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Abstract 
High-throughput plant phenotyping (HTPP) is a fast, accurate, and non-destructive 
process for evaluating plants' health and environmental adaptability. HTPP accelerates 
the identification of agronomic traits of interest, eliminates subjectivism (which is innate 
to humans), and facilitates the development of adapted genotypes. Current HTPP 
methods often rely on imaging sensors and computer vision both in the field and under 
controlled (indoor) conditions. However, their use is limited by the costs and complexity 
of the necessary instrumentation, data analysis tools, and software. This issue could be 
overcome by developing more cost-efficient and user-friendly methods that let breeders, 
farmers, and stakeholders access the benefits of HTPP. To assist such efforts, this thesis 
presents an ensemble of dedicated affordable phenotyping methods using RGB imaging 
for a range of key applications under controlled conditions.  
The affordable Phenocave imaging system for use in controlled conditions was developed 
to facilitate studies on the effects of abiotic stresses by gathering data on important plant 
characteristics related to growth, yield, and adaptation to growing conditions and 
cultivation systems. Phenocave supports imaging sensors including visible (RGB), 
spectroscopic (multispectral and hyperspectral), and thermal imaging. Additionally, a 
pipeline for RGB image analysis was implemented as a plugin for the free and easy-to-
use software ImageJ. This plugin has since proven to be an accurate alternative to 
conventional measurements that produces highly reproducible results. A subsequent 
study was conducted to evaluate the effects of heat and drought stress on plant growth 
and grain nutrient composition in wheat, an important staple cereal in Sweden. The 
effects of stress on plant growth were evaluated using image analysis, while stress-
induced changes in the abundance of key plant compounds were evaluated by analyzing 
the nutrient composition of grains via chromatography. This led to the discovery of 
genotypes whose harvest quality remains stable under heat and drought stress. 
The next objective was to evaluate biotic stress; for this case, the effect of the fungal 
disease Fusarium head blight (FHB) that affects grain development in wheat was 
investigated. For this purpose, seed phenotyping parameters were used to determine the 
components and settings of a statistical model, which predicts the occurrence of FHB. 
The results reveal that grain morphology evaluations, such as length and width, were 
found to be significantly affected by the disease. Another study was carried out to 
estimate the disease severity of the common scab (CS) in potatoes, a widely popular food 
source. CS occurs on the tubers and reduces their visual appeal, significantly affecting 
their market value. Tubers were analyzed by a deep learning-based method to estimate 
disease lesion areas caused by CS. Results showed a high correlation between the 
predictions and expert visual scorings of the disease and proved to be a potential tool for 
the selection of genotypes that fulfill the market standards and resistance to CS. Both 
case studies highlight the role of imaging in plant health monitoring and its integration 
into the larger picture of plant health management.  
The methods presented in this work are a starting point for bridging the gap between 
costs and accessibility to imaging technology. These are affordable and user-friendly 
resources for generating pivotal knowledge on plant development and genotype selection. 
In the future, image acquisition of all the methods can be integrated into the Phenocave 
system, potentially allowing for a more automated and efficient plant health monitoring 
process, leading to the identification of tolerant genotypes to biotic and abiotic stresses. 
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Sammanfattning 

High-throughput plant phenotyping (HTPP) är en snabb, exakt och icke-destruktiv 
process för att utvärdera växters hälsa och miljöanpassning. HTPP kan påskynda 
identifieringen av agronomiska egenskaper av intresse, eliminera subjektivism, och 
underlätta utvecklingen av anpassade genotyper. Nuvarande HTPP-metoder förlitar sig 
ofta på bildsensorer och datorseende både i fält och under kontrollerade förhållanden i 
växthus. Användningen av dem begränsas dock av höga kostnader och av komplexiteten 
i den nödvändig utrustningen, dataanalysverktygen, och programvaran. Dessa problem 
skulle kunna lösas genom att utveckla mer kostnadseffektiva och användarvänliga 
metoder som låter växtförädlare, lantbrukare och andra intressenter få tillgång till 
fördelarna med HTPP. Denna avhandling presenterar en ensemble av dedikerade 
prisvärda fenotypningsmetoder som använder RGB-avbildning för en rad 
nyckelapplikationer under kontrollerade förhållanden för att överkomma dessa hinder. 
Det prisvärda Phenocave-avbildningssystemet har utvecklats för att underlätta studier av 
effekterna av abiotiska stressfaktorer under kontrollerade förhållanden. Detta har gjorts 
genom att samla in data om viktiga växtegenskaper relaterade till tillväxt, skörd och 
anpassning till odlingsförhållanden och odlingssystem. Phenocave stöder bildsensorer 
inklusive synlig (RGB), spektroskopisk (multispektral och hyperspektral) och termisk 
avbildning. Dessutom implementerades en pipeline för RGB-bildanalys som en plugin 
för den kostnadsfria och lättanvända programvaran ImageJ. Denna plugin har sedan dess 
utveckling visat sig vara ett alternativ till konventionella mätningar och ger mycket 
reproducerbara resultat med hög noggrannhet. En efterföljande studie genomfördes för 
att utvärdera effekterna av värme- och torkstress på växttillväxt och 
spannmålsnäringssammansättning i vete, ett av de viktigaste sädesslagen i Sverige. 
Effekterna av stress på tillväxt utvärderades med hjälp av bildanalys, medan 
stressinducerade förändringar i förekomsten av essentiella ämnen utvärderades genom 
att analysera näringssammansättningen i vetekärnan via kromatografi. Detta ledde till 
upptäckten av genotyper vars skördekvalitet förblev stabil under värme- och torkstress. 
Nästa målsättning var att utvärdera biotisk stress genom undersökning av effekten av 
svampsjukdomen Fusarium head blight (FHB) som påverkar spannmålsutvecklingen i 
vete. För detta ändamål användes fenotypningsparametrar för vetekärnor för att 
bestämma komponenterna och inställningarna för en statistisk modell, som kan förutsäga 
förekomsten av FHB. Resultaten avslöjar att egenskaper för kärnmorfologi, såsom längd 
och bredd, var signifikant påverkade av sjukdomen.  
En annan studie genomfördes för att uppskatta infektionsintensiteten av potatisskabb 
(CS), Streptomyces scabies, i potatis, Solanum tuberosum. CS förekommer på knölarna 
och förstör dess utseende, vilket avsevärt påverkar deras marknadsvärde. Knölar 
analyserades med en djupinlärningsbaserad metod för att uppskatta sjukdomsskador 
orsakade av CS. Resultaten visade en hög korrelation mellan prediktionerna från 
modellen och visuella poängsättning av sjukdomen gjord av en expert på området, och 
visade sig vara ett potentiellt verktyg för val av genotyper som uppfyller 
marknadsstandarder och resistens mot CS. Båda studierna belyser bildens roll vid 
övervakning av växthälsovård och dess integration i ett större sammanhang för 
växtskyddshantering. 
De metoder som presenteras i detta arbete är en utgångspunkt för att överbrygga gapet 
mellan bildteknik till kostnader och tillgänglighet. Resurserna är prisvärda och 
användarvänliga och kan generera avgörande kunskap om växtutveckling och 
genotypval. I framtiden kan bildinsamling av alla metoder integreras i Phenocave-
systemet, vilket potentiellt möjliggör en mer automatiserad och effektiv 
växthälsoövervakningsprocess, vilket leder till identifiering av toleranta genotyper mot 
biotiska och abiotiska stressfaktorer. 

 
Nyckelord: Fenotypning, prisvärd, användarvänlig, RGB-avbildning, bildanalys.
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CMYK Cyan, Magenta, Yellow, Key/Black 

CNN Convolutional Neural Network 

CS Common Scab 

DL Deep Learning 

DON Deoxynivalenol  

FHB Fusarium Head Blight 

HPLC High-Performance Liquid Chromatography 

HSB Hue, Saturation, and Brightness 

HSL Hue, Saturation, and Lightness 

HTTP High-Throughput Plant Phenotyping 

LAB Luminance and color channels AB 

LUPP Large Unextractable Polymeric Proteins 

ML Machine learning 

NDVI Normalized Difference Vegetation Index 

NIR Near Infrared 

QTL  Quantitative Trait Locus 

QY Quantum Yield 

RGB Red, Green, and Blue 

TKW Thousand Kernel Weight 

TMP Total Monomeric Proteins  

TOTE Total extractable protein 

TOTU Total SDS-unextractable proteins 

TPP Total Polymeric Proteins  

UPP Unextractable Polymeric Proteins  
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Greenhouse gas emissions are increasing worldwide because of the rapid 

growth of the human population and increasing consumption of goods and 

services, exacerbating the impact of climate change. This has increased the 

severity and frequency of extreme weather events including heatwaves, 

droughts, storms, and flooding (Altieri and Nicholls, 2017), all of which 

jeopardize food security and create risks of large-scale malnutrition. 

Research-based solutions have been proposed to accelerate plant breeding by 

developing genotypes that are better able to adapt to abiotic stresses and have 

the potential to increase crop yields (Phillips, 2010). While these approaches 

have yielded some new lines with improved adaptability to certain 

pedoclimatic factors, phenotyping continues to bottleneck breeding 

programs (Araus and Cairns, 2014). Some currently used phenotyping 

methods still rely on low-throughput visual assessments and manual 

measurements, which suffer from low accuracy and reproducibility on top of 

being time-consuming, labor-intensive, and subjective (Chawade et al., 

2019; Fu and Jiang, 2022). However, advances in computer vision, data 

analytics, and machine learning have created new opportunities in plant 

research and breeding. Phenotyping methods combining these tools can 

reduce breeding costs and have made it economically feasible to expand field 

trials, accelerating progress in crop selection (van Dijk et al., 2021). For 

instance, high throughput phenotyping methods have been combined with 

genotypic data to analyze yield, yield components, and quality traits while 

also evaluating abiotic and biotic stress resistance (Chawade et al., 2019; Fu 

and Jiang, 2022). In addition, newly developed controlled growth facilities 

have enabled simulation of prolonged exposure to extreme conditions that 

adversely affect plant development, leading to significant losses of yields and 

1. Introduction 
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food quality as well as possibly stimulating the development of bio-

aggressors. However, the digital divide has left many people on the margins 

of these developments because of a lack of expertise with the necessary 

technologies, the high labor intensity of their implementation, the cost of 

acquiring equipment, or the need for familiarization with new protocols that 

are not considered to offer significant advantages over conventional 

approaches. To overcome some of these problems, simple methods for 

evaluating plant cover have been developed in which a single camera is used 

to capture images in the visible red, green, and blue (RGB) spectrum before 

extracting leaf area, green biomass, or senescence and color vegetation index 

data (Casadesús et al., 2007; Arvidsson et al., 2011; Berger et al., 2012; 

Easlon and Bloom, 2014; Joalland et al., 2016; Armoniene et al., 2018). 

Methods of this sort have been used successfully to evaluate plant health, 

growth rate, abiotic stresses, and early vigor. Similarly, morphological 

analysis of leaves, seeds, and/or tubers (in the case of the root vegetable 

crops) has proven to be effective for evaluating quality parameters and 

disease severity for certain bio-aggressors (Wiwart et al., 2001; Tanabata et 

al., 2012; Whan et al., 2014; Komyshev et al., 2017; Si et al., 2017; 2018; 

Caraza‐Harter and Endelman, 2020; Neilson et al., 2021; Miller et al., 2022). 

Solutions using more complex equipment to capture images in the VIS-NIR 

domain (multispectral and hyperspectral cameras) have been also proposed 

to evaluate moisture and nutrient content, plant health, seed water content 

composition and structure parameters, and vegetation indexes (Garcia et al., 

2021; Mortensen et al., 2021; Femenias et al., 2022; Rangarajan et al., 2022; 

Ryckewaert et al., 2022; Yipeng et al., 2022; Qi et al., 2023; Solgi et al., 

2023). However, simpler approaches may produce inconsistent outputs, 

while more advanced ones are costly and often impractical or unsuitable for 

use in real-scale trials. There is thus a need for new robust, user-friendly, and 

affordable phenotyping methods that have greater reproducibility than 

current methods while also being less time-consuming and labor-intensive. 

The work presented in this thesis was conducted to develop affordable and 

user-friendly methods for screening diverse germplasm in order to accelerate 

the discovery of new genotypes that can tolerate severe climate conditions 

under sustainable cultivation. Such methods would be of considerable value 

in Sweden’s highly diverse plant breeding sector. 
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2. Background 

2.1 Plant Breeding 

 

Plant breeding, which is also known as crop development, cultivar 

improvement, and seed improvement, is a science-based activity whose 

practitioners seek to develop improved plant varieties that can adapt to 

specific conditions and be cultivated economically in commercial cropping 

schemes (Breseghello and Coelho, 2013). Breeding programs typically 

require rapid and accurate testing of large numbers of crosses in diverse 

environments because the likelihood of identifying the best progeny 

increases with the number of tests that are conducted (Araus and Cairns, 

2014). Its concept entails three operations: 

 

 Develop genetically variable germplasm. 

 Identify and select better genotypes with all of the desirable 

characteristics/traits necessary for use in a production system. 

 Multiply and stabilize these desired genotypes and release them for 

commercial production. 

 

Plant breeders may work in either the private or the public sector. Private and 

public sector breeding programs mainly differ in terms of the time available 

for variety release, the cultivar types that are created, and prioritization of 

character selection criteria. For instance, private-sector breeders are likely to 

have a defined target of creating new lines as quickly as possible. Conversely, 

public-sector breeders also have to develop new varieties and may have more 

diverse responsibilities than their private-sector counterparts, including 

duties relating to academic activities or extension services. However, it 

should be noted that this is a very generalized description of the situation, 

and plant breeders in both sectors have wide-ranging responsibilities. In 

particular, they must be familiar with and manage work in diverse disciplines 

including plant evolution, genetics, biology, botany, pathology, biometry, 

molecular biology, and food science in order to successfully develop 

genotypes adapted to adverse climate conditions (Brown and Caligari, 2011). 
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However, not all challenges facing breeders relate to knowledge 

requirements or the diversification of responsibilities. Because the global 

population is growing rapidly, there is an urgent need to increase the 

efficiency of food production to ensure food security, now and in the future. 

Therefore, improving multiple traits of interest simultaneously is the main 

objective of current plant breeding efforts. This is difficult to achieve because 

physical linkages between genes controlling different traits of interest may 

give rise to undesirable correlations such that improvement with respect to 

one trait is accompanied by poorer performance with respect to another 

(Breseghello and Coelho, 2013). Crop selection is typically performed on the 

basis of empirical observations together with knowledge of genetic 

backgrounds and the products encoded by new genes. Information on genetic 

backgrounds and new gene products is typically gathered through laboratory-

based studies whereas observations are typically acquired by using plant 

phenotyping methods to characterize novel cultivars in trials conducted 

under controlled or field conditions. 

2.2 Plant phenotyping 

 

The term “phenotyping” was introduced by the Danish plant scientist 

Wilhelm Johannsen and has been commonly used since the 1960s. Johannsen 

stated that if an organism can be discriminated from others of its species by 

direct examination or by more precise measurements of its anatomical, 

ontogenetic, physiological, or biochemical attributes, then it constitutes a 

distinct phenotype (Walter et al., 2015). These phenotypic attributes are 

governed by the interactions between an organism’s genotypic background 

and the various micro- and mega-environments it encounters in its lifetime 

(Fasoula et al., 2020). Phenotyping involves the quantitative characterization 

of an organism's phenotypic attributes (Walter et al., 2015), (Figure 1). In 

crop science, plant phenotyping is an important tool for understanding plant 

behavior and optimizing crop management practices. Consequently, many 

plant phenotyping studies have been and are being conducted in order to 

improve crop yields and develop new lines with improved adaptability in the 

face of climate change. Some of these studies are conducted indoors, in 

greenhouses or controlled facilities, while others are conducted under real (or 
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“field”) conditions (Pieruschka and Schurr, 2019). These two approaches 

have different advantages, disadvantages, and bottlenecks, but whichever 

approach is used, there are two central questions that must be answered in 

any phenotyping study: what should be measured, and how should it be 

measured?  

 

 
Figure 1. The interaction of a genotype and an environment to produce a phenotype.  

2.3 Methods for plant phenotyping 

 

Plant phenotyping methods can be classified as either low-throughput or 

high-throughput depending on their throughput, spatial resolution, and 

dimensionality (Dhondt et al., 2013). The term "throughput" refers to the 

number of discrete units that can be characterized with respect to a given set 

of plant traits (which may be canopy-level traits or traits relating to other 

organs) in a given amount of time. Spatial resolution refers to the scale at 

which plant traits can be measured using a given technique; the most high-

resolution techniques may enable quantification of traits in individual cell 

components (e.g., plastids or cell walls), while techniques with coarser 

resolutions may only permit quantification at the level of whole cells, tissues, 

organs, or even at the level of entire fields. Finally, dimensionality refers to 

the variety of traits that can be evaluated in terms of categories and spatial 

and temporal resolutions. In phenomics, the term dimensionality corresponds 

to the number of genotypes and the diversity of environmental conditions 

that can be included in an analysis (Großkinsky et al., 2015). 
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2.3.1 Low-throughput plant phenotyping 

 

Low-throughput phenotyping refers to traditional or conventional methods 

for evaluating plant traits. These methods are popular because they are cost-

effective and can provide detailed information on specific traits, but they also 

generally have low sample throughput and are time-consuming and labor-

intensive, making them unsuitable for use in large-scale studies (Araus et al., 

2018). Notable low-throughput phenotyping techniques include visual 

assessment, gravimetric measurements, and biochemical assays. 

 

 Visual assessment: Visual assessment involves using the naked eye to 

evaluate an individual’s observable characteristics. These characteristics 

may include plant morphology parameters such as the height and number 

of leaves, color parameters such as the color of the leaves, or visible 

symptoms that might be caused by a bio-aggressor. 

 

 Gravimetric measurements: Gravimetric measurement involves 

measuring the weight of whole plants or specific plant parts such as fruit, 

leaves, or roots. 

 

 Biochemical assays: Biochemical assays are used to measure the 

concentrations of substances such as proteins, sugars, amino acids, and 

enzymes in plant tissues and cells. For example, sugar content 

measurements are important indicators of fruit quality. 

2.3.2 High-throughput plant phenotyping 

 

High-throughput phenotyping is a non-destructive approach in which 

automated or semi-automated methods are used to measure multiple traits in 

large populations of plants. It uses technologies such as sensors, imaging 

systems, and machine learning algorithms to quickly and accurately process 

and analyze data. High-throughput phenotyping is becoming increasingly 

important in plant breeding because it can accelerate the breeding process by 

providing insights into genotype-phenotype interactions and the influence of 

environmental factors on phenotype (Araus et al., 2018; Chawade et al., 

2019; Fu and Jiang, 2022). However, high-throughput phenotyping is still a 
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developing field and faces several challenges in areas including 

standardization of methods, data management, and cost-effectiveness 

(Chawade et al., 2019). High-throughput phenotyping methods may be 

sensor-based, imaging-based, or robot-based. 

 

 Sensor-based phenotyping: This approach uses sensors such as 

chlorophyll meters, fluorescence sensors, and thermal cameras to 

monitor physiological processes such as photosynthesis, water use, and 

stress responses in real-time and to detect changes in plant physiology. 

For example, thermal cameras can detect changes in plant temperature 

that may indicate water stress. 

 

 Imaging-based phenotyping: This approach uses imaging systems such 

as RGB, multispectral, and/or hyperspectral cameras to capture images 

of plants, sometimes in conjunction with LiDAR (Light Detection and 

Ranging). These images can be analyzed to extract information on 

changes in traits such as biomass, leaf area, plant height, senescence, and 

early disease symptoms before they can be detected by the naked eye. 

 

 Robot-based phenotyping: This approach uses systems equipped with 

various sensors and cameras to automate the measurement of plant traits. 

These systems can move through fields of crops or growth facilities and 

can collect data on multiple traits in real-time.  

2.3.3 Instrumentation for plant phenotyping 

 

Several sensing devices have been developed in recent decades and have 

become essential tools for quick and accurate assessment of plant 

characteristics. The main advantages of these instruments are their non-

invasive nature and their ability to evaluate large numbers of genotypes to 

quickly identify those tolerant of and susceptible to specific environments 

(Pieruschka and Schurr, 2019).  Instruments commonly used for plant 

phenotyping include imaging systems such as RGB, multi or hyperspectral, 

and fluorescence cameras as well as sensors that measure plant height, 

biomass, and leaf area. Remote sensing techniques such as LiDAR and UAV-

based systems are also gaining popularity because they can capture high-



 

24 
 

resolution data over large areas (Yang et al., 2013; Fahlgren et al., 2015; 

Araus et al., 2018). 

 

 Remote sensors are devices that can collect data from a distance without 

direct physical contact with the object or environment being measured. 

They are used in diverse applications, providing valuable information on 

environmental parameters such as temperature, humidity, and 

atmospheric conditions as well the location and movement of objects 

(Chawade et al., 2019). Common types of remote sensors include: 

 

- LiDAR sensors: LiDAR (Light Detection and Ranging) sensors use 

laser beams to measure the distance to an object or surface. They are 

commonly used in mapping, surveying, and geological applications. 

 

- GPS sensors: GPS (Global Positioning System) sensors use satellite 

signals to determine the location and movement of objects. They are 

commonly used in navigation, mapping, and surveying applications. 

 

- UAV-based systems (drones): UAV systems can capture high-

resolution images and data over large areas. They typically use an 

unmanned aerial vehicle (UAV) equipped with sensors such as RGB 

or multispectral cameras, LiDAR, or thermal cameras to capture 

detailed images of plants from above for data extraction. 

 

 Handheld sensors are portable devices that can be used to measure 

various environmental parameters. They are very popular due to their 

ease of use, portability, and affordability. Some common types of 

handheld sensors are chlorophyll meters, fluorometers, NDVI meters, 

spectrophotometers, and quantum yield meters (Chawade et al., 2019)  

 

- Chlorophyll meters measure the chlorophyll content in plant leaves, 

which can be used to estimate plant health, growth, and stress levels.  

 

- Fluorometers measure the fluorescence emitted by chlorophyll in 

response to light, which can be used to estimate photosynthetic 

activity and stress levels in plants.  
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- NDVI (Normalized Difference Vegetation Index) meters measure 

the amount of visible and near-infrared light reflected by plants, 

which can be used to estimate plant biomass, growth, and stress 

levels.  

 

- Spectrophotometers are used to measure a sample’s light 

absorption at specific wavelengths. They are commonly used in 

environmental testing, water quality analysis, and food safety 

testing. 

 

- Quantum Yield meters measure the efficiency of photosynthesis in 

converting light energy into chemical energy, which can be used to 

estimate plant health and stress levels.  

 

 Other sensors: 

 

- Gas exchange meters measure the exchange of gases such as carbon 

dioxide and oxygen, between a plant and its environment. They can 

be used to measure photosynthetic rates and water use efficiency.  

 

- Soil meters measure the soil’s physical and chemical properties, 

including its moisture content, pH, and nutrient levels. They can be 

used to determine the availability of nutrients and water to plants.  

 Imaging systems is a term that may refer to any digital or electronic 

instrument that captures images of plants for analysis and measurement 

of their physical and biological characteristics. This includes cameras 

operating in different spectral domains and any other instrument that can 

capture visual information on an object. Examples include RGB, near-

infrared (NIR), thermal, multispectral (MSI), and hyperspectral (HSI) 

cameras (Araus and Cairns, 2014).  

 

- RGB cameras are commonly used and capture color images in the 

visible light spectrum. Such images can be used to analyze plant 

traits such as leaf area, plant height, and canopy cover.  
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- NIR cameras capture images in the near-infrared range, which 

extends from 700 to 1400 nm and is just below the wavelength range 

of visible light. This is useful in many applications where visible 

light cameras cannot capture useful information. NIR cameras are 

commonly used to study plant growth and health. 

 

- Thermal cameras capture images of plants based on the heat they 

emit, providing information about temperature and stress responses.  

