
Citation: Serge, M.A.; Mazier, F.;

Fyfe, R.; Gaillard, M.-J.; Klein, T.;

Lagnoux, A.; Galop, D.; Githumbi, E.;

Mindrescu, M.; Nielsen, A.B.; et al.

Testing the Effect of Relative Pollen

Productivity on the REVEALS Model:

A Validated Reconstruction of

Europe-Wide Holocene Vegetation.

Land 2023, 12, 986. https://doi.org/

10.3390/land12050986

Academic Editor: Le Yu

Received: 27 March 2023

Revised: 6 April 2023

Accepted: 22 April 2023

Published: 29 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Testing the Effect of Relative Pollen Productivity on the
REVEALS Model: A Validated Reconstruction of Europe-Wide
Holocene Vegetation

M. A. Serge 1,* , F. Mazier 1 , R. Fyfe 2 , M.-J. Gaillard 3 , T. Klein 4,5 , A. Lagnoux 5 ,
D. Galop 1 , E. Githumbi 3,6 , M. Mindrescu 7 , A. B. Nielsen 8 , A.-K. Trondman 3,9 ,
A. Poska 6,10 , S. Sugita 11 , J. Woodbridge 2 , D. Abel-Schaad 12 , C. Åkesson 8,
T. Alenius 13 , B. Ammann 14 , S. T. Andersen 15,†, R. Scott Anderson 16, M. Andrič 17 ,
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Abstract: Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial
to improving our understanding of landscape dynamics, making it possible to assess the past effects
of environmental variables and land-use change on ecosystems and biodiversity, and mitigating
their effects in the future. We present here the most spatially extensive and temporally continuous
pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1◦ × 1◦) over the
Holocene (last 11.7 ka BP) using the ‘Regional Estimates of VEgetation Abundance from Large Sites’
(REVEALS) model. This study has three main aims. First, to present the most accurate and reliable
generation of REVEALS reconstructions across Europe so far. This has been achieved by including a
larger number of pollen records compared to former analyses, in particular from the Mediterranean
area. Second, to discuss methodological issues in the quantification of past land cover by using
alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of
REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest
change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing
regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective
providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity.

Keywords: Europe; quantitative past land cover; Holocene; pollen data; REVEALS model; relative
pollen productivity; validation

1. Introduction

The IPBES 2019 global report ranked changes in land use and land cover as the great-
est drivers of declines in nature and biodiversity [1]. Anthropogenic biodiversity decline
and anthropogenic climate change have largely been driven by the direct exploitation
of nature through deforestation and conversion for agriculture and livestock production
(IPBES, [1,2]). Loss of biodiversity and the transformation of nature by humans are often
considered to be recent impacts on the environment, stretching over recent decades and cen-
turies, and reflected in instrumental records and detailed ecological surveys. However, the
reshaping of terrestrial nature began in the Paleolithic and Mesolithic ages, with practices
including hunting, fishing, and gathering having the potential to modify existing ecosystem
systems at localized scales through, for example, selective gathering or depleting of local
resources [3–6]. Forest clearance for agriculture started at least 6000 years ago in western
Europe and probably earlier in the regions in which agriculture developed [7]. Sustainable
practices over time took the form of appropriation, colonization, and land-use intensifica-
tion, which led to ecosystem transformations [8]. The intensification of human activities
and the loss of sustainable practices make Europe one of the regions of the world where
human-induced effects on vegetation are most notable [7]. The increments of species
extinction, soil erosion, altered biogeochemical processes, fire frequency, and hydrology
left long-term legacies across the biosphere and shaped most of terrestrial nature for at
least 12,000 years [8]. A worldwide acceleration in the rates of vegetation compositional
change starting between 4600 and 2900 years ago was demonstrated using a global set
of over 1000 fossil pollen records and a new method to estimate the “rate of change” [9].
This human-induced acceleration was shown to exceed the climate-driven transforma-
tions of the last deglaciation. This study highlights past land use and environmental
forcings legacies in relation to the strong anthropogenic imprint of the past decades on
contemporary communities and biodiversity trends. Times of technological development
(e.g., the introduction of metals, innovations in plough shape, new cropping systems)
transformed ecological structures and dynamics, including vegetation (impacting species
richness, evenness, and biomass), which led to progressive replacement of semi-natural or
natural ecosystems by human-modified ones [3,9–11]. In order to fully understand past and
contemporary ecological processes, rates of biodiversity changes, and ecological thresholds
at continental scales and globally, it is essential to have an overview of long-term land-cover
dynamics [12–18].
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Attempts to reconstruct past land cover have been made to model land-use and land-
cover change (LULCC) over Holocene time scales (e.g., HYDE 3.2 [19] and KK10 [20]).
Such LULCC scenarios have been used in combination with dynamic vegetation models
to understand interactions between different components of the Earth system in the past
(Earth system modeling (ESM), [21]). However, there can be considerable disagreement
between different LULCC scenarios, and this highlights the need to use independent and
empirical datasets of land use and land cover [22]. Pollen archives remain the best empirical
data to address differences between LULCC scenarios, as they provide a direct proxy for
vegetation cover [22–25].

Efforts to improve our understanding of past vegetation using pollen have led to
the development of models that correct the non-linear pollen–vegetation relationship and
can compensate for plant taxon-specific differences in pollen production, dispersal, and
deposition [26,27]. Currently, the ‘Regional Estimates of VEgetation Abundance from Large
Sites’ (REVEALS) model is the most appropriate method to reconstruct plant cover at a
regional spatial scale of ca. 100 km × 100 km [27]. The REVEALS model was developed
to transform pollen data from large lakes but can also produce regional vegetation cover
estimates from multiple small-sized sites [27–30].

The REVEALS model has previously been applied at regional to continental scale.
Githumbi et al. (2022) published the most detailed estimates of past plant cover across Eu-
rope and part of the eastern Mediterranean–Black Sea–Caspian corridor [31]. REVEALS re-
constructions were performed at a spatial scale of 1◦ × 1◦ (grid cell of ca. 100 km × 100 km)
and a temporal resolution of 500 years between 11.7 and 0.7 ka BP, and three shorter time
windows (0.7−0.35 ka BP, 0.35−0.1 ka BP, and 0.1 ka BP−present) for use in climate model-
ing studies (e.g., [32]). The accuracy and reliability of gridded REVEALS estimates have
been discussed in several studies [28,31,33,34]. Gridded REVEALS estimates are influenced
by the quality of individual records used (pollen count size, taxonomic resolution, and
chronological uncertainty), basin size, and type of sites (lakes or bogs), the number of
pollen records used in each grid cell, and the reliability of the relative pollen productivities
(RPPs) used. Where gridded REVEALS estimates are based on low numbers of small sites,
there is greater uncertainty in the reliability of the REVEALS estimates; if the RPPs for
taxa that are considered important components of the regional vegetation are based on
limited empirical studies, this can further impact the quality of the estimates. For instance,
more work has been undertaken on RPPs of temperate and boreal taxa than those that
characterize the Mediterranean region.

RPPs and their standard deviations exist for more than 131 Northern Hemisphere
taxa, with the longest research effort in Europe, and several syntheses of RPPs have been
published [28,31,34–36]. As the REVEALS model assumes that RPP values are constant
within the region of interest and through time [27], studies working at the sub-continental
scale have calculated mean RPPs considering all available RPP values. This can overcome
the variability of RPP estimates within one taxon. Mazier et al. (2012) produced the
first RPP-means dataset for Europe [28], comprising 25 pollen taxa that were used in the
“first generation” of REVEALS reconstruction for Europe [33]. Githumbi et al. (2022)
published an updated RPP-mean dataset for 50 taxa from Europe [31]. Thirty-nine of the
taxa were from boreal and temperate Europe, and for the first time, 11 taxa characteristic of
Mediterranean Europe were included.

The first RPP-mean dataset for Europe was used to evaluate the effect of entomophilous
taxa on gridded REVEALS estimates for the Czech Republic [28]. The authors showed that
entomophilous taxa tend to affect the REVEALS estimates because the REVEALS model as-
sumes that all pollen is airborne [27] and justified excluding as many entomophilous taxa as
possible from REVEALS reconstructions. Githumbi et al. (2022) included taxa with mixed
wind and insect pollen transport such as Artemisia, Amaranthaceae/Chenopodiaceae, Er-
icaceae (Calluna excluded), Rubiaceae, and Plantago lanceolata [31]. The application of
multiple sets of RPP values for different climatic regions in a single REVEALS reconstruc-
tion cannot be achieved without independent data on past climatic changes, which can
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shift the boundaries between climate regimes over the Holocene [31]. Some taxa are more
difficult to handle, such as the family Ericaceae, which contains a morphologically diverse
range of taxa, including herbs, dwarf shrubs, shrubs, and trees [37]. Only two RPP values
across Europe are available for Ericaceae [31]. The first is from the Mediterranean area,
where Ericaceae species are mainly tree forms, produce abundant pollen, and therefore
have a high RPP. The second is based on low-growth shrubs in northern Europe and has a
lower RPP value than that from the Mediterranean.

