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A B S T R A C T   

European forests are among the most extensively studied ecosystems in the world, yet there are still debates 
about their recent dynamics. We modeled the changes in tree canopy height across Europe from 2001 to 2021 
using the multidecadal spectral data from the Landsat archive and calibration data from Airborne Laser Scanning 
(ALS) and spaceborne Global Ecosystem Dynamics Investigation (GEDI) lidars. Annual tree canopy height was 
modeled using regression tree ensembles and integrated with annual tree canopy removal maps to produce 
harmonized tree height map time series. From these time series, we derived annual tree canopy extent maps 
using a ≥ 5 m tree height threshold. The root-mean-square error (RMSE) for both ALS-calibrated and GEDI- 
calibrated tree canopy height maps was ≤4 m. The user's and producer's accuracies estimated using reference 
sample data are ≥94% for the tree canopy extent maps and ≥ 80% for the annual tree canopy removal maps. 
Analyzing the map time series, we found that the European tree canopy extent area increased by nearly 1% 
overall during the past two decades, with the largest increase observed in Eastern Europe, Southern Europe, and 
the British Isles. However, after the year 2016, the tree canopy extent in Europe declined. Some regions reduced 
their tree canopy extent between 2001 and 2021, with the highest reduction observed in Fennoscandia (3.5% net 
decrease). The continental extent of tall tree canopy forests (≥ 15 m height) decreased by 3% from 2001 to 2021. 
The recent decline in tree canopy extent agrees with the FAO statistics on timber harvesting intensification and 
with the increasing extent and severity of natural disturbances. The observed decreasing tree canopy height 
indicates a reduction in forest carbon storage capacity in Europe.   

1. Introduction 

Humans are a major force shaping the vegetation cover of Europe 
during the Holocene (Vera, 2000). The current extent, structure, 
composition, and dynamics of woody vegetation in Europe are deter-
mined largely by historical land use (Kaplan et al., 2012; Fuchs et al., 
2013; Roberts et al., 2018). The high demand for timber resources 

stimulated their reproduction, management, and assessment, making 
Europe the birthplace of modern forestry and forest inventory methods 
(Tomppo et al., 2010; McGrath et al., 2015). As of today, many countries 
in Europe have advanced systems for forest inventory and monitoring. 
Moreover, Europe was one of the first regions of the world to adopt 
satellite data for continental-scale forest mapping (Reese et al., 2003; 
Schuck et al., 2003; Tomppo et al., 2008). Many European countries are 
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leading in forest data transparency, publicly providing open access to 
their forest monitoring data, including national forest inventory data 
and high-resolution remote sensing surveys (Nilsson et al., 2017; Pascual 
et al., 2021). 

Tree cover retention, sustainable management, and afforestation are 
proposed as viable natural solutions for climate change mitigation 
(Griscom et al., 2017; Harris et al., 2021). At the same time, climate 
change has been shown to increase natural disturbances across Europe, 
such as wildfires, wind damage, and insect infestations (Schröter et al., 
2005; Senf et al., 2020). In recent decades, monitoring of tree canopy 
extent and change has become an essential tool for measuring the 
terrestrial carbon balance and understanding the effectiveness of 
climate change mitigation and adaptation actions (Vizzarri et al., 2022). 

European forests are currently monitored through national forest 
inventories (NFI). However, the NFI methods have limitations con-
cerning the provision of complete and consistent up-to-date information 
on tree canopy extent, tree canopy height, and change of these param-
eters at the continental scale. NFI methods are inconsistent among Eu-
ropean countries regarding their forest definitions, temporal frequency, 
and data collection methods (McRoberts et al., 2009; Seebach et al., 
2011). Forest inventories are primarily focused on forest lands and 
usually do not consider tree canopy extent outside of forests (de Foresta 
et al., 2013; Liu et al., 2023), and neither are they designed to detect 
forest disturbance events (Schroeder et al., 2012). Further, the official 
forest definition used by the Forest Resource Assessment (FRA) of the 
Food and Agriculture Organization of the United Nations (FAO) and 
adopted by most NFIs for international reporting, includes temporarily 
unstocked lands (FAO, 2020). This makes the FRA data incompatible 
with remote sensing observations and doesn't allow estimating of 
changes in tree canopy extent caused by logging and natural distur-
bances from the FRA data alone (Nabuurs et al., 2022). 

Global and continental land cover maps derived from satellite 
remotely sensed data support tree canopy extent and change monitoring 
(Hansen and Loveland, 2012). Recently published Sentinel-2 maps at 10 
m spatial resolution (Malinowski et al., 2020; Zanaga et al., 2021, 2022) 
augment forest inventory data with information about tree cover outside 
of forests and the tree cover presence within forest land use areas, 
supporting tree cover mapping in highly fragmented landscapes. How-
ever, because Sentinel-2 satellites were launched in 2015 and 2017, 
these data do not provide the multidecadal monitoring capabilities of 
the Landsat archive. Existing global forest monitoring products may be 
inadequate for continental-scale tree canopy cover change assessments 
using area estimation via map pixel counting. For instance, the temporal 
inconsistency of the Global Forest Change product (Hansen et al., 2013) 
due to the changes in data processing methodology precludes direct 
estimation of annual tree canopy change trend from the map time series 
(Ceccherini et al., 2020; Palahí et al., 2021; Breidenbach et al., 2022). 

Our research goal was to quantify the annual changes in tree canopy 
extent and height in Europe over the past 21 years. To achieve this goal, 
we formulated three specific objectives for our study. 

The first objective was to develop an annual tree canopy height 
dataset in Europe from 2001 to 2021 at a spatial resolution of 0.00025 
degrees (~ 30 m per pixel) using the Landsat archive. To achieve this 
objective, we improved several recently developed methods and 
machine-learning tools including the automated Landsat data process-
ing (Potapov et al., 2020), tree height modeling using the integration of 
lidar and Landsat data (Potapov et al., 2021a, 2022), and Landsat-based 
annual tree canopy removal detection (Potapov et al., 2019). These 
methods were integrated to produce spatiotemporally consistent 
continental-scale annual tree canopy height and extent maps that are 
provided for public use at https://glad.earthengine.app/view/europe 
-tree-dynamics. 

The second objective was to estimate the accuracy of the developed 
dataset. We used set-aside lidar data to validate tree canopy height maps 
and visually interpreted reference sample data to validate tree canopy 
extent and change maps following good practice guidance (Olofsson 

et al., 2014). We also provided a comparison of our maps with the year 
2021 Sentinel-2 tree canopy extent map (Zanaga et al., 2022) and 
compared our tree canopy extent estimates with the FAO FRA forest 
area. 

The third objective was to quantify and analyze the tree canopy 
extent and height dynamics within Europe at the continental and 
regional scales using our annual maps and sample reference data. 

2. Data and methods 

We mapped continental tree canopy height annually using a set of 
locally calibrated empirical models (section 2.4) that employed Landsat 
phenological metrics (section 2.3.1) as predictors and lidar vegetation 
height measurements (sections 2.3.2 and 2.3.3) as calibration data 
(Fig. S1). The lidar height measurements were collected from two 
different sources: Airborne Laser Scanning data (ALS) for Northern 
Europe and spaceborne Global Ecosystem Dynamics Investigation 
(GEDI) data for Central and Southern Europe. The 2001–2021 annual 
modeled tree height maps (section 2.4) were aggregated with separately 
produced annual tree canopy removal detection maps (section 2.5). We 
applied a set of filters (section 2.6) to create a consistent 21-year tree 
canopy height time series which were further transformed into the 
annual tree canopy extent maps using a ≥ 5 m tree height threshold. To 
validate the continental product, we used set-aside lidar observations 
(section 2.7.1) and visually interpreted reference sample data (section 
2.7.2). 

2.1. Analysis area 

Our analysis area included 26 European Union countries (except the 
Republic of Cyprus and overseas territories). The analysis area also 
included the following countries and regions: Albania, Andorra, Bosnia 
and Herzegovina, Gibraltar, Guernsey, Isle of Man, Jersey, Kosovo, 
Liechtenstein, Moldova, Monaco, Montenegro, North Macedonia, Nor-
way, San Marino, Serbia, Switzerland, United Kingdom, Vatican City, 
and the Kaliningrad region of Russia. We employed Eurostat's Nomen-
clature of Territorial Units for Statistics (NUTS; https://ec.europa.eu/eu 
rostat) database to define the analysis area. For the sub-continental 
analysis, we aggregated the countries into the following geographic 
regions: Iberian Peninsula, Apennine Peninsula, Balkan Peninsula, Baltic 
States, Fennoscandia, British Isles, Eastern Europe, and Western Europe 
(Fig. 1). 

Fig. 1. Analysis area and geographic regions.  
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2.2. Definitions 

A ~ 30 × 30 m Landsat pixel includes a mosaic of tree canopies with 
different heights. Thus, a certain statistic from the higher spatial reso-
lution ALS canopy height model data is used to define tree height at 
Landsat resolution. Typically, the top of the canopy height (90th - 95th 
percentile of the ALS canopy height model data) was used for Landsat- 
based tree height model calibration (Matasci et al., 2018; Potapov 
et al., 2021a). As a result, pixels with a small proportion of tree canopy 
cover, such as boundary mixed pixels and clearcuts with tree retention 
were included in the training dataset as tall trees. Fig. 2 provides an 
example where the 95th percentile of the 1 m per pixel ALS canopy 
height model within 30 m Landsat pixels suggests the presence of trees 
within clearcuts with tree retention and over peat bogs while the 77th 
percentile and Landsat spectral data show tree absence. The use of a 
lower percentile thus improves the identification of the clearcut areas 
with tree retention that are common in Northern Europe (Kruys et al., 
2013). Using an empirical comparison of different ALS-based metrics we 
found that the 77th percentile provides the best balance between the 
tree height mapping and detection of logging sites with tree retention. 
Here, we defined the tree canopy height at the Landsat pixel scale as the 
77th percentile of the ALS-based canopy height values within the 
Landsat pixel. To separate tree canopies from non-woody vegetation, we 
consider a tree height of 3 m and above. We did not map short woody 
vegetation and young trees with heights below 3 m. 