 

- MSI cameras are specialized instruments that capture images in 

multiple wavelengths or spectral bands, often in the visible and near-

infrared ranges. This allows them to capture information beyond that 

visible to the human eye, which can be used to analyze objects or 

scenes in greater detail. MSI cameras have diverse applications in 

agriculture, environmental monitoring, and remote sensing. 

 

- HSI cameras are specialized imaging devices that can capture 

detailed information about a crop’s spectral properties by imaging in 

hundreds or even thousands of narrow spectral bands across the 

electromagnetic spectrum. This means that they can capture very 

detailed and precise spectral signatures of objects. HSI imaging has 

many practical applications, including identifying different types of 

vegetation, mapping geological features, and detecting changes in 

land use patterns. 

 
 

A) B) C) D) E) 

     

Figure 2. Selected camera types. A) (RGB) Canon EOS 1300D (from Canon Inc. ©), 

B) (NIR) Canon EOS Rebel T6 (from Canon Inc. ©), C) (Thermal), FLIR one pro-

LT (from FLIR Systems Inc. ©) D) (MSI) MicaSense Altum (from Micasense, Inc. 
©), E) (HSI) Specim FX10 (from SPECIM, SPECTRAL IMAGING LTD ©).  
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2.4 Abiotic and biotic stresses 

 

Abiotic and biotic stresses are the two major types of environmental stresses 

that can affect the growth, development, and survival of plants, animals, and 

microorganisms. They can also interact with one-another and with other 

environmental factors, which greatly complicates their management in 

agriculture, forestry, and ecosystem conservation. 

2.4.1 Abiotic stresses 

 

Abiotic stresses are stresses resulting from non-living environmental factors 

such as temperature, drought, salinity, heavy metal toxicity, radiation, and 

atmospheric pollutants that can negatively impact organisms’ physiology and 

metabolism. For instance, high temperatures can cause protein denaturation, 

membrane lipid peroxidation, and oxidative damage, leading to reduced 

growth and yield in plants (Wahid and Close, 2007). Similarly, drought stress 

can reduce photosynthesis, transpiration, and nutrient uptake, resulting in 

stomatal closure, leaf wilting, and plant death (Chaves et al., 2003). 

Meanwhile, salinity stress can increase ion toxicity, osmotic stress, and 

nutrient imbalance, leading to ion imbalance, water stress, and oxidative 

damage in plants (Munns and Tester, 2008). 

 

 Heat stress occurs when plants are exposed to high temperatures outside 

their optimal range for growth and metabolism. Heat can cause a range 

of physiological and biochemical changes in plants, resulting in damage 

to membranes, protein denaturation, and oxidative stress. These changes 

may in turn reduce photosynthesis, impair water uptake, and reduce 

yield. Different plant species have different thresholds for heat stress, 

with some being more tolerant than others. However, even heat-tolerant 

species may experience negative effects on growth and yield under 

prolonged or extreme heat stress. Heat stress can be managed in various 

ways, including by breeding for heat tolerance, using shading or 

mulching to reduce temperature, and regulating plant transpiration 

through irrigation management (Wahid and Close, 2007). 
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 Drought stress occurs when plants experience a lack of water or a 

shortage of available water in the soil. This can cause plants to close their 

stomata to conserve water, which reduces photosynthesis and growth. A 

lack of water can also damage cell membranes and proteins, leading to 

oxidative stress and reduced yield. Plants have evolved various 

mechanisms to cope with drought stress, such as root growth, osmotic 

adjustment, and stomatal regulation. These mechanisms can help plants 

maintain water uptake and reduce water loss. However, prolonged 

drought stress can cause irreversible damage to plants, leading to reduced 

yield and even death. Management strategies for drought stress include 

selecting drought-tolerant crop varieties, using drought-tolerant crop 

rotations, and optimizing irrigation and water management practices 

(Chaves et al., 2003). 

 

 Nutrient stress occurs when plants experience a deficiency or excess of 

essential nutrients such as nitrogen, phosphorus, and potassium, or 

micronutrients like iron or zinc. This can cause reduced plant growth, 

stunted development, and yield losses. For example, nitrogen deficiency 

can cause chlorosis and reduced leaf size, while phosphorus deficiency 

can cause reduced root growth and poor fruit development. Excess 

nutrients (particularly excess nitrogen or phosphorus) can also cause 

problems such as reduced root growth, increased disease susceptibility, 

and environmental pollution resulting from leaching or runoff. Plants 

have developed various mechanisms to cope with nutrient stress, 

including root elongation, nutrient uptake mechanisms, and nutrient 

storage. Management strategies for nutrient stress include selecting crop 

varieties with better nutrient use efficiency, optimizing fertilizer 

treatments, and using integrated nutrient management practices to reduce 

nutrient losses and improve nutrient uptake efficiency (Kumari et al., 

2022). 

2.4.2 Biotic stresses  

 

Biotic stresses are stresses caused by living organisms such as pests, diseases, 

and weeds that can cause damage or harm to other organisms. For example, 

insects, mites, nematodes, and rodents can feed on crops, causing physical 
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damage and transmitting diseases that can reduce yield and quality (Koul et 

al., 2004). Fungal, bacterial, and viral pathogens can infect plants, causing 

necrosis, chlorosis, and defoliation, leading to plant death or yield loss 

(Savary et al., 2019). Weeds can compete with crops for water, nutrients, and 

light, reducing crop yield and quality (Oerke, 2006). Some notable biotic 

agents that threaten food production are Fusarium Head Blight (FHB) 

affecting wheat, and Common Scab (CS), affecting potatoes. 

 

 Fusarium Head Blight (FHB) is a devastating disease affecting wheat 

caused by the fungus Fusarium graminearum. FHB can cause significant 

yield losses and reduce grain quality by producing mycotoxins that are 

hazardous to human and animal consumption. The disease is 

characterized by the bleaching and shriveling of infected grain heads, 

which can lead to significant yield loss. FHB is favored by warm and 

humid weather conditions during the flowering and grain development 

stages of wheat growth. The fungus infects the wheat plant via the 

flowers and colonizes the developing grain. It can also infect the stem 

and leaves of the wheat plant, leading to additional damage. Once the 

fungus colonizes the grain, it produces mycotoxins that can accumulate 

in the grain and reduce its quality. The mycotoxin produced by FHB is 

called deoxynivalenol (DON) and can cause several digestive issues in 

humans and animals that consume contaminated grain (Polak-Śliwińska 

and Paszczyk, 2021; Del Ponte et al., 2022). FHB management measures 

for wheat include planting resistant varieties, rotating crops with non-

host crops, and applying fungicides. Some cultural practices such as 

reducing plant density and avoiding excessive nitrogen fertilizer 

application can also reduce the incidence and severity of FHB (Gilbert 

and Haber, 2013). 

 

 Common Scab (CS): is a disease of potatoes caused by the bacterium in 

Europe Streptomyces turgidiscabies and S. europaeiscabiei. It is 

characterized by the formation of rough, scabby lesions on the surface of 

the potato tubers, which can significantly reduce yield and quality. 

Common Scab is favored by alkaline soil conditions and dry weather 

during tuber development. The bacterium infects the potato tubers 

through wounds or natural openings and colonizes the surface of the 

tuber. The scabby lesions that develop on the tuber can reduce the 
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marketability of the potato and make it more susceptible to other diseases 

and pests (Tsror et al., 1999; Oppenheim et al., 2019). Common Scab 

management practices for potatoes include planting resistant varieties, 

reducing soil pH, and applying biological or chemical control measures. 

Cultural practices such as avoiding excessive irrigation and applying 

organic matter to the soil can also help to reduce its incidence and 

severity (Al-Mughrabi et al., 2016). 

2.5 Image Processing 

 

Image processing is the manipulation of digital images using mathematical 

algorithms and computer software to extract information, enhance images, or 

convert them into different formats. It is an interdisciplinary field that 

combines computer science, mathematics, and engineering. Image 

processing has many applications in areas including medical imaging, remote 

sensing, and computer vision. Some common techniques used in image 

processing are filtering, segmentation, edge detection, image compression, 

morphological operators, feature extraction, and object recognition 

(Gonzalez, 2009; Szeliski, 2010).  

2.5.1 Image  

 

An image is a visual representation of something. A digital image is created 

by dividing a two-dimensional image into a grid of small squares, known as 

pixels (short for "picture elements"), which are the basic units of digital 

images. Each pixel is a tiny square or dot that represents a single point in an 

image and is characterized by specifying its color, brightness, and location.  

2.5.2 Image resolution 

 

The resolution of an image is measured in pixels per inch (PPI) or dots per 

inch (DPI) and determines the image’s quality, sharpness, and level of detail. 

A higher-resolution image contains more pixels per inch and appears clearer 

and sharper than a lower-resolution one. Several image formats may be used, 

including RAW, JPEG, PNG, GIF, BMP, and TIFF. 
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 RAW image files contain minimally processed data directly from a 

digital camera's image sensor. They include all information captured by 

the camera's sensor, including details such as brightness, contrast, color 

temperature, and white balance. 

 

 JPEG (Joint Photographic Experts Group) is a common format used 

for photographs and other complex images. It uses compression to 

reduce the file size while maintaining relatively high quality. 

 

 PNG (Portable Network Graphics) is used for images that require 

transparency or higher quality than JPEG can provide. It does not use 

compression and can therefore give rise to relatively large files.  

 

 GIF (Graphics Interchange Format) is used for simple animations and 

images with limited colors. It uses compression and can support 

transparency. 

 

 BMP (Bitmap) is used for Windows-based systems and does not use 

compression. It supports both color and black-and-white images. 

 

 TIFF (Tagged Image File Format) is commonly used in professional 

photography and printing. It supports high-quality images and can be 

used for both color and black-and-white images. 

2.5.3 Color Spaces 

 

In image processing, a color space is a mathematical representation of colors 

that allows us to describe and manipulate the colors in an image. Several 

color spaces are used in image processing, each of which has its own 

characteristics and advantages (Gonzalez, 2009; Poynton, 2012). 

 

 RGB (Red, Green, and Blue) is the most commonly used color space 

in digital imaging. It represents colors using a combination of red, green, 

and blue intensities, which are typically represented as integer values 

ranging from 0 to 255. RGB is an additive color model, meaning that 

colors are created by adding different intensities of red, green, and blue 

light. 
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 CMYK (Cyan, Magenta, Yellow, and Key/Black) is used primarily for 

printing. It represents colors using a combination of cyan, magenta, 

yellow, and black values. CMYK is a subtractive color model, meaning 

that the colors are created by subtracting different amounts of cyan, 

magenta, yellow, and black ink from a white background. 

 

 HSL (Hue, Saturation, and Lightness) and HSV (Hue, Saturation, 

and Value) are based on the idea of a color wheel. They represent colors 

using three values: hue, saturation, and brightness. HSL and HSV are 

often used in image editing software to adjust an image’s color balance 

and tone. 

 

 Lab is a device-independent color space that is used to represent all 

visible colors. It separates color information into a luminance (L) 

channel and two color channels (‘a’ and ‘b’). The Lab color space is used 

in color correction and color management applications. 

2.5.4 Image processing techniques 

 

 Filtering is the process of modifying or enhancing an image by applying 

a set of mathematical operations. Several different types of filters are 

used in image processing, including spatial filters, frequency filters, and 

time filters. 

 

 Segmentation is the process of dividing an image into multiple segments 

or regions. It is used to identify objects or features in an image and 

separate them from the background. 

 

 Edge detection is the process of identifying the edges or boundaries of 

objects in an image. It is used to enhance the visual appearance of an 

image or to identify the edges of objects for further analysis. 

 

 Image compression is the process of reducing an image’s size without 

losing important information. It is used to store and transmit images 

efficiently. 
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 Morphological operations are mathematical operations used to process 

images based on their shape. They are used to extract features or remove 

noise from an image. 

 

 Feature extraction is the process of identifying and extracting relevant 

information or features from an image. It is used in computer vision and 

pattern recognition. 

 

 Object recognition is the process of identifying and classifying objects 

in an image. It is used in many fields including robotics, surveillance, 

and medical imaging. 

2.5.5 Machine learning and Deep learning 

 

 Machine learning (ML): is a subset of artificial intelligence (AI) that 

involves teaching computers to learn from data without being explicitly 

programmed. This allows computers to automatically improve their 

performance at specific tasks by learning from data. Machine learning 

has greatly improved the efficiency and accuracy of image-based plant 

phenotyping, which can help researchers better understand plant growth 

and development, and ultimately contribute to improving crop yields and 

food security. Machine learning may be either supervised or 

unsupervised (Bishop and Nasrabadi, 2006; Murphy, 2012; van Dijk et 

al., 2021). 

 

- Unsupervised learning is a type of machine learning in which the 

algorithm is trained on an unlabeled dataset, meaning that there are 

no corresponding target variables. The goal of unsupervised learning 

is to find patterns and structures in the data without using predefined 

labels. For example, in an unsupervised learning task involving 

clustering customers based on their purchasing behavior, the 

algorithm would be trained on a dataset of customer purchases 

without labels indicating which customers belong to which cluster. 

The algorithm would then group customers into clusters based on 

similarities in their purchasing behavior (Hinton and Sejnowski, 

1999; Celebi et al., 2013). 
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- Supervised learning is a type of machine learning in which the 

algorithm is trained on a labeled dataset, meaning that each data 

point is associated with a corresponding label or target variable. The 

goal of supervised learning is to learn a mapping between the input 

features (or independent variables) and the target variable. This 

mapping can then be used to make predictions based on previously 

unseen data. For example, in a supervised learning task of predicting 

symptoms of plant disease, the algorithm would be trained on a 

dataset of symptoms with their corresponding features and other 

relevant features. It would then use this training data to learn a model 

that can predict the presence of disease in new material based on its 

features (Bishop and Nasrabadi, 2006; Murphy, 2012). 

 

 Deep learning (DL): is a subfield of machine learning that involves 

training artificial neural networks with many layers to learn and make 

predictions from large amounts of data. Deep learning algorithms are 

modeled on the human brain, where interconnections between neurons 

enable the processing and transmission of information. Some of the most 

popular deep learning frameworks include TensorFlow, PyTorch, and 

Keras. Deep learning algorithms such as deep convolutional neural 

networks (CNNs) have been used to automate and improve the accuracy 

of image processing in plant phenotyping. For example, researchers have 

developed CNN-based models for detecting and segmenting plant leaves 

from images, and for predicting plant growth and yield based on visual 

traits. One study used a CNN-based model to extract plant growth and 

architecture traits from images of tomato plants, achieving high accuracy 

in predicting yield-related traits. Another study used a CNN-based model 

to detect and segment individual leaves from images of maize plants, 

enabling accurate measurement of leaf area and plant biomass (Pound et 

al., 2017; Ubbens and Stavness, 2017). 
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3. Objectives 

3.1 General objective  

 

Global agricultural production demand is growing in parallel with the 

world’s population. Moreover, aggravating factors including climate change, 

soil degradation, and the increased virulence and resistance of pathogens 

represent additional threats to food safety. According to UNFAO, the 

production of energy food crops will have to double to meet future demand. 

Germplasm phenotyping and the identification of efficient genotypes under 

changing climate scenarios will be essential for increasing crop yields and 

climate resilience to meet these demands. Conventional phenotyping based 

on visual or manual assessments provides insights into plant development for 

the characterization and selection of individuals with tolerance to biotic and 

abiotic stress. However, these techniques suffer from subjectivity and limited 

reproducibility, in addition to being labor-intensive and time-consuming. 

They also require expertise in sample evaluation, which limits the scale on 

which experiments can be performed. Therefore, several methods have been 

developed for evaluating plant characteristics using simple solutions with 

RGB cameras or more advanced sensors in the VIS-NIR domain. 

Unfortunately, simpler approaches can generate somewhat inconsistent 

outputs, while more advanced ones are costly and often impractical or 

unsuitable for real-scale trials. The main objective of this thesis is thus to 

develop affordable phenotyping methods that avoid these problems and offer 

researchers and plant breeders cost-effective and reliable tools for monitoring 

and analyzing biotic and abiotic stresses in diverse plant material under 

controlled environments. New methods are presented for assessing important 

traits in different species (wheat, sugar beet, and potato), including biomass 

(wheat and sugar beet), and chemical processes that affect plant composition 

(e.g., gluten content and strength in wheat), providing valuable insights into 

plant development. The thesis also introduces new methods for analyzing 

morphological features that can be used to evaluate quality traits and/or 

disease severity (wheat and potato) in order to facilitate the development of 

more sustainable control strategies. This is important because current disease 

control strategies rely heavily on unsustainable practices. These methods 
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could thus facilitate and accelerate the characterization and selection of 

genotypes by enabling automated, non-destructive, low-cost, and high-

throughput phenotyping with reliable and accurate results. 

3.2 Specific objectives 

 

1. Develop a low-cost, automated, and user-friendly, phenotyping 

system adapted for indoor facilities to monitor and measure 

important agronomic plant traits. (Paper I)  

2. Compare the performance of two cost-benefit seed image analysis 

methods by assessing morphological traits in wheat grain to predict 

Fusarium head blight, (FHB). (Paper II) 

3. Evaluate the potential of combining image analysis with gluten 

protein screening by size-exclusion high-performance liquid 

chromatography (SE-HPLC) to identify genotypes that are stable 

under and tolerant of adverse growth conditions (Paper III). 

4. Develop an image processing approach combining color-

morphology analysis with deep learning to estimate tuber quality 

traits and common scab (CS) severity by analyzing color images. 

(Paper IV). 
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4.1 Phenocave: Automate indoor phenotyping  

4.1.1 Plant material 

 

In the first part of the study, Phenocave was tested by conducting two 

experiments in a Biotron chamber, one focusing on wheat and another 

examining sugar beet. In the wheat experiment, spring wheat plants of a 

genotype provided by Lantmännen Lantbruk (Svalöv, Sweden) were grown 

under three environmental conditions: control (optimal conditions), drought 

during the stem-elongation and heading stage (no irrigation for five days), 

and high nutrient stress during the heading stage (double dosage of fertilizer). 

In the sugar beet experiment, sugar beet seeds of a single genotype were 

treated with different enhancing agents developed by DLF Beet Seed AB 

(then named MariboHilleshög; Landskrona, Sweden) and grown under 

optimal conditions to evaluate plant development. The seeds were divided 

into four groups: untreated (control); primed to accelerate germination and 

early seedling growth; pelleted and coated to improve seed drilling 

performance and establishment; and treated with all agents via priming, 

pelleting, and coating.  

4.1.2 Methodology  

 

Phenocave was custom-built for use in a Biotron chamber of four square 

meters. It consists of a gantry robot supplied by the Igus Company (Cologne, 

Germany), mounted on an aluminum structure designed and built by the 

4. Materials and Methods 
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Eltech Automation Company (Lomma, Sweden). It supports three different 

imaging sensors, including digital DLSR RGB (Canon EOS 1300D), MSI 

(MicaSense Altum), and HSI (Specim FX10) cameras. The cameras have 

free linear movement in the XY plane and the RGB and MSI cameras can be 

used simultaneously or individually. The HSI camera, on the other hand, can 

only be used alone because it must be in constant motion when scanning the 

workplace. The system was tested by capturing RGB and thermal images of 

individual plant pots. Image analysis of digital biomass was performed using 

a pipeline written in the Java language, which was implemented as a plugin 

for ImageJ (Schneider et al., 2012). Each image was segmented into areas of 

interest to extract projected green and yellow areas. The imaged plants were 

then collected for destructive measurement of their real biomass, which was 

done by weighing the fresh matter and the dry matter obtained after oven 

drying, and the empirical measurements were compared to the estimates 

obtained by image analysis.  

4.2 Prediction of FHB disease severity based on seed 

morphology  

4.2.1 Plant material 

 

To predict FHB disease in wheat, wheat kernels with FHB infections of 

differing severity were studied (Paper II). The kernels were collected from a 

previous experiment (Zakieh et al., 2021) using winter wheat genotypes from 

two different sources. One source consisted of a breeding set of 338 

genotypes provided by the Swedish agricultural cooperative Lantmännen 

Lantbruk (Svalöv, Sweden). The second source consisted of a genebank set 

of 181 germplasm genotypes provided by the Nordic Genetic Resource 

Center, Nordgen. This set represents highly diverse plant material including 

old cultivars and landraces (Paper II). 

4.2.2 Methodology 

 

Two different grain phenotyping methods were used to measure kernel 

morphology parameters: the free software package SmartGrain (Tanabata et 
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al., 2012) and the Cgrain Value™ (Cgrain_AB) automated imaging and cost-

benefit analysis system,  which includes both software and hardware. 

For SmartGrain, image capture was done using a low-cost protocol from a 

top-view angle using an RGB digital camera (Canon EOS 1300D). Kernels 

of each genotype were placed manually on a blue background alongside a 

scale tool. Following an established protocol (Tanabata et al., 2012), seven 

morphological traits were extracted for each kernel: area seed (AS), 

perimeter length (PL), length (L), width (W), length-to-width ratio (LWR), 

the circularity of the seed (CS), the distance between the intersection of 

length and width, and the center of gravity (DS). For Cgrain Value™, image 

capture, and analysis were done using the same instrument with the hardware 

and software supplied by the manufacturer. The capture process generates a 

3D view of each kernel by using a special mirror system that captures around 

90% of the kernel’s surface. Nine morphological traits are then extracted for 

individual kernels and kernel groups (depending on the properties of the 

placed in the instrument): length (L), width (W), thickness (T), average width 

(AVG.W), volume (V), weight (WT), and HSL color space values (hue, 

saturation, and light). Three multiple linear regression models were built 

using the free software package R (R Development Core Team, 2010), one 

for each tool individually and one based on their combined results.  

4.3 Identification of climate stress (heat and drought) 

tolerant genotypes for wheat breeding targeting 

stability by image processing and SE-HPLC analysis  

4.3.1 Plant material 

 

For the third part of the study, eight spring wheat genotypes (Diskett, Happy, 

Bumble, SW1, SW2, SW3, SW4, and SW5) provided by Lantmännen 

Lantbruk (Svalöv, Sweden) were exposed to four environmental conditions 

at the heading stage in the Biotron (Paper III): control (optimal growth 

conditions), heat, drought (no irrigation for five days), and combined heat 

and drought. The growing conditions including the temperature, humidity, 

and day length (hours) were based on the five-year average (2016–2020) of 

the weather data for the growing period from the 22nd of April to the 11th of 

August (Supplementary file S3, paper III) in Malmö, Sweden. Weather data 
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were obtained from the Swedish Meteorological and Hydrological Institute 

119 (SMHI) (www.smhi.se).  

4.3.2 Methodology 

 

Plants were placed in two different chambers to induce different stresses: one 

chamber was used for the heat and heat plus drought treatments, while the 

second was used for the drought and control treatments. Three different 

assessments were then performed in each chamber - one to extract digital 

biomass data based on RGB image analysis, one designed to extract 

phenotypic trait data, and one to extract gluten protein parameters based on 

SE-HPLC analysis. For the first assessment, image acquisition was done 

using a digital camera (Canon EOS 1300D) by capturing views of the plant 

pots from the top, front, back, left, and right (Armoniene et al., 2018) before, 

during, and after eight days of stress treatment. The projected leaf area was 

automatically extracted for each view using the EasyLeaf software (Easlon 

and Bloom, 2014). The average of the five views was then taken as the digital 

biomass estimate for the pot. In addition, seven phenotypic traits were 

measured: height, spike length, spike width, number of spikes, fresh biomass 

weight (after harvesting), thousand kernel weight (TKW), and grain yield. 