In this paper, we use an updated version of the REVEALS reconstruction from [31].
This third generation produces grid-based estimates at 1◦ × 1◦ (ca. 100 km × 100 km)
across 30◦–71◦ N, 20◦ W–47◦ E (northwestern, central Europe, Mediterranean area, and
part of the East until 47◦ E, Figures 1 and A1) for 25 contiguous time windows across the
Holocene. The number of pollen records used (1607) and the area covered (most of Europe)
of 539 grid cells represent a significant advance on the results presented by [31], which was
based on 1128 pollen records for Europe and part of the Eastern Mediterranean–Black Sea–
Caspian-Corridor. We used three RPP-means datasets and evaluated the extent to which
the selection of a set of RPP-means influences the REVEALS estimates. The three datasets
are (i) the RPP-means dataset from [31] (RPPs.st1: 31 taxa); (ii) a new synthesis proposed in
this study inclusive of a larger number of entomophilous taxa (RPPs.st2: 46 taxa); and (iii)
a composite dataset, derived from [28,31] (RPPs.st3: 31 taxa).
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Figure 1. Study area showing grid coverage with available REVEALS-based reconstruction of land-
cover. Grid-cell reliability depends on the number and type of pollen records for the 25 time windows
(TWs). Reliable: ≥1 large lake(s), ≥2 small lake(s) and/or small bog(s), mix of ≥1 large lake(s) and
≥1 small lake(s) and/or small bog(s); less reliable: 1 bog (large or small) or 1 small lake. Grey grid
cells: less reliable results for all TWs. Colour indicate, for each grid cell, the % of the total number
of TWs with reliable REVEALS reconstructions of plant cover. For instance, light yellow grid cells
imply that reconstructions are reliable for 8–21% of the TWs, while they are less reliable for 79–92% of
the TWs; and dark green grid cells indicate that reconstructions are reliable for 98–100% of the TWs,
while they are less reliable for 0–2% of the TWs.

The specific aims of this paper are: (1) to improve the accuracy and reliability of
REVEALS estimates across all of Europe through significantly increasing the number of
pollen records used for the reconstruction (particularly in the Mediterranean region); (2) to
explore how three different RPP-means datasets impact the model output; (3) to identify
the geographical location of the differences between the three REVEALS reconstructions
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and which plant taxa may explain these differences; and (4) to determine which RPP-means
dataset is best to use, by validating REVEALS estimates against recent vegetation cover
across Europe.

Due to the large number of abbreviations in the paper, and in order to facilitate reading,
a glossary is provided in Supplementary Materials.

2. Methods
2.1. The REVEALS Model

REVEALS, a generalized form of the R-value model [38], estimates past regional
vegetation abundance using fossil pollen counts from large sites [27] and expresses the
regional vegetation composition as “the ratio of the pollen counts of each taxon weighted
by its pollen productivity and dispersal term to the total sum of those for all taxa” [39].
REVEALS and its assumptions are described in detail in [27]. Here we briefly list the main
assumptions: (1) the major agent of pollen transport is wind, and wind direction is even in
all directions; (2) the site shape is circular; (3) no source plants for pollen grow on the basin
surface; (4) relative pollen productivities are constant through time and space [27].

REVEALS was developed for pollen records from large lakes (>50–100 ha) [27]. Several
empirical studies tested its performance using pollen counts from multiple small-sized
sites, showing that REVEALS estimates based on pollen records from small lakes or bogs
are similar to REVEALS estimates based on pollen records from large lakes [28–30]. In the
absence of pollen records from large lakes, the larger the number of small sites (lakes or
bogs), the better the REVEALS results. Simulations showed that increasing the number of
pollen records significantly decreased the standard error of the REVEALS estimates [27].
However, bogs (large and small) violate one of the assumptions of the REVEALS model, i.e.,
“no source plants for pollen grow on the basin surface” [27]. Violation of this assumption
has been shown to bias REVEALS results most significantly in the case of large bogs, while
pollen records from multiple small bogs have been shown to produce REVEALS estimates
that are similar to those from large lakes and can thus be used to provide reliable estimates
of plant cover [28,30]. In Figure 1, we present a measure of the reliability of the REVEALS
reconstructions presented in this paper. It is based on the number of sites (pollen records)
and the type and size of sites used in each grid-based REVEALS estimate of plant cover and
expressed in percentage of all 25 contiguous time-windows of the Holocene with reliable
REVEALS reconstructions (see further details on this issue in the Discussion).

REVEALS accounts for inter-taxonomic differences in pollen productivity and disper-
sal proprieties as well as the size and type of sedimentary basins. Two major modelling
schemes have been implemented in REVEALS to describe the dispersal and deposition
of pollen grains in the air. Pollen dispersal is approximated either by a Gaussian plume
model (GPM) of small particles from a ground-level source under various atmospheric
conditions [40–45] or by a Lagrangian stochastic model (LSM) under more realistic wind
fields and atmospheric turbulence conditions [46–48]. Theoretically, the choice of dispersal
model needs to be consistent for both obtaining RPPs and reconstructions of past vegetation
using those RPPs [49]. Because of the limited number of LSM-based RPPs available in
Europe and elsewhere, most of the REVEALS applications have so far used GPM-based
RPPs [28,31,33,34].

The input parameters to run the REVEALS model are original pollen counts, relative
pollen productivity (RPPs) and their standard deviations (SDs), fall speed of pollen (FSP),
basin type (lake or bog), size (radius, m), maximum extent of the regional vegetation (km),
wind speed (m.s−1), and atmospheric conditions. We followed the protocols and criteria
published in [28,33] and lately in [31]. The selection and preparation of individual pollen
records and the values of model parameters used are described in the following sections.

2.2. Fossil Pollen Records: Data Compilation and Preparation

A total of 1607 pollen records (923 and 684 sites from bogs and lakes, respectively) (see
TERRANOVA_metadata in https://doi.org/10.48579/PRO/J5GZUO, accessed on 24 April

https://doi.org/10.48579/PRO/J5GZUO
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2023) was compiled from 41 countries covering all European countries, the western part of
Russia and the eastern Mediterranean–Black Sea–Caspian corridor (Appendix A, Figure A1).
This work benefited from earlier efforts and projects (Landclim I and II), which compiled
pollen datasets from open-access databases and individual data contributors [31,33]. The
Landclim II pollen dataset includes pollen data from the European Pollen Database [50,51],
the Alpine Palynological Database (ALPADABA; Institute of Plant Sciences, University of
Bern), the Czech Quaternary Palynological Database (PALYCZ; [52]), the Pyrenean Paleoenvi-
ronmental Database (PALEOPYR; [53]), and datasets compiled within synthesis projects from
the Mediterranean region [7,11] and the eastern Mediterranean–Black Sea–Caspian corridor
(EMBSeCBIO project; [54]). Most of the cited datasets are now archived in NEOTOMA [55].
The 479 new records that have been used here are either datasets added to Neotoma or the
EPD until end of 2020 or collated from individual data contributors that fulfill the protocols
applied in the Landclim projects. Pollen records are from natural terrestrial basins (lakes
or bogs) with calibrated chronologies based on ≥3 dates. Where necessary new age-depth
models expressed as (calibrated) calendar years before the present (i.e., cal BP = before 1950
CE, hereafter referred to as BP) were established in collaboration with the data contributors or
database managers using the R-package clam [56].

Site radius information was obtained from original publications where possible. Where
a site’s radius could not be determined from publication, it was geolocated in Google Earth,
and the area of the site was measured. A radius value was extracted, assuming that a site
shape is circular [28]. Available pollen records were filtered based on criteria including
basin type (to exclude archaeological sites and marine records) and quality of chronological
control (excluding sites with poor age-depth models or fewer than three radiocarbon dates).

Pollen counts were aggregated into 25 time windows across the Holocene (present–
11,700 BP). The use of consecutive 500-year-long time windows results in REVEALS recon-
structions with low SEs. The 500-year-long time windows are meaningful for the study of
past land-cover changes over several millennia [31,34] and maximize the pollen-count size
within time windows. This minimizes standard errors by decreasing variability between
samples. Because human-induced land-cover changes were often more rapid since the
early Middle Ages than through the earlier millennia, the three most recent time windows
were fixed to present–100 BP (where the present is the year of coring), 100–350 BP, and
350–700 BP. An additional modern window was considered to evaluate the performance of
the quality of the REVEALS reconstruction (see Section 2.3).

