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Abstract: Gasification technology often requires the use of modeling approaches to incorporate
several intermediate reactions in a complex nature. These traditional models are occasionally im-
practical and often challenging to bring reliable relations between performing parameters. Hence,
this study outlined the solutions to overcome the challenges in modeling approaches. The use of
machine learning (ML) methods is essential and a promising integration to add intelligent retrieval
to traditional modeling approaches of gasification technology. Regarding this, this study charted
applied ML-based artificial intelligence in the field of gasification research. This study includes a
summary of applied ML algorithms, including neural network, support vector, decision tree, random
forest, and gradient boosting, and their performance evaluations for gasification technologies.

Keywords: gasification technology; machine learning; biomass gasification; energy; applications

1. Introduction

Biomass gasification is becoming increasingly popular in industrial and commercial
settings for various reasons, including energy and sustainable goals [1]. It is a thermochem-
ical process to create gaseous or liquid intermediate products that can be converted into
more valuable energy (transportation fuels, electricity, etc.). The thermochemical conver-
sion technique uses a variety of processes, including pyrolysis, torrefaction, gasification,
liquefaction, and combustion (as shown in Figure 1). For companies and researchers, the
simulation and optimization of the thermochemical process are extremely significant [2].
Gasification processes are complex and include several intermediate reactions that occur
simultaneously at different times. This complexity requires the use of various modeling
approaches, such as thermodynamic and kinetic models and process modeling, to describe
a process and the influence of process parameters on energy production. Different kinds
of models, such as computational fluid dynamics (CFD) [3], kinetic modeling [4], ther-
modynamic equilibrium [5], and artificial intelligence (AI)-based machine learning (ML)
models [6], have been developed to design a more efficient gasification process.
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Traditional modeling techniques are sometimes impractical and challenging to model
uncertain relationships between parameters [7]. Therefore, developing a robust and fast
modeling approach to associate the complexity of the gasification process is requisite.
To overcome these issues, in the recent past, artificial neural networks (ANNs) and ML
have been widely presented for the process design and optimization of gasification sys-
tems [6]. For instance, the ANN-based extreme learning model has been proposed for use
in predicting SO2 emissions [8], data-driven modeling for the gasification process [9], multi-
variate regression, and fluidized-bed gasifiers [10]. These techniques have been successfully
applied in many fields of gasification, such as combustion optimization [11], biomass py-
rolysis [12], parameter optimization [13], and catalyst screening [14]. In conclusion, the
above-mentioned studies demonstrate that ML-based techniques may expand to become a
more generic model to adequately forecast crucial factors and their effect on process output.
These techniques are well established; however, the consideration of uncertain situations is
requisite in future modeling to create the best ML-based gasification systems [15].

The provided literature studies indicate the integration of ML modeling in traditional
approaches. However, the application of ML approaches in predicting the operating inputs
for product outcomes often may not be very easy because, at the same time, various
parameters can be influenced by multi-input features [8]. For example, the H2 composition
in syngas composition can be influenced by many parameters such as steam-to-biomass
ratio, biomass composition, and equivalence ratio. Thus, developing ML models with an
appropriate tactic is needed to attain high accuracy. Therefore, this study first describes
the basic fundamentals of the gasification process and the various ML models that have
been applied in the gasification process, followed by various evaluation techniques to
validate the reliability of the developed models. Later, in Section 5, this study presents the
developed studies for advanced gasification technologies in the recent past.

2. Gasification Process

Gasification is a thermochemical process that converts solid and liquid fuels such as
coal, biomass, and waste lubricating oil, among, others into high-heat energy or syngas. It
is a second-generation method for utilizing biomass and trash that was developed in the
18th century to produce town gas for lighting and cooking. Further, it has been utilized to
manufacture transportation fuels since the 1920s. Gasification is an attractive method to
generate harmless energy, with many advantages for cooking, heating, electricity genera-
tion, biofuel production, and chemical synthesis [16]. Gasification offers numerous benefits,
as a variety of low- and high-value-added feedstock can be utilized in the gasification
process, and biomass can be a better option for gasification in place of coal. Biomass is more
reactive and has a greater volatile content, which allows the production of syngas at a lower
temperature. Majorly, syngas is a composition of many gases such as H2, CO, CH4, and
other hydrocarbons (Figure 2). Impurities such as tar, SO2, NO2, and NH3 are commonly
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found in gasification products [17]. Due to the impurities in gas products, the cleaning
is a very important process, and catalytic hot gas cleaning is a promising technology for
completely removing tar during the gasification process [18].
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2.1. Basic Steps of Gasification Process