Finally, SE-HPLC was performed to assess the gluten protein parameters of 

the harvested grains. The following parameters were determined following a 

previously established protocol (Lama et al., 2022): total extractable protein 

(TOTE), total SDS-unextractable proteins (TOTU), percentage of total 

unextractable polymeric proteins in total polymeric proteins (%UPP), and 

percentage of large unextractable polymeric proteins in total large polymeric 

proteins (%LUMP). Total polymeric proteins (TPP) and total monomeric 

proteins (TMP) were also calculated. 
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4.4 Evaluation of CS disease severity using deep learning 

and estimation of tuber quality based on morphological 

traits 

4.4.1 Plant material 

To detect and quantify CS, artificially inoculated potato tubers were studied. 

The tubers with CS infections of differing severity were supplied by 

Graminor (Ridabu-Norway). The samples were taken from the company’s 

core collection grown in field experiments from 2019 to 2022, and 2) from a 

greenhouse inoculation experiment (Paper IV). The material comprised red 

and yellow tubers and their symptoms had emerged naturally in the field. For 

analytical purposes, the tubers were manually categorized into five classes of 

increasing infection severity, with class one comprising completely or mostly 

healthy tubers and class five representing the maximum severity. The 

percentages used for categorization were based on data generated using a 

semi-automated method. 

4.4.2 Methodology 

 

Before image acquisition, tubers were washed and manually placed on a blue 

background in groups of six. Images were then captured using a digital 

camera (Canon PowerShot G9 X Mark II) and stored for further analysis. All 

image analysis was performed using two software modules written in the 

Python programming language: one for assessing morphological parameters 

and one for estimating CS disease severity. Both modules were linked to a 

graphical user interface (GUI) (Shipman, 2013; Schimansky, 2022). 

Morphological parameters for individual tubers were extracted by using the 

OpenCV package to assess the length, width, area, length-to-width ratio, 

circularity, and color values (in the CIELab color space, for which the color 

values are lightness and a* and b* chromaticity values for the green-red and 

yellow-blue axes, respectively). The skin color of the tuber (red or yellow) 

was then identified. For the analysis of CS disease severity, a convolutional 

neural network (CNN) was built using the Keras (Gulli and Pal, 2017) and 

TensorFlow (Developers, 2021) packages. Initially, tubers were classified 

into five categories according to the severity of the symptoms visible on their 

surfaces: healthy (category   1) and infected (categories 2, 3, 4, and 5). Data 

were obtained in a semi-automated way using Trainable Weka Segmentation 
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(TWS) (Arganda-Carreras et al., 2017), applying the default settings for a 

random-forest supervised classifier with four classes (background, red tuber, 

yellow tuber, and scab). The results obtained were percentage values 

representing the extent of disease symptoms on the tuber surface and were 

manually validated. In some cases, corrections were performed, after which 

the tubers were categorized into the five previously mentioned classes. Each 

potato detected in a previously segmented image was automatically isolated 

and reduced to a tile size of 172*172 pixels for inclusion in a training set. Six 

deep learning architectures (VGG16, VGG19, ResNet50V2, ResNet 101V2, 

InceptionV3, and Xception) were then trained using this dataset, applying 

two training strategies (transfer learning and fine-tuning) to identify the 

approach with the best performance. The robustness of the resulting model 

was then tested using two standard metrics: loss and accuracy. 
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5.1 Phenocave: Automate indoor phenotyping 

 

An affordable, automated, and user-friendly system named Phenocave was 

developed. Phenocave can be used to monitor and evaluate plant 

characteristics with different imaging technologies (Figure 3). The system 

was tested by using it to measure wheat growth under controlled conditions 

and when subjected to stresses resulting from drought and a double dosage 

of fertilizer. The wheat plants in this experiment were evaluated in three 

groups, with the first group consisting of control plants and the second 

comprising those subjected to abiotic stresses. Growth development was 

assessed from the seedling stage (seven days post-sowing) three times per 

week until the end of the grain-filling stage (58 days post-sowing), covering 

all six growth stages. The digital biomass extracted from the images 

correlated significantly and positively with the biomass measured using 

conventional destructive methods involving measurement of fresh and dry 

weight (r = 0.96, p < 0.01, r2 = 0.92 for dry weight; r = 0.97, p < 0.01, r2 = 

0.94 for fresh weight). The groups subjected to drought stress during two 

growth stages were evaluated with an RGB camera to extract digital biomass 

and with a thermal camera to verify the stress by measuring canopy 

temperatures. For the second experiment using sugar beet, the speed of 

germination was quantified by leaf area projection for eighteen days. During 

this period, seeds treated with enhancing agents exhibited accelerated 

growth. Specifically, seeds enhanced with priming agents in treatments B 

and D (primed, pelleted, and coated) exhibited the fastest germination, 

emerging just four days of sowing. Conversely, seeds not exposed to 

5. Results and Discussion 
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priming, i.e., those in treatments A (control) and C (pelleted and coated) 

exhibited delayed germination.  

These results show that the Phenocave system can be a useful tool for non-

destructively evaluating and monitoring diverse plant characteristics under 

various growth conditions over extended periods of time. One limitation 

encountered during this work is that the lens's proximity to the object made 

band alignment of the multispectral camera impossible. This problem will be 

solved as the system is refined in the future.  

 

 

 
Figure 3. The Phenocave system installed in a Biotron chamber with two mounted 

imaging sensors: an RGB camera (Canon EOS 1300D), and an MSI camera 

(MicaSense Altum). Image reproduced with permission from (Leiva et al., 2021). 
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5.2 Prediction of FHB disease severity based on seed 

morphology  

 

To determine how FHB affects kernel morphology, the traits of five FHB-

infected susceptible and resistant genotypes from breeding and genebank sets 

were measured with the SmartGrain and Cgrain Value TM systems. Based on 

the severity of the symptoms visible on the spikes, resistant genotypes were 

assigned visual scores of 0% (indicating no visible evidence of infection) 

while susceptible genotypes were assigned scores of 100% (unambiguous 

visible evidence of infection). These results showed that FHB affects the 

kernels of susceptible genotypes more severely than resistant ones, as 

expected. Analysis of variance (two-way ANOVA) was then used to identify 

morphological traits significantly associated with disease severity. This 

revealed that length, width, thickness, and color parameters including light, 

and hue were significantly (P< 0.001) associated with disease severity, while 

volume, CS, and saturation (P< 0.01) were also clearly associated with FHB 

severity. Other parameters that were not significantly associated nevertheless 

exhibited differences between infected and non-infected kernels. A principal 

component analysis was also performed to investigate the responses of the 

seed traits to infection and their correlations with one-another. The hue and 

light color parameters measured with Cgrain Value TM were found to have a 

moderate to high positive correlation (r = 0.65) and a low positive correlation 

(r = 0.36), respectively. In addition, the length-to-width ratio measured with 

SmartGrain had a low positive correlation (r = 0.27). Some negative 

correlations of varying significance were also identified based on the visual 

assessments of symptoms and other characteristics. Finally, to predict disease 

severity, a multiple linear regression model was generated to identify the 

contributions of the 16 different morphological traits measured by Cgrain 

Value™ and SmartGrain. Good predictive accuracy (R2 = 0.58) was 

achieved by combining the trait information provided by both tools. In 

addition, moderate predictive accuracy was achieved using only trait 

information provided by Cgrain Value™ (R2 = 0.52), while medium to low 

accuracy was achieved using trait data obtained with SmartGrain (R2 = 0.30).  

These methods for predicting FHB infection severity are proposed as 

alternatives to expensive and time-consuming conventional analysis. This 

use is supported by the good agreement between the phenotype-genotype 

associations predicted by both techniques and the traits assigned based on 
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visual inspection. Moreover, previous studies found a strong association 

between symptoms visible on wheat head spikes and the frequency of kernel 

damage (Góral et al., 2018). The methodology developed in this work could 

thus be used to compare estimated visual disease severity scores and identify 

possible associations between symptoms visible on wheat head spikes and 

grain traits. 

This work focused on the characteristics of whole spike kernels rather than 

the damage to a small number of spikes caused by Fusarium colonization at 

the site of inoculation. This is expected to reduce the cost, time, and labor 

needed for disease resistance assessment. Additionally, visual scorings of 

FHB disease severity based on discoloration, bleaching, and spike stunting 

(Zakieh et al., 2021) were previously verified by the identification of several 

loci in genome-wide association studies (GWAS) (Appendix 1 of paper II). 

Because the plant material examined in this work was identical to that used 

in the GWAS study, the results presented here can also be considered to be 

supported by the GWAS findings.  

5.3 Identification of climate stress (heat and drought) 

tolerant genotypes for wheat breeding targeting 

stability by image processing and SE-HPLC analysis  

 

Digital biomass measurements were used to evaluate the impact of different 

stresses on wheat plant development. This revealed that combined heat-

drought stress had the most severe impact, followed by drought stress alone; 

the impact of heat stress alone was comparatively modest. The results 

obtained under controlled conditions showed that the SW3 and SW4 

genotypes had the highest and lowest digital biomass production of the 

studied genotypes, respectively. Drought stress reduced digital biomass in all 

genotypes when compared to the control set. Heat stress had a mild effect on 

all plants but its effect was strongest in the Bumble, SW2, and SW5 

genotypes. Combined heat-drought stress significantly reduced digital 

biomass in all genotypes, but Happy was the most resistant genotype and 

Diskett was the most susceptible. 

The analysis of gluten protein parameters revealed that the SW3 and Happy 

genotypes gave the highest yield, SW1, and Happy gave the highest TKW, 

SW2 and Bumble gave the highest %UPP, and Diskett and SW1 gave the 
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highest protein concentration (TOTE) and were thus most promising in terms 

of performance and stability under the studied conditions. To identify genetic 

material suitable for use in breeding programs targeting extreme climate 

resistance, the superior performance of these genotypes should be verified in 

field trials including analyses of their phenotypic and gluten protein 

characteristics using the advanced tools developed in this work.  

Significant positive correlations were observed between grain yield and 

digital biomass under all stress treatments, and between yield and actual 

biomass under the heat and combined stress treatments. These results 

indicate that RGB imaging is an effective tool for identifying stress indicators 

in wheat plants. Drought stress also induced significant changes in gluten 

concentration (%UPP and %LUPP). The majority of the gluten protein 

parameters and the digital grain biomass (biomass) were found to be 

negatively correlated, indicating that maintaining high wheat grain quality 

under field conditions may be very challenging. The spike number is a 

measure of yield and could thus be a useful trait to monitor in addition to 

traits directly related to gluten protein quality when screening for high yield 

and gluten protein production under climate change. 

5.4 Detection of CS disease severity using deep learning and 

estimation of tuber quality based on morphological 

traits  

 

The ScabNet pipeline developed in this work proved to be a capable and 

reliable tool for assessing tuber size characteristics such as length, width, 

area, length-to-width ratio, circularity, and values of each channel in the HSL 

color space. The morphological trait data obtained with ScabNet were 

compared to manual measurements and data obtained using a method 

implemented in ImageJ, revealing a strong association (r>0.83) with the 

manual measurements and a strong correlation (r>0.88) with the ImageJ 

results. Six deep-learning model architectures were evaluated to develop a 

module for CS detection. In all cases, the models exhibited conventional 

learning behavior characterized by increasing accuracy combined with 

decreasing loss at each epoch. The fine-tuning strategy achieved significantly 

better performance than the transfer learning strategy for the ResNet, 

Inception, and Xception architectures with both the training and validation 
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datasets. Conversely, the simpler VGG networks performed better when 

using the fine-tuning strategy. Four of the six models generated using fine-

tuning (InceptionV3, Xception, ResNet50V2, and ResNet101V2) achieved 

accuracy above 90%. However, only InceptionV3 and Xception provided 

consistent outputs; the behavior of ResNet when applied to the validation set 

differed significantly from that seen with the training set. Similarly, 

InceptionV3 and Xception achieved stable results in terms of validation 

accuracy and loss without overfitting (for more detailed information, see 

Appendix 1, manuscript IV). The most accurate and stable model was 

obtained using the Xception architecture with the fine-tuning learning 

strategy, so this model was selected for further evaluation. Xception had a 

stable accuracy above 95% after 10 epochs and its accuracy improved 

consistently to a maximum of 99% when applied to the validation set. 

Moreover, its loss values remained low, as shown by the confusion matrix 

included with the test results. With the exception of InceptionV3 trained with 

the fine-tuning strategy, all other architectures delivered poor performance.  

Instead of basing classes on infected area categories, the model could be 

improved by aligning it with breeders' evaluation standards. Unfortunately, 

our results cannot be compared to any literature data because to our 

knowledge, no other studies have addressed the problem of scoring CS potato 

tubers using RGB image analysis. However, methods based on spectrometric 

data captured using hyperspectral imaging have been reported (Dacal-Nieto 

et al., 2011). Such approaches could offer new perspectives on the disease's 

development or help identify early symptoms before they appear but their 

output cannot be directly compared to the results presented here.  

The results obtained in this study show that the ScabNet pipeline is a 

powerful and flexible tool for quickly and efficiently analyzing images of 

potato tubers with a wide range of sizes, shapes, colors (red and yellow), and 

degrees of CS severity. Correlations with manual measurements and (in the 

case of morphological features) two other image analysis methods showed 

that the pipeline can reliably and accurately measure tuber length and width. 

To improve the precision and accuracy of tuber identification in the future, 

the deep learning element of the pipeline could be expanded to include 

semantic segmentation. 
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This thesis presents affordable and user-friendly methods using RGB 

imaging to assist the process of HTPP. The methods were developed to 

maximize selection efficiency and accuracy and thus represent a major step 

towards practically useful methods that can be used on large scales without 

excessive cost, usage complexity, or manpower requirements. As such, these 

methods make state-of-the-art approaches accessible in the context and at the 

scale of the breeding industry.  

The four methods developed in this work successfully captured diverse plant 

characteristics ranging from characteristics relating to growth and 

development to those important for detecting and predicting disease.  

The Phenocave system automatically collects image data in a user-friendly 

manner under controlled conditions. This makes it possible to rapidly gather 

data on a wide range of key agronomic traits under different growth 

conditions. Additionally, it is compatible with or adaptable to many different 

imaging sensors including RGB, MSI, and HSI cameras, enabling the 

evaluation of a very wide range of plant characteristics. These findings 

indicate that Phenocave is a powerful tool for improving the accuracy and 

consistency of data collection for phenotyping.  

The combination of image analysis with grain nutrient composition analysis 

revealed the impact of different stress factors on plant development while 

simultaneously providing insights into the metabolic changes occurring in 

plants in response to stress. These results thus deepen our understanding of 

plant traits and their relationship with abiotic stresses. 

The ability to use imaging techniques to predict FHB based on seed 

phenotyping is a promising development in plant disease detection and 

prevention. FHB was shown to alter seeds’ morphological parameters such 

as length and width. In addition, these changes correlated strongly with visual 

scorings of wheat spikes. As such, this method could be used to identify and 

6. Conclusions  
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eliminate contaminated seeds, helping to prevent the spread of the FHB and 

minimize crop losses.  

The deep learning-based ScabNet pipeline was shown to be a reliable, 

accurate, and consistent tool for diagnosing CS and measuring the resulting 

disease lesion areas. Its predictions were shown to correlate strongly with 

visual scorings, indicating that ScabNet could help to reduce economic losses 

by identifying genotypes that can tolerate CS and thus produce tubers with 

high market value even when challenged by this disease.  

Although the methods presented here were evaluated using wheat, sugar 

beet, and potato as model plants, they could easily be adapted to other crops. 

However, some challenges remain to be addressed in order to unleash their 

full potential. For instance, it would be very desirable to incorporate 

additional imaging sensors such as MSI and HSI to enable stress diagnosis 

before the appearance of visible symptoms. It will also be important to 

evaluate the performance of each method with a wider range of wheat and 

potato varieties under diverse abiotic stresses to validate the accuracy and 

reliability of their predictions. Both of these issues will be addressed in future 

work.  

Overall, these methods offer a wide range of ways to evaluate the effect of 

biotic and abiotic stress. In addition, they represent important steps towards 

more accessible, user-friendly, and affordable imaging technologies for plant 

research and agriculture, which is especially important for users who may 

lack the resources and expertise needed to implement advanced imaging 

technologies. With careful planning and thoughtful execution, these methods 

could be a powerful tool for driving innovation and achieving outcomes that 

were previously beyond the reach of most breeding programs. As such, there 

is a clear justification for further work to develop and refine these imaging 

systems in order to make them even more affordable, user-friendly, and 

accessible to a wider range of users. 
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The methods presented in this thesis were developed with the aim of 

increasing the adoption of imaging-based technology for plant phenotyping. 

While they already offer good performance, they could be refined and 

optimized further to improve their accuracy, efficiency, and applicability to 

diverse plant species under other environmental conditions.  

The automated Phenocave imaging system for capturing plant trait data was 

developed to support regular and advanced imaging technologies, such as 

RGB, MSI, and HSI cameras. However, evaluations were only performed 

using the RGB camera and the thermal infrared sensor of the MSI camera. 

Therefore, future work on this system should investigate the use of MSI or 

HSI imaging to predict numerous biophysical parameters including those 

related to photosynthetic systems. In addition, there is a need to develop user-

friendly pipelines for the analysis of the resulting data. This will make the 

Phenocave platform even more robust and reliable for evaluating important 

agronomic traits that could be relevant in genotype selection.   

Plant responses to abiotic stresses based on image and grain nutrient 

composition analysis were evaluated under heat and drought stress, both 

individually and in combination. To further evaluate the benefits of the 

imaging-based approach, future studies could examine its performance when 

applied to other abiotic stresses such as salinity or flooding. In addition, the 

image capture process could be adapted for compatibility with Phenocave. 

This would enable automatic image acquisition and the use of other imaging 

sensors to provide a deeper understanding of plants' response to stress and 

enable the evaluation of more agronomic traits.   

Linear regression analysis revealed that evaluations of grain morphology can 

be powerful tools for detecting and predicting FHB infection. However, it is 

possible that their performance could be improved by developing more 

sophisticated models that take into account a wider range of morphological 

7. Future perspectives 



 

52 
 

features such as texture. Additionally, a system like Phenocave could be 

adapted to capture high-resolution images that provide detailed information 

about the structure and composition of grains, which may be useful for 

identifying other morphological traits associated with FHB resistance or 

susceptibility. 

CS infection severity in potato tubers was estimated using a deep learning-

based method. Although the results revealed a high correlation between the 

predictions and the visual scores, only two potato varieties were studied. 

Therefore, a larger study examining more potato varieties should be 

conducted to verify the method’s potential for detecting and preventing this 

disease. In addition, instead of using individual tubers as tiles, semantic 

segmentation could be used to enable the identification of specific objects or 

regions showing signs of CS infection.  

Overall, the methods presented herein represent important steps towards 

more efficient, sustainable, and resilient agricultural practices and could be 

adapted to other crops that may present similar symptoms to those observed 

in this work. 
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Phenotyping, the process of measuring plants’ physical and biochemical 

traits, has become increasingly important in plant breeding and agricultural 

research. Traditional phenotyping methods involve expensive and time-

consuming procedures. However, recent advances in digital imaging 

technology have made it possible to perform cost-effective phenotyping 

using RGB (red, green, and blue) imaging.  

RGB imaging uses a standard camera to capture images of plants and extract 

data on traits such as leaf area, shape, and color. The images are then 

analyzed using computer vision algorithms to obtain quantitative 

measurements that can be used to identify desirable traits and select plant 

varieties tolerant of abiotic and biotic stresses. One advantage of RGB 

imaging is its affordability compared to other phenotyping methods: it 

requires only a standard camera and basic image analysis software, making 

it accessible to researchers with limited resources.  

The work in this thesis started by developing an affordable imaging system 

to collect imaging data with imaging sensors such as RGB, thermal, MSI, 

and HSI cameras to provide a comprehensive understanding of plant health 

and performance. Paper I presents a blueprint of this system and a pipeline 

for analyzing the RGB and thermal images. This may help researchers 

interested in cost-efficiently monitoring plant growth and complex traits such 

as drought tolerance, disease resistance, and nutrient use efficiency. Paper III 

shows that affordable phenotyping based on RGB imaging could also help 

improve crop yield and quality because it was successfully used in 

conjunction with analysis of gluten parameters to identify wheat genotypes 

that maintain stable gluten production when exposed to abiotic stresses such 

as heat and drought. Finally, imaging-based evaluation of morphological 

parameters was successfully used to predict FHB in kernels and measure 
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quality parameters in tubers (Papers II and VI). The resulting morphological 

data was used to build a training model to estimate CS disease symptoms in 

potato tubers (Paper IV). This model is valuable because it enables evaluation 

of disease symptoms without subjectivity or the need for deep expertise. The 

methods here presented could thus revolutionize plant breeding and 

agricultural research by providing fast, accurate, and cost-effective data on 

plant traits. 
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Fenotypning, processen att mäta växters fysiska och biokemiska egenskaper, 

har blivit allt viktigare inom växtförädling och jordbruksforskning. 

Traditionella fenotypningsmetoder kan innebära dyra och tidskrävande 

procedurer men de senaste framstegen inom digital bildteknik har gjort det 

möjligt att genomföra kostnadseffektiv fenotypering med hjälp av RGB (röd, 

grön och blå) bildtagning. 

Inom RGB-bildtagning används en vanlig kamera för att ta bilder av växter 

och extrahera data för egenskaper som bladyta, form och färg. Bilderna 

analyseras sedan med hjälp av datorseendealgoritmer för att få kvantitativa 

mätningar som kan användas för att identifiera önskvärda egenskaper och 

välja växtvarianter som är toleranta mot abiotiska och biotiska stressfaktorer. 

En fördel med RGB-bildtagning är dess prisvärdhet jämfört med andra 

fenotypningsmetoder: den kräver endast en vanlig kamera och 

grundläggande bildanalysprogram, vilket gör den tillgänglig för forskare 

med begränsade resurser. 

Arbetet i denna avhandling inleddes med att utveckla ett prisvärt bildsystem 

för att samla in bilddata med bildsensorer som RGB, termisk, MSI och HSI-

kameror för att ge en omfattande förståelse av växternas hälsa och prestanda. 

Artikel I presenterar en översikt av detta system och en pipeline för att 

analysera RGB- och termiska bilder. Detta kan underlätta för forskare som 

är intresserade av kostnadseffektiv övervakning av växters tillväxt och 

komplexa egenskaper som torktolerans, sjukdomsresistens och 

näringsanvändningseffektivitet. Artikel III visar att prisvärd fenotypning 

baserad på RGB-bildtagning även kan hjälpa till att förbättra grödans 

avkastning och kvalitet då den framgångsrikt användes i kombination med 

analys av glutenparametrar för att identifiera vete-genotyper som bibehåller 
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stabil glutenproduktion när de utsätts för abiotiska stressfaktorer som värme 

och torka. Slutligen användes bildbaserad utvärdering av morfologiska 

parametrar för att förutsäga angrepp av svampsjukdomen Fusarium head 

blight (FHB) i vetekärnor och för att mäta kvalitetsparametrar i potatisknölar 

(artikel II och VI). Den morfologiska datan användes för att bygga en 

träningsmodell för att uppskatta sjukdomssymptom för potatisskabb (CS) i 

potatisknölar (artikel IV). Modellen är högst användbar då den möjliggör 

utvärdering av symptomen för potatisskabb utan subjektivitet eller behov av 

expertis inom området. De metoder som presenteras här kan revolutionera 

växtförädling och jordbruksforskning genom att tillhandahålla snabb, 

noggrann och kostnadseffektiv data om växtegenskaper som är kritiska för 

framtida odlingsmöjligheter. 
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Abstract: Controlled plant growth facilities provide the possibility to alter climate conditions affecting
plant growth, such as humidity, temperature, and light, allowing a better understanding of plant
responses to abiotic and biotic stresses. A bottleneck, however, is measuring various aspects of
plant growth regularly and non-destructively. Although several high-throughput phenotyping
facilities have been built worldwide, further development is required for smaller custom-made
affordable systems for specific needs. Hence, the main objective of this study was to develop
an affordable, standalone and automated phenotyping system called “Phenocave” for controlled
growth facilities. The system can be equipped with consumer-grade digital cameras and multispectral
cameras for imaging from the top view. The cameras are mounted on a gantry with two linear
actuators enabling XY motion, thereby enabling imaging of the entire area of Phenocave. A blueprint
for constructing such a system is presented and is evaluated with two case studies using wheat and
sugar beet as model plants. The wheat plants were treated with different irrigation regimes or high
nitrogen application at different developmental stages affecting their biomass accumulation and
growth rate. A significant correlation was observed between conventional measurements and digital
biomass at different time points. Post-harvest analysis of grain protein content and composition
corresponded well with those of previous studies. The results from the sugar beet study revealed that
seed treatment(s) before germination influences germination rates. Phenocave enables automated
phenotyping of plants under controlled conditions, and the protocols and results from this study will
allow others to build similar systems with dimensions suitable for their custom needs.