The taxonomy of each of the 1607 original pollen data files was harmonized. Pollen
morphological types were assigned to 31 and 46 taxa (Table 1) using an updated dictionary
table from [31] following the protocol described in [33]. Samples from each harmonized
record were aggregated in time windows using the assigned calibrated ages BP from each
age-depth model. The pollen records were then filtered to remove time windows with fewer
than 100 pollen grains to avoid sterile samples that would compromise the correctness of
the REVEALS estimates.

RPP (relative to Poaceae, RPP = 1) is one of the most important input parameters required
to run the REVEALS model [27]. We test the inclusion or exclusion of plant taxa with dominant
entomophily and the effect of RPP values on the grid-based REVEALS estimates (Gb-RVest).
The selection of RPP studies, RPP values, and calculation of mean RPP and their standard
deviation (SD) for Europe (Table 1) are explained in Appendix B, Table A1. This paper uses
three alternative RPP-means datasets (Table 1) to evaluate the effect of RPP selection on
REVEALS results.

RPPs.st1 (31 taxa) is the European RPP-means dataset from [31]. It includes plant taxa
from boreal, temperate, and Mediterranean Europe for the calculation of the RPP-mean
values. In this selection, most entomophilous herbs are excluded, except the most common
taxa with mixed wind and insect transport, such as Amaranthaceae/Chenopodiaceae,
Fi—lipendula, Rumex acetosa t., and Plantago lanceolata. Note that the entomophilous tree
Tilia and partly entomophilous tree/shrub Salix are included.
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RPPs.st2 (46 taxa) is a new synthesis proposed in this study, inclusive of a larger
number of entomophilous taxa. It uses the same 31 taxa and mean values of RPP used in
the first dataset [31] and 13 additional entomophilous taxa (some with mixed wind and
insect transport), i.e., Empetrum, Acer, Sambucus nigra t., Fabaceae, Apiaceae, Compositae
SF. Cichorioideae, Comp. Leucanthemum (Anthemis) t., Plantago media, Plantago montana,
Ranunculus acris t., Potentilla t., Rubiaceae, and Trollius, as well as Populus and Urtica (mainly
anemophilous). For these additional taxa, the mean was calculated using all available
European RPP values (Appendix B, Table A1) based on standard 2 from [28]. We excluded
values that were not significantly different from zero considering the lower bound of its
SD (e.g., Empetrum, 0.07) and values assumed to be outliers or unreliable in the original
publications. The RPPs.st2 is used to test the sensitivity of the REVEALS model to the use
of pollen types from entomophilous plant taxa, although the model assumes that all pollen
is transported by wind (see Section 2.1).

RPPs.st3 (31 taxa) is a composed dataset that compiled 24 plant taxa and their RPP val-
ues selected by [28,33] and 7 Mediterranean plant taxa: Amaranthaceae/Chenopodiaceae,
Buxus sempervirens, Carpinus orientalis, Castanea sativa, Phillyrea and evergreen Quercus t. [31].
RPPs.st3 differs from RPPs.st2 and RPPs.st1 for 19 RPPs values of the following taxa: Picea,
Pinus, Ericaceae, Betula, Corylus avellana, Fraxinus, deciduous Quercus t., Carpinus betulus,
Fagus, Tilia, Salix, Calluna vulgaris, Artemisia, Cyperaceae, Filipendula, Plantago lanceolata,
Rumex acetosa t., and Secale cereale. The following 12 plant taxa share the same mean value of
RPP for all three datasets: Abies, Juniperus, Phillyrea, Pistacia, evergreen Quercus t., Buxus sem-
pervirens, Carpinus orientalis, Castanea sativa, Ulmus, Amaranthaceae/Chenopodiaceae,
Poaceae, and Cerealia t.

Fall speed of pollen (FSP) values are listed in [31].
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Table 1. Land-cover types (LCTs) and their corresponding pollen morphological types. Fall speed of
pollen (FSP) and the mean relative pollen productivity estimates (RPPs) for three different RPP-means
datasets (RPPs.sts), with their standard deviations (SDs) in brackets (see text for more explanations).
We highlighted the values that remain fixed across the RPPs.sts in green, the additional values
considered in RPPs.st3 in blue and, the 15 additional RPP values (mostly entomophilous taxa) in
RPPs.st2 in orange. For more information on species involved in the calculation of original RPP
values, see Appendix B, Table A1.

Land Cover
Types (LCTs)

Plant
Taxa/Pollen-Morphological

Types
FSP (m/s) RPPs.st1 (SD) RPPs.st2 (SD) RPPs.st3 (SD)

Evergreen Trees
(ET)

Abies 0.12 6.88(1.44) 6.88(1.44) 6.88(1.44)
Buxus sempervirens 0.032 1.89(0.068) 1.89(0.068) 1.89(0.068)

Empetrum 0.038 0.11(0.03)
Ericaceae 0.038 4.27(0.094) 4.27(0.094) 0.07 (0.04)
Juniperus 0.016 2.07(0.04) 2.07(0.04) 2.07(0.04)
Phillyrea 0.015 0.51(0.075) 0.51(0.075) 0.51(0.075)

Picea 0.056 5.44(0.10) 5.44(0.10) 2.62 (0.12)
Pinus 0.031 6.06(0.24) 6.06(0.24) 6.38 (0.45)

Pistacia 0.03 0.76(0.201) 0.76(0.201) 0.76(0.201)
evergreen Quercus t. 0.035 11.04(0.261) 11.04(0.261) 11.04(0.261)

Summergreen
Trees (ST)

Acer 0.056 0.63(0.156)
Alnus 0.021 13.56(0.29) 13.56(0.29) 9.07 (0.10)
Betula 0.024 5.11(0.30) 5.11(0.30) 3.09 (0.27)

Carpinus betulus 0.042 4.52(0.43) 4.52(0.43) 3.55 (0.43)
Carpinus orientalis 0.042 0.24(0.07) 0.24(0.07) 0.24(0.07)

Castanea sativa 0.01 3.26(0.059) 3.26(0.059) 3.26(0.059)
Corylus avellana 0.025 1.71(0.10) 1.71(0.10) 1.99 (0.20)

Fagus 0.057 5.86(0.18) 5.86(0.18) 2.35 (0.11)
Fraxinus 0.022 1.04(0.05) 1.04(0.05) 1.03 (0.11)
Populus 0.025 2.66(1.25)

deciduous Quercus t. 0.035 4.54(0.09) 4.54(0.09) 5.83 (0.15)
Salix 0.022 1.18(0.08) 1.18(0.08) 1.22 (0.11)

Sambucus nigra t. 0.013 1.30(0.12)
Tilia 0.032 1.21(0.12) 1.21(0.12) 0.80 (0.03)

Ulmus 0.032 1.27(0.05) 1.27(0.05) 1.27(0.05)
Open Land (OL) Amaranthaceae/Chenopodiaceae 0.019 4.28(0.270) 4.28(0.270) 4.28(0.270)

Apiaceae 0.042 3.09(0.615)
Artemisia 0.025 3.94(0.15) 3.94(0.15) 3.48 (0.20)

Calluna vulgaris 0.038 1.09(0.03) 1.09(0.03) 0.82 (0.02)
Cerealia t. 0.06 1.85(0.38) 1.85(0.38) 1.85 (0.38)

Comp. SF. Cichorioideae 0.051 0.36(0.137)
Cyperaceae 0.035 0.96(0.05) 0.96(0.05) 0.87 (0.06)

Fabaceae 0.021 0.4(0.07)
Filipendula 0.006 3.00(0.28) 3.00(0.28) 2.81 (0.43)

Comp. Leucanthemum
(Anthemis) t. 0.029 0.10(0.008)

Plantago lanceolata 0.029 2.33(0.20) 2.33(0.20) 1.04 (0.09)
Plantago media 0.024 1.27(0.18)

Plantago montana 0.03 0.74(0.13)
Poaceae 0.035 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Potentilla t. 0.018 1.19(0.133)
Ranunculus acris t. 0.014 1.99(0.265)

Rubiaceae 0.019 3.95(0.314)
Rumex acetosa t. 0.018 3.02(0.28) 3.02(0.28) 2.14 (0.28)

Secale cereale 0.06 3.99(0.32) 3.99(0.32) 3.02 (0.05)
Trollius 0.013 2.29(0.36)
Urtica 0.007 10.52(0.31)

Number of taxa 31 46 31

2.3. Modern Vegetation and Pollen Datasets

To perform an evaluation of the quality of the REVEALS results and the effect of RPP-
means datasets (RPPs.st1, RPPs.st2, and RPPs.st3) on the grid-based REVEALS estimates
(Gb-RVest), we compared the sum of REVEALS-based tree cover for the most recent decades
(RV-Trees) with modern measurements of tree cover (GFC-Trees).
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GFC-Trees was derived from the global forest change dataset [57]. This is based on the
analysis of Landsat 7 Enhanced Thematic Mapper Plus data at a 30-m spatial resolution to
characterize forest extent, loss, and gain from 2000 to 2012. We used tree cover data for the year
2000 that expresses tree cover (defined as vegetation taller than 5 m in height) as a percentage
per output grid cell. All forms of natural forests or plantations across a range of canopy
densities are considered. Broadleaved and coniferous trees are not differentiated. Original
tree cover data are viewable and downable at full resolution at http://earthenginepartners.
appspot.com/science-2013-global-forest, accessed on 21 March 2023.