Consistent with FAO FRA forest definition (FAO, 2020), we defined 
tree canopy extent as a land cover class with at least 5 m tree canopy 
height. The use of the 5-m height criterion supported the intercompar-
ison of our tree canopy extent and FAO FRA forest extent areas. The use 
of the 5 m threshold also made the reference sample interpretation 
easier. Trees with 5 m height usually can be readily interpreted using 

high spatial resolution images, while visual separation of the shrubs and 
young short tree canopies is often problematic. Tree canopy height is a 
continuous variable at the Landsat pixel scale, while tree canopy extent 
derived from tree canopy height is a binary (presence/absence) variable. 

2.3. Source data 

2.3.1. Landsat data 
The source Landsat Collection 2 data archive was provided by the U. 

S. Geological Survey Earth Resources Observation and Science (EROS) 
Center. Collection 2 data is a result of improvement of the Landsat data 
processing that features higher absolute geometric accuracy and data 
quality compared to Collection 1 (U.S. Geological Survey, 2021). Here 
we used the Landsat Level 1 (top of the atmosphere radiance and 
reflectance) Tier 1 (highest quality images) data from 1997 to 2021 
collected over Europe (236,420 Landsat scenes in total). Images affected 
by seasonal snow cover were not processed. 

The Landsat image archive was converted into Analysis Ready Data 
(ARD) using the fully automated data processing method developed and 
implemented by the Global Land Analysis and Discovery (GLAD) Lab at 
the University of Maryland. The GLAD ARD processing methods and 
output format were identical to the published data processing method-
ology (Potapov et al., 2020) that employed Collection 1 imagery. The 
image processing steps consisted of observation quality assessment, 
reflectance normalization using Moderate Resolution Imaging Spec-
troradiometer (MODIS) surface reflectance as a normalization target, 
and temporal aggregation. The GLAD ARD represents a 16-day time 
series of the highest quality observation composites. Each composite 
consists of normalized surface reflectance for six reflective bands, a land 
surface brightness temperature value, and an observation quality flag. 
The GLAD ARD product is stored in geographic coordinates using the 

Fig. 2. Comparison for the year 2019 including (A) the ALS-based tree canopy height at 1 m spatial resolution (Swedish Forest Agency); (B) the 95th and (C) 77th 
percentiles of ALS-based tree canopy height at the 30 m Landsat resolution; and (D) the year 2019 Landsat image composite (SWIR1-NIR-Red). The highlighted red 
circles show the location of peat bogs and clearcuts where the 95th percentile data shows tree canopy presence, while the 77th percentile data and Landsat spectral 
data show the tree canopy absence. (E) The high-resolution data from Google Earth™ centered on the highlighted circles to confirm low tree canopy cover. Sample 
area in Sweden, center at 16.91◦E; 62.78◦N. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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World Geodetic System (WGS84) and has a spatial resolution of 0.00025 
degrees (~ 30 m) per pixel. This coordinate system and spatial resolu-
tion were used to resample all other datasets, for the output maps, and 
throughout all analyses in this study. 

To create a feature space for tree height modeling, we aggregated the 
16-day GLAD ARD data into a set of annual phenological metrics for 
each year, 2001–2021. The annual phenological metrics represent a set 
of reflectance data distribution and vegetation phenology statistics 
extracted from the observation time series. Using these data distribution 
statistics, rather than 16-day observation time series, as input features 
for tree canopy structure modeling reduces the effect of inconsistent 
clear-sky image availability between regions and years and supports 
empirical model calibration and application for multiple years (Hansen 
et al., 2011; Potapov et al., 2019, 2021a). To create an annual pheno-
logical metric set we used only clear-sky observations from the 16-day 
GLAD ARD composites. If a gap in clear-sky observations was longer 
than two months, we used data from up to four preceding years to fill the 
gap to ensure the consistency of the land surface phenology information 
(Potapov et al., 2020). The phenological metrics consist of three sets of 
data distribution statistics (Table S1). The first set represents statistics 
extracted from the annual distribution of normalized surface reflectance 
and vegetation indices values and includes minimum and maximum 
values, quartiles, interquartile averages, and amplitudes. The second set 
represents seasonality metrics, calculated as data distribution statistics 
derived from the observation time series ranked by the vegetation index 
and brightness temperature values (e.g., the value of each reflectance 
band corresponding to the annual maximum surface temperature). The 
third set consists of the vegetation phenology statistics (start, peak, and 
end of the growing season) based on the time series of the normalized 
difference vegetation index (NDVI). The growing season boundaries for 
phenology statistics were defined as an interval between the beginning 
of NDVI consistent increase and the end of NDVI consistent decrease. 
Potapov et al. (2020, 2021a) provide a detailed explanation of the 
phenological metrics approach. 

Tree canopy removal events were detected using the annual change 
detection metrics set. Change detection metrics were confirmed to be an 
effective tool to map annual forest disturbance regionally (Potapov 
et al., 2019) and globally (Hansen et al., 2013). Here, we employed the 
change detection metrics set identical to the one described in Potapov 
et al. (2019, 2020). Each annual change detection metric set was created 
from the 16-day clear-sky observations of the corresponding and pre-
ceding years; the preceding year spectral data were aggregated over 
three years, taking the mean reflectance value for each 16-day interval. 
To create the annual change detection metrics (Table S2), we calculated 
distribution statistics for spectral bands and index values separately for 
the corresponding and preceding years and the difference for each sta-
tistic value between these years. To highlight changes in seasonal 
reflectance, we computed differences in spectral reflectance and vege-
tation index values between the corresponding and preceding years for 
each 16-day interval and extracted selected data distribution statistics 
from the time series of difference values. Finally, we calculated the slope 
of the linear regression between the spectral value and observation date. 

2.3.2. Airborne laser scanning data 
The growing season (leaf-on) ALS data for tree height model cali-

bration were available for Norway, Sweden, Finland, Estonia, and 
Denmark (Table 1; Fig. 3). We used the high-resolution Canopy Height 
Model (CHM) outputs derived from the ALS point clouds by data pro-
viders. The CHM data were provided in different coordinate systems and 
different spatial resolutions, from 1 to 10 m. We resampled all CHM data 
to the geographic coordinates and spatial resolution of 0.000025 de-
grees (~ 3 m) per pixel, using the nearest neighbor resampling method. 
These high-resolution raster images were used to calculate the 77th 
percentile of tree height within Landsat pixels. We assigned zero tree 
height to Landsat pixels with tree height value <3 m, within water, 
snow/ice, and built-up areas masks (see section 2.3.4), and within areas 

affected by the tree canopy removal (based on the map described in 
section 2.5) during the year of ALS data acquisition. Pixels near power 
lines (see section 2.3.4) were excluded from the data set. The year of ALS 
data collection (usually provided as a vector file) was rasterized to the 
Landsat spatial resolution, creating the acquisition date layer. 

To enable tree height map validation, we separated the ALS-based 
tree canopy height layer for Northern Europe into the calibration 
(99.99%) and reference (0.01%; 230,149 pixels) data sets using random 
sampling. In addition, we used the ALS data for the entire area of the 
Galicia autonomous community of Spain to validate the GEDI-based tree 
canopy height model. A 0.1% random sample (53,938 pixels) of the 
Galicia ALS-based tree height data was used as reference data. 

2.3.3. GEDI data 
The GEDI Version 2 Level 2A Relative Height (RH) metrics available 

from the NASA/USGS Land Processes Distributed Active Archive Center 
(Dubayah et al., 2021), served as calibration and validation data for the 
southern (south of 52◦N) portion of the continent. Version 2 data has 

Table 1 
Airborne Laser Scanning (ALS) data sources.  

Region Data 
Format 

Acquisition 
Year(s) 

National Data Provider 

Norway 
(national) 

CHM, 1 
m 

2009–2021 Norway's national mapping agency 
(Kartverket); https://hoydedata. 
no/LaserInnsyn/ 

Sweden 
(selected 
areas) 

CHM, 1 
m 

2018–2020 Swedish Forest Agency 
(Skogsstyrelsen); https://www. 
skogsstyrelsen.se/ 

Finland 
(national) 

CHM, 1 
m 

2010–2019 Finnish Land Survey 
(Maanmittauslaitos); 
https://www.maanmittauslaitos.fi/ 

Estonia 
(selected 
areas) 

CHM, 4 
m 

2019 Republic of Estonia Land Board 
(Maa-amet); https://geoportaal. 
maaamet.ee/ 

Denmark 
(national) 

CHM, 
10 m 

2014–2015 Assmann et al., 2021; https://zenodo 
.org/record/5752926 

Spain 
(Galicia)* 

CHM, 2 
m 

2015–2016 Spain's National Geographic Institute 
(IGN); https://pnoa.ign.es/  

* Data used for product validation only. 

Fig. 3. Training data regions (groups of GLAD ARD 1 × 1◦ tiles): 1 – ALS data 
(actual ALS data extent shown in black); 2 – GEDI data; 3 – GEDI-based and 
ALS-based Landsat modeled products; 4 – GEDI-based Landsat 
modeled product. 