Keywords: affordable; phenotyping; drought; image analysis; automated

1. Introduction

One of the most important factors in functional plant biology and growth analysis
is plant biomass [1,2]. This parameter is the basis to obtain the net primary production
and growth rate in every crop at different growth stages [3,4]. Conventional methods for
estimating plant biomass, however, require destructive harvests and are labor-intensive
and expensive. Thus, conventional methods for variety evaluation are often based on
the final yield for replicated plots under different environments [5]. Since conventional
methods to measure plant biomass are destructive, it is challenging to assess the process
of development of individual plants at different growth stages. In addition, certain mea-
surements are generally obtained from individual plants that are randomly selected from
a plot. Therefore, there is a need to develop more efficient, precise, and accurate methods to
assess key agronomical traits for crop monitoring [6]. Another type of seed study is “seed
priming and coating”, a pre-sowing technology to treat seeds with one or various agents
before germination [7]. These technologies help plants prepare their defense metabolism
against certain stress factors [8,9]. Thus, coating and priming can improve seed perfor-
mance, resulting in faster and better germination and improving plant growth [10–12].
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Conventional methods and X-ray analysis have been used to measure the growth rate in
sugar beet. However, a reliable, quick, and automated method to estimate the early growth
of seeds treated with different treatments would make it easier to evaluate new treatments
more efficiently.

The current emergence of imaging techniques and recent advances in technology
have contributed to further advances in plant phenotyping for the field and controlled
conditions. These new image-based systems evaluate genotype-environment interaction
through tracking plant growth and health performance in a non-destructive, automated,
and high-throughput way [13]. Another advantage of such systems is that they allow
the evaluation of a large number of individuals over time, raising the possibility of identi-
fying traits that cannot be tracked by conventional measurements [14] and reducing crop
production losses [15,16].

Plant phenotyping systems designed to analyze projected leaf area or canopy biomass
over plant development time using a single camera in the visible light range (RGB) have
proven to be helpful for the estimation of growth rate, health status, drought or salinity
stress, and early vigor [17–21]. Other systems use more sophisticated commercial optical
sensors like hyperspectral or multispectral imaging [22]. Hundreds of images can be taken
within a short period and have proven to provide reliable information related to foliar and
moisture nutrient content, plant health, water content composition parameters for seeds,
and leaf area index, applying different vegetation indexes [3,15,23]. Other sensors, such as
thermal and chlorophyll fluorescence, can also be integrated to detect abiotic and biotic
stresses and photosynthetic performance [24–27]. The choice of optical sensors mainly
depends on the phenotypic variation of interest and image acquisition conditions [26].

Some examples of high-throughput plant phenotyping platforms are the “WIWAM”
platforms in Belgium [28], which are systems based on non-invasive automated imaging
and precise irrigation of plants. Another similar system is Plant PhenoLab in Denmark,
a fully automated high-throughput phenotyping robot that allows rotating, irrigation,
fertilization, weighing, and measuring plants, equipped with thermal and multispectral
cameras. In the same light, the National Plant Phenotyping Infrastructure NaPPI in Finland
is another example of an automated platform. Such infrastructure enables studying a large
number of plants for various agronomic traits. In the category of systems using XY motion
is Phenovator, a system for measuring the photosynthesis, growth, and multispectral
reflectance of small plants such as Arabidopsis [29]. A more advanced system is presented
by PSI (Photon Systems Instruments, Brno, Czechia), named PlantScreenTM XYZ, which
works with small and mid-size plants. Such platforms acquire RGB, kinetic chlorophyll
fluorescence, hyperspectral, and thermal data through XYZ motion of a robotic arm.

Platforms that acquire images in closed stations require complex conveyor systems,
translated into great investments in facilities, hardware, and software. On the other hand,
platforms that acquire images in place usually have relatively low efficiency in data acquisi-
tion. Another limitation is the requirement of specialized knowledge to control and monitor
the systems. Several custom-made affordable systems have recently emerged, broadly
categorized based on the type of plant species to study. For instance, “Phenotiki” [30] is an
affordable system that analyzes the growth, color, and leaf area of Arabidopsis plants based
on a Raspberry Pi single-board computer. Another example is Phenoscope [31], a platform
that provides watering and zenithal imaging to monitor plant size and expansion rate
during the vegetative stage. An image processing pipeline was also developed to analyze
rosette area modeling [32]. These approaches have been developed for rosette-shaped
plants, especially Arabidopsis. Other solutions of affordable systems applied on different
plant sizes are MVS-Pheno [33] and LCP lab [18], which are portable, low-cost platforms for
individual plants. Both platforms work with regular RGB cameras, obtaining a multiview
image using a rotatory console. The analysis of data differs with the software; MVS-Pheno
developed its software while LCP lab works with freely available software.

Image acquisition and processing are pivotal for the right estimation of plant traits.
Plants thus need to be segmented successfully from other objects, such as the back-



Plants 2021, 10, 1817 3 of 19

ground [4,34,35]. However, many of the pipelines available are developed for a narrow
range of plant species and, in some cases, require manual work. Solutions are thus needed
to enable the phenotypic evaluation of different species under highly controlled conditions,
systems that are cost-effective, automated, and that can improve the intensity and accuracy
of germplasm selection [3].

In this work, we propose an automated plant phenotyping system called Phenocave
built for highly controlled plant growth conditions and regular greenhouses. Instructions
to build a similar system and image analysis protocols are provided. The results obtained
from the evaluation of Phenocave on wheat (Triticum aestivum L.) and sugar beet (Beta
vulgaris L.) are presented.

2. Materials and Methods
2.1. Phenocave

Phenocave has a workspace of 2 × 2 m and 0.5 mm of precision in positioning
the camera over the object of interest. It is based on a programmable logic controller (PLC)
in conjunction with a programmable motor controller. The system consists of a gantry
robot from Igus company (Cologne, Germany) mounted on an aluminum frame structure
constructed by Eltech automation (Lomma, Sweden) (Figure 1A). The structural support
incorporates two pairs of rigid aluminum legs with reinforcing, attachment points for
the gantry, the cabling network with carrier system (Igus, e-chain Black Cable Chain), and
an electronic box mounted at the right side of the frame, which contains all the electronic
components and the user control system. The gantry robot comprises two linear axis
actuators with belt transmission connected to two stepper motors (NEMA23) for XY
linear motion.
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Figure 1. (A) Phenocave installed in the Biotron chamber with two imaging sensors mounted, a DSLR Canon EOS
and a multispectral MicaSense Altum; (B) schematic Phenocave model. The gray arrows indicate the movement on
the XY coordinates.

Engine configuration (camera position, image acquisition speeds, and operating times)
is performed with a controller (Drylin Dryve D1). These settings can be configured in
the Igus web-based control system for Drylin from any internet browser. All connections
and the two motor drivers are connected to a PLC (CPU Siemens S7-1200) that implements
a control system over the number of steps (image to acquire) that would be carried out
using the XY coordinates and a timer to execute a desirable loop. These parameters can be
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set up on the display panel (Siemens KTP400 Basic PN) included in the electronic box [36].
To determine the efficiency, reliability, and quality of the obtained results, two case studies
were conducted, which included wheat and sugar beet as model plants. The Phenocave
parameters were set up based on the position of pots with XY coordinates in mm, the motor
speed for image acquisition, and the operating times were fixed for the whole experiment.

2.2. Image Acquisition with Phenocave

Individual plant pot images were acquired from top-view using three different imag-
ing sensors attached to the central aluminum plate (Drylin W bearing and mounting plate)
from 1.8 m above ground. One RGB digital single-lens reflex (DSLR) camera, a Canon
EOS 1300D (Canon U.S.A. Inc., Huntington, NY, USA) with a resolution of 18 megapixels,
was mounted with a Canon EF-S 50 mm f/1.8 STM lens. The optimal exposure settings
for imaging based on the growth conditions were F-Stop 1/160, exposure time 1/10, AF
AI-Servo, and ISO 400. All pictures were saved in 5184 × 3456 pixel JPG format. The second
sensor was the MicaSense Altum multispectral camera (MicaSense Inc., Seattle, WA, USA)
with an image resolution of 2064 × 1544 pixels and storage in TIF format. The MicaSense
Altum has one thermal and five multispectral bands (blue, green, red, red edge, and NIR).
As the distance from the top of the plant to the camera lens was less than two meters, it was
not possible to align the five multispectral bands perfectly (personal communication with
MicaSense support). Thus only the thermal images from the MicaSense Altum were used
for analysis. The third sensor was the Canon DSLR Rebel T6 NDVI conversion. Aiming to
avoid light reflection and obtain a good background separation from the object of interest
(plant leaves) during image processing, a dark floor (interlocking rubber sheets floor) was
placed over the original floor of the chamber. Pots were labeled with two identifier numbers
according to the position (i.e., row and column). Images were taken every second day to
follow the growth conditions (Figure 1B).

2.3. Image Acquisition with LCP Lab (Comparative Method)

The results for the wheat case study from Phenocave were compared with a previously
published LCP lab system [18]. Pots were individually photographed at every time point
from one top-view angle and four side views using two DSLR cameras, Canon EOS 1300D
and the 18–55 mm kit lens. Both cameras were tethered to the software digiCamControl [37]
with slightly different settings (side view: focal length of 35 mm, F-Stop f/9, and top view:
focal length of 30 mm, F-Stop f/10, and both with ISO 400 and exposure time of 1/160 s).
The side-view camera was mounted on a tripod 1.5 m away from the target (i.e., plant
pots), whereas the top-view camera was maintained at the height of 1 m above the plants.
Pots were placed manually on a top-quality Intelligent 360 Photography turntable platform
(Shenzhen Comxim Technology Co., Ltd., Shenzhen, Guangdong, China).

2.4. Image Processing
2.4.1. Color Images

Green leaf area projection of the plant color images obtained from the Phenocave and the
rotatory system was extracted using an image-processing algorithm developed and written in
Java as a plugin for ImageJ software (National Institutes of Health, Bethesda, MD, USA). First,
a region of interest ROI (plant pot) was selected for each image, and everything outside of
it was converted to zero value pixels (black). This was done to minimize the overlapping
and non-plant objects in the images. Subsequently, the image was split into red, green, and
blue bands to apply a color difference mask obtained by subtracting one color channel from
another [18]. For this case, two masks were created, one by subtracting the red channel
from the green channel (green minus red), which contrasted most of the plant from other
objects. The other mask was obtained by subtracting the green channel from the blue
channel (blue minus green) for isolating the leaves missing in the first mask. In both masks
and for all time points, a fixed threshold was applied considering that the illumination was
always the same and even with values above the pixels belonging to the plant (threshold
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values (30, 255) and (3, 255)) and discarding the rest of the pixels. This threshold was
selected using the option threshold by default of ImageJ and manually adjusted until it
reached the desired result. Subsequently, a median filter from the ImageJ toolbox “Remove
Outliers” was applied, a filter that replaces a pixel if the median of the surrounding pixels
deviates from the median by more than one threshold value (radius = 10 threshold = 50
which = Bright). Finally, both created masks were joined by OR logical operator to be used
as a mask to the original image. The resulting image consisted of data of green and yellow
leaf pixels and, in some cases, soil. Therefore, a K-means classifier was applied. However,
the results were not satisfactory, especially for wheat plants in the maturity stage. Thus, to
segment these areas further, a Bayesian classifier was implemented. This machine-learning
approach works with a training set of samples previously labeled (green leaves and yellow
leaves) which will be the different classes to classify. From them, it creates probability
density functions per class, and this way determines the belonging of each new pixel to
the class previously defined.

The resulting image is grayscale with pixel values ‘0’ (black) for the background
regions, ‘1’ (gray) for the green leaves, and ‘2’ (white) for the yellow leaves. The number of
pixels of the green leaves was extracted from the histogram. A work flow is presented in
Figure 2. For the images of the rotatory method, the scale was selected for every image
(one top view and four side views) by using the reference calibration (ruler 300 mm) and
calculating pixels/mm, to give a total green area of the plant. The results of the five images
were summed.
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Figure 2. Work flow of image analysis pipeline performed for the extraction of the projected plant biomass from top-view
digital images.

2.4.2. Thermal Images

Thermal images were processed using the free and open-source software QGIS (QGIS
Geographic Information System) [38]. First, a set of images was selected after five days
of inducing drought, one at stem elongation and one at the heading stage, and another
one after two days of normal irrigation for all the plants. The processing steps included
the changing of the band rendering, from single-band gray to single-band pseudo color
with discrete values from 29,200 (18.85 ◦C) representing cold (blue) to 29,350 (20.35 ◦C) hot
(red). Afterward, the plant regions to analyze were selected using the option of a circle
shape in the polygon tool of the QGIS toolbox, then applying zonal statistics to each shape
feature to obtain the mean thermal value for each plant (Figure 3).
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2.5. Case Studies

Phenocave was evaluated using three different case studies on wheat and sugar beet.

2.5.1. Case Study: Wheat

The experiment was conducted in the Biotron chamber at temperature 23 ◦C/19 ◦C
(day/night), humidity 50%, and 400 µmol m−2 s−1 of uniform light intensity with LED
lights. A total of 123 seeds of a single spring wheat genotype (provided by Lantmännen
Lantbruk) were sown in 41 pots of 3 L (three seeds per pot) with 1.7 kg of soil (Exclusive
Flower and Plant Soil with Osmocote). Three treatments were set up with four replicates in
two different groups. Group 1 consisted of the control set (28 pots, set 1), while group 2
consisted of three subsets with three types of treatments, namely drought stress at stem
elongation (4 pots, set 2), drought stress at the heading stage (4 pots, set 3), and high
nitrogen at the heading stage (4 pots, set 4). Plants were placed randomly in the 4 sq m
area of the Phenocave workspace. All pots were supplied with 24.99 mg N dosage of
ammonium nitrate diluted in 100 mL of water (liquid fertilizer NH4NO3) before drought
treatments were induced.

Digital biomass measurements were obtained across the different growth stages,
seedling, tillering, stem elongation, booting, heading, and grain filling [39], in the control
set (see image processing section). At the end of each growth stage, four pots were randomly
selected (total 24 pots), first to acquire images with the comparative rotatory system (see
image acquisition section), then for the conventional process of determining biomass. In
this process, shoots were cut and immediately weighed using a precision balance (Sauter
RE 3012). Thereafter, shoots were wrapped in aluminum foil and oven-dried at 100 ◦C, for
a period of 24 h. Finally, the dry matter was weighed using the same balance.

Drought stress conditions in sets 2 and 3 were induced by stopping the irrigation
in eight pots at two different time points, four pots at the stem elongation stage (D_SE),
38 days after sowing (set 2), and the other four at the beginning of the heading stage,
45 days after sowing (set 3). Finally, plants were re-watered in both cases after six days
of drought, days 44 and 51 after sowing, respectively. At the heading stage, another four
pots (set 4) were supplied with 24.99 mg N dosage of ammonium nitrate diluted in 100 mL
of water (liquid fertilizer NH4NO3). The remaining five pots from the control set were
allowed to grow until the maturity stage for grain yield determinations. Pots (not under
drought treatment) were irrigated every second day with 500 mL of water until the tillering
stage, and thereafter the irrigation was increased to 1000 mL. Imaging was continued every
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second day until the end of the maturity stage (grain filling). Finally, the conventional
measurement of biomass was performed for all remaining plants.

• Phenotyping with Handheld Sensors for Wheat

Handheld sensor phenotyping was done from the stem elongation stage (28 plants)
until the maturity stage (12 plants), by sampling three times per week and taking three
measurements per plant. NDVI measurements were taken with a PlantPen NDVI-300
(Photon Systems Instruments PSI, Drásov, Czech Republic) using three leaves randomly
selected from each plant. Then, chlorophyll concentration measurements were taken on
the same leaves with an MC-100 chlorophyll concentration meter (Apogee Instruments, Inc.,
North Logan, UT, USA). Thereafter, QY (PSII Maximum Quantum Efficiency, (Fv/Fm) mea-
surements were taken with a FluorPen FP 100-MAX (Photon Systems Instruments PSI,
Drásov, Czech Republic) with detachable blade clips. On each one of the three leaves of
the plant, a clip was placed, creating a dark adaptation for 15 min before measurement.

Plant height and leaf area were other parameters measured, but only in the final
maturity stage of treatment of plant sets (12 plants). Plant height was measured manually
with a ruler from the surface of the soil to the tip of the plant spike. The leaf area was
measured in the flag leaf using an LI-3000C Portable Leaf Area Meter (LI-COR Biosciences,
Inc., Lincoln, NE, USA). In both cases, three measurements were performed for each pot,
and the average of them was considered the final value.

• Analysis of Grain Protein Concentration and Composition

Similarly, as in previous studies [40], the grain protein concentration was evaluated
through nitrogen combustion using a nitrogen/carbon analyzer (Flash 2000NC Analyzer,
Thermo Scientific, Waltham, MA, USA). The total protein content was calculated by multi-
plying the total nitrogen content by a conversion factor of 5.7 [41].

Quality of the wheat grain was evaluated following previously described methods [42],
determining %UPP (percentage of SDS-unextractable polymeric protein in total polymeric
protein) correlating with gluten strength, and TOTE (total SDS-extractable protein) corre-
lating with grain protein concentration [43,44]. Thus, the amount and size distribution of
polymeric and monomeric proteins were determined by size-exclusion high-performance
liquid chromatography (SE-HPLC) in a two-step extraction procedure [45] with modifi-
cations by Johansson et al. [46], extracting SDS-extractable proteins in the first step, and
SDS-unextractable proteins by sonication in the second step. SE-HPLC analyses were
carried out with the Waters HPLC system (Milford, NH, USA) with a Phenomenex BIOSEP
SEC-4000 column (Torrance, CA, USA). The area under the chromatogram was used to cal-
culate %UPP and TOTE following previous methodology [47–50]. Samples were extracted
and run in triplicates.

2.5.2. Case Study: Sugar Beet

The trial was conducted using seeds of a single sugar beet genotype (material provided
by MariboHilleshög) exposed to different treatments. As a control, one of the sets consisted
of completely untreated seeds (A), while a second set were naked seeds that had undergone
a priming procedure (B) to accelerate germination. The proprietary priming process was
developed at MariboHilleshög with the specific purpose of enhancing germination speed
and early seedling growth. The third set of seeds was pelleted and coated (C), which is
common practice for commercially sold sugar beet seeds in most markets. The pellets
improve seed drilling performance while the coating contains fungicides and insecticides.
The last set of seeds were primed, pelleted, and coated (D) with the purpose to have all
the treatments and benefits in one.

The experiment was organized in a randomized complete block design with four
treatments and three replicates. Thirty-six seeds of each treatment (144 seeds) were sown
in plastic pots (5 × 5 and 10 cm high) filled with standard garden soil. The 144 plants
were evenly distributed per treatment in 12 trays (3 trays per treatment). Then, trays were
placed in the Phenocave workspace (4 sq m) in four columns and three rows. Thereafter,
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plants were allowed to grow in Biotron at 22 ◦C/18 ◦C (day/night) temperature, humidity
50%, 350 µmol m−2 s−1 of uniform light intensity with LED light conditions.

2.6. Statistical Analysis

Statistical analyses were conducted using R [51], analyses of Pearson’s correlations
were performed with the conventional biomass measurements and the results obtained
from Phenocave. Analysis of variance (ANOVA) was performed with post hoc Tukey’s
honest significant difference (HSD) test (p-value < 0.05), to evaluate the different effects of
treatments and traits measured. For HPLC analysis, Duncan’s multiple range test (DMRT)
was performed to estimate specific differences between treatment means.

3. Results
3.1. Phenocave

The Phenocave automated phenotyping platform comprises an aluminum gantry
that can be mounted with various optical sensors as required. In addition, depending on
the number of targets, the platform acquires top-view images sequentially with a speed of
0.5–1.5 m/s. Furthermore, it is possible to set up different positions on the XY coordinate
with a precision of 0.5 mm in a single cycle per line. A total of 25 pots of 3 L equally
distributed in the 2 × 2 m workspace, can take 10 min for imaging and can be repeated
in a loop. It is also possible that the camera moves continuously on the x-axis, which can
be achieved by selecting the home position and a target (used for hyperspectral imaging).
The images are stored in the camera for further analysis.

To evaluate Phenocave, two case studies were undertaken using spring wheat and
sugar beet.

3.1.1. Case Study: Spring Wheat
Group 1

• Image Analysis Results

The image acquisition started when plants reached the seedling stage (seven days
post-sowing) and continued three times per week until the end of the grain-filling stage
(58 days post-sowing), i.e., during six growth stages, for a total of 360 images. Image
segmentation was performed to separate the background and foreground (plant) pixels
and segment yellow and green plant material. The RGB images of the plants representing
the six time points are presented in Figure 4 and the biomass measurements from digital
and conventional methods are presented in Figure 5. There was a progressive development
of plants in the six growth stages. The grain filling growth stage had the highest fresh and
dry weight values. Whereas for the digital biomass measurements, the highest canopy
green cover was at the heading growth stage and it decreased in the grain filling stage.

The digital biomass obtained during the six growth stages was correlated with the con-
ventional biomass measurements results (weight of fresh and dry matter), giving a signifi-
cant correlation (r = 0.96, p < 0.01, r2 = 0.92 for dry weight; and r = 0.97, p < 0.01, r2 = 0.94,
for fresh weight). The results of the rotatory system were correlated with the conventional
biomass measurements (weight of fresh and dry matter), giving as result a high correlation
(r = 0.78, p < 0.01, r2 = 0.61 for dry weight; and r = 0.88, p < 0.01, r2 = 0.79, for fresh weight,
Table 1).

Table 1. Pearson correlation coefficient between digital biomass, fresh weight, and dry weight at different growth stages.

Wheat Growth Stage
According to Zadok Scale

Phenocave Rotatory System

Digital Biomass (Pixels)
vs. Fresh Leaves (g)

Digital Biomass (Pixels)
vs. Dry Leaves (g)

Digital Biomass (Pixels)
Fresh vs. Leaves (g)

Digital Biomass (Pixels)
vs. Dry Leaves (g)

Seedling 0.82 0.82 0.95 0.93
Tillering 0.99 0.99 0.92 0.91

Stem Elongation 0.52 0.84 0.67 0.62
Booting 0.90 0.87 0.96 0.97
Heading 0.89 0.85 0.85 0.57

Grain Filling 0.89 0.62 0.95 0.67
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Furthermore, to estimate time efficiency over conventional biomass measurements
and a semi-automatic lab LCP method [18], working time was recorded for wheat plants at
the heading stage. The time for conventional biomass measurements took 13 h, distributed
in shoot cutting, weighing, oven drying, and weighing. Time with the LCP lab for placing
each pot on the platform took around 40 s, setting up the software to acquire images
manually and save images took 60 s, finally acquiring a single image took 10 s, thus totaling
2 min per pot. Using the Phenocave system took 15 s to set the number of images and
about 15 s to take one image, a total of 0.5 min per image/pot.