RV-Trees values are based on the Gb-RVest results from the core top samples
(−45 to −55 BP, i.e., 1995 AD to 2005 AD). GB-RVest results for taxa in the summer green
trees and evergreen tree groups (Table 1) have been summed. The number of core top
records from large lakes is limited in Europe (N = 9), and thus we have included Gb-RVest,
which is based on multiple small-sized sites within our evaluation of RPP-mean datasets.
The total number of grid cells used is 111. This results in 36 grid cells with lakes and 75 grid
cells with both lakes and bogs (of which 47 with only ≥1 bog(s)) of all radii. Therefore, the
modern pollen dataset covered 20 European countries from the Mediterranean to the boreal
vegetation zones, with a tree-cover gradient from 1% to 80% (Figure 2). The same pollen
dataset was used for the comparison between raw pollen data (RW-data) and GFC-Trees
for 31 taxa and 46 taxa.
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vegetation from the centre of the site, is set to 50 km, roughly corresponding to a 1° × 1° 
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Table 1), hereafter named Gb-RVest-LCTs. For the modern time window (−45 to −55 BP), 
as the RV-Trees do not separate the contributions of evergreen and summer green species, 
the sum of the two Gb-RVest-LCTs was calculated for comparison with GFC-Trees (Table 
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Figure 2. Grid cells with sites (bogs and lakes) used for validation and tree cover at 2000 AD according
to the global forest change dataset [57] in mean percentage cover of the grid cell (1◦ × 1◦). Blue
and red grid cells, see the legend. See Methods for the definition of “reliable number of sites” (i.e.,
implying reliable REVEALS estimates of plant cover). Red grid cells represent less reliable REVEALS
reconstructions. Note that the information on the reliability of results in this Figure is valid for the
time window –45 to –55 (1995–2005 CE) only.

Comparison of RV-Trees with GFC-Trees required a transformation of the spatial
resolution of the modern tree cover. While the tree cover is available at 1 arc-minute
resolution, the REVEALS reconstructions were prepared for 1◦ grid cells. We aggregated
the tree-cover data to the REVEALS grid by averaging the tree-cover percentages in each
REVEALS grid cell (Figure 2).

http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
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2.4. REVEALS Run and Data Analysis

The REVEALS function within the LRA R-package [58] was used to produce grid-
based REVEALS estimates (Gb-RVest). In this study, we selected the Gaussian Plume
model to describe pollen dispersal as selected RPP values are derived from the GPM model.
Depending on the type of site, the REVEALS function used a different deposition model,
Sugita’s model for lakes and ponds [40] or Prentice’s model for bogs and mires [43,44].
Pollen records from all sites, regardless of their size, are used to maximize the number of
pollen records within each 1◦ × 1◦ grid cell across the studied area. For the grid cells that
include pollen data from both lakes and bogs, we apply REVEALS separately for the lake
and bog data and then combine results to produce a single mean Gb-RVest and its standard
error (SE) for each taxon.

When running REVEALS, neutral atmospheric conditions and wind speed of 3 m.s−1

as in [27,28,31,33] are assumed. Zmax, the maximum spatial extent of the regional vegetation
from the centre of the site, is set to 50 km, roughly corresponding to a 1◦ × 1◦ grid
cell [28,31,33].

REVEALS results are extracted by time window, producing 25 matrices of mean Gb-
RVest and 25 matrices of corresponding mean SEs for each of the RPP taxa and each grid
cell. As three RPP-means datasets are tested, three REVEALS results are produced per time
window. The taxon-based Gb-RVest are then grouped into land-cover types (LCTs, Table 1),
hereafter named Gb-RVest-LCTs. For the modern time window (−45 to −55 BP), as the
RV-Trees do not separate the contributions of evergreen and summer green species, the sum
of the two Gb-RVest-LCTs was calculated for comparison with GFC-Trees (Table 1). The SEs
of each Gb-RVest-LCT and overall tree cover were calculated using the delta method [59].

We use here major axis (MA) as the regression method (see Appendix C) [60,61] to
explore the bivariate relationships between two pairs of variables, or data series: among
different RPPs.sts over the Holocene (RPPs.st2 vs. RPPs.st1 and RPPs.st3 vs. RPPs.st1) and
between modern vegetation and REVEALS results.

Further, pairs of Gb-RVest-LCTs (RPPs.st1 vs. RPPs.st2, RPPs.st1 vs. RPPs.st3) for all
time windows together were compared calculating the difference between the values in
each grid cell, geolocalizing in the map of Europe the negative and positive values.

3. Results
3.1. Effect of Type and Number of Pollen Taxa in RPP-Means Datasets on Gb-RVest-LCTs

In this section, we evaluate how Gb-RVest-LCTs, using RPPs.st1 as a reference, compare
to RPPs.st2 and RPPs.st3 (Figure 3) and formulate hypotheses on the nature of these
relationships and how they vary across RPP-means datasets.

The strongest association in the MA regression results is between Gb-RVest.st1 and
Gb-RVest.st2, with R2 values of 0.834 (ET), 0.876 (OL), and 0.953 for (ST). The R2 values
of the comparison between Gb-RVest.st1 and Gb-RVest.st3 are 0.569 (ET), 0.784 (OL), and
0.858 (ST). ET-RV.st2 values are generally lower than ET-RV.st1 (r = −0.109), as are OL-
RV.st3 compared to OL-RV.st1 (r = −0.094), ST-RV.st2 compared to ST-RV.st1 (r = −0.134),
and ST-RV.st3 compared to ST-RV.st1 (r = −0.031). ET-RV.st3 values are generally higher
than ET-RV.st1 (r = 0.242), as are OL-RV.st2 compared to OL-RV.st1 (r = 0.104) (values of r
not shown in Figure 3).
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Figure 3. Panels (a–c): Major axis (MA) regression between grid-based REVEALS estimates (Gb-
RVest) using either RPPs.st1 or RPPs.st2, (a) evergreen trees (Gb-RVest-ET), (b) open land (Gb-
RVest-OL), and (c) summer green trees (Gb-RVest-ST). Panels (d–f): MA regression between grid-

Figure 3. Panels (a–c): Major axis (MA) regression between grid-based REVEALS estimates (Gb-RVest)
using either RPPs.st1 or RPPs.st2, (a) evergreen trees (Gb-RVest-ET), (b) open land (Gb-RVest-OL), and
(c) summer green trees (Gb-RVest-ST). Panels (d–f): MA regression between grid-based REVEALS
estimates using either RPPs.st1 or RPPs.st3, (d) evergreen trees, (e) open land, and (f) summer green
trees. The black line is the 1 to 1 relationship, and the red line is the best-fitted relationship.

3.2. Geographical Pattern of the Gb-RVest-LCTs Differences between RPP-Means Datasets

Differences between pairs of Gb-RVest-LCTs were mapped using the positive and
negative results of the differences (i.e., diff.A, Figure 4a,b; diff.B, Figure 5a,b). Furthermore,
the negative and positive values of the differences are explain by maximum values of
the most representative taxa over all time windows (Figures 4c–f and 5c,d). These taxa
influence the over- or under-representation of LCT in the analyses.