S. Turubanova et al.                                                                                                                                                                                                                            

https://hoydedata.no/LaserInnsyn/
https://hoydedata.no/LaserInnsyn/
https://www.skogsstyrelsen.se/
https://www.skogsstyrelsen.se/
https://www.maanmittauslaitos.fi/
https://geoportaal.maaamet.ee/
https://geoportaal.maaamet.ee/
https://zenodo.org/record/5752926
https://zenodo.org/record/5752926
https://pnoa.ign.es/


Remote Sensing of Environment 298 (2023) 113797

5

improved geolocation compared to the Version 1 data that was used for 
global tree height mapping in Potapov et al. (2021a). We used all GEDI 
data collected between 18th April 2019 and 23rd November 2021. 
Following Potapov et al. (2021a), we filtered the GEDI data to select 
only the high-quality observations. Specifically, we selected only ob-
servations (i) collected in power beam mode, (ii) collected during the 
night, and (iii) with beam sensitivity ≥0.9. To select only GEDI obser-
vations within the growing season, we used the growing season start/ 
end dates from the VIIRS/NPP Land Cover Dynamics product (Zhang 
et al., 2020) resampled to GLAD ARD spatial resolution. 

We selected the GEDI RH metric using the approach prototyped by 
Potapov et al. (2021a). To select the GEDI RH metric for mapping tree 
canopy height at the Landsat scale, we used the co-located ALS and GEDI 
observations in the USA and Mexico from the Potapov et al. (2021a) 
training dataset, because most of the available ALS data in Europe were 
outside the GEDI data range. Overall, we used 42,802 GLAD ARD pixels 
to establish the correspondence between the GEDI RH metric and the 
77th ALS height percentile, identified in section 2.2 as optimal for 
mapping tree canopy height at Landsat resolution. We found that the 
GEDI RH83 metric, which represents the height of 83% energy return 
relative to the ground, has the best match to the 77th ALS canopy height 
percentile within the Landsat pixel. The coefficient of determination 
(R2) between the 77th ALS canopy height percentile and GEDI RH83 
metric was 0.73, the root-mean-square error (RMSE) was 5 m, and the 
mean absolute error (MAE) was 3.1 m. We selected the GEDI RH83 
metric to represent the tree canopy height value at the Landsat pixel 
scale. We assigned zero tree canopy height values if the RH83 value was 
<3 m, within the water, snow/ice, and built-up areas masks, and within 
areas affected by the tree canopy removal after the year 2019. We also 
assigned zero value to pixels within the no-trees mask according to 
Malinowski et al. (2020) dataset (see section 2.3.4). The GEDI-based tree 
canopy height data were separated into calibration (99%) and reference 
(1%; 938,909 pixels) set using random sampling. 

2.3.4. Auxiliary datasets 
We used several auxiliary datasets to improve the lidar training data, 

to support the tree canopy height mapping, and to analyze the tree 
canopy extent area and change. The land surface elevation data com-
bined from the Shuttle Radar Topography Mission (Reuter et al., 2007; 
south of 60◦N) and Global Multi-resolution Terrain Elevation Data 2010 
(Danielson and Gesch, 2011; north of 60◦N) was used as an additional 
input for image classification. 

Neither ALS nor GEDI height data by themselves discriminate trees 
from buildings. The ALS data is sensitive to the height of power lines, 
which affects the model calibration. The GEDI data frequently over-
estimate tree height over treeless areas, especially in the mountains 
(Potapov et al., 2021a). To correct these issues, we used datasets that 
indicate the presence of buildings, power lines, and permanently treeless 
areas. We mapped power lines (with a 30-m buffer) using the Open 
Street Map (OpenStreetMap (OSM) contributors, 2022). We generated a 
built-up areas mask that included pixels within the building outlines 
from the Open Street Map and the “Artificial surfaces and constructions” 
class from the year 2017 Sentinel-2 land cover map of Europe (Mali-
nowski et al., 2020). This mask was used to filter out ALS and GEDI 
observations that represented the height of buildings. To filter possible 
errors in GEDI tree height data within treeless areas, we derived a tree 
cover mask from the Malinowski et al. (2020) land cover map. 

The areas of permanent water and snow/ice were excluded from the 
tree canopy height mapping. The time series of GLAD ARD data quality 
layers (Potapov et al., 2020) were used to produce annual permanent 
water and snow/ice maps. 

We used several reference datasets to compare our results. The FAO 
FRA (FAO, 2020) forest areas for the years 2000 and 2020 were 
aggregated for the analysis regions and compared with the tree canopy 
extent and change estimated from our maps. The Sentinel-2-based 
WorldCover 2021 land cover map (Zanaga et al., 2022) developed by 

the European Space Agency (ESA) was used for the year 2021 tree cover 
extent comparison and per-pixel map consistency analysis. The tree 
cover mask was derived from the WorldCover map (spatial resolution 
10 m) using a 50% threshold of the tree cover class presence within a 30- 
m GLAD ARD pixel. 

2.4. Tree canopy height mapping 

To map tree canopy height annually we implemented an empirical 
modeling using the bagged (bootstrap aggregated) regression tree 
method (Breiman et al., 1984; Breiman, 1996). The bagged regression 
tree is an ensemble machine learning algorithm in which a set of non- 
parametric regression models is calibrated using random subsets of the 
training data. Regression tree ensembles were used earlier to map tree 
canopy height globally by Potapov et al. (2021a, 2022). To ensure the 
high accuracy of the model output, we calibrated a separate regression 
tree ensemble model for each of the 982 GLAD ARD 1 × 1◦ tiles within 
Europe (Fig. 3). 

The training data for model calibration represented the 77th ALS 
canopy height percentile (Region 1, Fig. 3) and GEDI RH83 metric 
(Region 2). For the tiles with no lidar training data (Regions 3 and 4), we 
used the Landsat-based modeled annual tree height data from the 
neighboring tiles as training. We used both ALS-based and GEDI-based 
model outputs from the neighboring tiles for Region 3 and GEDI-based 
model outputs only for Region 4. 

The model predictors (independent variables) for tree canopy height 
modeling included (i) annual phenological metrics (described in section 
2.3.1); (ii) land surface elevation (section 2.3.4); and (iii) a selected set 
of the annual change detection metrics that were added to improve the 
mapping of tree absence within areas of recent tree canopy removal 
(section 2.3.1). To ensure the model's adequate performance for years 
with different Landsat sensor compositions, we calibrated the model 
using the Landsat phenological metrics from (i) the year of the lidar data 
acquisition and (ii) the year 2002. Only pixels that have no indication of 
tree height change, based on the Global Forest Height Change 
2000–2020 map by Potapov et al. (2022), were considered for the year 
2002 training data collection. 

To calibrate each regression tree ensemble model, we collected 
training data from the target and neighboring tiles, following the 
approach of Potapov et al. (2021a). Here, instead of using a static radius 
to define neighboring tiles, we used a dynamic radius. For each tile, we 
started with the 1-degree radius for the ALS region and the 3-degree 
radius for the GEDI region and increased the radius until the training 
set for each tree model included at least 100,000 pixels. 

For each of the 982 tiles, we calibrated an ensemble of 25 regression 
tree models using the algorithm developed by Breiman et al. (1984). 
Each regression tree was calibrated using an independent sample of 
training data (100,000 training pixels on average). The tree growth was 
limited by the deviance decrease threshold of 0.01% of root deviance. 
When an ensemble of tree models was applied to a set of annual 
phenological metrics, the median predicted tree height value of all 
models was recorded as the output value. 

Each model was calibrated using two steps: first, using an initial set 
of training data; second, adding training data collected from tree canopy 
extent commission errors detected after the initial model run to suppress 
model overestimation. The presence of commission errors (treeless areas 
incorrectly mapped as tree cover height ≥ 5 m) was identified via a 
comparison of the initial model run for the year 2020 to the tree cover 
presence in the European land cover product (Malinowski et al., 2020). 
The final regression tree ensemble models were applied to all years, 
2001 to 2021, using the corresponding annual phenological metric sets. 

2.5. Tree canopy removal detection 

The annual canopy removal maps were produced independently and 
integrated with the annual tree canopy height maps to improve the 
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representation of tree canopy disturbance and recovery (see section 2.6). 
We performed the regional tree canopy removal detection following the 
approach of Potapov et al. (2019) to create a continentally consistent 
annual product that detects only complete or near-complete tree canopy 
removal events. 

The tree canopy removal was mapped using a bagged decision tree 
model (Breiman et al., 1984; Breiman, 1996). The model represents an 
ensemble of 25 decision trees calibrated using random samples of 
training data; the median class likelihood of all trees was thresholded at 
50% to define the tree canopy removal class presence (Potapov et al., 
2019). We manually collected training data for the model through visual 
image interpretation. The training data collection was an iterative pro-
cess, also known as active learning, where the new training data was 
added if, after the model application, we visually observed map errors. 
The model predictors (independent variables) included Landsat change 
detection metrics (described in section 2.3.1) and land surface elevation 
(section 2.3.4). To account for regional specifics of tree canopy dy-
namics, we calibrated a set of regional tree canopy removal detection 
models: a separate model for Fennoscandia, Central Europe, the Iberian 
Peninsula, the Mediterranean region, and the British Isles. The final 
models were applied to each year 2001–2021 separately to create a tree 
canopy removal map time series. 

2.6. Continental tree canopy height time series 

Both the annual modeled tree canopy height and the annual tree 
canopy removal detection products had noise due to Landsat data 
inconsistency, specifically, the lack of clear-sky observations during 
important phenological stages for some of the years or remaining at-
mospheric contamination. We filtered both datasets and integrated the 
tree canopy removal with the tree canopy height to derive a 21-year 
spatiotemporally consistent time series product. The filtering included 
three stages: an initial stage to remove outliers, a temporal filtering stage 
to create a consistent tree height time series product, and a spatial 
filtering stage to remove noise in mixed pixels. 