Group 2

• Image Analysis Results

There was a strong impact of the induced treatments on plant growth rates. As
shown in Figure 6, plants under control conditions grew well, showing a high level of
green canopy biomass compared to the plants under stress. Significant improvements
were observed in plant performance after the second application of nitrogen fertilizer
at the heading stage (marked with a dark cyan arrow). Plants under drought treatment
showed lower growth once drought treatment was induced (marked with rose and dark
cyan arrows). Even though irrigation was withheld for the same amount of time in
the two drought treatment sets, drought impacted differently during the two growth stages.
There was a greater reduction in the plant biomass during the drought at the heading
stage compared to the stem elongation stage. Significant differences in canopy cover
were observed in the drought-stressed and control plants also based on thermal imaging
(Figure 7). The differences were reduced once the plants were allowed to recover from
stress. Likewise, significant differences (p < 0.05) were found in the digital biomass among
plants under different treatments four days after the treatments were induced (Table 2).
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Figure 6. Plant growth pattern under different treatments, (control, drought at stem elongation
(D_SE), drought at heading (D_H), and high nitrogen content (H_N)), from sowing to grain devel-
opment. Pink arrow indicates when drought stress was induced, D_SE; dark cyan arrow indicates
when drought stress was induced, D_H, and second nitrogen dosage was applied, H_N. The Y-axis
represents the time points when the digital biomass was sampled and the X-axis represents the mean
values of the obtained digital biomass. Error bars are standard error.



Plants 2021, 10, 1817 11 of 19

Plants 2021, 10, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 6. Plant growth pattern under different treatments, (control, drought at stem elongation 
(D_SE), drought at heading (D_H), and high nitrogen content (H_N)), from sowing to grain devel-
opment. Pink arrow indicates when drought stress was induced, D_SE; dark cyan arrow indicates 
when drought stress was induced, D_H, and second nitrogen dosage was applied, H_N. The Y-axis 
represents the time points when the digital biomass was sampled and the X-axis represents the 
mean values of the obtained digital biomass. Error bars are standard error. 

 
Figure 7. Surface temperature of plants under different treatments, (control, drought at stem elongation (D-SE), drought at head-
ing (D-HD), and high nitrogen content (H-N)). The X-axis represents the treatments and the Y-axis represents the mean temper-
ature values obtained with QGIS software. Statistically significant differences (Tukey’s HSD *** p < 0.001, ** p < 0.01 and * p < 
0.05) are denoted by the stars above the bars. Error bars are standard error. Temperature measurements (A) after five days of 
inducing drought stress at stem elongation, D_SE and (B) after five days of inducing drought stress at heading, D_HD, and 

Figure 7. Surface temperature of plants under different treatments, (control, drought at stem elongation (D-SE), drought at
heading (D-HD), and high nitrogen content (H-N)). The X-axis represents the treatments and the Y-axis represents the mean
temperature values obtained with QGIS software. Statistically significant differences (Tukey’s HSD *** p < 0.001, ** p < 0.01
and * p < 0.05) are denoted by the stars above the bars. Error bars are standard error. Temperature measurements (A) after
five days of inducing drought stress at stem elongation, D_SE and (B) after five days of inducing drought stress at heading,
D_HD, and second dosage of liquid nitrogen fertilizer was applied, H-N. (C) Temperature measurements when all plants
were irrigated.

Table 2. Differences among the four treated plant groups after treatment effect: drought at stem elongation (D_SE), drought at heading
(D_H), and high nitrogen (H_N). Significant differences marked with asterisk (* p < 0.05, ** p < 0.01).

Treatment
Pr(>|t|) Significant Value of Projected Green Area after

Treatment

Treatment D_SE Treatments D_H and H_N

Control D_H 0.71 0.001 **
Control D_SE 0.003 ** 0.008 **

D_H D_SE 0.002 ** 0.37
Control H_N 0.07 0.483

D_H H_N 0.04 * 0.006 **
D_SE H_N 0.14 0.04 *

• Handheld Sensor Measurements

The parameters measured with the handheld sensors—NDVI, chlorophyll content
(CC), and quantum yield (QY) showed statistically significant differences among the differ-
ent treatments along the measured time points. Plants showed normal values (NDVI = 0.75,
CC = 30, QY = 0.84) during the first two growth stages (seedling and tillering), then values
increased (NDVI = 0.78, CC = 35, QY = 0.84) in the next two growth stages (stem elongation
and booting); in the last two time points (heading and grain filling), values decreased again
to the initial values. In the case of plants exposed to drought at stem elongation, values
were lower (NDVI = 0.73, CC = 27, QY = 0.69). Plants set under drought at heading also
showed lower values (NDVI = 0.68, CC = 20, QY = 0.75), while for the plants with high
nitrogen content values increased (NDVI = 0.72, CC =34, QY = 0.82) (Figure 8).
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• Protein Content and Quality

As described in the methods, grain protein concentration was measured using com-
bustion, while grain protein quality was obtained from TOTE and %UPP values measured
with SE-HPLC. The grain protein concentration in the wheat was generally low (Table 3),
ranging from 7.7% to 13%. The highest grain protein concentration was found in samples
that were drought treated at heading, with a mean protein concentration of 11.7%. The con-
trol samples and those subjected to drought under stem elongation showed the lowest
grain protein concentrations of 8.4% and 8.0%, respectively, and did not differ significantly.
The high nitrogen treatment resulted in samples differing from those of the other treat-
ments and with a mean grain protein concentration of 9.4% (Table 3). The grain protein
concentration measured through combustion correlated significantly (p < 0.01) with TOTE
values obtained from the SE-HPLC. Thus, similarly as for grain protein concentration,
the highest TOTE values were found for samples subjected to drought at heading, followed
by samples subjected to high nitrogen treatment, and significantly lower values were
seen for the control samples and the samples subjected to drought at stem elongation
(Table 3). Significantly, the highest %UPP values, indicating the highest gluten strength
among samples, were obtained for those samples subjected to drought stress at heading,
while for the other treatments, no significant differences were revealed for %UPP (Table 3).

The clearest correlation (p < 0.005 for mean values) between grain protein concentra-
tion and any of the above described Phenocave parameters was (positive) for the surface
temperature at watering after drought treatment (Figure 7C). Drought at heading, which
was the treatment mainly affecting the grain quality (Table 3, %UPP), was also the treat-
ment that most clearly showed an effect on several of the Phenocave parameters, including
plant growth (Figure 6), surface temperature after drought treatment at regular watering
(Figure 7C), NDVI (Figure 8A), and chlorophyll content index (Figure 8C).
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Table 3. Mean values of grain protein concentration, as well as of total SDS-extractable proteins
(TOTE) and percentage of SDS-unextractable polymeric protein in total polymeric protein (%UPP)
obtained from size exclusion-high performance liquid chromatography for wheat subjected to
different treatments; control, drought at heading (DH), drought at stem elongation (DSE), and
with high nitrogen application (HN). Numbers within the same column followed by the same letter
do not differ significantly at p < 0.05 by Duncan post hoc test.

Treatment Grain Protein
Concentration (%)

TOTE
(107) %UPP

CONTROL 8.4 c 6.72 c 64.5 b
DH 11.7 a 9.05 a 70.7 a
DSE 8.0 c 6.46 c 61.7 b
HN 9.4 b 7.75 b 60.3 b

3.1.2. Case Study: Sugar Beet

The projected leaf area trait in the 12 trays was quantified three times a week during
the early growth stage (seedling) for 18 days (Figure 9). During this time, a different
germination speed was observed among the sugar beet treatment sets (Figure 10). Two
of the treatments, B (primed) and D (pelleted, primed, and coated), had the fastest ger-
mination, which could be observed in the majority of samples after four days of sowing.
However, the seeds that were not exposed to priming treatment, namely treatment A
(control) and C (pelleted and coated), showed a delay in germination, where only half of
the samples showed germination after four days. Nonetheless, the germination was 100%
in all the treatment sets ten days post-sowing.
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Statistically significant differences in plant development by canopy measurement were
obtained in four time points of measurement, 5, 8, 12, and 15 days after sowing for all sets of
treatment, p < 0.01 ** and p < 0.05 * in the first and second time points, respectively (Table 4).
The differences decreased in the next two time points, p < 0.05 *, between treatments B and
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C. There were no significant differences in the next time points, 18, 21, and 24 days after
sowing, when plants grew under optimal conditions.
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Figure 10. Plant germination and development of plants from seeds with different treatments:
(A) control; (B) primed; (C) pelleted and coated; and (D) primed, pelleted, and coated; from sowing
to 15 days after sowing. The Y-axis represents the digital biomass in pixels and the X-axis represents
sampling days.

Table 4. p-Value analysis of the plant germination rate of plants’ seeds with different treatments: (A) control (intercept);
(B) primed; (C) pelleted and coated; and (D) primed, pelleted, and coated; during the different days sampled. Significant
differences marked with asterisk (* p < 0.05, ** p < 0.01 and *** p < 0.001).

Treatment
Pr(>|t|) Significant Value of Germination after Sampling

1 Day 3 Days 5 Days 7 Days 9 Days 10 Days

(Intercept) 1.01 × 10−5 *** 1.94 × 10−8 *** 2.97 × 10−8 *** 1.26 × 10−7 *** 1.17 × 10−7 *** 1.39 × 10−6 ***
B 0.003 ** 0.02 * 0.04 * 0.0567 0.01 * 0.11
C 0.12 0.21 0.61 0.724 0.50 0.87
D 0.009 ** 0.06. 0.13 0.4474 0.24 0.35

4. Discussion

Phenocave is a platform highly automated for plant phenotyping, and once the pro-
gram is set up, it requires minimal human intervention. Image acquisition for differ-
ent types of plants is one of the issues presented in some low-cost phenotyping plat-
forms [30,31,34,52], while Phenocave can be used with any type of plant size. In addition,
the acquisition efficiency of the platform is another advantage over other similar platforms.
Approximately 10 min are required to acquire a set of 25 big plant images using Phenocave
and they can be analyzed in less than 15 min, whereas the semi-automated LCP lab [18]
requires 30 min and labor to implement one of the suggested free software packages.
The Phenocave system is user-friendly, which facilitates its application for researchers with
different scientific expertise. Furthermore, Phenocave can be set up in a controlled growth
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environment. Nonetheless, a resulting limitation of Phenocave is that the workspace is only
2 × 2 m, allowing the assessment of up to 25 large plant pots of 3 to 5 L and about 150 small
ones of less than 2 L. Despite the fact that the workspace makes it difficult to handle more
than 30 big plants, the pots remain static without causing any possible mechanical damage
to the plant leaves or any secondary effect on the expression of the phenotype. Another
advantage of this setup is that plants can be analyzed by different sensors in the same run,
reducing the amount of time between data acquisition for the same individual.

Experiments carried out under controlled environments are often difficult to associate
in terms of yield performance under field conditions. The flexibility of specific environmen-
tal conditions and the control of the exposure of the plants by modifying those conditions
is one of the biggest advantages of growing plants under controlled environmental con-
ditions [53]. Many experiments in indoor controlled environments evaluate different
parameters of plant growth under different conditions. However, many of them imply high
costs, a lot of labor, specialized knowledge, and not all of them work for all types of plants.
Thus, to improve the speed, accuracy, costs, and reliability of this process Phenocave was
developed as an automated phenotyping system to evaluate visual traits from top-view
plant images. Phenocave provides easy accessibility, especially because of its good cost-
performance ratio; moreover, the pipeline developed is in ImageJ, an open-source software,
and its architecture is flexible, which allows it to be unmounted and mounted in other
indoor environments, and the interface is user-friendly.

Positive correlations were observed between projected green area obtained from
imaging and destructively harvested green and yellow leaf biomass in all the growth stages
(Table 1). The correlation had a slight decrease at the stem elongation stage because of
the number of overlapping leaves (Figure 4C). Plants with overlapping leaves evaluated
with image analysis can cause underestimation of the projected area [54,55]. Despite this
correlation reduction, the results generally were highly correlated. Studies in controlled
greenhouse conditions have found similar correlations between areas estimated by image
analysis and harvested biomass [4,35,54,55] which indicates the applicability of top imaging
with Phenocave for non-destructive evaluation of germplasm.

Understanding the impact of drought at different growth stages contributes to the effi-
ciency of breeding drought-tolerant wheat varieties. Important factors such as the intensity
and frequency of drought affect the performance of any crop. The plant developmental
stage at which drought events occur is equally important [56]. While testing Phenocave
to identify the response of plants to drought at two growth stages, we found negative
effects in wheat, such as reduction of leaf biomass production and grain yield. Nonethe-
less, the duration, intensity, and timing of certain stresses differ in how and which yield
components are affected [57–59]. In the present study, the stress was imposed over six days
of stopping the irrigation, resulting in visual differences in shoot biomass in the plants
(Figure 6). The occurrence of drought stress at the stem elongation stage led to a significant
reduction in leaf biomass and fewer spikes. Previous studies have shown that drought
stress at the stem elongation stage greatly decreased the grain yield compared to booting
and grain filling stages [60]. Results of drought stress at the heading stage showed a signif-
icant decrease in the number of grains per head, grain weight, and leaf biomass which was
even more severe than in the early stage.

As for the wheat case study, the HPLC analysis revealed a low grain protein yield
(7.7–13%) compared to field-grown wheat (normally 11–14% in Swedish field conditions),
which indicates the need to fertilize wheat to a level around the high nitrogen treat-
ment conditions used in the present experiment. Despite the generally low grain protein
concentrations obtained here, the present results corresponded with those previously re-
ported [61,62]; for example, that reduced green biomass is a major effector on grain protein
concentration. Thus, a drought at heading resulted in a severe decrease of plant biomass
and thereby a reduction of carbohydrate transportation to the grain, which resulted in
a high grain protein concentration. The negative correlation between TOTE and %UPP
reported in several studies [43,44,50] was not seen for samples with different treatments
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in the present study. The relatively high gluten strength, verified by correlating %UPP
values [43,44], found in the samples subjected to drought at heading, is most likely due to
an increase in hydrogen and disulfide bond formation, previously reported as an outcome
of decreased precipitation and increased temperature [48,61,62].

The second case study was the effect of sugar beet seed treatments on germination and
plant growth. The results indicated that seeds under priming treatment were positively
influenced in terms of germination ability and speed, especially during the first four
days. This is the effect of priming seeds, which causes an acceleration of germination and
the acceleration of seedling growth [63]. On the other hand, pelleting and coating treatment
reduced germination rates, especially in the early stages. The delayed seed germination
can be explained by the slow water flow from the germination medium through the pellet
and pericarp to the seed [64]. Hence, although necessary from an agricultural perspective,
pelleting and coating may slightly delay germination, while priming may compensate for
this delay. Previous research showed that primed seeds with a lower level of vigor showed
a faster and higher germination ability than non-primed seeds with higher vigor [64].
Despite this effect caused by both treatments, after 14 days of germination, the differences
in seed germination and plant growth development diminished.

An advantage of using Phenocave is the free choice of the use of the imaging sensors
supported by Phenocave (RGB, multispectral, NDVI, multispectral) and the space (2 sq m)
within which plants can be placed anywhere in the imaging region as required by the exper-
imental design. While the current setup of Phenocave is limited to manual data transfer and
manual irrigation, this might be included in the automatic system in future modifications.
Multispectral bands from the Micasense Altum sensor were not available in Phenocave
since the short distance between the lens and the object was problematic for band align-
ment. Several algorithms have been developed to identify keypoint feature descriptors for
band alignment [65]. Keypoint descriptors assist in better alignment when the alignment
bands have nearly uniform reflectance profiles and unique patterns in the scene [66]. Thus,
in future work, an automated work flow will be developed for the alignment of bands from
the Micasense Altum camera for pictures taken in close range. An additional improvement
could be regular radiometric calibration of the thermal sensor of the Micasense Altum
camera. A previous study showed that radiometric calibration of thermal sensors produces
more accurate results [67]. Thus, a similar calibration of sensors could be beneficial for
experiments requiring higher measurement accuracy. Nonetheless, this study demonstrates
that the Phenocave system is a useful tool for the non-destructive estimation of plant shoot
biomass under different growth conditions and at various time points.

5. Conclusions

In order to adapt to climate change, unexpected agronomical diseases, and other
factors that affect plant performance, it is of utmost importance to assess plants under
different environmental conditions in a fast, accurate, friendly, and affordable manner.
Phenocave offers the opportunity to assess the visual traits of the plants under highly
controlled environments. In addition, the platform reduces manual work for the users
because of a high level of automation. It moves in XY direction acquiring high-quality
individual photographs of plants with different imaging sensors (RGB, thermal, NDVI,
and hyperspectral), which allows the extraction of different characteristics of plants.

One of the advantages of Phenocave is that it evaluates small- to mid-size plants, such
as sugar beet and small-grain cereals. Besides, it can be unmounted and mounted to be
used in other environments. This study highlights the potential of developing systems
similar to Phenocave which promote work time efficiency, cost efficiency, and flexibility.
In future work, data transfer and management will be further improved, and broader
applications such as plant diseases and automatic irrigation will be studied, which can
further contribute to allowing faster evaluation of plant responses to various treatments.
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Fusarium head blight (FHB) is an economically important disease affecting

wheat and thus poses a major threat to wheat production. Several studies have

evaluated the effectiveness of image analysis methods to predict FHB using

disease-infected grains; however, few have looked at the final application,

considering the relationship between cost and benefit, resolution, and

accuracy. The conventional screening of FHB resistance of large-scale

samples is still dependent on low-throughput visual inspections. This study

aims to compare the performance of two cost–benefit seed image analysis

methods, the free software “SmartGrain” and the fully automated commercially

available instrument “Cgrain Value™” by assessing 16 seed morphological traits

of winter wheat to predict FHB. The analysis was carried out on a seed set of

FHB which was visually assessed as to the severity. The dataset is composed of

432 winter wheat genotypes that were greenhouse-inoculated. The

predictions from each method, in addition to the predictions combined from

the results of bothmethods, were compared with the disease visual scores. The

results showed that Cgrain Value™ had a higher prediction accuracy of R2 =

0.52 compared with SmartGrain for which R2 = 0.30 for all morphological traits.

However, the results combined from both methods showed the greatest

prediction performance of R2 = 0.58. Additionally, a subpart of the

morphological traits, namely, width, length, thickness, and color features,

showed a higher correlation with the visual scores compared with the other

traits. Overall, both methods were related to the visual scores. This study shows

that these affordable imaging methods could be effective to predict FHB in

seeds and enable us to distinguish minor differences in seed morphology,

which could lead to a precise performance selection of disease-free

seeds/grains.

KEYWORDS

Fusarium head blight, seed phenotyping, seed morphological characters, wheat,
visual scores, SmartGrain, Cgrain Value™
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Introduction

In the countries of the Baltic Sea region, the most widely

cultivated crop is winter wheat (Triticum aestivum L.), (Shiferaw

et al., 2013; Chawade et al., 2018). While efforts are made to

achieve sustainable intensification of high grain yields in wheat

production, the emergence and increase in the virulence of plant

pathogens conversely leave the nutritional integrity and

production of wheat grains at risk (Castro Aviles et al., 2020).

The decrease in grain quality and protein content negatively

impacts the use of the grains and therefore affects food security

and safety (Asseng et al., 2019). Fusarium head blight (FHB),

mainly caused by the fungus Fusarium graminearum Schwabe

[teleomorph: Gibberella zeae (Schwein) Petch], is one of the

wheat diseases with a major impact on wheat grain yield and

quality. FHB can dramatically reduce grain quality and yield

through the formation of sterile and wizened florets. FHB-

infected grains suffer from major marketing, consumption, and

processing constraints, which is the buildup of mycotoxins—

mainly deoxynivalenol (DON) (Del Ponte et al., 2022). DON

inhibits protein synthesis, cutting off normal cell function, which

is hazardous for the consumption of humans and animals

(Polak-Ś liwińska and Paszczyk, 2021). FHB disease

management strategies rely on integrating several cultural

practices such as fungicide treatment, crop rotation, mixed

culture, and tillage (Gilbert and Haber, 2013). However,

growing FHB-resistant cultivars is seen as a more sustainable

and durable strategy for mitigating disease epidemics, thus

avoiding large economic losses. Hence, identifying sources of

novel resistance is a key component in pre-breeding activities

that can be introgressed to develop commercial FHB-

resistant cultivars.

The resistance components for FHB, commonly known as

resistance types, have been defined into type I to type V

(Mesterhazy, 2020): type I is resistance to initial infection, type

II is resistance to disease spread (Schroeder and Christensen,

1963), type III is resistance to damage of Fusarium-damaged

kernels (FDK), type IV is resistance to the buildup of DON

toxins, and type V is tolerance. Traditionally, studies on FHB

resistance have relied on measuring the symptoms in spikes and

kernels (resistance types II and III). Type II is assessed by rating

the visual symptoms on the spikes, which appear as bleached,

yellowish or discolored, and stunted (Zakieh et al., 2021; Steed

et al., 2022). FDK is quantified traditionally by estimating the

amount of visibly damaged kernels, which appear smaller,

shriveled, and in a range of colors from pale pink to brown

(Delwiche et al., 2010), according to a predetermined scale for

visual assessments or by employing manual tools (Ackerman

et al., 2022). Comparisons between both types of resistance

(resistance types II and III) have revealed that it would be

more efficient and consistent to estimate FHB than the degree

of colonization on the spike (Agostinelli, 2009; Balut et al., 2013;

Khaeim et al., 2019; Ackerman et al., 2022). However, screening

by either manual or visual assessments is a labor- and time-

consuming process for rating genotypes, is biased due to the

subjectivity of visual assessments, and has low reproducibility

among experiments (Barbedo et al., 2015; Khaeim et al., 2019).

As a result of the previously cited limitations, the use of image

analysis approaches has been investigated to evaluate FDK,

particularly in estimating morphological characteristics.

However, the existing different imaging approaches have their

disadvantages and trade-off in terms of costs, time expenses,

resolution, and precision when considering an application

(Saccon et al., 2017).

Among the investigated methods, Iwata and Ukai (2002) and

Iwata et al. (2010) investigated changes in grain shape using

elliptic Fourier descriptors of two- and three-dimensional

features from vertically and horizontally located seed images.

Despite the accuracy reached, there are limitations in terms of

image resolution and regarding the manual handling of samples

during the procedure. Menesatti et al. (2009) presented a method

to classify FHB in wheat-infected kernels—according to the

shape criteria—into the following groups: chalky, shriveled, or

healthy. The method proved to be functional to categorize

kernels as chalky or healthy, but not for shriveled or gravely

affected samples. Jirsa and Polisěnská (2011) developed a model

for the identification of Fusarium-damaged wheat kernels using

image analysis. The characterization of healthy or damaged

kernels based on color parameters revealed a high accuracy

compared with the shape and DON content parameters.

However, image processing was done with manual selections

and comparing only 40 kernels—either heavily damaged or

healthy—without considering any halfway stage. Similarly, the

use of hyperspectral imaging for detecting Fusarium sp. in seeds

has been previously investigated (Delwiche et al., 2010; Shahin

and Symons, 2011; Bauriegel and Herppich, 2014; Barbedo et al.,

2015; Femenias et al., 2022; Rangarajan et al., 2022; Yipeng et al.,

2022). The methods have been shown to be accurate and have

identified more factors involved in FDK. A more advanced

technique based on X-ray computed tomography has been

implemented for evaluating seed shape in finer detail (Gomes

and Duijn, 2017; Liu et al., 2020). Nevertheless, inconsistencies

because of specular reflection, correct wavelength selection,

kernel orientation, selection of reference parameter, costs of

acquisition devices, and the storage requirement for highly

dimensional and massive data sets may be limiting the

application of these methods (Dissing et al., 2013; Lu

et al., 2020).