The gasification process occurs in four process steps, such as drying, pyrolysis, com-
bustion, and reduction, as shown in Figure 3.
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I. Drying: In this step, heat is provided to the feedstock up to a significant tempera-
ture to reduce the moisture content in the given feedstock. The higher moisture
content requires high energy to make it dry, so a prior drying process is neces-
sary as a pretreatment of the feedstock before the gasification process. Naturally
dried biomass may be an ideal feedstock for the gasification process [19]. It is
a sophisticated process that entails simultaneous heat and mass transportation,
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as well as physicochemical changes. Heat can be transferred by direct (convec-
tion), radiant (radiation), and indirect (conduction) processes to the feedstock for
drying purposes.

II. Pyrolysis: Pyrolysis is the rapid thermal degradation of the carbonaceous material
under an inert environment at high temperatures. Pyrolysis is the process of
heating raw biomass, where heat is provided to the feedstock in the absence of
oxygen, to break it into volatile gases and charcoal [20]. Pyrolysis is the initial phase
of gasification or combustion, in which the biomass material begins to decompose
with heat and breaks down into a combination of solids, liquids, and gases. While
some hydrocarbons such as H2, CH4, and light carbon vapor (CO and CO2) are
released into gaseous forms, high temperature leads to the thermal cracking process
and releases condensable compounds such as topping atmospheric residue in
vapor form and solid material into the pyrolysis process, known as char material.
Pyrolysis has an essential role in gasification because it can improve the syngas
output and, especially, hydrogen production [21].

III. Combustion: Combustion is a process known as the direct burning of biomass
at high temperatures with a limited amount of oxygen in a controlled manner
to generate oxidized carbonaceous feedstock. Generally, atmospheric oxygen
is used as an oxidant for the combustion process [22]. During the combustion
process, various gases are produced from the biomass material in the form of
smoke. Combustion is the only net exothermic process in all the processes of
gasification and generates heat for the other processes of drying, pyrolysis, and
reduction either directly, or it can be recovered indirectly from combustion by heat
exchange processes in a gasifier [23]. In the combustion process, the carbon content
reacts with oxygen and starts to convert into volatile products such as carbon
dioxide, carbon monoxide, and char particles. The combustion process releases
a large amount of heat and energy that can be used for subsequent gasification
reactions, such as

C + O2 → CO2

C +
1
2

O2 → CO

C + CO2 → 2CO

C + H2O → H2 + CO

There are two basic phase-shift reactions that occur during the combustion process for
the natural generation of hydrogen and methane, which are the water–gas-shift reaction and
methanation. The water–gas-shift reaction in the gasifier quickly approaches equilibrium
at medium temperatures, balancing the composition amounts of carbon monoxide, steam,
carbon dioxide, and hydrogen.

C + 2H2 → CH4

CO + H2O → H2 + CO2

Later, the CO and residual H2 start to react to form methane and watering waste.

CO + 3H2 → CH4 + H2O

IV. Reduction: Reduction is a process to completely remove the oxygen from combusted
hydrocarbons to restore them to a state where they may burn again. In reduction,
heat is continuously provided to raw carbon to attract oxygen from water vapor and
carbon dioxide, and it is redistributed into many single-bond sites. Now, no free
oxygen can survive in its diatomic state because single-bond oxygen atoms are more
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attractive than the C bond. When all available oxygen is reallocated as single atoms,
the reduction process is complete. In this process, oxygen atoms from CO2 will be
reduced to make two CO molecules, whereas oxygen from H2O is also removed to
produce H2 and CO. Both H2 and CO are combustible fuel gases that may be piped
out to perform desired tasks elsewhere [24]. After the overall process, a cleaning
process is required to provide efficient fuel. The cleaning of produced gas is also an
important step in providing highly efficient fuel, which is a complex method after the
gasification process [25].

