs. 9, 10, and 11. Iteration 0 showing 
the solutions produced by the local phase as evaluated by the global 
utility function

Fig. 11  Utility function values in the final phase, relative to the maxi-
mum value in the displayed dataset, for the 50 m neighborhood dis-
tance case. Boxplots representing results from the 40 repetitions of 
the CA algorithm. Utility function changes over the phases, hence 
values are not comparable between Figs.  9, 10, and 11. Iteration 0 
showing the solutions produced by the global phase as evaluated by 
the final utility function
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830–6510 s (Table 5), depending on neighborhood distance. 
Unfortunately, computation time is not always reported in 
the literature. Comparisons are possible with the reduced 
cost model of Heinonen et al. (2018). Their model solved 
DTU planning problems for a 13 805 ha area (42,606 DUs) 

with solution times of ~ 2000s (Table 5). Note that, the 
complexity and computational cost is a result not only of 
analysis area size and spatial resolution, but also tempo-
ral solution, planning horizon, number of treatment units, 
neighborhood distance, etc. If short solution times is of great 

Fig. 12  NPV over all three phases for the 50  m neighborhood dis-
tance analysis. Boxplots representing results from 40 repetitions of 
the CA algorithm. Iteration 0 in the local phase graph marks the NPV 

of the randomly selected initial plans. Iteration 0 in the global and 
final phase marks the NPV of the input solution in each phase

Fig. 13  Harvest profiles for the 50  m neighborhood distance case. 
Average values for 40 solutions. Global phase introduces the harvest 
coefficient and the final phase charges each DTU by the full entry 

cost. Iteration number within each phase on the x axis. P1 – P10 are 
the ten five year periods over the planning horizon

Table 5  Average values 
of runtime for different 
neighborhood distances

Neighborhood 
distance (m)

Runtime per iteration Iterations 
per phase

Repetitions Avg runtime 
per repetition 
(s)Local (s) Global (s) Final (s)

1 4.3 4.4 7.9 50 40 830
50 4.4 4.6 29.6 50 40 1855
200 4.5 4.5 121.2 50 20 6510
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importance, our model may be improved by adding stopping 
criteria based on specific utility function values, possibly 
allowing for finding good solutions in fewer iterations and 
hence shorter solution times. Regarding runtimes, it has to 
be stressed that code was not optimized for solution time.

Heuristic models may not guarantee optimal solutions 
and solutions produced are to some degree the product of 
chance. Bettinger et al. (2009) suggest a six-level framework 
for validation of forest planning heuristics, where level six 
is the highest. Corresponding to level two in this piece of 
literature, we solve problems repeatedly and report spread in 
utility function value and in NPV. We also report the model’s 
tendency to select the same TP for an individual DU over a 
set of solutions. We repeated the solving procedure 40 times 
for the 1 m and 50 m neighborhood distance and 20 times 
for the 200 m dito. The coefficient of variation for the utility 
function value was 0.0161 or lower for all analyses and for 
NPV the same was true for a value of 0.0013. The stability 
in TP selection was very similar in the different analyses 

regardless of neighborhood distance and was relatively high 
in all analyses—all analyses had an average stability of 87% 
and a median of 95%. This indicates that the model produces 
similar solutions over and over when using the same param-
eters for the same analysis area. This is a mark of quality for 
the model when nuanced by the comparisons with solutions 
from LP. Compared to solutions found using LP, the CA 
produced solutions with relative NPV of 94.3% or higher 
(Table 7). Bettinger et al. (2009) considers comparisons with 
optimal solutions generated for similar problems as a high 
level (five out of six) of validation but our comparison is 
vague since entry costs play a significant role in the CA but 
may not be included in the LP. Therefore, we do not consider 
our analysis as a level five validation. Furthermore, the har-
vest constraints also differ between the two. The relevance of 
the comparison lies in the fact that solutions found by LP are 
always the theoretical optima. Consequently, if the solution 
found by the CA is close to the solution found by the LP, 
it indicates that the CA produces high-quality forest plans. 
Therefore, the comparison was included.

Allowing for longer distances between separate areas within 
the same DTU increased NPV and utility function value. This 
is logical since increasing the distance has similarities with the 
relaxation of a constraint when using an exact solution method 
and matches the literature (Borges et al. 2017; Heinonen et al. 
2018). A wider neighborhood distance allows the model to 
form more scattered DTU and results in fewer entry costs for 
a given distribution of treatments in the geography. What the 
appropriate neighborhood distance is, is however not obvi-
ous. The distance should reflect the point at which harvest 
machinery can no longer move within a harvest area without 
having transportation assistance by a trailer or similar. This 
distance is in practice dependent on several factors, many of 
which were neglected in this study (e.g., water courses, ground 
conditions, topography, roads). If a very short distance is used, 
the model will consider many treatments as isolated cuttings, 