In the face of the constraints cited earlier, automated and

light-weight free software for grain image analysis have been

developed (Wang et al., 2009; Komyshev et al., 2017; Colmer

et al., 2020; Zhu et al., 2021); some examples of them are

GrainScan (Whan et al., 2014), which analyzes size and color

features, and SmartGrain (Tanabata et al., 2012), which analyzes

size and shape features. Both software are instantaneous in

image recognition despite the position, overlapping, or the
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number of seeds. Alternatively, commercially available imaging

instruments for grain image analysis combine hardware and

software, including WinSEEDLE (Regent Instruments Inc.),

Seed Count (Next Instrument Pty Ltd.), Vibe QM3 Grain

Analyzer (VIBE), and Cgrain Value™ (Cgrain AB). The

instruments use optical or flatbed scanners to extract features

such as size, shape, and color in the color representation hue,

saturation, and light (HSL). However, SeedCount and Vibe QM3

Grain Analyzer only scan the top surface of the samples, thus

omitting morphological characteristics that are not in the

viewing area. A more advanced instrument is Videometer Lab

(Videometer A/S, Denmark), which provides rapid color, shape,

and texture measurements. Videometer Lab is ideal to use in

analyzing kernel surfaces, but it requires certain expertise and

allows the analysis of only a few samples at once.

In this context, this paper has three objectives; first is to

investigate the applicability of low-cost digital image analysis

to predict FHB infection in harvested grains through

morphological traits. This will offer more insight into the traits

that are correlated to the degree of FDK. The second objective is

to compare the applicability of the two methods used for grain

image analysis—SmartGrain, and Cgrain Value™—in terms of

consistency and throughput. The third one is to illustrate the

processing chain and result interpretation with a descriptive

data analysis.

Materials and methods

Plant material

Wheat kernel samples were collected from an experiment

under accelerated indoor growth conditions (Zakieh et al., 2021)

using winter wheat genotypes from two different sources. The

first source consisted of 338 genotypes (breeding set) provided

by the Swedish agricultural cooperative (Lantmännen Lantbruk,

Svalöv, Sweden). The second source consisted of 181 germplasm

genotypes (genebank set) provided by the Nordic Genetic

Resource Center (Nordgen), with highly diverse plant

materials including landraces and old cultivars.

Experimental design/growth and
inoculation protocol

Plants were grown following an augmented block design in a

climate-controlled chamber. After germination, the plants were

subjected to a vernalization period of 57 days at 3°C with 8 h of

daily light at medium–high light intensity (LI) of 250 mmol m−2 s−1.

At the end of the vernalization period, the climatic conditions were

adjusted with a gradual increase in temperature and LI for the

acclimatization of the plants to the next phase of accelerated growth

conditions. Once the acclimatization period was concluded, the

plants were left to grow at a constant temperature of 22°C. The

accelerated growth conditions were adapted by exposing the plants

to a prolonged daily light duration of 22 h, with LI at 400 mmol m−2

s−1 of uniform light intensity from LED light plates. Under these

accelerated growth conditions, the plants were watered daily and

fertilized weekly using first a combination of a high-phosphate and

high-nitrogen soluble fertilizer SW-BOUYANT 7-1-5 + Mikro +

KH2PO4, then only with a high-nitrogen fertilizer, and finally with a

high-potassium soluble fertilizer Yara Tera Kristalon NPK 12-5-30

with S and Mikro.

After completing the anthesis stage, at 33 days post-

acclimatization, the plants were moved to a glasshouse

chamber with relative humidity (rh) of 60% and a constant

temperature of 24°C for 24 h to allow their adaptation to the new

growth conditions prior to inoculation. Thereafter, the winter

wheat spikes were spray-inoculated with an inoculum

suspension prepared from the harvested spore of F.

graminearum and F. culmorum, with a concentration of 5 ×

105 spore/ml. Subsequently, the plants were left to incubate at

90% rh with 16/8 h dark/light cycle at a constant temperature of

24°C for 48 h before adjusting the climatic conditions back to

60% rh. The plants were eventually left to grow under the latter

conditions for 24 days before harvesting the seeds. Eight isolates

from F. graminearum and F. culmorum species were used in

inoculating the plants provided by the Swedish agricultural

cooperative Lantmännen Lantbruk. An inoculum preparation

was carried out by incubating the fungal spores at 24°C for 4

days in dark conditions to allow for mycelial growth on SNA

media plates. Later, the fungal plates were exposed to near ultra-

violet UV radiation for 10 h to induce macroconidia formation.

Afterward, the fungal plates were incubated for 4 days at 24°C in

dark conditions. Finally, macroconidia spores were collected to

make the inoculation suspension with the provided

concentration after adding the surfactant Tween®20 0.002%

(v/v) final volume of the inoculum. A more detailed protocol

is described in Zakieh et al. (2021).

FHB visual assessment

In order to evaluate FHB resistance on a large number of

genotypes, a modified visual scoring of the FHB disease severity

method was adopted. The method took into account the incidence

of all FHB symptoms across the main tiller spike of each genotype.

Therefore, disease severity was assessed as the percentage score of

infected spikelets relative to all spikes, regardless of symptom

continuity on the same spike. FHB development was scored at 6,

8, 10, and 12-days post-inoculation (dpi) (Stack and McMullen,

1998). The FHB disease severity scores varied between 100 to 5% for

the most susceptible phenotypes and the most resistant ones,

respectively. Finally, the results of the visual scores were validated

by associationmapping, thus identifying the quantitative trait loci of

FHB resistance (Appendix 1).
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Seed shape parameters

Two different grain phenotyping methods were employed in

this study: an automated imaging instrument with software and

hardware named Cgrain Value™ which is commercially

available (Cgrain AB) and the free software named

SmartGrain developed by Tanabata et al. (2012) and can be

downloaded from the Quantitative Plant website (Lobet, 2017).

The implementation of both methods is described in the

following sections.

SmartGrain

For image acquisition, the seeds were captured with a low-cost

image protocol acquisition from a top-view angle of 55 cm above

the seeds and placedmanually on a flat surface using a digital single-

lens reflex camera Canon EOS 1300D (Canon U.S.A. Inc.,

Huntington, NY, USA), which has a resolution of 18 megapixels,

mounted on a Kaiser RS-1 repro stand. The camera was tethered to

the software digiCamControl (Istvan, 2014) with optimal exposure

settings based on the best seed view, F-Stop 1/160, exposure time 1/

10, and ISO 800. The seeds were placed manually per genotype

uniformly on a blue cardboard that was used as a background on a

stand aside from a 15-cm ruler for further analysis. Digital images

were stored with 3,456 × 2,304-pixel resolution in JPEG format

(Figure 1, top images).

The image analysis was thereafter carried out using

SmartGrain software following its default protocol (Tanabata

et al., 2012). Briefly, the image scale was set up by taking a known

sample from the ruler and registering it on the software. Then,

the segmentation method by color was chosen, the precision

sensibility was set at the minimum value of “1”, and the seed

detection intensity was at a maximum value of “4” to obtain all

possible shape details; the rest of the parameters were set to

default. Finally, all the processed images were saved as TIFF files,

and the results were saved in a CSV format. The software

provides seven morphological characteristics: area seed (AS),

perimeter length (PL), length (L), width (W), length-to-width

ratio (LWR), circularity of the seed (CS), distance between the

intersection of length and width, and the center of gravity (DS).

AS corresponds to the total number of pixels of the segmented

seed, this parameter estimates the seed size. PL refers to the

length measurement of the seed outline. L corresponds to the

major length measurement in the axis and W to the minor

length axis measurement. CS estimates how round the region of

interest is (seed), and it is calculated as 4�p�AS
PL2 . LWR is

calculated by L
W , and it provides an idea of the seed shape

between rectangular and circular depending on the value. The

distance between the transverse axis from the outline of the seed

(IS) and the center of gravity (CG) is used to estimate DS

[described in detail by Tanabata et al. (2012)].

Cgrain Value™

For single kernel analysis, seeds were scanned with Cgrain

Value™, which is an analytical imaging instrument. The device

A B D E FC

FIGURE 1

Images of the different levels of Fusarium head blight severity on winter wheat seeds. The rating of disease severity ranged from (A) 0 to (F)
100%. Scoring was based on the proportion of total infected spikes to the total amount of spikes. The top images were obtained for the

SmartGrain analysis, and the bottom images were acquired using the Cgrain Value™ instrument.
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inspects each kernel through a unique mirror design covering

more than 90% of the grains’ surfaces in every image. The

analysis starts by pouring into the metal bowl of the Cgrain

Value™ a batch of seeds per line and per genotype. The seeds

rotate into the bowl and then, one by one, are photographed and

analyzed simultaneously. After the analysis is completed, three

different reports are created (result file, stat file, and image file).

The result file consists of the morphological characteristics for

each batch of seeds (seed count, thousand kernels, etc.), the stat

file provides data per individual seed of a group (length, width,

etc.), and the image file corresponds to the single seed images

acquired (Figure 1, bottom images).

The instrument provides nine morphological attributes:

length (L), width (W), thickness (T), average width (AVG.W),

volume (V), weight (WT), light, hue, and saturation. Parameters

such as L, W, and T are estimated by taking the longitudinal

measurement of the axis major, higher minor, and minor,

respectively. In the case of AVG.W, as the seed is received as a

three-dimensional image, the measurement is referring to the

mean of the average curvature. V corresponds to the seed

volume obtained from the 3D image. For WT, the device has

an internal balance, so while acquiring the image, it also weighs

the grain. Color parameters, hue, saturation, and light are also

determined by the instrument; it specifies the color base of a

sample, how saturated it is, and how bright it is, respectively.

Statistical analysis

Statistical analyses were conducted using R (Team, R. C,

2013). The visual scorings of the last time-point on infected

spikes, including cultivars with zero symptoms, were included in

a file together with the mean values per genotype of the results

given by Cgrain Value™ and SmartGrain. Each replicate of the

data set was filtered by missing data (NA). Those with NA along

the four replicates were removed and those with presence in

more than one replicate were substituted using FactoMineR (Lê

et al., 2008) and missMDA (Josse and Husson, 2016) packages.

Then, using the Agricolae R package (De Mendiburu, 2014), the

checks in each augmented block were used to adjust the means

for each trait per replicate, the model of which is as follows:

yil = u + Gil + b1 + ϵil

where yil corresponds to the adjusted means of the ith wheat cultivar

in the lth block, u is the general mean value, Gil is the effect of the i
th

wheat genotype in the lth block, b1 is the lth block effect, and ϵil is the
residual. Subsequently, using the adjusted means, the best linear

unbiased estimates (BLUEs) was calculated using the randomized

complete block design option in META-R 6.04 (Alvarado et al.,

2015) based on the following model:

yijm = u + Sj + Gijm + Rm + ϵijm

where yijm corresponds to the BLUE of the ith genotype from the jth

population in themth replicate, u is the general mean value, Sj is the

effect of the jth source of material,Gijm is the effect of the ith genotype

in the mth replicate, Rm is the mth replicate of the effect, and ϵijm is

the residual effect. The source of wheat genotypes Sj was considered

the grouping factor.

The BLUEs data previously centered were used to predict

FHB using a multiple regression model:

yi = b0 + b1xi1 + b2xi2 +… + bpxip + ϵ

Where for i=n observations: yi corresponds to the dependent

variable, xi to the explanatory variables, b0 corresponds to y-

intercept (constant term), bp corresponds to the slope

coefficients for each explanatory variable, and ϵ corresponds to
the error of the model (also known as the residuals). Three

models were created using the morphological traits provided by

both methods (Cgrain Value™ and SmartGrain) as independent

variables and visual scorings as the dependent variable. One

model combines all the traits, and two others use the traits

provided by each method. To build each model, the data set was

partitioned employing the function “createDataPartition” of the

caret package (Kuhn et al., 2020) into 70% for model training

(training set) and the remaining 30% for evaluating model

performance (test set). Subsequently, the model was fitted to

the training set, and it predicted the responses using the test set.

To evaluate the quality of the predictions and mitigate the

possibility of errors due to the random data partitioning, the

cross-validation was executed 100 times, which means

resampling the data set, and the mean of the criterion was

taken as the final result.

Results

This study examined a total of 16 morphological traits,

including size, color, and shape of winter wheat grains from

the genebank and breeding sets with different levels of FHB

infection. Nine traits were obtained with the instrument Cgrain

Value™ and seven traits with the software SmarGrain. The

distribution of all the morphological traits measured by the two

methods showed a Gaussian distribution (Figure 2). In order to

understand the association between these traits and FHB

resistance, a comparison with the traits measured of 80 FHB

susceptible and resistant genotypes was performed. For this

purpose, five genotypes per replicate (four replicates) from

both sets, breeding and genebank, were selected based on the

FHB severity scores on the spikes, genotypes scored as 0%

(visually non-infected or resistant), and ones scored as 100%

(visually infected or susceptible). Among the infected and non-

infected selected groups, there was a 22.61% reduction in V and

11.32% in AS. Other parameters also showed a reduction, such

as T_RAW at 10.60%, W at 8.30% in both methods, and WT at
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22.63%. Additionally, L was reduced according to the results by

1.96% in Cgrain Value™ and 2.26% in SmartGrain. Similarly,

CS and PL showed a decrease, but in less proportions with 4.60

and 3.25%, respectively. The minimum seed L measured was

4.59 mm for non-infected and 4.50 mm for infected genotypes.

On the other hand, color parameters expressed major changes

compared with all the other morphological traits. Hue and the

light increased with the infection by 19.91 and 8.28%,

respectively, while saturation decreased at about 15.52%

(Table 1). According to the analysis of variance (two-way

ANOVA), the morphological traits L, W, T_RAW, light, and

hue were highly significant (P< 0.001), likewise with V, CS, and

saturation (P< 0.01), indicating a clear association with FHB

disease severity level. Meanwhile, the parameters WT, AS, LWR,

PL, and DS did not indicate any significance but still showed

slight differences between infected and non-infected grains.

Additionally, a principal component analysis (Figure 3) was

performed to show the response of all the seed traits studied

regarding the disease infection and how they correlate to each

other. The proportion of total variance on the two first principal

A

B

FIGURE 2

Frequency distribution of the different morphological traits of wheat genotypes seeds from the breeding and genebank sets collected with (A)

the Cgrain Value™ instrument and (B) the SmartGrain software.
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components and correlations represents 60.50 and 19.90%,

respectively, of the total variance. The LWR trait was shown to

be the higher positive in the first principal component; similarly,

hue was shown to be positive but in a lesser proportion. In the

same component but with negative loading, we found CS as the

variable with the highest contribution; the traits W from both

methods, AVG.W, and T_RAW were also projected onto this

component with a loading of a slightly lesser norm. Although

saturation was also projected onto this component, it was shown

to be the smallest loading. On the other hand, in the second

principal component, the traits DS and L from both methods,

PL, AS, V, and WT showed a high positive loading with similar

proportions, whereas the trait light was the only one with a

negative loading into the second principal component and the

one with less projection among all the traits. In general, all the

seed morphological traits assessed expressed variability and

influence in the two principal components. In addition, as can

be observed in the graph, the variation of LWR has an opposite

projection to the CS trait, expressing a good indicator to study

the deformation of the grains caused by the disease infection.

Considering Table 1, the mean values for the same

morphological traits measured by both methods (L and W)

across the two sets, genebank and breeding, were similar. The

difference between infected and non-infected seeds was 0.11 mm

in L in both methods and between 0.21 and 0.25 mm in W and

AVG_W. Both methods provide important parameters for seed

morphology studies. Cgrain Value™ provides V and WT values

and color information. Although these are important

characteristics for different study purposes, mainly for

identifying FHB-infected kernels, SmartGrain, in turn,

provides information such as PL, AS, and CS that can show

variabilities between infected and non-infected seeds. Here the

BLUES for all the measured parameters were correlated with

each other and in association with the visual scorings on the

spikes (Figure 4). A moderate to high positive correlation was

found with the color parameter hue, and a low positive

TABLE 1 Descriptive statistics showing differences between the seed shape characters of 80 genotypes from genebank and breeding set under
non-infection (0%) and full infection (100%) FHB symptoms, with five genotypes of each one per replicate.

a) CGRAIN VALUE™
Description Level L W T.RAW AVG.W V WT HUE SAT LIGHT

Mean Non_Infected 5.6 2.76 2.47 2.61 19.18 0.02 25.78 0.48 0.62

Infected 5.49 2.53 2.2 2.36 14.84 0.01 30.81 0.4 0.68

% Reduction 1.96 8.29 10.6 9.41 22.61 25 -19.51 16.52 -9.67

Max Non_Infected 6.88 3.7 3.245 3.41 38.9 0.04 30.46 0.55 0.715

Infected 6.46 3.13 2.93 3.03 26.6 0.03 38.99 0.51 0.81

Min Non_Infected 4.59 2.18 1.98 2.08 10.66 0.01 23.45 0.43 0.55

Infected 4.5 2.05 1.88 1.96 7.1 0.008 24.88 0.3 0.58

SD Non_Infected 0.52 0.36 0.3 0.32 6.74 0.008 1.32 0.02 0.04

Infected 0.45 0.23 0.22 0.23 4.02 0.005 3.01 0.05 0.05

SE Non_Infected 0.08 0.05 0.048 0.05 1.06 0.001 0.21 0.004 0.006

Infected 0.07 0.04 0.036 0.04 0.63 0.0007 0.47 0.008 0.007

CV (%) 9.44 13.02 12.26 12.53 35.15 35.15 5.14 5.8 6.79

b) SMARTGRAIN
Description Level AS PL L W LWR CS DS

Mean Non_Infected 9.77 12.91 5.08 2.44 2.13 0.7 0.48

Infected 8.66 12.49 4.97 2.23 2.25 0.67 0.51

% Reduction 11.32 3.25 2.26 8.27 -5.64 4.6 -6.9

Max Non_Infected 17.36 17.15 6.57 3.71 2.53 0.8 0.85

Infected 13.63 15.54 6.25 2.95 2.65 0.73 1.01

Min Non_Infected 3.41 7.91 3.2 1.39 1.53 0.63 0.24

Infected 3.01 7.31 2.88 1.36 1.88 0.61 0.23

SD Non_Infected 3.21 2.16 0.81 0.48 0.17 0.03 0.13

Infected 2.55 1.95 0.79 0.38 0.15 0.02 0.18

SE Non_Infected 0.5 0.34 0.12 0.07 0.02 0.005 0.02

Infected 0.4 0.3 0.12 0.06 0.02 0.004 0.02

CV (%) 32.85 16.72 16.11 19.72 8.41 4.76 28.27

a) Cgrain Value™ size, shape and color characteristics, (L) [mm], Width (W) [mm], Raw Thickness (T.RAW) [mm], Mean Width (AVG.W) [mm], Weight (WT) [g], Hue, Saturation, and
Light; b) SmartGrain size and shape characteristics, Area size (AS) [ mm2], Perimeter length (PL) [mm], Length (L) [mm], Width (W) [mm], Length to width ratio (LWR), Circularity (CS)
Distance between IS and CG (DS) [mm].
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correlation with light was given by Cgrain Value™ and LWR as

well as given by SmartGrain (r = 0.65, r = 0.36, and r = 0.27,

respectively). Negative correlations were also found between the

visual evaluations of symptoms and the other characteristics in

different levels of strength of association. There was no

correlation between FHB visual scoring and DS (r = 0.01).

The multiple linear regression model developed to identify

the contributions of the 16 different morphological traits

provided by Cgrain Value™ and SmartGrain expressed a high

moderate prediction (R2 = 0.58), (Figure 5A). Aiming to identify

which of both methods used in this study provides a higher

prediction and also to identify the best morphological traits to

predict FHB, two more models were constructed: one for the

results given by Cgrain Value™ and another one for the results

of SmartGrain. The model of Cgrain Value™ traits showed a

moderate prediction (R2 = 0.52), (Figure 5B). On the other hand,

the model of SmartGrain traits showed medium–low prediction

(R2 = 0.30), (Figure 5C), clearly showing that the first model had

FIGURE 3

Principal component analysis biplot of the morphological traits collected with Cgrain Value™ and SmartGrain of the breeding and genebank
seeds infected with different levels of Fusarium head blight.

FIGURE 4

Sorted upper triangle correlation matrix among the morphological attributes of the wheat genotype seeds from the breeding and genebank sets

collected with the Cgrain Value™ and the SmartGrain software.
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a higher prediction than separately. In addition, the

morphological parameters that are the most suitable to assess

FHB in grains above all the 16 evaluated were identified.

According to the regression model and the ANOVA analysis,

the parameters that provided more information about the

disease are the length, width, thickness, average width,

circularity , and the color parameters in the color

representation HSL (Table 2). The sensitivity test showed that

these variables provide the highest value of R-square, (R2 = 0.52).

These morphological traits are enumerated from most

significant to least significant in Figure 6.

Discussion

This study compared the potential performances of two

different image-based methods to predict FHB. The results of

both indicated that morphological seed traits are functional for

predicting FHB among two different sets of genotypes evaluated.

Furthermore, a comparison of the applicability of the two

methods was properly addressed by evaluating the cost,

accuracy, and time efficiency—for instance, to extract

dimension, shape, and color parameters, Cgrain Value™

utilizes a unique mirror design to inspect all possible angles of

A B C

FIGURE 5

Regression models for predicting Fusarium head blight in wheat: (A) all the characteristics obtained with Cgrain Value™ and SmartGrain, (B)

Cgrain Value™ morphological traits, and (C) SmartGrain morphological traits.

TABLE 2 Summary of the multiple linear regression model combining all the 16 morphological characteristics provided by Cgrain Value™ and

SmartGrain.

Model summary

Morphological traits Sum sq Mean sq F-value Pr (>F)

C_L 23,829 23,829 64.587 6.99E-15 ***

C_W 51,079 51,079 138.446 < 2e-16 ***

C_T.RAW 40,500 40,500 109.772 < 2e-16 ***

C_AVG.W 2,013 2,013 5.456 0.0199 *

C_V 2,603 2,603 7.055 0.00816 **

C_WT 680 680 1.843 0.17526

C_LIGHT 31,656 31,656 85.802 < 2e-16 ***

C_HUE 39,386 39,386 106.752 < 2e-16 ***

C_SATURATION 2,649 2,649 7.18 0.00762 **

S_AS 178 178 0.483 0.48734

S_PL 624 624 1.691 0.1941

S_L 3,027 3,027 8.204 0.00436 **

S_W 45 45 0.121 0.72828

S_LWR 0 0 0.001 0.9802

S_CS 1,651 1,651 4.476 0.03489 *

S_DS 539 539 1.461 0.22731

The most significant characteristics concerning the Fusarium head blight disease infection according to the P-value has an *. (No significance P>0.05; *P≤0.05; **P≤0.01; ***P≤0.001).
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individual kernels in the sample. Additionally, image capture

and processing are instantaneous, thanks to the hardware and

software combination. Conversely, image acquisition using the

SmartGrain system was carried out over a relatively long period,

yet image processing was done relatively fast. However,

compared with Cgrain Value™, the earlier approach is

cheaper considering the cost of the tools used in image

capture, requiring a simple RGB camera, a static frame, and

the free software.

On the other hand, the morphological traits, based on the

statistical analysis results, that showed significant correlations to

the visual scores were color traits in the HSL color representation

and thickness from Cgrain Value™, length and width, from both

methods (Figures 5, 6). Although the other measured

morphological traits were not significantly correlated to the

visual scores, infected grains still expressed differences in these

traits that may be ultimately informative about seed health and

refine the prediction (Table 1). Nevertheless, DS was not

correlated and did not express significant differences in

infected seeds of FHB, but it could prove useful in

other applications.

The evaluated visual scores of the symptoms associated with

FHB—bleached, yellowish or discolored, and stunted spikes—

were previously validated by the identification of several loci by

genome-wide association studies (GWAS) (Appendix 1), in a

previous study with the same plants and visual scorings (Zakieh

et al., 2021). The proposed methods aim to replace costly and

labor-intensive genetic analysis.

Therefore, the prediction of both methods studied here

appears to be consistent for FHB with the assigned traits

concerning the phenotype–genotype association. Previous

investigations showed a high correlation between symptoms

that are present on wheat heads and the rate of kernel damage

(Góral et al., 2018). Therefore, it is feasible to reference the

estimated visual scores of disease severity to establish similar

results of association/disassociation with the corresponding

assessments of grain traits following the methodology in

this study.