At the initial stage, we applied filters for both annual change 
detection and tree height products. The annual tree canopy removal 
time series were filtered to exclude change detection instances where the 
modeled tree canopy height for the year after the disturbance detection 
was the same or higher than the year before the disturbance. For the 
annual tree canopy height map time series, values that were signifi-
cantly (by 5 m or more) higher or lower compared to the year before and 
the year after were replaced with a 3-year median value. This step 
improved the stability of the follow-up filtering algorithm. 

During the temporal filtering stage, we first selected pixels with ≤2 
non-zero annual tree height detections if both years 2001 and 2021 had 
tree height < 5 m. The annual tree height values for these pixels were set 
to zero. Second, we selected pixels with stable tree height using the 
following criteria: (i) tree canopy removal was not detected; (ii) ranges 
of predicted tree height values for each 5-year interval overlapped with 
the preceding/following time intervals; and (iii) no increase or decrease 
in tree height was observed over 21 years. The annual tree height values 
for these pixels were calculated as the median for the 2001–2021 in-
terval. For all other pixels, we adjusted the annual tree height values 
using a linear trend calculated using up to four preceding and following 
years. The number of years used to calculate the linear regression model 
for the target year was limited by the tree canopy removal events (e.g., if 
a change was detected two years before the target year i, the interval for 
the linear trend included years from the year i-2 to i + 4). The tree 
canopy height for the year of the detected tree canopy removal event 
was set to zero. We also limited the annual tree height increase to 3 m. 

At the spatial filtering stage, we checked pixels that were located at 
the edge of the tree canopy extent. For the boundary pixels that have 
frequent changes in modeled tree height but no detected tree canopy 
removal, we replaced the annual modeled tree height values with the 
median value. 

After we completed the adjustment of the tree height time series 
product, we generated the final annual tree canopy removal product 
using the annual tree height maps. That is, we assign tree canopy 
removal detection to pixels that have zero canopy height in the target 
year, and tree canopy height ≥ 5 m one to three years before that. From 
the tree height time series, we created the annual tree canopy extent 
maps using the ≥5 m tree canopy height threshold. The final map time 
series are available from the dedicated web portal (https://glad.earthe 
ngine.app/view/europe-tree-dynamics). 

2.7. Validation of tree canopy height, extent, and change maps 

2.7.1. Validation using reference Lidar data 
Landsat-based canopy height validation employed as a reference a 

set-aside of 938,909 GEDI data pixels and 230,149 Northern European 
ALS data pixels that were not used for model calibration. In addition, we 
used 53,938 ALS data pixels for Galicia (Spain) to validate the GEDI- 
based product. We applied the same data filters and rules to the vali-
dation data as to the training data (see sections 2.3.2 and 2.3.3). 

The product uncertainty was quantified by comparing GEDI and ALS 
tree canopy height metrics with the Landsat-based tree canopy height 
map for the year of the lidar data collection. In addition to height value 
uncertainty, we analyzed the error of tree canopy extent mapping. To do 
that, we converted both the reference and map tree height into tree 
canopy extent class using a ≥ 5 m threshold and used the resulting 
confusion matrix to calculate map accuracies. To check the effect of the 
low canopy height areas on the map accuracy, we performed additional 
map accuracy estimates excluding pixels with tree height of 4–6 m (both 
in the map or reference data) from the calculation. 

2.7.2. Validation using reference sample data 
To validate the results of continental tree canopy extent and change 

mapping, we performed sample-based area estimation and map vali-
dation using a well-established approach (Cochran, 1977; Olofsson 
et al., 2014; Stehman, 2014). Landsat GLAD ARD data pixels (spatial 
resolution 0.00025◦, ~ 30 m per pixel) represented sample units that 
were selected using a stratified random design. We defined sampling 
strata based on tree canopy height dynamic and the proximity to tree 
canopy extent and change areas for targeting tree canopy extent omis-
sion and commission errors within mixed pixels (Olofsson et al., 2020). 
The resulting nine strata are presented in Table S3. 

We randomly selected 200 pixels from each stratum (1800 pixels in 
total). The reference data for each sample pixel were collected through 
the visual interpretation of high-resolution imagery time series available 
from Google Earth™, 16-day Landsat spectral reflectance and vegetation 
index values, annual and bi-monthly Landsat image composites, and 
annual change detection metric composites that highlight abrupt change 
events (Fig. S2). We used auxiliary data such as European land cover 
(Malinowski et al., 2020) and landscape photographs available in Goo-
gle Earth™ to support differentiation between trees and shrubs. 

Each sample pixel was interpreted independently by two experts 
using all available reference data; the disagreements between in-
terpreters were discussed to reach a consensus. For visual interpretation, 
we defined tree canopy extent as pixels with at least 25% of tree canopy 
cover from trees ≥5 m. Tree canopy removal events were defined as tree 
canopy cover reduction below 25% of the pixel area. The following in-
formation was collected for each sample pixel: (i) tree canopy extent 
presence for the years 2001, 2011, and 2021; (ii) years and proximate 
causes of tree canopy removal events (such as natural disturbance, 
logging, and land use transformation); (iii) proximate causes of tree 
canopy extent gain (regeneration after disturbances, afforestation over 
abandoned agricultural lands, and new tree plantation establishment). 
To interpret proximate causes of tree canopy extent change we used the 
latest high spatial resolution (≤ 1 m/pixel) images from Google Earth™ 
and bi-monthly Landsat image time-series. The sample reference data is 
available for download and review from https://glad.earthengine. 
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app/view/europe-tree-dynamics. 
Sample interpretation results served as a basis to estimate (i) the 

accuracies of the tree canopy extent and change maps, (ii) the sample- 
based tree canopy extent area for the years 2001, 2011, and 2021, and 
(iii) the average sample-based annual tree canopy removal area for the 
2001–2011 and 2012–2021 intervals. Using the sample pixels that 
represented net tree canopy gain (tree canopy absence in 2001 and 
presence in 2021) and net tree canopy loss we estimated the proportion 
of net tree canopy gain and loss related to various proximate causes 
(Geist and Lambin, 2002). 

For sample-based estimation, we split each stratum into two post- 
strata south and north of 55◦N to address the latitudinal difference in 
GLAD ARD sample pixels area. The resulting minimal sample size for a 
post-stratum was 55 pixels. We used the area and accuracy equations 
from Potapov et al. (2021b) where the strata weights were calculated 
from their respective areas, and not pixel counts, to account for the 
variation of the GLAD ARD pixel area. 

3. Results 

3.1. Map validation results 

3.1.1. Comparison with the reference Lidar data 
There is no single reference lidar tree canopy height dataset for entire 

Europe. Instead, we performed three independent comparisons between 
our Landsat-based map and lidar observations: (i) a comparison of the 
ALS-calibrated model output with the set-aside ALS reference data in 
Northern Europe (Norway, Sweden, Finland, Denmark, and Estonia); (ii) 
a comparison of the GEDI-calibrated model output with the set-aside 
GEDI data (south of 52◦N); and (iii) a comparison of the GEDI- 
calibrated map with ALS data in Galicia, Spain. 

We found a strong correlation between the ALS-calibrated Landsat- 
based map and the set-aside ALS reference data in Northern Europe (R2 

= 0.77; Fig. 4A, Table 2A). European North features a nearly complete 
gradient of tree canopy height, which is evident from the scatterplot 
(Fig. 4A). In contrast, within the GEDI data extent (south of 52◦N) the 
scatterplot shows a bimodal pattern of tall (temperate moist and 
montane forests) and short (Mediterranean) forests (Fig. 4B). A com-
parison of the GEDI-calibrated height map with the set-aside GEDI 
reference data revealed a lower R2 and a higher RMSE compared to the 
ALS-calibrated map (Table 2A). The high RMSE and low R2 values 
resulting from the comparison of the GEDI-calibrated model output with 
ALS data in Galicia indicated the limitation of the GEDI height mea-
surements for Landsat-based model calibration compared to the ALS- 
based training data (Fig. 4C). 

The mean difference (computed by subtracting the map height from 
the reference height, Table 2A) indicates that the Landsat-based map 

underestimates the tree height, which is consistent with our earlier 
observations (Potapov et al., 2021a, 2022). We see the effect of model 
saturation, with the greatest tree height underestimation within the tall 
tree stands in Central and Southern Europe (> 25 m, Fig. 4B). 

To validate the tree canopy extent, we converted both the map and 
the reference data into binary presence/absence maps using a ≥ 5 m tree 
canopy height criterion. The accuracy of the tree canopy extent mapping 
(Table 2B) confirms the suitability of the Landsat-based tree canopy 
height maps for continental tree canopy extent monitoring. The highest 
tree canopy extent accuracy was found in Northern Europe, while the 
accuracy within Central and Southern Europe (within the GEDI data 
range) was lower. The nearly balanced user's and producer's accuracies 
suggested that map errors do not cause systematic tree canopy extent 
omission or commission. We further suggest that most of the mapping 
errors are due to the uncertainty of canopy height modeling within the 
interval from 4 to 6 m. If sample pixels with a tree height of 4–6 m are 
removed from computation, the accuracy increases (Table 2B). 

3.1.2. Validation using reference sample data 
We used the reference sample of visually interpreted tree canopy 

extent (section 2.7.2) to estimate the accuracy of the years 2001, 2011, 
and 2021 tree canopy extent maps (Table 3). The accuracies of all three 
maps are high, with user's and producer's accuracies ≥94% for each 
year. We presume that the map accuracies for other years must be 
analogous. 

Fig. 4. Comparison of the Landsat-based tree canopy height map with (A) ALS reference data in Northern Europe; (B) GEDI reference data south of 52◦N; and (C) ALS 
reference data for Galicia, Spain. 