The greatest differences between Gb-RVest-LCTs.st1 and Gb-RVest-LCTs.st3 (diff.A)
(Figure 4a,b) are found within ET and OL. ST values are broadly comparable. The greatest
differences between Gb-RVest-ET.st3 and Gb-RVest-ET.st1 are located in Spain, Portugal,
southern France, central Italy, and the U.K. (Figure 4a). Ericaceae appears to be the taxon
that causes this overrepresentation of Gb-RVest-ET.st3 in comparison to Gb-RVest-ET.st1
(Figure 4c). Lower values of ET in Gb-RVest.st1 are compensated by Calluna vulgaris,
Cyperaceae, and Poaceae (Figure 4d–f).

The greatest differences between Gb-RVest-LCTs.st1 and Gb-RVest-LCTs.st2 are found
within ET and OL (diff.B) (Figure 5a,b). The greatest differences are found within the
U.K., Ireland, southern Sweden, and scattered grid cells from central to Eastern Europe.
Empetrum causes the overrepresentation of Gb-RVest-ET.st2 in comparison to Gb-RVest-
ET.st1 (Figure 5c). Lower values of Gb-RVest-ET.st1 are compensated by OL (Figure 5b), in
particular Calluna vulgaris (Figure 5d).
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Figure 4. Geolocalisation of the diff.A (see Section 3.2) between grid-based REVEALS estimates
(Gb-RVest) for Land-cover types using RPPs.st1 and RPPs.st3, shown as negative values of diff.A for
evergreen trees (ET) in panel (a) and positive values of diff.A for open land (OL) in panel (b). Panel
(c) shows the maximum values of Ericaceae using RPPs.st3. Panels (d–f) illustrate the maximum
values of Calluna vulgaris, Cyperaceae, and Poaceae using RPPs.st1. Scale range is valid for negative
and positive values (panels a,b) from dark blue (−80) to dark red (+80) and for maximum values
(panels c–f) from light pink (0) to dark red (+80).
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Figure 5. Geolocalisation of the diff.B (see Section 3.2) between grid-based REVEALS estimates
(Gb-RVest) for Land-cover types for RPPs.st1 and grid-based REVEALS estimates for Land-cover
types using RPPs.st2, in terms of negative values of evergreen trees (ET) panel (a) and positive values
of the open land (OL) panel (b). Panel (c) shows the maximum values of Empetrum using RPPs.st2.
Panel (d) illustrates the maximum values of Calluna vulgaris using RPPs.st1. For scale range (see
caption of Figure 4).
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3.3. REVEALS Validation for All Europe

Validation was undertaken on two groups of sites (lakes only: RV-Trees.L.st1; lakes plus
bogs: RV-Trees.LnB.st1) to test (a) which RPPs.sts to use in the REVEALS model in order
to have robust reconstructions on a wide scale, and (b) whether the inclusion of bog sites
influences the goodness of fit between REVEALS model results and modern vegetation.

Comparing the slope values obtained by MA regression for both groups shows a greater
association for GFC-Trees vs. RV-Trees.LnB.st1 (0.619) and GFC-Trees vs. RV-Trees.L.st1
(0.722) than in GFC-Trees vs. RV-Trees.LnB.st2 (0.600), GFC-Trees vs. RV-Trees.LnB.st3 (0.601),
GFC-Trees vs. RV-Trees.L.st2 (0.709), and GFC-Trees vs. RV-Trees.L.st3 (0.698). RV-Trees.st1 is,
therefore, statistically more similar to GFC-Trees than those obtained from the other two RPP
sets (Figures 6 and 7a–c). The R2 values confirm this analysis. The strongest associations are
GFC-Trees vs. RV-Trees.LnB.st1 (0.147) and GFC-Trees vs. RV-Trees.L.st1 (0.203) rather than in
GFC-Trees vs. RV-Trees.LnB.st2 (0.105), GFC-Trees vs. RV-Trees.LnB.st3 (0.106), GFC-Trees vs.
RV-Trees.L.st2 (0.167), or GFC-Trees vs. RV-Trees.L.st3 (0.199) (Figures 6 and 7a–c).

The best-fit relationship in both MA regression analyses between GFC-Trees and
RV-Trees.L.sts/RV-Trees.LnB.sts shows that trees are over-represented in the RV results
(Figures 6 and 7a–c). The residuals (Figures 6 and 7f–h) are normally distributed across the
RV-Trees gradient.

RW-data (for 31 and 46 taxa, for lakes, and lakes and bogs) was used instead of
RVest, to test whether the use of raw pollen-Trees rather than RV-Trees better represented
the actual forest cover (GFC-Trees) (Figures 6 and 7d,e). The results show that raw
pollen-Trees have a worse association with GFC-Trees than RV-Trees. The regression
between raw pollen-Trees (31 and 46 taxa) for lakes and bogs and GFC-Trees only has a
weak association (R2 = 0.082) (Figure 6d,e), and for the lakes-only group, an even lower
R2 (0.073) (Figure 7d,e). The residuals in both cases are not normally distributed along
the regression line (Figures 6 and 7i,j).
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Figure 6. From left to right major axis regression between global forest change trees and REVEALS
estimates for tree cover RPPs.st1 (lakes and bogs), global forest change trees and REVEALS estimates
for tree cover RPPs.st2 (lakes and bogs), global forest change trees and REVEALS estimates for tree
cover RPPs.st3 (lakes and bogs) (panels: a–c) and corresponding residuals (panels: f–h), major axis
regression between global forest change trees and raw pollen data (31 taxa), global forest change
trees and raw pollen data (46 taxa) (panels: d,e) and corresponding residuals values graphs below
(panels: i,j). Black dots correspond to the grid-cell values used, the dark line is the 1 to 1 relationship,
and the red line is the best-fitted relationship.
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4. Discussion

Our discussion focuses on (i) proposing a robust RPP-means dataset, through valida-
tion, for a reliable representation of vegetation for the last 11,700 years BP at a European
scale, (ii) the influence of different RPP-means datasets on Gb-RVest as a test of the sensitiv-
ity of the REVEALS approach, (iii) the evaluation of some challenging taxa, and (iv) the
importance of the number of pollen records for high-quality Gb-RVest to capture transient
vegetation change at a sub-millennial time scale through the Holocene.

4.1. New Insight after Validation

Testing the reliability of REVEALS-based reconstructions relies on comparison with
different datasets, such as remote sensing data, and here we have used the global forest
change dataset (GFC). Neither RVest nor GFC provides a completely accurate reflection
of the “actual” vegetation. Both are subject to a number of potential sources of errors, as
already observed in [62] in the correspondence between CORINE [63] and pollen-based
land-cover classes. This study shares some similar challenges for comparing estimates of
vegetation based on the remotely sensed and pollen-inferred land cover with [62], which
might have influenced the validation as a whole. These include: (1) georeferencing inaccu-
racies: misplaced pollen site locations can affect both GFC (by extracting the wrong forest
cover data for sites) and RVest (by placing sites in the wrong grid cells); (2) misclassifica-
tion of land cover as remote sensing techniques make it difficult to differentiate between
land-cover types (e.g., the determination of different forest types) and not all land-cover
types are detectable via remote sensing; (3) the normalization factor applied to both RVest
and GFC to make the datasets comparable leads to loss of some details. However, our
comparison differs from that of [62] for several reasons, which are: (1) the approach used to
transform pollen data into records of land-cover change, as we have been able to compare
quantified values in both RVest and GFC, rather than compare classification results (via



Land 2023, 12, 986 18 of 31

biomization techniques used in [62]), (2) the modern vegetation used, (3) the use of modern
surface pollen samples.

The global forest change dataset is >80% accurate [57]. It is the most widely used
forest cover product for global and regional analyses due to its high resolution (30 m),
standardized classes, yearly updates, and convenient and cost-free use [64]. It also has the
advantage of being a time series of changes in tree cover [65]. Nevertheless, a number of
sources of error are specific to GFC. In [65,66], accuracy issues for this dataset are reported.
GFC is less accurate in mountainous regions due to a combination of intense cloudiness and
topographic shadowing [67]. GFC is also unable to distinguish between natural forest cover
and agricultural tree crops [66]. Lower accuracy is also reported in regions with sparse and
variable tree cover due to the background signal or seasonal variability in phenology or
cloud cover. Another limiting factor can be ascribed to the rescaling process that limits the
ability of the dataset to capture tree canopy cover values on the ground at 30 × 30 m as it is
derived from a coarser-resolution product [64].