An important aspect to highlight is that the percentage of

disease severity can be assessed, where, in contrast to disease spread

from the point of inoculation, it offers less intensive labor by spray

inoculation of a larger number of wheat genotypes. Additionally,

unlike point-inoculated wheat spikelets, spray-inoculated spikes

allow for evaluating the degree of damage caused by the disease

to all kernels of the infected spike. Within this work frame, whole

spike kernels are investigated for their characteristics rather than the

damage to a limited number of kernels caused by Fusarium

colonization from the point of inoculation. This, in turn, is

expected to shorten the period for disease resistance assessment,

lower its cost, and be less labor demanding.

Conclusion

The results indicated that the traits with a higher correlation to

FHB were length, width, thickness, and especially color values in

HSL color representation. Moreover, Cgrain Value™ was

advantageous to SmartGrain in terms of the time required for

image capture and outperformed the latter when applied to a large

number of samples, yet SmartGrain processes samples fast and is

cheaper in comparison to Cgrain Value™. Although the disease

prediction showed a low–moderate accuracy for SmartGrain and a

high–moderate accuracy for Cgrain Value™ and the results of both

methods combined, this is attributed to the prediction reference,

FIGURE 6

Sensitivity plot of the morphological characteristics to predict Fusarium head blight in wheat. The parameters are organized from the best
predictors to the less significant to predict the disease. Color lines indicate the significance, considering red as the most important predictor and
pink as the less important one. The highlighted regions reflect the correlation of the parameters among each other.
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which corresponds to FHB disease severity scorings done on the

spikes. However, the novelty of this study resides in the accuracy

reached even with a different reference source, but which is directly

related. Additionally, as the plant material genotypes and visual

scores were validated by GWAS analysis, then the results presented

here are phenotype–genotype-associated.
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Appendix 1

Quantitative trait loci (QTL) detected in genome-wide association
studies employing seven models at p = 0.0001 (LOD ≥ 4) for
Fusarium head blight severity in winter wheat from the breeding,
genebank, and combined sets (Zakieh et al., 2021). Chr.,
chromosome; FAF, favorable allele frequencies. The asterisk means
also detected by these models at p = 0.0002. A, detected above
Bonferroni corrected threshold (a = 0.05). B, the marker effects are
estimated for only GLM, MLM, and CMLM and FarmCPU in GAPIT
(Lipka et al., 2012).

QTL Marker Chr. Position
(cM)

FAF Effect Model
(s)

Set

SLUfhbchr1B.1 BS00021877_51 1B 154.58 0.06 NA Blink Combined

SLUfhbchr2A.2 BobWhite_c16923_64 2A 125.33 0.06 NA Blink;
(SUPER)*

Combined

SLUfhbchr3A.3 Kukri_rep_c89183_282 3A 15.05 0.64 27.84
to

28.10

GLM,
CMLM

Combined

SLUfhbchr3B.4 wsnp_Ex_c34975_43204180 3B 67.45 0.95
(CS),
0.94
(BS),
0.97
(GS)

65.78
to

82.47

GLM,
MLM,
CMLM,
SUPER,
MLMM,
FarmCPU,

Blink

All

Kukri_c18009_398a 3B 67.67 0.95 78.20
to

80.15

GLM,
MLM,
CMLM,
SUPER

Combined

wsnp_Ex_c5378_9505533 3B 68.71 0.94 NA SUPER Combined

SLUfhbchr3D.5a RFL_Contig4591_1759 3D 0.00 0.94 51.94
to

54.69*

MLMM;
(GLM,
MLM,
CLM,
SUPER,
Blink)*

Combined

RAC875_rep_c115090_5 3D 0.00 0.02 NA Blink Breeding

SLUfhbchr3D.5b JD_c7714_954 3D 143.01 0.04 NA Blink,
SUPER

Genebank

SLUfhbchr5A.6 RAC875_rep_c106118_339 5A 39.02 0.03 -31.55
to

-29.40

GLM,
MLM,
SUPER,
MLMM

Combined

SLUfhbch6A.7 Tdurum_contig46670_911 6A 128.26 0.96 NA SUPER Combined

SLUfhbchr7A.8 Kukri_c11530_92 7A 232.11 0.84 44.1 CMLM,
SUPER,
MLMM

Combined

RAC875_c12733_1509a 7A 228.37 0.83 40.41
to

45.14

GLM,
MLM,
CMLM,
SUPER,
MLMM,
FarmCPU,

Blink

Combined

SLUfhbchr7B.9 wsnp_Ex_c351_689415 7B 143.23 0.02 NA Blink,
SUPER

Breeding

RAC875_c8752_1079 7B 158.98 0.84 39.97* SUPER;
(CMLM)*

Combined
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Abstract 

Wheat production and end-use quality are severely threatened by drought and heat stresses. This study 

evaluated stress impacts on phenotypic and gluten protein characteristics of eight spring wheat 

genotypes (Diskett, Happy, Bumble, SW1, SW2, SW3, SW4, SW5) grown to maturity under controlled 

conditions (Biotron) using RGB imaging and size-exclusion high-performance liquid chromatography 

(SE-HPLC). Among the stress treatments compared, combined heat-drought stress had the most severe 

negative impacts on biomass (real and digital), grain yield, and thousand kernel weight (TKW). 

Conversely, it had a positive effect on most gluten parameters evaluated by SE-HPLC and resulted in 

a positive correlation between spike traits and gluten strength, expressed as unextractable gluten 

polymer (%UPP), and large monomeric protein (%LUMP). The best performing genotypes in terms of 

stability were Happy, Diskett, SW1, and SW2, which should be further explored as attractive breeding 

material for developing climate-resistant genotypes with improved bread-making quality. RGB 

imaging in combination with gluten protein screening by SE-HPLC could thus be a valuable approach 

for identifying climate stress-tolerant wheat genotypes.  

 

1. Introduction 

Wheat (Triticum aestivum L.) is the third most 

common cereal produced worldwide, with 

more than 771 million tonnes harvested in 2021 

(https://www.fao.org/faostat). Wheat provides 

approximately 20% of global total human 

dietary calories and 21% of daily protein 

consumption (Shiferaw et al., 2013). With 

increasing population and urbanization, 

consumption and associated demand for wheat-

based food products is increasing (Peña, 2007), 

so sustaining wheat production and quality is 

important for ensuring food security. With 

ongoing climate change and global warming, 

extreme climate events and abiotic stresses are 

becoming more severe and unpredictable (Le 

Gouis et al., 2020). Climate events such as heat, 

drought, excessive rainfall, and high 

atmospheric concentrations of CO2 are already 

affecting production and quality of wheat 

world-wide (Yadav et al., 2020). The extent of 

the losses depends on the plant growth stage 

affected and the severity of the stress (Wahid et 

al., 2007; Lan et al., 2022). Therefore, 

development of wheat genotypes that are 

resistant to various abiotic stresses is crucial for 

food security under ongoing climate change. 
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Among the abiotic stresses imposed by climate 

change, heat and drought stresses are 

considered to cause the most damage to wheat 

growth and development (Mamrutha et al., 

2020). Drought during stem elongation and 

heat stress during the grain-filling stage have 

been identified as particularly important 

environmental factors affecting the yield and 

quality of wheat (Guzmán et al., 2016; Le 

Gouis et al., 2020). This is because drought and 

heat impair growth and development of 

different wheat plant organs, rate of 

photosynthesis, fertility, number of spikes, 

grain-filling, and nutrient uptake by the plant 

(Hurkman and Wood, 2011; Guzmán et al., 

2016; Lan et al., 2022). Yield losses due to 

individual or combined heat-drought stresses 

have been observed in multiple countries in 

Europe, including Finland, Sweden, France, 

Belgium, and Switzerland (Kumar et al., 2020; 

Le Gouis et al., 2020; Lama et al., 2022). Areas 

such as the Mediterranean and southern Europe 

are experiencing higher impacts of heat-

drought stress than other regions, causing major 

economic and food production losses (EEA, 

2020). A 1-3°C rise in mean global air 

temperature is suggested to decrease wheat 

production by up to 28% (Shew et al., 2020; 

Zhang et al., 2022). In fact, in a previous study 

by our research group on field-grown wheat in 

Sweden, a yield reduction of up to 40% was 

observed under combined heat-drought 

conditions compared with rainy and cold 

conditions (Lama et al., 2022).  

Wheat yield is generally the main focus in 

research, due to its direct relationship to food 

security (Asseng et al., 2019). However, 

manufacturers of different wheat-based food 

products, such as bread and pasta, require wheat 

flours with a specific protein quality (Johansson 

et al., 2020). Wheat quality is mainly 

determined by its major protein, gluten, the 

quantity and quality of which are often 

negatively impacted by heat and drought. For 

instance, the relatively high content of protein 

and strong gluten required in wheat bread flour 

(Kuktaite et al., 2004) is severely affected by 

intense heat and drought stresses (Lama et al., 

2022). Total protein content and gluten content 

are reported to increase by 65% and 32%, 

respectively under combined heat-drought 

stress compared with control conditions (Sattar 

et al., 2020). In greenhouse studies, the relative 

proportions of different types of proteins, such 

as high molecular weight (HMW) and low 

molecular weight (LMW) glutenins, and 

omega-, alfa/beta- and gamma-gliadins, have 

been found to increase under heat stress (35°C 

day temperature) compared with a control 

environment (Zhao et al., 2022).  

The susceptibility of wheat plants to abiotic 

stresses depends mainly on the duration, 

frequency, and intensity of the stress conditions 

to which the plants are exposed (Barnabás et al., 

2008; Farooq et al., 2009; Qaseem et al., 2019). 

Due to the adaptive metabolic and 

physiological mechanisms that wheat plants 

have developed, physiological responses at 

different developmental stages can differ 

between genotypes (Rampino et al., 2006). 

Plants under drought stress decrease their leaf 

area and increase canopy temperature in order 

to prevent water loss (Anjum et al., 2011), 

although heat stress combined with appropriate 

irrigation can increase transpiration rates and 

decrease canopy temperature (Singh et al., 

2007). In combined heat-drought stress, there is 

an extreme effect on the physiological 

responses of wheat plants at all growth and 

reproductive stages (Rizhsky et al., 2002; 

Prasad et al., 2011). In combination, these two 

stresses can have complex contradictory effects 

compared with when they occur separately 

(Zhou et al., 2017).  

Physiological traits of wheat, such as growth 

and characteristics related to yield, are 

commonly assessed by visual or manual 

annotation methods, but these tend to be 

subjective, time-consuming, and laborious 

(Dhondt et al., 2013). Therefore non-

destructive remote and proximal phenotyping 

techniques are becoming more popular and 

more widely used (Armoniené et al., 2018; 

Leiva et al., 2021; Tao et al., 2022). Such 

methods have been developed to extract data 
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mainly from images in the visual and 

electromagnetic spectrum on several plant traits 

with high accuracy, reliability, and time 

resolution (Humplík et al., 2015; Chawade et 

al., 2019; Reynolds et al., 2019). Cameras that 

provide spectral information for each pixel in 

an image, such as multispectral and 

hyperspectral data, have proven to be a valuable 

tool for studying plants under abiotic stresses 

(Cao et al., 2019). The main difference between 

multispectral and hyperspectral data is the 

number of bands in the light spectrum (5-10 

bands and hundreds, respectively) (Sara et al., 

2021). However, these cameras are expensive 

and require sophisticated statistical methods for 

data processing (Zubler and Yoon, 2020). Low-

cost digital RGB cameras can readily estimate 

plant shoot biomass, development, and growth 

rate, and can be a suitable tool for mapping 

plant responses under heat and drought (Blum 

et al., 1997; Humplík et al., 2015).   

Phenotypic traits such as plant growth and yield 

and grain quality characteristics are important 

for sustaining the supply of wheat-based food 

products. Thus, a clear understanding of wheat 

response mechanisms to heat, drought, and 

combined heat-drought stresses is essential. In 

addition, since phenotypic traits (e.g., 

yield/grain weight) and wheat protein quality 

parameters are usually negatively related 

(Daniel and Triboi, 2000; Johansson et al., 

2005), the stability of these attributes under 

climate change is complex and needs to be 

investigated.  

The aim of this study was to determine the 

effects of individual and combined heat-

drought stresses on phenotypic plant growth 

characteristics, yield, and gluten protein quality 

parameters of spring wheat genotypes grown in 

highly controlled environments. Plant growth 

and development under heat, drought, and 

combined heat-drought stresses were 

monitored using RGB imaging, and gluten 

protein quality characteristics of wheat grain 

were assessed by SE-HPLC. The stability of 

yield and of gluten protein quality parameters 

for different spring wheat genotypes grown 

under stress conditions was also evaluated. 

2. Materials and Methods 

 

2.1. Plant material 

Eight spring wheat genotypes (Diskett, Happy, 

Bumble, SW1, SW2, SW3, SW4, and SW5) 

developed in the breeding program at 

Lantmännen Lantbruk, Svalöv, Sweden, were 

evaluated. The selected genotypes represented 

a range in gluten strength, as identified when 

grown in the field in our previous study (Lama 

et al., 2022). Diskett, Bumble, and SW3 

represented genotypes with unstable gluten 

strength (>5% variation between years), while 

Happy, SW1, SW2, SW4, and SW5 represented 

genotypes with stable gluten strength (<5% 

variation between years) (Lama et al., 2022).  

2.2. Experimental design and description 

of stress environments   

The spring wheat plants were grown in a 

randomized complete block design under three 

stress environments (heat, drought, combined 

heat-drought), which were applied 

simultaneously. The plants were grown in 

plastic pots (20 cm x 16 cm, volume 3.5 L) in 

peat-based soil, with three plants per pot. Two 

weeks after emergence, a plant cone (61 x 25 

cm) was inserted in each pot to support the 

growing plants. Each pot was considered a 

biological replicate, and four biological 

replicates were used per genotype. 

The pots containing the eight genotypes were 

grown in two Biotron climate chambers with 

artificial lighting from February to June 2020 at 

SLU, Alnarp, Sweden (Tables S1 and S2, 

Supplementary Information (SI)). Growing 

conditions in terms of temperature, humidity, 

and day length (hours) were based on mean 

five-year (2016-2020) weather data for the 

growing period in Malmö, Sweden (22 April-

11 August) obtained from the Swedish 

Meteorological and Hydrological Institute 

(SMHI) (www.smhi.se). Daylight intensity of 
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400 μmol m-2s-1, produced with LED lights, 

was provided during the growing period. Until 

the start of the stress treatments, all plants were 

watered every two days with approximately 

500 mL water per pot. The drought, heat, and 

combined heat-drought stress treatments 

(information below) were introduced at the 

beginning of heading stage (Zadoks 50), at 

approximately 56 days after sowing, and were 

applied for five days, resulting in signs of stress 

in the plants (dry, yellow leaves) (Figure 1a).  

Heat. In this treatment, the temperature was 

kept at 29°C during day and night for five days 

and the 56-day-old plants were watered as in 

the control (500 mL water/pot every two days) 

(Table S1). After five days, the temperature was 

returned to the control level (15°C) (Table S1).  

Drought. Plants assigned to the drought 

treatment began heading (Zadoks 50) slightly 

earlier than the plants in the other treatments. 

Drought stress was thus applied to 51-day-old 

plants, by stopping all watering of the plants for 

five days. After five days, normal watering was 

resumed (500 mL water/pot every two days). 

Combined heat-drought stress. In this 

treatment, the 56-day-old plants received no 

water for five days and the temperature was 

maintained at 29oC during day and night (Table 

S1). After five days normal watering was 

resumed and the temperature was set to control 

conditions (Tables S1 and S2). 

Wheat plants still growing eight days after 

stopping the stress treatments were considered 

recovered plants. The digital biomass of all 

plants was recorded at three time points (Tp1 = 

no stress, Tp2 = after five days of stress 

treatment, Tp3 = after eight days of recovery) 

(Table 1). 

2.3. Image acquisition 

The biomass of the wheat plants was assessed 

digitally from the top and side through RGB 

imaging in a laboratory with LED light, using 

two Canon EOS 1300D DSLR cameras with an 

18-55 mm kit lens (Armoniené et al., 2018). 

The cameras were mounted on a SpaceArm 

(Tristar) at 1 m for the top view and on a tripod 

at 1.5 m for the side view. Plant pots were 

placed manually on a top-quality Intelligent 

360 Photography turntable platform (Shenzhen 

Comxim Technology Co., Ltd., Shenzhen, 

Guangdong, China) and individually 

photographed using the DigiCamControl 

software (Istvan, 2014). During the side-view 

imaging, the plant pot was rotated by 90° four 

times, to acquire four images (front, right, left, 

and back projections). Shadows and light 

differences were adjusted by camera settings 

and exposure. For both cameras, focal length 

was set at 18 mm and ISO 1600, while light 

exposure was set as F-Stop f/13 and exposure 

time 1/60 s for the top-view camera, and F-Stop 

f/8 and exposure time 1/40 for the side-view 

camera. The images obtained were stored in 

JPEG format, using resolution 3456 x 2304 

pixels for top projection and 5184 x 3456 pixels 

for side projection. 

2.4. Image processing  

The digital biomass of each plant was 

automatically extracted with EasyLeaf software 

(Easlon and Bloom, 2014). Since all images 

were acquired under the same light conditions, 

the red and green thresholds in the software and 

the individual ratios of RGB values (green/red 

(G/R)) and green/blue (G/B)) were set using the 

first image of each measuring occasion (Tp) 

and then processed in batch. Finally, projected 

leaf area (PLA) was obtained from the average 

of the five plant images (top at 0° and four sides 

at 90°) as: 

                                   𝑃𝐿𝐴 = ∑ 𝑝𝑙𝑎

𝑛

1

 

2.5. Phenotypic traits 

The height of all three plants in each pot was 

measured with a ruler as the distance from the 

soil surface to the tip of the spike, excluding the 

awns. To measure the spike length (mm), the 
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tallest spike of each plant in the pot was 

selected and the length of the spikes was 

recorded from the base of the rachis to the tip 

of the terminal spikelet, excluding the awns. 

Spike width (mm) was measured on these same 

spikes, at a point halfway along the spike 

height. Weight of fresh biomass (g), including 

the weight of spikes (g), per pot was recorded. 

Thousand kernel weight (TKW) (g) was 

calculated as described by Wu et al. (2018). 

Number of spikes was counted for each plant 

per pot and grain yield (g) was recorded per 

plant. 

2.6. Gluten protein parameters in the 

flour 

Size exclusion-high-performance liquid 

chromatography (SE-HPLC) was used to 

evaluate the gluten protein characteristics of the 

harvested grain. Seeds from the different 

genotypes grown at different stresses and 

control samples were milled into flour using a 

homogenizer (Mixer Mill MM 400, Retsch) for 

30 s at 30 Hz. The flours were freeze-dried 

(Cool safe Pro, LaboGene) for 24 hours in order 

to remove all moisture prior to SE-HPLC 

analysis. A two-step gluten protein extraction 

method was performed according to Lama et al. 

(2022), with some modifications where 

collected supernatant (after 1st and 2nd steps) 

in SE-HPLC vials was heated at 80°C for 2 min 

(to inactivate proteases) in a water bath 

according to Islas-Rubio et al. (2006). Samples 

were run on the SE-HPLC system in triplicate. 

Concentrations of TOTE (SDS-extractable 

proteins), TOTU (SDS-unextractable proteins), 

%UPP (percentage of SDS-unextracted 

polymeric proteins in total polymeric proteins), 

and %LUMP (percentage of large SDS-

unextracted large monomeric proteins in total 

large monomeric proteins) were calculated 

according to Lama et al. (2022). Total 

polymeric proteins (TPP) and total monomeric 

proteins (TMP) were calculated as 

LPP+SPP+LPPs+SPPs and 

LMP+SMP+LMPs+SMPs, respectively, where 

LPP, SPP, LMP, and SMP are SDS-extractable 

large polymeric proteins, small polymeric 

proteins, large monomeric proteins, and small 

monomeric proteins, respectively, and LPPs, 

SPPs, LMPs, and SMPs are the corresponding 

SDS-unextractable form.  

2.7. Statistical analysis 

Statistical analyses were performed using the 

software R (Team, 2013). Principal component 

analysis (PCA) using the R packages 

FactoMineR and two-way analysis of variance 

was conducted, with Tukey’s post hoc test 

(p<0.05), to assess the effect of different 

treatments on the gluten protein parameters and 

phenotypic traits. Spearman correlation 

analysis (p<0.05) (R package Corrplot) was 

applied for all gluten protein parameters and 

phenotypic traits in plants in each treatment. 

GGE biplots analysis (R package Metan) was 

performed to evaluate the stability of the 

studied genotypes in the different growing 

environments. The selected GGE tools were 

“mean vs. stability”, “which-won-where view 

of the GGE biplots”, and “ranking genotypes”. 

These tools facilitate the identification of the 

optimal genotypes based on performance and 

stability, identify the optimal genotype for each 

growing environment, and rank them according 

to suitability for a growing environment. 

3. Results 

3.1. Digital biomass assessment 

The digital wheat biomass assessed by RGB 

imaging at time points Tp1, Tp2, and Tp3 

differed between the genotypes for the different 

stress conditions tested (Figure 1). The greatest 

differences in plant appearance were observed 

for the genotype Diskett in the combined heat-

drought stress treatment (Figure 1; at Tp2 and 

Tp3). The impact of drought was similar to that 

of combined heat-drought at Tp2 and Tp3, with 

both treatments resulting in semi-dry plants 

(Figure 1b, 1d). The heat stress treatment had 

mild effects on the plants (Figure 1c). 

Mean digital biomass measured at flowering 

(anthesis) was similar for all genotypes at Tp1 

and decreased for all genotypes at both Tp2 and 
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Tp3. The greatest impact of the stress 

treatments was observed in the drought and 

combined heat-drought treatments, followed by 

heat (Figure 2). The greatest variation in mean 

digital biomass between the different genotypes 

was observed under drought and combined 

heat-drought (Figure 2). 

Under control conditions, rather similar digital 

biomasses at Tp1-Tp3 were observed for all 

genotypes except SW1 and SW3 (Figure 3a). 

Genotype SW3 had relatively higher digital 

biomass at Tp2 and Tp3, while in SW1 it was 

somewhat lower. Drought reduced the digital 

biomass of all genotypes compared with the 

control, and especially that of SW1 and SW4 

(Figure 3b). Heat stress had almost no impact at 

Tp1 and Tp2, but some impact at Tp3, 

especially for Bumble, SW2, and SW4 (Figure 

3c). Diskett, SW1, and SW3 showed relatively 

similar digital biomass at Tp1-Tp3 in the heat 

stress treatment (Figure 3c). In the heat-drought 

treatment, the digital biomass was significantly 

reduced in all genotypes at Tp2 and Tp3, 

although the reduction observed between Tp2 

and Tp3 was somewhat smaller for Happy 

(Figure 3d).  

3.2. Effect of genotypes and stress 

conditions on gluten protein 

parameters  

The impact of genotype (G) and stress 

environment (E) on the protein parameters was 

significantly dominated by individual effect, 

and not by G and E interaction (G x E) (Table 

2, Table S3 in SI). A significant impact of G x 

E interaction was observed on Mon/pol ratio 

(p<0.01) and TOTU (p<0.05) (Table 2). The G 

x E interaction had a significant impact in 

particular on unextractable gluten polymers 

(LPPs and SPPs) and smaller monomeric 

proteins (SMP) (Table S3). 

Evaluation of the effect of the different 

treatments on the gluten protein parameters by 

Tukey’s post hoc test indicated a major impact 

of the combined heat-drought stress conditions 

on the gluten protein parameters, with 

significant effects on TOTE, TOTU, TPP, 

TMP, and %UPP in comparison with the other 

environmental conditions (Table 3).  

A similar impact of heat-drought stress was 

observed on most gluten parameters studied 

(Table 3), and some impact of heat stress on 

TMP, %LUPP, SPP, and LMPs (Table 3, Table 

S4 in SI) in comparison with drought stress. 