Table 2 
(A) Comparison statistics between the reference lidar data and Landsat-based 
tree canopy height map. (B) Landsat-based tree canopy extent map accuracy 
statistics using the lidar data as a reference. Tree canopy extent was defined as 
areas with tree height ≥ 5 m. Accuracy statistics computed excluding pixels with 
tree height of 4–6 m are shown in parenthesis.   

ALS (Northern 
Europe) 

GEDI ALS (Galicia, 
Spain) 

A. Tree canopy height comparison statistics 
Root-mean-square error 

(RMSE), m 
3.31 3.89 4.05 

Mean absolute error (MAE), 
m 

1.82 1.58 2.49 

Mean difference, m 0.33 0.27 0.14 
Coefficient of determination 

(R2) 
0.77 0.70 0.58 

B. Tree canopy extent accuracy statistics 
Overall accuracy 91 (96) 92 

(95) 
84 (92) 

User's accuracy 89 (96) 81 
(87) 

77 (88) 

Producer's accuracy 90 (94) 77 
(84) 

81 (88)  
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Visually interpreted reference sample data also allowed us to vali-
date tree canopy removal detection. In the map time series, we defined 
tree canopy removal as an instant reduction in tree canopy height from 
≥5 m to zero, and we assigned the year of this event. For the reference 
sample, we recorded the year of nearly complete canopy removal (if the 
remaining tree canopy cover was <25%) within the sample pixel. We 
aggregated the dates of the tree canopy removal into intervals 
2001–2011 and 2012–2021. The accuracy metrics for both the 
2001–2011 and 2012–2021 intervals were similar, which confirms the 
temporal consistency of our tree canopy removal maps (Table 3). The 
tree canopy removal detection has a high (≥ 93%) producer's accuracy 
but a lower user's accuracy which indicates model commission errors. 
We suggest that this commission is mostly due to the confusion between 
complete and partial tree canopy removal within the Landsat pixel. We 
found that out of 96 sample pixels where map-based canopy removal 
was not confirmed by the reference data, 72 sample pixels (75%) 
experienced partial canopy removal due to selective logging, natural 
disturbance, or clearcut edge. 

3.2. Regional tree canopy extent and change 

3.2.1. Annual tree canopy extent and height 
Our map time series shows that the tree canopy extent (area with tree 

canopy height ≥ 5 m at the Landsat pixel scale) in Europe increased from 
2001 to 2021 by 1%, or by 1.5 Mha (Fig. 5). The tree canopy extent 
estimated from the reference sample data shows a similar increase of 1.2 
Mha, from 161.9 Mha (95% confidence interval +/− 3.6 Mha) in the 
year 2001 to 163.1 Mha (+/− 3.8 Mha) in the year 2021 (Fig. 5). Both 
the map and the reference sample data suggest that the tree canopy 
extent area increased during the 2000s and declined during the late 
2010s. The annual map data indicate that the tree canopy extent 
increased by 1.7% from 2001 to 2016, reaching its maximum around 
2016. From 2016 to 2021, however, the tree canopy extent declined by 
0.7%. 

The annual dynamics of map-based tree canopy extent area were 
different among regions (Fig. S3). From 2001 to 2021, the tree canopy 

extent area increased in all regions except the Baltic States, Fenno-
scandia, and Western Europe. The British Isles had the largest relative 
net tree canopy extent increase of all regions (10.7%), while Eastern 
Europe had the highest absolute net gain (1.4 Mha). Eastern Europe, 
Western Europe, and the Baltic States exhibited a net increase in tree 
canopy extent in the 2000s, with the subsequent decrease of its area 
during the 2010s. The maximum tree canopy extent was reached by 
2018, 2016, and 2010 for Eastern Europe, Western Europe, and the 
Baltic States, respectively. Overall, from 2001 to 2021, the tree canopy 
extent area decreased in Western Europe and the Baltic States by 0.3% 
and 2.5%, respectively. Fennoscandia was the only region that showed a 
continuous reduction of the tree canopy extent area, with the highest 
absolute (1.9 Mha) and relative (3.5% of the year 2001 extent) net area 
reduction among all the regions. 

The aggregation of the tree canopy extent maps at the 50 × 50 km 
equal area grid revealed change hotspots (Fig. 6A). Tree canopy extent 
reduction was the highest within Central and Southern Sweden and 
Finland, Estonia, Latvia, Rhenish Massif and Harz mountains in Ger-
many, the Czech Republic, Austria, the Landes forest region of France, 
and Serra da Estrela mountains in Portugal. Regions with the highest net 
tree canopy extent gain included Ireland, Galicia autonomous commu-
nity of Spain, Central Italy, and most Eastern European countries from 
Poland in the North to Bulgaria in the South. 

The continental tree canopy height map (Fig. S4) shows that the tree 
canopy is the tallest in Central Europe while shorter in Northern and 
Southern Europe. Fennoscandia represents a gradient from the tall tree 
stands in the South to short woody vegetation in the North. The tallest 
tree stands in Europe are found within montane areas of Central Europe, 
such as Schwarzwald in Germany and the Carpathians in Romania. 

To simplify the analysis of tree canopy height dynamics, we aggre-
gated the continuous canopy height map into three brackets: 5–9 m, 
10–14 m, and 15 m and above (Table S4). In the year 2021, the tall tree 
canopy bracket (≥ 15 m) represented nearly half (46%) of the total tree 
canopy extent, while the area of the 5–9 and 10–14 m height brackets 
represented 29% and 25%, respectively. Within temperate forests re-
gions such as Eastern and Western Europe and the Baltic States, the tall 
tree canopy bracket (≥ 15 m) represented >60% of the total tree canopy 
extent, while in the Iberian Peninsula this bracket represented <10% of 
the total area. 

The tree canopy height brackets experienced different dynamics over 
the past 20 years. We found that the area of the 5–9 and 10–14 m height 
brackets increased by 2 and 8%, respectively, while the tall tree canopy 
(≥ 15 m) bracket extent was reduced by 3% (Table S4). The largest 
reduction of tall tree canopy bracket area was found in Fennoscandia (by 
20%, Fig. 6B) and Baltic States (by 7%) most probably due to the in-
crease of annual logging area and slow regeneration of trees on the 
logging sites in the northern forests (see section 4.2.3). The largest in-
crease within the 10–14 m height bracket was found in the British Isles, 
Eastern Europe, and Balkan Peninsula by 29%, 24%, and 16%, 
respectively. 

3.2.2. Annual tree canopy removal 
The annual tree canopy removal is an important metric that char-

acterizes the forest disturbance dynamics. Using the annual tree canopy 
height map time series, we define tree canopy removal as the reduction 

Table 3 
Accuracy statistics for the year 2001, 2011, and 2021 tree canopy extent maps and tree canopy removal maps for 2001–2011 and 2012–2021 intervals. Standard errors 
are shown in parentheses.    

Overall accuracy User's accuracy Producer's accuracy 

Tree canopy extent 2001 96.7 (0.3) 95.3 (0.7) 94.9 (0.6) 
2011 96.6 (0.3) 95.1 (0.6) 95.3 (0.7) 
2021 96.1 (0.4) 94.5 (0.7) 94.0 (0.8) 

Tree canopy removal 2001–2011 99.3 (0.1) 81.8 (2.6) 93.2 (2.1) 
2012–2021 99.1 (0.1) 80.2 (2.9) 92.9 (2.4)  

Fig. 5. Map-based annual tree canopy extent area and sample-based tree can-
opy extent area estimates for the years 2001, 2011, and 2021 for the entire area 
of analysis. Sample-based estimates are shown with 95% confidence intervals; 
map-based estimates are pixel counts and do not have associated uncer-
tainty measures. 
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of the tree height from ≥5 m to zero. On the continental scale, the annual 
tree canopy removal area increased from 1.2 Mha per year in 2001 to 
1.75 Mha per year in 2021 (Fig. 7A). We observed the highest annual 
tree canopy removal area during the last three years of the analyzed time 
interval (2019–2021). The average annual tree canopy removal area 
between 2001–2011 and 2012–2021 intervals increased by 23% ac-
cording to our map time series. Our sample-based estimates showed an 
18% increase in the annual tree canopy removal area between these 
intervals (Fig. 7B). 

The annual dynamics of the tree canopy removal area (Fig. S5) 
revealed differences between regions. The Balkan Peninsula, Iberian 
Peninsula, and British Isles showed a fluctuation of the annual tree 
canopy removal area around 21-years average value without a statisti-
cally significant trend (p-value >0.2). All other regions displayed a 
statistically significant increasing trend of annual tree canopy removal 
(p-value ≤0.05). Comparing map-based average annual tree canopy 
removal areas between 2001–2011 and 2012–2021 intervals, the Baltic 
States, Eastern, and Western Europe had the highest increase of 47%, 
44%, and 23%, respectively. Fennoscandia had the highest increase in 
the absolute area of annual tree canopy removal between 2001–2011 

and 2012–2021 intervals by 85,000 ha per year (a 17% increase). 
The visual hotspot analysis using a 50 × 50 km equal area grid 

highlighted areas of pronounced change in the annual tree canopy 
removal between 2001–2011 and 2012–2021 intervals (Fig. 8). The 
hotspots of tree canopy removal increase included timber harvesting 
intensification regions (Southern Fennoscandia, Baltic States, and 
Poland), bark beetle outbreak hotspots (Central Germany and the Czech 
Republic), and the region affected by the recent wildfires in Portugal and 
Spain. The areas of tree canopy removal decrease mostly represented 
forests that experienced an intensive disturbance in the first half of the 
analysis interval with subsequent regeneration. Such regions included 
Southern Sweden affected by Cyclone Gudrun in 2005 and the Landes 
forest region of France damaged by Cyclone Klaus in 2009. 