In this study, the number of available modern pollen datasets with top cores samples
was limited. For the sake of complete Europe-wide validation, as many sites (191) as
possible were considered, including small lakes and bogs. A total of 41% of the grid cells
(111 out of 539) had top core samples useful for comparison. Our comparison revealed
that RPPs.st1 is the most suitable to represent modern vegetation in Europe, both using
bogs and lakes, or only lakes, as suggested by [31]. The REVEALS model improved the
accuracy of vegetation reconstruction significantly over the pollen proportions alone. Both
RV-Trees and uncorrected pollen-Trees over-represented forest cover compared to GFC-
Trees; however, the best match was found between RV-Trees and GFC-Trees. Trees in GFC
are defined as plants taller than 5 m. Some common European trees begin to produce and
disperse pollen even before reaching a height of 5 m (e.g., Betula and Alnus), particularly in
regions where tree growth might be more stunted or there are lots of shrubby trees [68–70].
This may explain a greater representation of trees in RVest than in GFC. On the other
hand, a young Pinus woodland may not produce substantial volumes of pollen but will
appear in the remote sensing dataset as a forest. Thus, it is important to bear in mind the
characteristics of the plant taxa and take into consideration their flowering age (i.e., the
number of years a particular plant taxon needs before it produces a significant amount
of pollen), location in the landscape (within or outside a woodland), or location within a
woodland (with flowering parts below or within the woodland higher canopy) in order to
better interpret the pollen-based reconstructions of plant cover. This validation not only
identifies the most suitable RPP-means dataset so far that can be used at the European scale
for the Holocene but also highlights the complexity of land cover, whose different sets of
conditions, history, and dynamics are difficult to interpret from pixelated data. Each set of
land-cover maps contains its own limitations and biases, which should not overshadow
the value of these products.

4.2. Influence of RPPs.sts on REVEALS Model Sensitivity and Pattern of Difference at the
Spatial Level

The second aim of this paper was to explore how different RPP-means datasets impact
the model output. It has previously been shown that RVest is strongly influenced by the
choice of RPPs that are used [39,71,72]. The RPPs values for a given taxon may, in some
cases, differ between study areas, although it was less clear whether differences were related
to environmental factors (e.g., climate, soils, land-use practices) or field methodologies in
pollen sampling and vegetation survey [35,73,74]. The solution to variable RPPs between
studies has been the calculation of mean RPP values that are applied within single studies
(e.g., [28,31,33]), and these have facilitated comparison between studies. We explored in our
analysis the impact that different RPP-mean datasets may have on the results of analysis,
with a particular focus on the inclusion of entomophilous taxa and through experimentation
with taxa that have very different values depending on the environment from which they
derive. This is the case in particular for Ericaceae (see Appendix B, Table A1), which, to
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date, has only two extreme values available. The first, from central Sweden, is 0.07 [75], and
the second one from Mediterranean France of 4.265 [31], all values are relative to Poaceae.

The results of our analysis show that Gb-RVest is more sensitive to changes in RPP
values (when the comparison sets have the same number of RPP taxa) than the addition of
taxa. The addition of a larger number of entomophilous taxa did not significantly impact
the overall results, despite REVEALS assuming that the major agent of pollen transport is
wind [27]. The main differences in Gb-RVest are found between runs using the RPPs.st1
and RPPs.st3 datasets (Figure 3), which are caused by differences in RPP values for 19 taxa
(see Table 1). Experimentation using different RPPs.sts, and careful comparison to modern
forest cover data, has enabled us to test different values for the same taxa by observing
which taxa are responsible for the over- or under-representation of the Gb-RVest-LCTs.
We have shown in our experimentation that uncertainty in RPPs for two challenging taxa
(Ericaceae and Empetrum) has the greatest impact on our Gb-RVest. This is mainly due to
factors that influence the RPP values.

4.3. Challenging Taxa: Ericaceae and Empetrum

The pollen morphotype Ericaceae comprises a wide range of species with highly
varied growth forms. Species growing in the Mediterranean area, such as Arbutus unedo
and Erica arborea [76–79], can grow as shrubs up to 5 m in height and have a large number
of inflorescences [79,80]. Low-growth species are characteristic of central and northern
Europe, e.g., Andromeda polifolia, Erica cinerea, and Vaccinum spp. [81,82]. The observed
variability in RPP values (4.265 in the Mediterranean, used in RPPs.st1, and 0.07 in central
Sweden, used in RPPs.st3) is most likely a result of both growth form and the number of
inflorescences. The use of the higher value (RPPs.st1) led to the under-representation of
Ericaceae in Gb-RVest in central northern Europe (Figure 4). The lower value (RPPs.st3)
resulted in an overrepresentation of Gb-RVest in the Mediterranean region (Figure 5). In
the case of Ericaceae, we might employ two different values in different regions of Europe;
however, it is not possible without independent climate data to use several different values
for a single reconstruction because the extent of the Mediterranean biome is likely to have
shifted during the Holocene [31].

The overrepresentation of Empetrum in Gb-Rvest-ET.st2 in North Europe, mainly in the
British Isles, has similar causes as those for Ericaceae. The abundance of Empetrum in some
grid cells may reflect the habitat of the species; the type of basin type (lake or bog) may also
play a role. Empetrum is generally found in regions with high rainfall at low altitudes in
northwest England and at sea level in western Ireland, as shown by our results. Empetrum
is most characteristic of ombrogenous bogs but is also present in some open pine and birch
woodland [83]: as a result, we are more likely to reconstruct greater land cover of Empetrum
when bogs are used rather than lakes, and the same is probably true for Ericaceae.

Besides the different basin types, there are inherent characteristics of Ericaeae and
Empetrum that may amplify the importance of heathland pollen taxa. The morphology of
Ericaceae flowers (e.g., exserted stamens) as in Calluna vulgaris, Erica umbellata, E. vagans,
and E. erigena can trigger anemophilous pollination and, therefore, a wider pattern of pollen
dispersal. The buoyancy and hydrodynamic characteristics of the pollen shape of Ericaceae
(i.e., tetragonal tetrads) may intensify transport by water (e.g., streams or surface runoff)
with subsequent accumulation at the margin of the water body (in our case, lakes) [84].
The combination of those factors can influence the relative abundance of Ericaceae pollen
in sediments.

4.4. Importance of the Number of Pollen Records in Europe: Data Reliability

The reliability (quality) of grid-based REVEALS estimates across the Holocene depends
on three key elements: the number of pollen records used and their distribution in each
grid cell; the type and size of pollen records; and the variation of these factors across time
windows [31,33]. The REVEALS model was developed to reconstruct regional vegetation
abundance using pollen data from large lakes (>100–500 ha) [27]. Studies using pollen
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records from the Czech Republic [28], Britain and Ireland [29], and southern Sweden [30]
have shown that REVEALS estimates based on pollen records from 2 to 3 small sites (<50 ha)
are similar to REVEALS estimates based on pollen records from large lakes. The minimum
number of small sites required to obtain reliable outcomes is difficult to define [33]. In this
study, we used the “protocol of reliability” proposed earlier [31], considering “reliable”
the grid cells with one large lake or at least three small sites. Those grid cells with less
than three small sites (lake or bog) or a large bog that violates assumptions of the model
(i.e., no pollen-bearing plants grow on the sedimentary basin) were considered “unreliable”
(Figure 1). The availability of pollen records from large sites in Europe remains limited,
which means that the multiple small sites approach [27] had to be implemented to obtain a
larger spatial density of REVEALS estimates across Europe.

Through time, the reliability of an individual grid cell may change, as not all pollen
sequences cover the whole Holocene. In this dataset, 186 out of 539 grids are sufficiently
reliable (Figure 1) because at least 50% of the time windows are based on large lakes
or more than 3 small sites. A total of 62 grid cells are partly reliable as fewer than 50%
of the time windows are based on reliable sites or groups of sites. A total of 291 grids
are unreliable. Caution should be applied when using REVEALS estimates from unreli-
able grid cells. These values may still represent regional vegetation if the vegetation in
the grid cell was homogeneous in the past, but if the vegetation was heterogenous Gb-
RVest from pollen sites that represent local vegetation cover are unlikely to wholly reflect
regional vegetation.

The precision of Gb-RVest is indicated by their SEs. Increasing the size of the pollen
count for a time window results in RVest with a smaller SE [27,28,31,33]. The 500-year-long
time windows (except for the three most recent ones) help to maximize the size of the
pollen count for each time window. Caution should be applied when using the Gb-RVest
when SEs are equal to or greater than RVest [31].

The results presented here are based on 1607 pollen sequences, which is 40% more
than [31], and has greatly improved the availability of reliable Gb-RVest, particularly in
southern Europe. Future work should focus on further enhancing this research effort by
using more pollen sequences to improve both reliability of values (more sites in each grid
cell) and focusing on regions with unreliable grid cells (Figure 1) or where open-source or
well-dated sequences are currently lacking. These regions include the Balkan peninsula,
Northern Scandinavia, and Eastern and Southern Europe.