Surprisingly, no significant differences 

between the drought stress treatment and the 

control were found for any of the gluten protein 

parameters studied except %UPP and %LUPP 

(Table 3). Lower amounts of %UPP and 

%LUPP (gluten strength) and, somewhat 

unexpectedly, a higher amount of LPP was 

found under the control environment compared 

with the drought and heat stress treatments 

(Tables 3 and S4). 

3.3. Relationship between genotypes, 

phenotypic traits, and gluten 

parameters under different stress 

environments  

In PCA plots, mean values of the phenotypic 

and gluten protein characteristics for plants in 

the four environments (treatments) explained 

65.6% of the variation (PC1 52.9%, PC2 

12.7%) (Figure 4). The strongest impact on the 

genotypes was observed in the combined heat-

drought treatment, for genotypes Diskett and 

SW2 (Figure 4). Sensitivity to heat stress and 

heat-drought stress was observed for genotype 

SW1 (Figure 4).  

Yield, phenotypic characteristics, and gluten 

protein parameters explained 52.8% of the 

variation in PCA (PC1 31.6%, PC2 21.2%) 

(Figure 5). The major contributors to these two 

PCs were %UPP (control and drought), TOTU 

(heat, heat-drought, and control), and spike 

length (all treatments), which impacted SW4 

and SW2 most, further followed by Diskett. 

Happy, SW3, and SW5 showed a similar low 

response to the stresses, together with grain 

yield (all treatments) (Figure 5). Bumble 

displayed a similar response in spike width (all 

stress treatments and control), %LUMP 
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(control, heat, and heat-drought), and %UPP 

(heat and heat-drought) (Figure 5). 

The Spearman’s rank correlation results 

indicated a significant impact of the treatments 

on certain gluten protein parameters, yield, and 

phenotypic traits (Figure 6). In the control 

(unstressed) environment, a significant positive 

correlation was found between grain yield and 

digital biomass at all three time points (Tp1-

Tp3) (p<0.001), and between grain yield and 

number of spikes (p<0.01) (Figure 6). 

Experimentally measured biomass showed a 

significant positive correlation with digital 

biomass at Tp1, Tp2, and Tp3 (p<0.001, 

p<0.05, and p<0.001, respectively) (Figure 6a). 

The strongest significant negative correlations 

were found between TKW and the protein 

parameters (TOTE, TMP, TPP (p<0.001); 

TOTU (p<0.01)) (Figure 6a).  

In all stress treatments, grain yield was 

significantly positively correlated with biomass 

(p<0.001), while significant positive 

correlations were also found between grain 

yield and digital biomass under heat (p<0.01) 

and under combined heat-drought stress 

(p<0.05) (Figure 6c and 6d).  

Under drought treatment, a negative significant 

correlation was found between digital biomass 

(at Tp2) and most of the protein parameters 

studied (TOTU, TPP TMP and TOTE; 

p<0.001) (Figure 6b). Additionally, TPP, TMP, 

and TOTE showed a significant negative 

correlation with grain yield (Figure 6b). 

Under individual drought and heat stresses, a 

significant negative correlation between digital 

biomass (at Tp3 and Tp2) and %UPP (p<0.01 

and p<0.05, respectively) was observed 

(Figures 6b and 6c). Under heat stress, only 

TKW was significantly positively correlated 

with plant height (p<0.05). 

In combined heat-drought stress conditions, a 

significant negative correlation was found 

between grain yield and protein parameters 

(TOTE, TMP, and TPP; p<0.001) (Figure 6d). 

TOTU showed significant positive correlations 

with digital biomass at Tp1 (p<0.001) and with 

the phenotypic traits spike length, number of 

spikes, and TKW (p<0.05). In addition, number 

of spikes was significantly positively correlated 

with %UPP (p<0.001) and %LUMP (p<0.01) 

(Figure 6d). 

Comparisons of the impact of the stress 

treatments on selected yield traits (grain yield 

and TKW) and gluten parameters (%UPP, LPP, 

Mon/pol, and TOTE) for individual genotypes 

revealed some variation (non-significant) 

between the genotypes (Figure 7). Combined 

heat-drought stress decreased grain yield in 

most genotypes (Figure 7a). However, Bumble 

and SW1 in the combined heat-drought 

treatment showed similar grain yield as in the 

control. Regarding TKW, no impact of the 

stresses was observed for most genotypes, 

except a decrease due to combined heat-

drought stress for SW3, SW4, and SW5 (Figure 

7a). 

In terms of gluten protein characteristics, a 

clear increase in both %UPP and LPPs (gluten 

strength) was noted for SW2, which had the 

highest %UPP (52.5%) of all genotypes studied 

(Figure 7b). Concerning Mon/pol ratio 

(describing extensibility vs. strength 

distribution), no difference due to the stresses 

was found between the genotypes. Total 

extractable protein (TOTE), a strong indicator 

of protein concentration, was found to be 

increased most under combined heat-drought 

stress in genotype SW2 (Figure 7b). 

3.4. Stability of yield and protein quality 

traits under stress  

The GGE biplots of PC1 and PC2 scores 

indicating stability and performance of the 

wheat genotypes in terms of grain yield, TKW, 

TOTE, and %UPP in the different treatments 

are shown in Figure 8. PC1 and PC2 together 

explained 93.61% of the variation in grain 

yield, 90.2% of the variation in TKW, 95.22% 

of the variation in %UPP (gluten strength), and 

97.79% of the variation in TOTE (protein 
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concentration) (Figure 8). To identify stable 

genotypes, the GGE biplots of mean 

performance and stability across the 

environments were compared, where 1, 2, 3, 

and 4 in Figure 8 correspond to control, 

drought, heat, and combined heat-drought, 

respectively. 

The grain yield (g/plant) plot for ‘mean vs. 

stability’ revealed the most promising 

genotypes (Figure 8a). SW3 showed the highest 

mean value for grain yield, followed by Happy, 

while Diskett and SW4 showed the lowest grain 

yield in the studied environments (Figure 8a). 

The five connected points in the ‘which-won-

where’ GGE biplots showed that plants in the 

drought, heat, and combined heat-drought 

treatments clustered close to each other and 

indicated that the genotypes Bumble, SW5, 

Happy, and SW3 were the top performers in the 

studied environments (Figure 8b). Ranking the 

genotypes according to their location in the 

circles in the GGE biplots confirmed that the 

genotypes Happy and SW3 were the top 

performers, i.e., located closest to the “ideal 

line” (Figure 8c). 

Stability in TKW appeared to be higher for the 

genotype Happy (Figure 8d). The genotypes 

Bumble and SW3 showed the highest stability, 

but the lowest mean values, for TKW (Figure 

8d). The five connected points in the ‘which-

won-where’ GGE biplots showed that the 

control, drought, and heat treatments (1, 2, 3, 

respectively) clustered in the same section, with 

Happy and SW4 indicated as the top performers 

(Figure 8e). For the combined heat-drought 

environment, the top performer in terms of 

TKW was Diskett (Figure 8e). Based on its 

location in the inner circle and position near the 

“ideal line”, Happy was identified as the top-

ranking genotype (Figure 8f).  

The GGE biplots indicated that stability in 

%UPP among the genotypes in the studied 

environments was highest in terms of mean 

value for SW2, followed by Bumble (Figure 

8g). The ‘which-won-where’ GGE biplots 

indicated that SW2 was the top performer in the 

control, drought, and combined heat-drought 

treatments, while Bumble was the top 

performer in the heat and combined heat-

drought treatments (Figure 8h). The highest 

ranking genotypes in all four environments 

were SW2 and Bumble (Figure 8i).  

Stability evaluation of TOTE in the GGE 

biplots showed that the highest mean values 

across the studied environments were for 

Diskett and SW1 (Figure 8j). Based on the 

‘which-won-where’ GGE biplots, Diskett was a 

top performer in all four environments, while 

SW1 was a top performer in the control, 

drought, and heat treatments (Figure 8k). SW2 

and SW5 were the top performers in the 

combined heat-drought treatment (Figure 8k). 

To conclude, the top-ranked genotypes in all 

environments for TOTE were Diskett and SW1 

(Figure 8l). 

4. Discussion  

Accurate tools for evaluating the yield, 

phenotypic traits, and quality traits of wheat 

genotypes under changing climate conditions 

are important when selecting new cultivars. 

Among the abiotic stresses to which plants are 

subjected, drought, heat, and combined heat-

drought are major limiting factors affecting 

wheat plant development. In this study, 

combined heat-drought stress had the greatest 

impact on digital biomass (assessed by RGB 

imaging) in the eight wheat genotypes studied. 

The drought treatment also significantly 

reduced the digital biomass, whereas the heat 

stress treatment had a relatively mild impact 

(Figures 1 and 2). A similar pattern has been 

observed previously under combined heat-

drought stress conditions for Nordic wheat 

grown in controlled conditions and Lithuanian 

winter wheat grown in the field (Statkevičiūtė 

et al., 2022). These observations suggest that 

the combined stress affects physiological plant 

traits such as stomatal closure, which leads to 

decreased CO2 assimilation and lower TKW 

(Abdelhakim et al., 2021; Statkevičiūtė et al., 

2022). The magnitude of the reduction in 

biomass is known to depend on the duration and 
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intensity of the stress and when the stress is 

imposed (Barnabás et al., 2008; Farooq et al., 

2009; Qaseem et al., 2019). 

In this study, wheat plants were exposed to the 

different five-day stress treatments during 

anthesis, which is known to be one of the most 

critical growth stages, explaining the strong 

impact of the treatments involving drought. 

Applying heat stress alone had a mild impact on 

plant development characteristics and biomass 

of individual genotypes, so it was not possible 

to evaluate plant response mechanisms to this 

stress. The chosen heat stress temperature 

(29°C) was based on findings in previous 

studies that a temperature of 27-30°C or higher 

prior to and during anthesis can substantially 

reduce grain size, numbers, and yield (Tashiro 

et al., 1989; Wheeler et al., 1996; Porter et al., 

2005; Semenov and Shewry, 2011).  

As expected, drought and combined heat-

drought stress decreased biomass accumulation 

(Figure 3). The lack of impact of heat stress 

alone on biomass was most likely insufficiently 

high temperature and short treatment time 

resulting in little damage to photo-system II and 

thus to photosynthetic capacity (Sharkey, 

2005), as seen for Bumble and SW2 at Tp2 

(Figure 3c). For example, Diskett plants 

responded less to heat than to drought or 

combined heat-drought stress, despite the PCA 

results indicating some sensitivity of this 

genotype to heat stress (Figure 4). This can be 

explained by a different response mechanism of 

Diskett to heat and heat-drought stresses, as 

referred to our previous study (Lama et al 

2022). For detailed examination of the heat 

response of Diskett, field studies under heat 

stress conditions are needed. 

The digital tools used in this study to measure 

digital biomass showed good ability to evaluate 

wheat plants under severe drought and 

combined heat-drought stress conditions. The 

correlations observed between digital and 

measured biomass, e.g., under drought 

conditions (at Tp3) and combined heat-drought 

conditions (at Tp2), revealed strong potential of 

RGB imaging to identify even small differences 

induced by stresses and to detect symptoms of 

the genotypes under the different environments. 

Under heat stress, the genotypes SW1 and SW3 

were least affected (Figure 3c), while under 

combined heat-drought stress Happy and SW3 

were the least affected genotypes (Figure 3d), 

suggesting somewhat different stress coping 

mechanisms. 

In the control (no stress) growing environment, 

most gluten parameters (TOTE, etc.) showed a 

negative correlation with grain yield, TKW, 

biomass, plant height, and spike width (Figure 

6a), as also observed previously (Bogard et al., 

2011; Wang et al., 2018).  Thousand kernel 

weight and grain yield are closely associated 

(Li et al., 2021) and are linked with starch 

accumulation. High accumulation of starch 

under the control conditions can dilute the 

gluten protein concentrations in wheat grain 

(Koga et al., 2015), which may be one 

explanation for the negative correlations 

between gluten proteins and yield-related 

parameters in this study.   

This study examined the impact of stress factors 

on the most important gluten quality 

parameters, e.g., gluten strength, based on the 

concentrations of polymeric proteins. Under 

individual drought and heat stress, a negative 

correlation between %UPP and digital biomass 

(Tp2-Tp3) was observed. There was also a clear 

impact of stress on the %UPP and %LUPP 

fractions (Table 3), suggesting that these 

environmental stresses trigger mechanisms 

related to gluten polymer 

accumulation/regulation. In the presence of 

severe stress (combined heat-drought 

treatment), the wheat plants seemed still able to 

produce spikes, as number of spikes correlated 

positively with %UPP.  

Spike length is a strong indicator of yield (Lan 

et al., 2022) and is directly related to starch 

accumulation, suggesting that wheat yield and 

protein polymerization are in some way related. 

Under stress conditions, gluten polymerization 

is triggered via formation of interchain 
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disulfide bonds (SS)  between HMW and LMW 

glutenins and certain gliadins (alpha, beta, 

gamma) (Branlard et al., 2020). These gluten 

proteins form %UPP most likely at the expense 

of starch. Previous studies have found that, in 

particular, large polymeric protein fractions 

(e.g., uLPP and uSPP) increase at 12-18 days 

after anthesis (Johansson et al., 2005). Under 

combined heat-drought stress conditions in the 

present study, yield was significantly 

negatively correlated with protein 

concentration, confirming findings in previous 

studies in the field and greenhouse (Triboi et 

al., 2006; Malik et al., 2012).  

A positive effect of abiotic stress on gluten 

protein polymerization has also been observed 

in previous studies performed in the field 

(Johansson, 2002; Johansson et al., 2002; Lama 

et al., 2022) and greenhouse (Malik et al., 2011; 

Leiva et al., 2021). The positive effect of heat 

stress on protein polymerization is known to 

occur at high temperatures (up to 30°C) during 

grain development stage (Johansson et al., 

2002; Malik et al., 2011). The nature of the 

effect of drought stress on polymerization 

depends on the timing of the drought (Leiva et 

al., 2021; Lan et al., 2022). For example, a 

greenhouse study found a positive effect of 

drought at heading, which increased %UPP 

compared with drought at stem elongation stage 

(Leiva et al., 2021). Late drought (during ear 

emergence) is reported to have a stronger 

positive effect on %UPP than early drought 

(during tillering) (Lan et al., 2022). Among the 

three stress treatments tested in this study, 

combined heat-drought stress had the greatest 

effect on gluten protein polymerization.  

The results obtained with the imaging tools 

employed to measure digital biomass at 

different stress time points (Tp1, Tp2, Tp3) in 

this study were significantly and positively 

correlated with grain yield and with actual 

measured biomass, suggesting that RGB 

imaging could be a useful method for 

evaluating the impacts of plant stresses on 

phenotypic characteristics, such as grain yield.  

No significant effect was found for the 

interaction between genotype and environment 

(G x E) on gluten protein parameters (except for 

Mon/pol), contradicting findings in previous 

studies in the greenhouse (Malik et al., 2013) 

and in the field (Hernandez-Espinosa et al., 

2018; Lama et al., 2022). This lack of effect 

may have been due to insufficiently challenging 

environmental background in this study.  

Among the eight genotypes compared, Happy 

was the most promising in terms of stability of 

grain yield, TKW, %UPP, and TOTE in 

stressful growing environments. Happy also 

showed greater digital biomass in the combined 

heat-drought stress treatment. The breeding line 

SW2 showed lower digital biomass and yield 

under stress, but also the highest stability and 

mean gluten strength (%UPP) in the control and 

in all three stress treatments, supporting 

previous findings (Lama et al., 2022). 

Genotype SW3 showed the highest stability in 

TKW and higher grain yield than the other 

genotypes. Diskett, SW5, and SW1 appeared to 

be the most sensitive genotypes in terms of 

most parameters studied (yield, TKW, %UPP, 

etc.). 

5. Conclusions  

Assessing and controlling important 

phenotypic and grain quality-related traits in 

wheat is important for success in breeding 

programs seeking to produce desirable wheat 

material for use under future climate change. 

This study revealed significant impacts of 

combined heat-drought stress on plant 

phenotypic characteristics and gluten protein 

quality traits in eight spring wheat genotypes, 

while drought stress alone also had negative 

impacts. However, heat stress (29°C) had only 

mild effects on yield and phenotypic 

characteristics, although in field conditions the 

impact of heat stress could be much more 

severe.  

There were significant positive correlations 

between grain yield and digital biomass, and 

between digital biomass and actual measured 
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biomass, in all stress treatments tested, 

indicating that RGB imaging can be a valuable 

tool in assessing stress in wheat plants.  

Individual drought and heat stresses 

significantly affected gluten strength (%UPP 

and %LUPP). There was a negative correlation 

between digital biomass and most gluten 

protein parameters analyzed, although Mon/pol 

ratio was not affected by the experimental 

stresses studied. 

A surprising finding was that number of spikes 

was significantly positively correlated with 

both %UPP and %LUMP under combined heat-

drought stress, suggesting a correlation not only 

with polymeric glutenins (HMW and LMW) 

but also with large monomeric proteins (e.g., 

gliadin types). Number of spikes is an indicator 

of yield and, together with gluten protein 

quality traits, could potentially be explored in 

screening for high yield and gluten protein 

quality in wheat under climate stress.  

The most promising genotypes in terms of 

performance and stability in the stress 

environments tested were SW3 and Happy for 

high yield, SW1 and Happy for high TKW, 

SW2 and Bumble for high %UPP, and Diskett 

and SW1 for high protein concentration 

(TOTE). In order to meet plant breeding targets 

for extreme climate resistance, these top-

performing genotypes need to be further tested 

in field studies where their phenotypic and 

gluten protein characteristics are evaluated 

using the combination of tools tested in this 

study. 
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Tables  

Table 1. Age of the plants in days (Zadoks scale) during recording the digital biomass of the wheat 

plants. 

Time points  

(Condition of the 

plants) 

Wheat growth stage in  

Zadoks Scale 

 

Combined 

heat-drought, 

(days) 

Heat, 

(days) 

Drought, 

(days) 

Tp1 (non-stressed) Heading (Zadoks 50) 56 56 51 

Tp2 (stressed) Heading (Zadoks 59) 61 61 56 

Tp3 (recovered) Development of fruit (Zadoks 70) 70 70 65 

 

 

Table 2. Analysis of variance (ANOVA) showing the effect of genotype (G), treatment (E) and their 

interaction (G x E) on the gluten protein parameters (total amount of SDS-extractable (TOTE) and 

SDS-unextractable (TOTU) protein, total polymeric protein (TPP), total monomeric protein (TMP), 

SDS-unextractable polymeric protein (%UPP), large SDS-unextractable polymeric protein (%LUPP), 

large SDS-unextractable monomeric protein (%LUMP) and monomer to polymer ratio (Mon/pol)) of 

wheat grown under control, heat, drought and heat-drought stresses measured by size exclusion liquid 

chromatography (SE-HPLC).  

Factors Df TOTE 

1016 

TOTU 

1015 

TPP 

1015 

TMP 

1015 

%UPP 

103 

%LUPP 

103 

%LUMP 

102 

Mon/ 

pol 

Genotype (G) 7 0.53*** 0.60*** 0.98*** 3.05*** 1.65*** 3.23*** 0.80*** 0.38*** 

Treatment (E) 3 1.33*** 2.49*** 3.80*** 10.62*** 1.88*** 3.87*** 0.22** 0.38*** 

G x E  21 0.26 0.76* 0.95 1.87 0.84 0.87 0.36 0.72** 

Residuals 96 1.09 1.78 2.77 7.41 2.45 3.60 1.44 1.28 

***, **, and * indicate significance at the p < 0.001, p < 0.01, and p < 0.05, respectively. 



 
18 

 

 

Table 3. Tukey’s post hoc test of different stress environments (drought, heat and combined) on the 

gluten protein parameters (total amount of SDS-extractable (TOTE) and SDS-unextractable (TOTU) 

protein, total polymeric protein (TPP), total monomeric protein (TMP), SDS-unextractable polymeric 

protein (%UPP), large SDS-unextractable polymeric protein (%LUPP), large SDS-unextractable 

monomeric protein (%LUMP) and monomer to polymer ratio (Mon/pol)) evaluated by SE-HPLC. 

Factors 

 

TOTE 

107 

TOTU 

107 

TPP 

107 

TMP 

107 

%UPP 

103 

%LUPP 

103 

%LUMP 

102 

Mon/pol 

Control 6.15 b 1.22 c 2.44 b 4.92 bc 31.06 c 34.84 c 9.45 b 2.02 a 

Drought 5.81 b 1.28 bc 2.32 b 4.75 c 35.62 b 41.18 b 9.50 b 2.06 a 

Heat 6.49 b 1.54 b 2.62 b 5.41 b 37.93 b 46.07 a 10.23 ab 2.08 a 

Combined  8.43 a 2.32 a 3.70 a 7.06 a 41.65 a 49.46 a 10.36 a 1.93 b 

Different letters indicating significant difference according to Tukey's post hoc test at p < 0.05. 
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Figures  

   

Figure 1. Digital RGB images of the spring wheat genotype Diskett in the heading stage (Zadoks 50) 

under diverse growing conditions (treatments); (a) control, (b) drought, (c) heat, and (d) combined 

heat-drought stresses measured along three time points (Tp) Tp1-Tp3; Tp1- no stress, Tp2-five days 

after induced the stress, and Tp3- after eight days of recovery.      
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Figure 2. Mean digital biomass of the studied wheat genotypes obtained by RGB imaging (in pixels) 

at different growing conditions (treatments) such as, control, drought, heat, and combined heat-drought 

stresses measured along the three time points (Tp) Tp1-Tp3; Tp1 - no stress, Tp2- five days after 

induced the stress, and Tp3- after eight days of recovery.   
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Figure 3. Digital biomass determined by RGB imaging (in pixels) of the eight spring wheat genotypes 

grown under diverse growing environments, (a) control, (b) drought, (c) heat, and (d) combined heat 

and drought stresses, evaluated along the three-time points (Tp) Tp1-Tp3; Tp1 - no stress, Tp2- five 

days after induced the stress, and Tp3- after eight days of recovery.  

  

Figure 4. Principal component analysis (PCA) showing distribution of the eight wheat genotypes grown 

under control, drought, heat and combined heat-drought stresses (treatments). 
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Figure 5. Principal component analysis (PCA) showing a relationship between the gluten protein 

parameters (TOTE, TOTU, TMP, TPP, %UPP and %LUMP) evaluated by SE-HPLC and the 

phenotypic traits (thousand kernel weight (TKW), plant height, spike length, biomass, spike width and 

grain yield) of the eight wheat genotypes grown under control (C), drought (D), heat (H), and combined 

heat-drought (HD) treatments. 
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Figure 6. Spearman correlation of the gluten protein parameters (TOTE, TOTU, TMP, TPP, %UPP 

and %LUMP) and the phenotypic traits (grain yield, TKW, plant height, spike length, biomass, spike 

width and spike number) of the eight wheat genotypes grown under (a) control, (b) drought, (c) heat 

and (d) combined heat-drought conditions. ***, **, and * indicate significance at the p < 0.001, p < 

0.01, and p < 0.05, respectively. 
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Figure 7. Yield traits (grain yield and TKW) (a) and gluten protein traits (%UPP, LPPs, Mon/pol and 

TOTE) (b) of the eight wheat genotypes grown under control, drought, heat and combined heat-drought 

conditions (treatments). 
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Figure 8. GGE biplots displaying the wheat genotypes according to their stability in the studied 

environments; (a-c) grain yield, (d-f) TKW, (g-i) %UPP and (j-l) TOTE (106). The biplots were based 

on genotype-focused singular value partitioning (SVP = 1), data were not scaled (scaling = 0), and 

were environment-centered (centering = 2). Environments designated as 1, 2, 3 and 4 correspond to 

control (no stress), drought, heat and combined heat-drought stresses, respectively. 
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