3.3. Data Intercomparison 

The FAO FRA (FAO, 2020) forest area in Europe (excluding the 
Kaliningrad region of Russia) for the year 2020 is 12% higher than our 
year 2020 map-based tree canopy extent area which was defined using 
the ≥5 m canopy height threshold. Landsat-based tree canopy extent 

Fig. 6. (A) The net change in map-based tree canopy extent area from 2001 to 2021 per 50 × 50 km equal area grid cell. (B) The net change in tall tree canopy 
bracket area (≥ 15 m height) from 2001 to 2021 per 50 × 50 km equal area grid cell. 

Fig. 7. (A) Map-based annual tree canopy removal area estimates. (B) Map-based and sample-based average annual tree canopy removal area estimates for 
2001–2011 and 2012–2021 intervals. Sample-based estimates are shown with 95% confidence intervals; map-based estimates are pixel counts and do not have 
associated uncertainty measures. 
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and FAO FRA forest areas are within an 11% difference for all regions 
except Fennoscandia and the Iberian Peninsula, where the Landsat- 
based tree canopy extent is 17% and 56% lower compared to the FAO 

FRA forest area, respectively (Fig. 9A). We suggest that this underesti-
mation is due to low canopy cover forests where our product, which is 
based on 77th percentile of tree height within Landsat pixel, shows tree 

Fig. 8. Changes in map-based average annual tree canopy removal area between 2001–2011 and 2012–2021 intervals per 50 × 50 km equal area grid cell.  

Fig. 9. (A) A comparison of the FAO FRA forest area with tree canopy extent area for the year 2020. (B) A comparison of the FAO FRA 2000–2020 forest area changes 
with the 2001–2020 tree canopy extent changes. (C) A comparison of the ESA WorldCover 2021 tree canopy cover area with tree canopy extent for the year 2021. 
The region name abbreviations: AP - Apennine Peninsula, BP - Balkan Peninsula, BS - Baltic States, BI - British Isles, EE - Eastern Europe, IP - Iberian Peninsula, FS – 
Fennoscandia, WE - Western Europe. 

S. Turubanova et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 298 (2023) 113797

11

height below 5 m. 
A comparison of our tree canopy extent change estimates with the 

FAO FRA forest area change (Fig. 9B) revealed poor agreement. The 
change estimates were within a 26% difference only for the Balkan 
Peninsula, British Isles, and Eastern Europe. We presume that the dif-
ference between definitions is the main reason for the observed 
disagreement. FAO defines forests as a land use class and considers 
temporarily unstocked areas within forestry land use as “forest”. Thus, 
the effect of the recent increase in tree canopy removal due to logging 
and natural factors was not reflected in the FAO reporting. 

The ESA WorldCover 2021 map defines tree cover as an “area 
dominated by trees with a cover of 10% or more”, including tree plan-
tations and orchards (Zanaga et al., 2022). A comparison of regional tree 
cover area from WorldCover product with our tree canopy extent map 
shows a strong relationship (Fig. 9C). However, our tree canopy extent 
underestimated the ESA WorldCover tree cover area by 25%. The 
highest agreement (underestimation below 20%) was found in the Baltic 
States, Eastern and Western Europe, and Fennoscandia. The highest 
disagreement was within Mediterranean forest regions and the British 
Isles. The primary reason for the observed underestimation is the 
omission of short and open canopy tree stands in our map data. We 
speculate that the observed difference is partly due to the overestimation 
of the tree cover within the areas of recent tree canopy removal by the 
WorldCover map. We show an example of such overestimation in 
Fig. S6. Another factor is the higher spatial resolution of the Sentinel-2 
data that supports better mapping of tree cover in urban areas and 
heterogeneous agricultural landscapes. The pixel-based comparison of 
tree canopy extent using the WorldCover tree cover product as a refer-
ence yielded 87% overall accuracy; the overall accuracy for the Baltic 
States, Eastern and Western Europe, and the British Isles, was ≥89%. 

4. Discussion 

4.1. The value and limitations of the continental tree canopy height maps 

Spatiotemporally consistent, multidecadal annual tree canopy height 
change mapping using the Landsat archive at a continental scale is a 
daunting task. Many factors affect Landsat data consistency, including 
changes in satellite sensor properties, observation frequency, and 
interannual changes in vegetation phenology among others. Empirical 
modeling, the most common method for satellite image characteriza-
tion, is prone to errors due to incorrect and insufficient calibration data. 

Here, we implemented several approaches that helped us to improve 
the spatiotemporal consistency of annual maps. First, we focused on a 
single land cover type, tree canopy. We suggest that the attempt to map 
land use classes (as defined by FAO FRA; FAO, 2020) rather than land 
cover types would not result in sufficiently high map accuracy due to the 
inability to separate spectrally and phenologically similar land cover 
types (e.g., tree canopy) into land use types (e.g., forest lands versus 
trees outside forests). Second, we utilized an analysis-ready satellite data 
time series, GLAD ARD (Potapov et al., 2020), that provided spatio-
temporally consistent input data and simplified extrapolation of char-
acterization models in time and space (i.e., application of the same 
model to each year's spectral inputs to create a 2001–2021 annual map 
time series). Third, we employed a continentally consistent source of 
training data that was collected from physical observations (lidar tree 
height measurements) in contrast to the manual image interpretation 
typically used to calibrate land cover mapping models. Evenly distrib-
uted lidar calibration data supported local model calibration (Potapov 
et al., 2021a). Finally, we suggest that the use of the 77th percentile of 
the ALS canopy height within Landsat data pixel as a tree canopy height 
definition helped us to avoid tree extent overestimation that is typical 
for models calibrated with top-of-the-canopy height metrics (such as 
Lang et al., 2022). We suggest that our approach is better at mapping 
temporarily unstocked areas (such as recent clearcuts presented in 
Fig. S6) than the tree cover extent mapped by WorldCover 2021 (Zanaga 

et al., 2022). 
The regression tree models used all phenological metrics (section 

2.3.1, Table S1) to predict tree canopy height. On average, each 
regression tree ensemble used 82% of all phenological metrics. The 
analysis of metric importance is complicated due to the large number of 
models (25 models per ensemble for each of 982 tiles), the difference in 
training data (ALS and GEDI), and the diversity of forest landscapes. The 
most important metrics (contributing 75% of the total deviance reduc-
tion) for the ALS-calibrated models in Fennoscandia included NDVI 
phenology statistics (annual average, growing season average, and 
average between minimum and 25% percentile values within the year), 
green band reflectance (annual average and reflectance values for the 
observation with the highest NDVI), maximum annual shortwave 
infrared (2201 nm) reflectance, and minimum values of normalized 
ratios of shortwave infrared and near-infrared reflectance (indices S1N 
and S2N in Table S1). Surface elevation played a minor role in the tree 
canopy height model, contributing 1% to the total deviance decrease. 
The tree canopy height mapping in the Lower Mekong (Potapov et al., 
2019) similarly observed the high importance of NDVI-based phenology 
metrics and the low importance of topography data. In Central Europe, 
where the tree canopy models were calibrated with GEDI, the most 
important metrics included annual average values of visible reflectance 
bands, NDVI, and indices S1N and S2N (Table S1). We suggest that the 
metric importance depends on the landscape heterogeneity, and the 
visible spectral reflectance data is beneficial to distinguish tree canopy 
from treeless land cover in highly fragmented landscapes. The average 
total deviance decrease within the regression tree model was higher in 
Fennoscandia (77% of root deviance) than in Central Europe (67%), 
explaining the higher accuracy of the ALS-calibrated model. 

Our tree canopy removal detection time series is an improvement 
compared to the Global Forest Loss product (Hansen et al., 2013) with 
less than half as much commission error and only one-fifth as much 
omission error. We suggest that this is due to the application of the same 
annual change detection model to all years and the integration of the 
annual tree canopy height and tree canopy removal detection products. 
The comparison of the 2001–2021 tree canopy loss detection accuracy 
between the final product (tree canopy removal derived from the tree 
canopy height time series, see section 2.6), the tree canopy removal 
detection model outputs (intermediate product described in section 2.5), 
and Hansen et al. (2013) annual forest loss data showed that our final 
product has the highest accuracy and the best balance between the user's 
and producer's accuracies of all three datasets (Table 4). Our results 
show a less pronounced increase in annual tree canopy removal 
compared to the analysis of Ceccherini et al. (2020), which was based on 
the Global Forest Loss product with known limitations (Palahí et al., 
2021). The annual time series of the tree canopy height may better 
support aboveground biomass change estimation and CO2 emission 
reporting at the continental level compared to other tree canopy cover 
and loss products (Harris et al., 2021; Potapov et al., 2022; Tyukavina 
et al., 2015). 

Despite the major improvements outlined above, some limitations 
remain mainly caused by (i) the calibration data limitations; (ii) the 

Table 4 
Accuracies of the tree canopy removal maps and the Global Forest Loss product 
estimated using the same reference sample data (section 2.7.2) for the 
2001–2021 time interval. Standard errors are shown in parentheses.   

Overall 
accuracy 

User's 
accuracy 

Producer's 
accuracy 

Global Forest Loss (Hansen et al., 
2013) 

95.8 (0.5) 59.5 (4.3) 71.4 (2.5) 

Annual tree canopy removal 
detection model (intermediate 
product) 

98.0 (0.2) 78.8 (2.4) 87.8 (2) 

Tree canopy removal from the final 
map time series 

98.6 (0.1) 81.7 (1.9) 95.0 (1.4)  
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limitations of the Landsat data, and (iii) the modeling method 
limitations. 