5. Conclusions

This paper describes how a different selection of input parameters (three RPP-means
datasets, RPPs.sts) affects grid-based REVEALS estimates (Gb-RVest) across the Holocene
at a pan-European scale. Using major axis regression, we have shown that the choice of
RPP values can result in significant differences in Gb-RVest. RPPs.sts were validated for
the first time on a European scale. We had shown that REVEALS performed better when
RPPs.st1 was used. This RPP set excluded entomophilous taxa but included those with
mixed dispersal mechanisms. Thus, the addition of a larger number of entomophilous taxa
does not significantly improve the overall result, and it is more important to obtain reliable
RPP values for taxa than broaden the number used. The validation process confirmed
earlier studies that have demonstrated that the REVEALS model improves the accuracy
of vegetation reconstruction (RVest) significantly over the pollen proportions (raw pollen
data) alone.

This study points out the complexity of the variables acting on Gb-RVest. Mainly RPPs
values, intrinsic plant characteristics (e.g., entomophily/anemophily, flowers, and pollen
morphology), and the place where pollen grains were sampled (lakes or peat bogs) can
influence quantified vegetation reconstructions. The increasing number of pollen records
used in this study across Europe and during the Holocene has increased the quality and
accuracy of vegetation estimates both at the spatial and temporal levels.
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This emphasizes the importance of all inputs used in the model and intends to foster
the inclusion of numerous factors that act on the pollen grains’ production, dispersion, and
deposition when interpreting the estimated results. Thus, it encourages new studies on the
improvement of RPPs and pollen records in Europe in order to make the reconstructions
increasingly accurate.

The great improvement of the accuracy and spatial coverage of REVEALS-based
reconstruction enables better and more detailed usages of these results. Within the Ter-
ranova Project, examples of uses are the exploration of spatial-temporal changes in past
land cover and biodiversity over long time periods at a European scale, the evaluation of
model-simulated vegetation cover from dynamic vegetation model (CARAIB [85]), and
Agent-Based Models (ABM [86]), respectively.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land12050986/s1. File S1 Glossary of abbreviations used in
the paper.
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Available European RPP values are reported in Table A1. A total of 41 taxa from studies
in boreal and temperate Europe, and 8 taxa from studies in Mediterranean Europe, of which
6 included exclusively sub-Mediterranean and Mediterranean taxa: Buxus sempervirens,
Carpinus orientalis, Castanea sativa, Phillyrea, Pistacia, and evergreen Quercus t. (Q. ilex,
Q. coccifera) [31,87]). The majority of taxa could have values ranging between 1 and 10,
corresponding to the different areas of Europe where the RPP evaluation was carried out
(Table A1). The reasons for variable RPP values within one taxon have been discussed
by [73,74]. They are mainly methodological factors, such as different sampling designs,
environmental factors, and vegetation characteristics. Ref. [88] discussed in detail for Pinus
(mainly P. sylvestris) and Artemisia (mainly A. vulgaris) that the methodological differences
like pollen and vegetation sampling methods can explain the variability of RPP estimates
within one taxon. All RPP values selected for these syntheses are expressed relative to
Poaceae (RPP = 1).

For all of the three RPP-means datasets (Table A1), we excluded from the average
calculation two taxa and one family: Vaccinium (Vaccinum spp.), Larix/Pseudotsuga, Cupres-
saceae (Juniperus communis, J. phoenicea, J. oxycedrus), mainly due to uncertainties mentioned
by the authors in the original publications (e.g., Vaccinium for Finland [89]). The RPP value
used for Juniperus communis did not include the Mediterranean RPP value [28].

The model used to estimate RPP is Extended R-Value (ERV) [42,45,90], which takes
into account the modern pollen assemblages (e.g., moss polsters, lake sediments, soil
samples) and the related vegetation cover. Estimation of RPP values has been carried out
in 17 study regions across Europe: Britain [91]; the Czech Republic, [92]; Denmark, [93];
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Estonia, [94]; Finland [89]; Germany, [68,95]; Norway, [96]; Poland, [97]; Romania, [87];
Sweden, [75,98,99]; and Switzerland, [100,101]. Recently, [31,87] studied the Mediterranean
area. Almost all the studies applied the Gaussian Plume model of pollen dispersion and
deposition, both for pollen samples from moss pollsters (Prentice’s bog model [45,90]) and
lake sediments (Sugita’s lake model [40]), except for the study by [95], where RPP values
were calculated using the Lagrangian stochastic model.

Even though the REVEALS model assumes that RPP values are constant within the
region of interest and through time [27], it has been suggested that RPPs may vary be-
tween regions, with the variation caused by environmental variability (climate), vegetation
structure, or methodological design differences [28,36,71,102].

In the case of multiple RPP values for one taxon in Europe, the mean was calculated
to equalize within-taxon variabilities. In the synthesis, we seek to select and calculate mean
values coming from boreal, temperate, and Mediterranean Europe without separating
the datasets in the base of the regions. This is not straightforward to achieve because the
borders of these regions shifted over the Holocene [31].
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Table A1. Available RPPs values for the selected taxa used to calculate the RPPs-means and their SDs of the 31 and 46 taxa in the datasets (i.e., RPPs.st1, RPPs.st2,
RPPs.st3). RPPs (with their standard deviations SDs) of 26 tree pollen taxa and 23 herbs, and small shrubs in 17 study areas. The type of surface samples and the ERV
submodel used to calculate the original RPPs are indicated. The superscript numbers 1, 2, 3 indicate the values that were not included in the RPPs.st1, st2, and st3,
respectively. If no superscript number, the value is included in all three datasets. Poaceae was selected as reference taxon. * RPPs from Germany [68], reference taxon
Pinus. RPPs converted to Poaceae as reference taxon. The RPP estimates selected in this case were obtained with a vegetation dataset including only the trees that
had reached their flowering age. ** RPPs from Germany [95]; in the original publication, the ERV analysis was performed with the Lagrangian stochastic model
(LSM) for the dispersal of pollen and with Pinus as a reference taxon. In Githumbi et al. (2022), Martin Theuerkauf redid the analysis with the Gaussian Plume model
for the dispersal of pollen [45,90] and with Poaceae as a reference taxon.

Moss Polster Sites Used to Calculate RPPs Lake Sites Used to Calculate RPPs

Region Finland [89] C Sweden [75] S Sweden
[98,99] Norway [96] England [91] Swiss Jura [100]

C Bohemia
(Czech Rep.)

[92]

Bialowieza
Forest (Poland)

[97]
Estonia [94] Denmark [93] Swiss Plateau

[101] Germany * [68] Germany **
[95]

France
Mediterranean

[31]
Romania [87]

ERV submodel ERV 3 ERV 3 ERV 3 ERV 1 ERV 1 ERV 1 ERV 1 ERV 3 ERV 3 ERV 1 ERV 3 ERV 3 ERV ERV

Poaceae
(Reference taxa) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Herb taxa

Amaranthaceae/Chenopodiaceae
(mainly
Amaranthus
retroflexus and
Chenopodium al-
bum)

4.28 (0.27)

Apiaceae
0.26 (0.009) 1,3 5.91 (1.23) 1,3Artemisia

(mainly
A. vulgaris) 2.77 (0.39) 3 3.48 (0.20) 1,2 5.56 (0.020) 3 5.89 (3.16) 1,2,3

Calluna vulgaris
0.30 (0.03) 1,2 4.70 (0.69) 1,2,3 1.07 (0.03) 1.10 (0.05)Cerealia t.

(Secale and Zea
excluded except
in Grindean
et al. 2019)

3.20 (1.14)
0.0462 (0.0018)

1,2,3 1.60 (0.07) 0.75 (0.04)
0.00076 (0.0019)

1,2,3 9.00 (1.92) 1,2,3 0.08 (0.001) 1,2,3 0.22 (0.12) 1,2,3

Comp. SF.
Cichorioideae
(Comp SF
Asteroideae
excluded except
in Grindean
et al. 2019)

0.24 (0.06) 1,3 0.06 (0.004) 1,3 0.17 (0.03) 1,3 1.161 (0.675) 1,3 0.16 (0.1) 1,3

Comp.
Leucanthemum
(Anthemis) t.
(Achillea
millefolium and
Leucanthe-
mum vulgare)

0.10 (0.008) 1,3

Cyperaceae 0.002 (0.0022)
1,2,3 0.89 (0.03) 1.00 (0.16) 0.29 (0.01) 1,2,3 0.73 (0.08) 1.23 (0.09) 3

Empetrum
(mainly
E nigrum subsp.
hermaphroditum) 0.07 (0.06) 1,2,3 0.11 (0.03) 1,3



Land 2023, 12, 986 25 of 31

Table A1. Cont.