2.2. Parameters of Gasification Process

Gas production in the gasification process depends on various parameters, such as the
kind of feed material, gasifying agent, and catalyst and operating conditions, which can
affect the output products [26]. Thus, the pace of reaction, conversion rate, and quality of
gas output in gasification can be affected by various parameters, as shown in Table 1.

Table 1. Effect of parameters on syngas production in gasification process, adopted from [27,28].

Parameter Observation

CO H2 CO2 CH4 N2

Equivalence ratio ↑ ↓ ↓ ↑ ↓ ↑

Moisture content ↑ ↓ ↑ ↑ ↑ ↓

Temperature ↑ ↑ ↑ ↓ - -

Steam-to-biomass ratio ↓ ↑ ↑ ↑ ↓

Pressure ↑ ↓ ↑ ↑ ↑ -

CaO ↓ ↑ ↓ ↑ -

Dolomite ↑ ↑ ↑ - -

Air and oxygen ↑ ↑ ↑ ↓ ↓

CO2 ↑ ↑ ↑ ↑ ↓

Biomass type Normally, a material with a higher (hemicellulose þ cellulose)/lignin ratio can provide a higher syngas yield.

Moisture content

1. Moisture content ∝ 1
energy efficiency and syngas quality

2. The higher moisture leads to a decrease in temperature. The optional moisture content is in the range of
10–20% for gasification, which can make bed temperatures more stable. However, updraft gasifiers can operate
at 60% and downdraft at 25%, and plasma and supercritical reactors can operate at a high moisture content of
biomass.

Ash content Ash content should be lower than 2% for better results.

Particle size

1. The small size of biomass increases the surface area and diffusion resistance, improving heat transfer and
enhancing gasification. Generally, a particle size between 0.15 and 51 mm is recommended for gasification.
2. A particle size smaller than 0.15 mm is recommended for entrained-flow gasifiers, >6 mm for bubbling-bed
reactors, and fixed-bed reactors can tolerate >51 mm
3. The effect of particle size is reduced with temperature.

Bed material Bed material is inert and active. It is an energy transfer medium in gasification and can improve syngas quality
and promote gas reforming and tar cracking.

Catalysts

1. In the gasification process, the use of a catalyst can increase the surface area of the raw material and also
increase the reaction rate of the process.
2. The catalyst in the gasification process is generally used to reduce the operating temperature and tar
formation.

Steam-to-biomass (S/B) ratio

1. The optimum S/B ratio varies in the range of 0.3–1.0 for gasification
2. The S/B capacity of gasifiers can be considered as follows: fixed-bed gasifiers > fluidized reactors >
entrained-flow gasifiers.
3. A surplus of steam can decrease the gasification temperature and, as a result, lead to tar formation.

Gasifying agents Gasification agents such as air, O2, steam, CO2, etc., can affect syngas quality, However, external heat is required
during gasification.

Equivalence ratio

1. The optimal equivalence ratio is between 0.2 and 0.3 for fixed-bed and fluidized-bed gasifiers, and
entrained-flow gasifiers usually require a 20% equivalence ratio.
2. A high equivalence ratio can promote the tar cracking process.
3. The equivalence ratio can be affected by moisture and volatile contents.
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2.3. Role of Different Gasifying Agents in the Gasification Process

During the gasification process, several gasifying agents, such as air, steam, oxygen,
carbon dioxide, etc., can be used to provide higher heating values of syngas. Mostly, air is a
widely useful gasifying agent because it is a cheap and highly available agent. The reaction
and reactor structure are also simple for the gasification process while using air [29]. When
steam and CO2 gasifying agents are used in the gasification process, all reactions behave
endothermically, and external heating is required for the gasification process. With air
and oxygen, the overall reactions may be endothermic or exothermic, and the gasification
process can be controlled by variations in the air or oxygen flow rates. Higher gasification
temperatures are required with higher air or oxygen content [30].