Several factors limited the application of lidar measurements for 
model calibration. Both ALS and GEDI data do not separate the height of 
live trees from dead trees, buildings, and other objects. GEDI data 
overestimate tree height within treeless areas, especially within alpine 
meadows and pastures and on steep slopes (Potapov et al., 2021a). The 
validation results (section 3.1.1) showed that the tree height accuracy 
was higher for the ALS-calibrated map compared to the GEDI-calibrated 
map. We suggest that the uncertainty of tree height modeling can be 
improved if systematically collected ALS data were available for conti-
nental model calibration. Closing this data gap should be of high priority 
for national and pan-national agencies. 

The inconsistency of the annual Landsat data image availability 
affected the tree canopy removal detection. The low tree canopy 
removal area in 2012 compared to the year before and after within most 
of the regions (Fig. S5) was due to the lack of Landsat observations after 
the suspension of the Landsat 5 data acquisition in 2011 and before the 
launch of Landsat 8 in 2013. The number of images processed for the 
GLAD ARD for the year 2012 was 48% of the 20-year annual average, 
indicating unusually low data availability for change detection. Most 
change events that were omitted in 2012 were detected during 2013, 
resulting in an inflated annual tree canopy removal area. 

In a landscape where trees represent a small proportion of the total 
land cover, Landsat data has limited capacity to consistently detect tree 
presence due to the predominance of non-tree spectral response. The 
spatial resolution of the Landsat data limited our capacity to map tree 
canopy presence and height in highly fragmented landscapes, such as 
urban trees and tree rows along roads and fields. While the tree canopy 
extent from our product has good agreement with the WorldCover map 
(Zanaga et al., 2022), the use of higher spatial resolution Sentinel-2 
imagery produced a better map of urban trees than our method. 

The moderate resolution optical data from the Landsat satellites 
don't allow direct estimation of the tree height, which instead is modeled 
empirically. As was shown earlier (Potapov et al., 2021a; Lang et al., 
2022), such models tend to overestimate the height of short vegetation 
and underestimate the height of tall forests. While our map time series 
provides a reliable indication of tree canopy extent and change, direct 
area estimation via pixel counting is not recommended for official na-
tional and international reporting unless confirmed with the reference 
sample data (Olofsson et al., 2014). Statistical sampling analysis using 
satellite imagery and ground-based forest inventory data is a more ac-
curate method for tree canopy extent area estimation and change 
assessment compared to map pixel counting, but maps are useful to 
inform and guide sample-based studies. 

4.2. Causes of tree canopy extent change 

4.2.1. Sample-based assessment of tree canopy extent change causes 
For each reference sample where tree canopy extent change was 

detected between the years 2001 and 2021, we attributed the proximate 
cause of this change using visual interpretation of Landsat and high 
spatial resolution images (see section 2.7.2). Using these sample data, 
we estimated the proportion of each proximate cause of tree canopy loss 
and gain for the entire continent. 

We found that 68% (standard error 8%) of the 2001–2021 tree 
canopy extent area gain was due to tree regeneration after logging or 
natural disturbances. The remaining 32% (s.e. 7%) was attributed to 
land use change, predominantly tree encroachment or planting over 
abandoned agricultural lands or conversion of temporary crops to per-
manent crops (orchards). For the areas of 2001–2021 tree canopy extent 
loss, we found that 87% (s.e. 9%) were due to natural disturbance or 
mechanical tree removal without signs of land use change. That is, we 
expect that 87% of the gross loss areas will recover tree canopy cover 
within the next few years. Gross tree canopy loss due to natural distur-
bances without subsequent mechanical clearing was attributed only to 

4% (s.e. 8%); most of the areas affected by natural disturbance were 
cleared by salvage logging soon after the disturbance event. The 
remaining 13% (s.e. 7%) of the total tree canopy extent loss was 
attributed to land use change: 5% represented a conversion to pastures 
or temporary crops and 8% tree canopy replacement by buildings, 
infrastructure development (including existing infrastructure manage-
ment, such as road widening), or mining sites. 

4.2.2. Interannual dynamics and causes of tree canopy removal 
We suggest that the combination of the timber harvesting intensifi-

cation and natural disturbance dynamics, including wildfires, wind 
damage, and insect outbreaks, explained interannual changes in the tree 
canopy removal area for most of the regions (Fig. S5). The observed 
annual fluctuation of canopy loss within the Balkan and Iberian Penin-
sulas reflects the regional fire dynamics (Tyukavina et al., 2022). The 
wildfires of 2007 and 2016 in Greece and of 2012 in Albania, 
Montenegro, and Bosnia resulted in spikes in tree canopy removal in the 
following year within the Balkan Peninsula. Similarly, wildfires of 2003, 
2005, 2013, and 2017 in Portugal were evident from the Iberian Pen-
insula's annual tree canopy removal dynamics. 

In Northern Italy, the annual tree canopy removal area was the 
highest in 2018/19 due to the wind damage by storm Adrian (Vaia), 
after which the annual tree removal area returned to the multidecadal 
average. The year 2007 tree canopy removal spike in Western Europe 
was due to wind damage by Cyclone Kyrill (Klaus et al., 2011). Extensive 
wind damages to forests in Slovakia in 2004 and Poland in 2017 were 
clearly visible on the annual tree canopy removal area graph (Fig. S5). 
The effect of wind damage was also evident in Fennoscandia, such as the 
tree canopy removal spikes in 2005 following Cyclone Gudrun and in 
2010 after a windstorm in southern Finland. 

The recent (2018–2021) tree canopy removal spike in Eastern and 
Western Europe was due to the bark beetle outbreak affecting conifer 
forests followed by a mechanical clearing of the damaged tree stands. In 
Germany, the bark beetle damage and subsequent forest clearing were 
the highest in the most recent years (2019–2021), which was the main 
driver of the regional tree removal area increase in Western Europe 
(Hlásny et al., 2021a). In Eastern Europe, the bark beetle outbreak 
severely affected forests in the Czech Republic in 2017/18 (Bárta et al., 
2021; Hlásny et al., 2021b), while the intensity of tree dieback and 
salvage logging decreased by 2021. 

The growth of the annual tree canopy removal area in Central and 
Northern Europe was also linked to the timber harvesting increase. 
Fig. 10 illustrates a relationship between the annual tree canopy 
removal area and the roundwood production reported by FAO (FAO-
STAT, 2022). The average annual roundwood production increased by 
11% between the 2001–2010 and 2011–2020 intervals. The annual 
dynamics of tree canopy removal and timber production are similar for 
most years. The spikes in tree canopy loss and roundwood production in 
2005 and 2007 are due to salvage logging after the Cyclones Gudrun and 
Kyrill. 

4.2.3. Tree canopy extent change in Fennoscandia 
Our map-based estimate indicated a 3.5% net tree canopy extent 

reduction in Fennoscandia between 2001 and 2021. The estimated tree 
canopy extent reduction is much higher than the 0.15% forest area 
reduction from 2000 to 2020 reported by the FAO FRA (FAO, 2020). To 
confirm our findings, we performed a sample-based analysis for the 
Fennoscandia region using a subset of our reference sample data (see 
section 2.7.2). Of the total 1800 sample pixels, 691 were in Fenno-
scandia, with a minimum of 41 sample pixels per stratum. The regional 
sample analysis confirmed the tree canopy extent reduction (Fig. 11A). 
The sample-based tree canopy extent reduction between 2001 and 2021 
was 2.4 Mha (+/− 1.2 Mha). For each of the years 2001, 2011, and 
2021, the map-based area estimates were within a 95% confidence in-
terval of the sample means. 

We suggest that two factors played a major role in the tree canopy 
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area reduction in Fennoscandia. The first factor is the increase in tree 
canopy removal during the last decade, which was confirmed by our 
regional sample analysis in Fennoscandia (Fig. 11B). We estimated a 
17% and 19% increase in the annual tree canopy removal area between 
2001–2011 and 2012–2021 intervals based on the map and sample data, 
respectively. The second factor is the slow regeneration of trees on the 
logging sites in the northern part of Fennoscandia. To test the effect of 
this factor, we estimated the total continental area of Landsat pixels that 
(i) were affected by canopy removal between 2001 and 2006, and (ii) 
had tree canopy height below 5 m in 2021 (≥ 15 years after distur-
bance). We found that 51% of such areas are in Fennoscandia with the 
highest concentration in Central and Northern Sweden (Fig. S7), which 
supports our conclusion that slow regeneration after clearcuts in 
northern Fennoscandia played an important role in the observed 
regional net tree canopy extent reduction. 

The disagreement between our results and the FAO FRA data in 
Fennoscandia calls for further investigation of the relationship between 
the remotely sensed land cover and the NFI field measurements. The 
official estimates of forest area decline in Fennoscandia (FAO, 2020) are 
much lower than our map-based and sample-based estimates (Section 
3.3). Moreover, the NFI data in Finland suggest a significant increase in 
the growing stock (Korhonen et al., 2021) despite the increase in the 
annual tree canopy removal observed in our data. The difference in 
forest definition and the analysis intervals (the latest NFI data in Finland 
are from 2018; Korhonen et al., 2021) may cause this divergence. We 
suggest that the spatial intercomparison of the NFI plot data with 
Landsat-based maps and additional research on the dynamics of forest 
recovery after clearcuts in the northern forests are required to under-
stand the observed differences. This can only be attained after devel-
oping methods to effectively provide access to NFI plot positions while 
keeping their confidentiality to preserve the statistical robustness of NFI 
data (Nabuurs et al., 2022). 