Moss Polster Sites Used to Calculate RPPs Lake Sites Used to Calculate RPPs

Region Finland [89] C Sweden [75] S Sweden
[98,99] Norway [96] England [91] Swiss Jura [100]

C Bohemia
(Czech Rep.)

[92]

Bialowieza
Forest (Poland)

[97]
Estonia [94] Denmark [93] Swiss Plateau

[101] Germany * [68] Germany **
[95]

France
Mediterranean

[31]
Romania [87]

Ericaceae
(Calluna
excluded,
Vaccinium spp.
dominant in NE
and
Arbutus unedo
and Erica arborea
dominant in SE)

0.07 (0.04) 1,2 4.265 (0.094) 3

Filipendula
(F. ulmaria) 2.48 (0.82) 3.39 (missing, 0.00) 3 3.13 (0.24)
Plantago
lanceolata 12.76 (1.83) 1,2,3 1.99 (0.04) 3.70 (0.77) 3 0.90 (0.23) 0.24 (0.15) 1,2 2.73 (0.043) 3 0.58 (0.32) 1,2,3
Plantago media

1.27 (0.18) 1,3Plantago
montana
(Plantago atrata) 0.74 (0.13) 1,3

Potentilla t.
(Potentilla spp.
dominant) 2.47 (0.38) 1,3 0.14 (0.005) 1,3 0.96 (0.13) 1,3

Ranunculus acris
t. (R. acris,
R. repens,
Clematis
flammula,
C. vitalba)

3.85 (0.72) 1,3 0.07 (0.004) 1,3 2.037 (0.335) 1,3

Rubiaceae
(Galium spp.
dominant) 3.95 (0.59) 1,3 0.42 (0.01) 1,3 3.47 (0.35) 1,3 7.97 (1.08) 1,3

Rumex acetosa t.
(mainly
R. acetosa and
R. acetosella)

4.74 (0.83) 0.13 (0.004) 1,2 1.56 (0.09) 2.76 (0.022) 3

Secale cereale
3.02 (0.05) 4.08 (0.96) 3 4.87 (0.006) 3Trollius (Trol-

lius europaeus) 2.29 (0.36) 1,3
Urtica (mainly
U. dioica) 10.52 (0.31) 1,3

Vaccinium
(Vaccinum spp.) 0.01 (0.01) 1,2,3

Tree taxa
Abies (A. alba) 3.83 (0.37) 9.92 (2.86)
Acer (A. spp.,
A. platanoides,
A. pseudopla-
tanus,
A. tataricum)

1.27 (0.45) 1,3 0.32 (0.10) 1,3 0.3 (0.09) 1,3

Alnus (A. spp.)
4.20 (0.14) 1,2 8.74 (0.35) 2.56 (0.32) 1,2,3 15.95 (0.6622) 3 13.93 (0.15) 15.51 (1.25) 3 13.68 (0.049) 3Betula (mainly

B. pubescens,
B. pendula) 4.6 (0.70) 2.24 (0.20) 8.87 (0.13) 3 6.18 (0.35)

13.94 (0.2293)
1,2,3 1.81 (0.02) 3 2.42 (0.39) 9.62 (1.92) 3 19.70 (0.117)

1,2,3
Buxus
sempervirens 1.89 (0.068)
Carpinus betulus

2.53 (0.07) 1,2 4.48 (0.0301) 3 4.56 (0.85) 9.45 (0.51) 1,2,3Carpinus
orientalis 0.24 (0.07)
Castanea sativa

3.258 (0.059)Corylus avellana
1.40 (0.04) 1.51 (0.06) 1.35 (0.0512) 3 2.58 (0.39) 3.44 (0.89) 1,2,3Cupressaceae

(Juniperus
communis,
J. phoenicea,
J. oxycedrus)

1.618 (0.16) 1,2,3
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Table A1. Cont.

Moss Polster Sites Used to Calculate RPPs Lake Sites Used to Calculate RPPs

Region Finland [89] C Sweden [75] S Sweden
[98,99] Norway [96] England [91] Swiss Jura [100]

C Bohemia
(Czech Rep.)

[92]

Bialowieza
Forest (Poland)

[97]
Estonia [94] Denmark [93] Swiss Plateau

[101] Germany * [68] Germany **
[95]

France
Mediterranean

[31]
Romania [87]

Deciduous
Quercus t.
(Q. spp.,
Q. petrae,
Q. rubra,
Q. cerris,
Q. pubescens)

7.53 (0.08) 5.83 (0.00) 1.76 (0.20) 3 18.47 (0.1032)
1,2,3 7.39 (0.20) 2.56 (0.39) 2.15 (0.17) 3 17.85 (0.049)

1,2,3 1.10 (0.35) 1,2,3

Evergreen
Quercus t.
(Q. ilex,
Q. coccifera)

11.043 (0.261)

Fabaceae
0.4 (0.07) 1,3Fagus

(F. sylvatica) 6.67 (0.17) 3 1.20 (0.16) 1,2 5.09 (0.22) 0.76 (0.17) 1,2 5.83 (0.45) 3 9.63 (0.008) 1,2,3
Fraxinus
(F. excelsior in
NE, F. excelsior
and F. ornus in
SE)

0.67 (0.03) 0.70 (0.06) 3 1.11 (0.09) 3 1.39 (0.21) 6.74 (0.68) 1,2,3 1.35 (0.012) 3 2.99 (0.88) 1,2,3

Juniperus
(J. communis) 0.11 (0.45) 1,2,3 2.07 (0.04)

Larix/Pseudotsuga 8.77 (1.81) 1,2,3
Phillyrea
(P. angustifolia,
P. latifolia,
P. media)

0.512 (0.075)

Picea (mainly
P. abies) 2.78 (0.21) 1.76 (missing, 0.00) 1,2 8.43 (0.30) 3 4.73 (0.13) 1.19 (0.42) 1,2 0.57 (0.16) 1,2,3 1.58 (0.28) 1,2,3 5.81 (0.007) 3
Pinus (mainly
P. sylvestris) 8.40 (1.34) 21.58 (2.87) 1,2,3 5.66 (missing, 0.00) 6.17 (0.41) 3 23.12 (0.2388)

1,2,3 5.07 (0.06) 1.35 (0.45) 1,2,3 5.66 (0.00) 3 5.39 (0.222) 3
Pistacia
(P. lentiscus,
P. therebinthus) 0.755 (0.201)
Populus (P. alba)

2.66 (1.25) 1,3Salix (S. spp.)
0.09 (0.03) 1.27 (0.31) 1.05 (0.17) 1.19 (0.12) 3 2.31 (0.08)Sambucus nigra t.

(mainly S. nigra) 1.30 (0.12) 1,3
Tilia (mainly
T cordata) 0.80 (0.03) 1.36 (0.26) 3 0.98 (0.0263)

1,2,3 1.47 (0.23) 3 12.38 (0.101)
1,2,3Ulmus (mainly

U. glabra) 1.27 (0.05)
11.51 (0.101)

1,2,3
Number of taxa

5 9 25 11 6 10 11 7 10 6 12 13 14 10 11
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Appendix C

Major axis (MA) as a regression method was used to explore the bivariate relation-
ship between two pairs of variables [60,61], or data series: among different RPP-means
datasets, RPPs.sts, over the Holocene (RPPs.st2 vs. RPPs.st1 and RPPs.st3 vs. RPPs.st1)
and between modern vegetation and REVEALS results. When both independent and
dependent variables are subject to error, the least-squares regression [103] assumptions
are violated. Ref. [104] recommend using MA if both variables are expressed in the same
physical units and with heterogeneous variables to compare the slopes of the relationships
between the same two variables measured under different conditions (e.g., at two or more
sampling sites). MA slopes are fitted by minimizing the sums of squares of errors in X
and Y dimensions simultaneously, and they show the proportional relationships between
variables (here, data series), i.e., how one variable scales against another. MA regressions
were performed using Major Axis Tests and Routines (SMATR) software version 3.6.1 in
R [105,106]. MA allows obtaining results values as (1) the slope that gives a useful quantity
interpreted as the estimated change in the expected value of Y for a given value of X if, by
fitting a regression line, the slope is significantly different from zero, there is an association
between y and x. (2) R2 indicates the proportion of explained variation; that is, the variation
in y that is explained by the variation in x, describing how strongly are Y and X associated.
(3) r (i.e., Pearson correlation coefficient) that could be positive or negative, indicating the
degree of correlation between the two variables [105].
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