Air contains a high volumetric content of nitrogen, about 79%, and this improves
the nitrogen content in gasification products. Here, the HHV of syngas is significantly
diluted by nitrogen, and as a result, the air gasification of biomass generally has a lower
cold gasification efficiency (GCSE) that varies with the gasification temperature [31]. In the
comparison of air gasifying agents, oxygen contains no or less nitrogen, and it improves the
combustion process of biomass feedstock, which helps to convert more char particles into
syngas or combustible gases and produces more carbon monoxide in syngas composition;
thus, it has a higher CGE that can vary with the oxygen equivalence ratio (OER) and
gasification temperature. Similarly, steam also avoids the dilution of nitrogen. It helps
to increase the hydrogen content in syngas composition, and an appropriate amount of
steam content can increase the water–gas-shift reaction and methane reforming process.
Consequently, the cold gasifying efficiency (CGE) of steam gasification can be significantly
increased, and it can be controlled by a variation in temperature and the steam-to-biomass
ratio. Generally, carbon dioxide also gives a high CGE, as it avoids nitrogen dilution and
produces rich CO and hydrogen [32] in syngas composition, but sometimes, when carbon
dioxide is not efficiently consumed, carbon dioxide is diluted in syngas, which leads to the
LHV of syngas.

2.4. Effects of Catalysts on Gasification

The type of catalyst is a very important factor in gasification to ensure the quality
of products. Catalyst directly affects the syngas composition and manipulates the per-
centage volume of hydrogen, carbon dioxide, methane, and carbon monoxide [33]. In
the gasification process, a suitable amount and type of catalysts can assist in reducing
the gas content of carbon dioxide and maximize the potential of usable gases in gaseous
products, such as hydrogen, carbon monoxide, and methane [34]. Potassium, sodium,
calcium, magnesium, and heavy metals catalysts are the most commonly used catalysts in
the gasification process. The effect of catalysts depends on their phase behavior; the phase
activity of the catalyst must be thermodynamically favored, and inactive forms/highly
volatile forms of the catalyst give a stable formation, but these are detrimental because
of their complex form and the non-uniform conditions of the gasifier [35]. The catalyst
in the gasification process is generally used to reduce the operating temperature and tar
formation, which can be added through a precursor and exist naturally with the feed. In the
gasification process, the use of a catalyst can increase the surface area of the raw material
and also increase the reaction rate of the process [36].

Potassium can rapidly spread with carbonaceous materials and increase the mobility
of the carbonaceous material, which increases the surface area of the material and the
reaction rate of the process. The intercalation of potassium, particularly within graphitic
carbon compounds, can help to enhance gasification because intercalation can increase the
porosity and exposed surface area. The high volatility of potassium is a major problem
with potassium catalysis that leads to the corrosion, toxic vapors, slagging, and fouling
of gasifiers [37]. Similarly, as potassium, sodium is mobile and is generally a less active
catalyst than potassium for gasification, but in water-soluble forms, it is the most active
material like NaOH [38], Na2CO3 [39], or NaCl [40]. These forms also tend to be the most
volatile. The sodium catalyst intercalates into the carbon structure, improves the water–gas-
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shift reaction and tar cracking process, and helps in the degradation of the complex carbon
structure. It is more susceptible to the gasification reaction. The use of sodium as a catalyst
also has some drawbacks. Sometimes, catalyst loss may happen due to evaporation, and
sodium is less volatile at temperatures above 800 ◦C, where it can react with water minerals
and form inactive sodium aluminosilicate [41].