4.3. Implications of the observed tree canopy change in Europe 

Both our product and the FAO data (FAO, 2020; FAOSTAT, 2022) 
show the same change trajectories in Europe: the expansion of area 
covered with trees and the intensification of timber harvesting and 
natural disturbances. The highest relative increase in tree canopy extent 
was observed in Eastern and Southern Europe and the British Isles 
(Fig. S3). We speculate that two major factors explain the tree canopy 
expansion. The first factor is the growth of commercial tree plantation 
areas (Freer-Smith et al., 2019). Another factor is agricultural land 
abandonment and subsequent afforestation, a process that is especially 
intensive in Eastern Europe (Potapov et al., 2015, 2021b; Estel et al., 
2015). The observed increase in tree canopy extent through plantation 
establishment may have negative consequences on biodiversity and 
other ecosystem functions when monoculture plantations of non-native 
species predominate the forest landscape (Bremer and Farley, 2010; Liu 
et al., 2018; Seidl et al., 2018; Brus et al., 2019). The structurally ho-
mogeneous forests that are frequently established in areas affected by 
windthrow and insect outbreaks may exacerbate such disturbances in 
the future (Griess et al., 2012; Felton et al., 2016). Developing and 
implementing policies and financial incentives to encourage mixed- 
species and structurally diverse forests may support biodiversity and 
increase the resilience of European forests to future natural disturbances 
(Seidl et al., 2016). This might include promoting natural regeneration 
rather than planting after disturbances (Senf et al., 2019), as well as 
considering alternative management strategies (i.e., keeping deadwood 
on site; Thorn et al., 2020). 

Large-scale natural disturbance dynamics, such as windthrow, insect 
outbreaks, and wildfire, play an important role in the observed annual 
variation of tree canopy removal (i.e., annual extremes such as those 
caused by storm Kyrill in 2007) and the recent decrease of tree canopy 
extent in Western and Eastern Europe. The recent increases in natural 
disturbance extent and intensity are linked to drier and warmer 

Fig. 10. Continental comparison of the annual tree canopy removal area and the FAO roundwood production statistics (FAOSTAT, 2022) for the 2001–2020 interval.  

Fig. 11. (A) Map-based and sample-based tree canopy extent area in Fennoscandia for 2001, 2011, and 2021. (B) Map-based and sample-based annual tree canopy 
removal area in Fennoscandia for 2001–2011 and 2012–2021 intervals. Sample-based estimates are shown with 95% confidence intervals; map-based estimates are 
pixel counts and do not have associated uncertainty measures. 

S. Turubanova et al.                                                                                                                                                                                                                            



Remote Sensing of Environment 298 (2023) 113797

14

conditions facilitating insect outbreaks and more intensive fire activity 
(Senf and Seidl, 2021b; Grünig et al., 2022). Most of the forests affected 
by disturbances, even if affected only by partial tree mortality, are 
subsequently cleared by salvage logging, which further increases the 
area of tree canopy removal. The global demand for timber has 
increased since 2000 and it is expected to grow considerably in the next 
decades (FAO, 2022), in particular, driven by energy production 
(O’Brien and Bringezu, 2018). We suggest that European forests may 
experience an increase in the annual tree canopy removal area in the 
future caused by a concurrent increase in timber harvesting and natural 
disturbances. 

The observed increase in annual tree canopy removal and the 
decrease of the tall, high-biomass tree canopy areas are well aligned 
with more theoretical predictions by McDowell et al. (2020), who sug-
gest that forests globally shift toward shorter and younger stands. In 
Europe, for instance, changing disturbance dynamics can substantially 
alter forest demography (Senf et al., 2021), which can reduce their 
carbon storage potential in the future (Seidl et al., 2014; Messier et al., 
2022). These processes may already reduce the carbon storage potential 
of Europe's forests, although the magnitude of these changes is probably 
lower than recent estimates by Ceccherini et al. (2020). 

5. Conclusion 

In this study, we presented a new spatiotemporally consistent 
2001–2021 annual tree canopy height dataset for Europe produced 
through the integration of the lidar observations and Landsat data 
archive. The presented method employed the integration of annual tree 
canopy height and tree canopy removal mapping, and it is suitable for 
future annual continental-scale tree canopy monitoring. The high ac-
curacies of the tree canopy extent and removal maps derived from the 
annual tree canopy height map time series were confirmed with a 
rigorous reference sample analysis. The new annual tree canopy removal 
time series is an improvement compared to the Global Forest Loss 
product (Hansen et al., 2013). 

The presented dataset supports tree canopy extent monitoring at 
national to continental scales in numerous ways. The data reflect annual 
changes in all categories of tree canopy (including trees outside of for-
ests) and thus are complementary to the NFI and FAO FRA data. Our 
product is complementary to existing annual forest disturbance maps 
(Senf and Seidl, 2021a), providing information on post-disturbance tree 
canopy recovery and afforestation. Our data may support the harmo-
nization of the national forest area estimates. Our map time series may 
also be used as an efficient stratifier to design the reference sample data 
collection to analyze the drivers of forest change. Finally, our product 
may serve as an input for continental modeling of forest biomass and 
carbon storage using existing methodologies of Tyukavina et al. (2015) 
and Harris et al. (2021). 
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Melin, M., Pitkänen, J., Räty, M., Sirviö, M., Strandström, M., 2021. Forests of 
Finland 2014–2018 and their development 1921–2018. Silva Fennica 55, 10662. 
https://doi.org/10.14214/sf.10662. 

Kruys, N., Fridman, J., Götmark, F., Simonsson, P., Gustafsson, L., 2013. Retaining trees 
for conservation at clearcutting has increased structural diversity in young swedish 
production forests. For. Ecol. Manag. 304, 312–321. https://doi.org/10.1016/j. 
foreco.2013.05.018. 

Lang, N., Kalischek, N., Armston, J., Schindler, K., Dubayah, R., Wegner, J.D., 2022. 
Global canopy height regression and uncertainty estimation from GEDI LIDAR 
waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 https://doi. 
org/10.1016/j.rse.2021.112760. 

Liu, C.L.C., Kuchma, O., Krutovsky, K.V., 2018. Mixed-species versus monocultures in 
plantation forestry: development, benefits, ecosystem services and perspectives for 
the future. Glob. Ecol. Conserv. 15, e00419 https://doi.org/10.1016/j.gecco.2018. 
e00419. 

Liu, S., Brandt, M., Nord-Larsen, T., Chave, J., Reiner, F., Lang, N., Tong, X., Ciais, P., 
Igel, C., Li, S., Mugabowindekwe, M., Saatchi, S., Yue, Y., Chen, Z., Fensholt, R., 
2023. The overlooked contribution of trees outside forests to tree cover and woody 

biomass across Europe. PREPRINT (Version 1) available at Research Square. https:// 
doi.org/10.21203/rs.3.rs-2573442/v1, 26 p.  
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Korhonen, M., Nabuurs, G.-J., 2021. Concerns about reported harvests in European 
forests. Nature 592, E15–E17. https://doi.org/10.1038/s41586-021-03292-x. 

Pascual, A., Guerra-Hernández, J., Cosenza, D.N., Sandoval-Altelarrea, V., 2021. Using 
enhanced data co-registration to update spanish National Forest Inventories (NFI) 
and to reduce training data under LiDAR-assisted inference. Int. J. Remote Sens. 42 
(1), 126–147. https://doi.org/10.1080/01431161.2020.1813346. 

Potapov, P., Hansen, M.C., Kommareddy, I., Kommareddy, A., Turubanova, S., 
Pickens, A., Adusei, B., Tyukavina, A., Ying, Q., 2020. Landsat analysis ready data 
for global land cover and land cover change mapping. Remote Sens. 12, 426. https:// 
doi.org/10.3390/rs12030426. 

Potapov, P., Hansen, M.C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., 
Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., 
Baggett, A., Kommareddy, I., Kommareddy, A., 2022. The global 2000–2020 land 
cover and land use change dataset derived from the Landsat archive: first results. 
Front. Remote Sens. 3 https://doi.org/10.3389/frsen.2022.856903. 

Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., 
Pickens, A., Turubanova, S., Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J. 
B., Hofton, M., 2021a. Mapping global forest canopy height through integration of 
GEDI and landsat data. Remote Sens. Environ. 253, 112165 https://doi.org/ 
10.1016/j.rse.2020.112165. 

Potapov, P., Turubanova, S., Hansen, M.C., Tyukavina, A., Zalles, V., Khan, A., Song, X.- 
P., Pickens, A., Shen, Q., Cortez, J., 2021b. Global maps of cropland extent and 
change show accelerated cropland expansion in the twenty-first century. Nature 
Food 1–10. https://doi.org/10.1038/s43016-021-00429-z. 

Potapov, P.V., Turubanova, S.A., Tyukavina, A., Krylov, A.M., McCarty, J.L., Radeloff, V. 
C., Hansen, M.C., 2015. Eastern Europe’s forest cover dynamics from 1985 to 2012 
quantified from the full Landsat archive. Remote Sens. Environ. 159, 28–43. https:// 
doi.org/10.1016/j.rse.2014.11.027. 

Potapov, P., Tyukavina, A., Turubanova, S., Talero, Y., Hernandez-Serna, A., Hansen, M. 
C., Saah, D., Tenneson, K., Poortinga, A., Aekakkararungroj, A., Chishtie, F., 
Towashiraporn, P., Bhandari, B., Aung, K.S., Nguyen, Q.H., 2019. Annual continuous 
fields of woody vegetation structure in the lower Mekong region from 2000–2017 
Landsat time-series. Remote Sens. Environ. 232, 111278 https://doi.org/10.1016/j. 
rse.2019.111278. 

Reese, H., Nilsson, M., Pahlén, T.G., Hagner, O., Joyce, S., Tingelöf, U., Egberth, M., 
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