Table 6  For each DU, we investigated which TP occurred the most 
often in the analyses. The frequency (in percent) of this TP results 
in a value between 0 and 100 for each DU. This frequency describes 
the stability in TP assignment, since a value of 100 for a DU shows 
that the model selected the same TP in 100% of all repetitions for that 
DU. The table shows descriptive statistics for this frequency for all 
DUs of the three analyses

1 Average values over 40 repetitions; 2Average values over 20 repeti-
tions

Percentile Stability (%)

1  m1 50  m1 200  m2

Min 25 23 25
Median 95 95 95
Max 100 100 100
Average 87 87 87

Table 7  Comparisons of 
NPV and harvested volume in 
different CA, and LP solutions. 
Note that, the LP solutions do 
not include entry costs in the 
calculation of NPV. Therefore, 
even if the selection of TPs was 
exactly the same in a plan found 
using LP and a plan found using 
CA, the CA solution would have 
lower NPV due to higher costs

1) Using a constraint stating that the harvested volume in each period must equal the harvested volume from 
the cellular automata solution with the corresponding neighborhood distance
2) Using a utility function promoting even flow of harvested volumes (Fig. 3)

Solution NPV (SEK  ha−1) NPV (rel.) NPV (rel. to correspond-
ing LP solution)

Avg har-
vest  (m3 
 ha−1  year−1)

Linear programming
No constraints 46 849 100.0 n/a 7.6
11 45 411 96.9 n/a 6.8
501 46 298 98.8 n/a 7.4
2001 46 567 99.4 n/a 7.5
Cellular automata
12 42 804 91.4 94.3 6.8
502 44 851 95.7 96.9 7.4
2002 45 699 97.5 98.1 7.5
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and thereby as non-profitable. If a very long distance is used, 
DTUs are to a more significant extent constituted by small 
and scattered areas, which the underlying harvest productivity 
models used in Heureka (Eriksson and Lindroos 2014) are not 
validated against.

The entry cost is a main component in the model and it was 
scaled down in the local and global phases. The aim here was 
that (while a lower detail mapping is conducted in the local 
and global phases) the effective entry cost charged from single 
DU would approximately correspond to the effective entry cost 
charged in the final phase. Furthermore, consideration was 
taken to the fact that a full entry cost would far exceed the 
income from thinning very small DU (a single 12.5 × 12.5m2 
grid cell). Using a full entry cost, the model might consider 
all small DTU as unprofitable, not allowing small DTU to 
establish in the local and global phase, thus potentially getting 
stuck in local optima. After reasoning and brief testing, the 
entry cost was therefore scaled down in the local and global 
phases by multiplying it by 0.02.

Small DTU occurred in all cases, even though an impor-
tant aim of the model is to avoid these. The fact that TPs 
(a sequence of treatments) are evaluated here, rather than 
individual treatments, is a possible explanation for this. A 
TP may be considered viable to the model, even though an 
individual treatment at a specific timepoint in the TP is not. 
Hence, the model may not guarantee that all treatment in all 
DUs in a solution are economically profitable, even though 
NPV was a component in the utility function.

Finally, delineation of forests into microsegments, i.e., the 
DUs in this study, may be of varying quality and is a source 
of error for forest planners using such data. Furthermore, 
the microsegments used here consists of sets of squares, 
forming straight and perpendicular patterns which in prin-
ciple is a poor representation of the gradual variations that 
occur in real forests. As an alternative, remote sensing tech-
niques allow for single tree identification and segmentation 
algorithms can be employed on such tree level data to form 
microsegments with more fine tuned borders (e.g., Olofs-
son and Holmgren 2014). Yet another alternative would 
have been to use the underlying cells as DUs, at the cost of 
an even more complex planning problem with many more 
decision variables. After all, the model for carrying out the 
segmentation and the model for conducting forest planning 
are two separate things. The former is not the focus of the 
study, and therefore, no investigation was conducted on the 
quality of the microsegmentation.

Conclusions

We conclude that the presented approach is an addition 
to the set of heuristics applicable to forest planning with 
DTU. The main contribution of the study is the final phase 

of the algorithm where the economic incentive to cluster 
treatments is modeled by calculating entry costs in high 
detail. The analyses showed that the final phase improves 
goal function value in solutions. While the magnitude of 
improvement appears dependent on parameterization in ear-
lier phases of the algorithm and data, modeling a realistic 
entry cost, instead of using proxy variables, decreases the 
need for parameterization and expert-usage of decision sup-
port systems. While the final phase improved solutions, the 
phase was also computationally costly. In addition, early cul-
mination of goal function value was observed, which leads 
us to reason that inclusion of stop criteria may be advisable 
to reduce solution times. The results also showed that the 
model produces consistent solutions when a given planning 
problem is solved repeatedly.
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