Another catalyst is calcium, which is not as active as alkali metals, has lower mobility,
and can lead to similar initial rates of reaction as alkali catalysts. The activity of calcium
catalysts decreases with the increase in the conversion rate of the carbonaceous material.
The advantage of a calcium catalyst is that it can help to reduce CO2 levels in the gasification
process, as CO2 cannot be further oxidized, and as a result, this improves the heating value
of the produced syngas. In the form of CaO, it can adsorb CO2 from the generated syngas
and form CaCO3, which increases the concentration of H2 and CO in the syngas and reduces
the requirement for downstream processing [42]. Moreover, calcium can also absorb sulfur
and limit the formation of toxic elements, promoting inert nitrogen during gasification.
The slagging and obstruction of feed flow into reactors are major disadvantages of calcium
catalysis in gasification. Like calcium, magnesium is also a less active earth–alkaline metal
catalyst. Dolomite, which is a combination of calcium and magnesium, is the most suitable
type of magnesium as a catalyst. Increases in the Ca/Mg ratio, where calcium is the
predominant catalytic species in dolomite, can boost the activity of dolomite catalysts.
Magnesium shows similar catalysis activities to calcium, including low volatility and
eutectic formation with other metals. Due to low catalytic activity, dolomite and olivine are
the most useful materials in the fluidized-bed gasification process [43].

Iron, nickel, and some heavy metals can be used as gasification catalysts. These can
be found in carbon sources naturally and obtained cheaply as waste catalysts from other
processes. Iron encourages the production of wider pores than sodium or potassium and
creates less surface area. Iron also behaves like calcium, as it converts H2S to non-toxic
compounds, but the major drawback is that it is less active and converts nitrogen into
toxic elements such as HCN or NO2 [44]. Furthermore, nickel is also an active material
catalyst for gasification that can increase the hydrogen and methane composition in the
product. Like iron, nickel is also able to convert sulfur compounds into the vapor phase
during gasification, as it forms Ni3S2 with a sulfur compound. The Ni/ZrO2 catalyst can
also help to increase steam reforming and pyrolysis while inhibiting polymerization and
aromatization processes [45]. The major issue with the use of nickel as a catalyst is that
it cannot absorb CO2. Nickel is mostly employed with microalgae and liquid feeds to
gas reforming after gasification. Copper and Ru are other heavy metals that can perform
better than potassium in the gasification of slurries at low temperatures around 400 ◦C.
Additionally, ruthenium can also improve the formation of H2 and CH4 [46].

2.5. Fuel Characteristics

The real identification of a good gasifier is not only dependent on its fuel conversion
ability. The qualities of the generated gas must also be assessed. There is no such thing
as a universal gasifier. Each gasifier is designed to provide a specific fuel quality [47].
The characteristics of fuel can be used to classify a gasifier fuel’s reliability. The moisture
content in combustible fuel always depends on the type of raw material and its origin. Low
moisture content is necessary for a reliable fuel because there will be significant heat loss
from evaporation. High moisture content in biomass material not only reduces the heat
budget but also increases the load on cooling and filtration equipment. Some pretreatment
of fuel is necessary to lower the moisture content. Fuel moisture content should be less
than 20% in general [48]. All gasifier fuels produce dust, which can block the internal
combustion engine, so it needs to be removed, and the ideal gasifier should not produce
more than 2–6 g/m3 of dust [49]. The more dust created, the greater the burden on filters,
meaning regular cleaning and maintenance service. Tar is the most unwanted component
of gasoline because it tends to build up around the carburetor and intake valves, creating
sticking and inconvenient operation. It can vary in color, from brown and watery (where
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it contains 60 percent water) to black and viscous (where it contains 7 percent water),
depending on temperature and heat rate. So far, over 200 chemical components have been
discovered in tar [50]. The majority of efforts have gone towards filtering and cooling
this tar. A well-designed gasifier should produce tar at a rate of less than 1 g/m3 and a
low-heating-value fuel in the range of 1000–1200 kcal/m3 [51].

3. Artificial Intelligence in Biomass Gasification

ML-based AI is a reliable integration to conventional models in the gasification process
to correlate the complexity of the process. These techniques can assist the design of
processes with higher carbon conversion efficiency to reduce the process time and costs of
complex and time-consuming practices [52]. These techniques have been widely applied in
gasification processes for various purposes, such as to study the reaction mechanism of
conversion processes and design computational algorithms to achieve a desired task [53].
Several studies featuring ML in the gasification process have been developed by researchers
to forecast and manage the process with largely reliable outcomes during decision making.
The research methodology to develop a robust and more accurate ML-based model can
be understood as that in Figure 4. To develop a model, it is first required to collect the
data from various preprocessing steps or modeling, i.e., ASPEN and other simulation tools.
Then, later, the use of ML models can help to learn the correlation between variables of
experimental data without detailed knowledge or expert experience of the process, which
is more flexible and low cost in practice, thus achieving great attention. Regarding this,
various ML-based AI modeling approaches for process development are highlighted in this
section. For a better understanding of these models, kindly see the reference studies.
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3.1. Artificial Neural Network (ANN)

The artificial neural network (ANN) is one of the most advanced ML techniques for
identifying complicated correlations between input and output data. It is a mathematical
model inspired by the principle of biological neurons to solve difficult problems [55].
The ANN is an attractive ML method for applications involving prediction due to its
distinctive features. ANN models are flexible enough to incorporate linear and non-linear
input–output mappings. A neural network model generally includes input, hidden, and
output layers, where each layer can contain multiple neurons and be formulated as in
Equations (1) and (2). During the solution, in an ANN model, the input signal has to be
transmitted from the input layer to the output layer through various hidden layers with
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the help of the activation function, bias vector, and weight. Nowadays, ANN technology
has been successfully applied in the gasification process for various purposes, such as
parameter prediction in gasifiers [56], material analysis [57], efficiency evaluation [58],
and economic and environmental analyses [59]. For the gasification process, the material
contents, such as carbon, hydrogen, oxygen, moisture content, ash, volatile materials, etc.,
can be used as input variables, while gas outputs, heating values, emissions, and wastes
and economics can be output variables.

Hij = f
(
∑I

i=1 X0iW0i,j + B0

)
(1)

Yt = f
(
∑J

j=1 HmjWmj,t + BHm

)
(2)

where I, J, and T signify the number of neurons in the input, hidden, and output layers,
respectively; f is the activation function; m refers to the number of hidden layers; and B
and W stand for the threshold and weight values.

3.2. Physics-Informed Neural Network

A critical challenge for ML in applications is its physical interpretability, which can
play an essential role in understanding the mechanisms behind a complex system and
reduce the capability of industrial design for optimal system performance. Therefore,
in the context of gasification, a physics-informed neural network (PINN) is developed
in [60] to predict syngas products, which simultaneously considers regression, structure,
and physical monotonicity constraints in the loss function to provide physically feasible
predictions, as shown in Equation (3):

E = Er + λsEs + λpEp

E =
N

∑
i=1

(
o(i)−t(i)

)2
+λs

{
n

∑
j=1

Ñ

∑
k=1

(
wjk

)2
+

Ñ

∑
k=1

(βk)
2

}
+ λp

 n

∑
j=1

Tj

∑
i=1

1−m(i)
j ×sign

(
∂o
∂xj

(
x(i)syn

))
2

 (3)

where Er represents regression loss, Es is structural loss and Ep stands for physical loss. The
PINN model has shown outperformed prediction capability (R2 = 0.95–0.97) in maintaining
the correct monotonicity in feedstock characterization [60].

3.3. Multiple Linear Regression (MLR)

The variables in the gasification process can be more effective in predicting the depen-
dent variable by the optimizing combination of multiple independent variables. The MLR
model can provide the fitting to the dataset while interpreting the relationship between
two or more variables [61]. It can be formulated as in Equation (4):

yi = m + α1x1 + α2x2 + · · ·+ αixi + φ (4)

where yi is the predicted value, αixi refers to the regression coefficient of the ith independent
variable, m is the intercept, and φ is the model error. In [61], an MLR model was developed
for three inputs: X1 (pyrolysis temperature), X2 (combustion), and X3 (equivalence ratio)
with other output variables: gas yield (Y1), residue (Y2), tar yield (Y3), H2 (Y4), CO (Y5),
CO2 (Y6), and CH4 (Y7). The mentioned study also shows the usability of ML models in
the gasification process.

3.4. Support Vector Machine (SVM)

The SVM model is used for problems relating to unknown objects with a fixed number
of possibilities. Its decision boundary maximizes the target hyperplane for learning sam-
ples, which can turn the problem into a convex quadratic programming problem [62]. In
SVM, an experimental dataset with specific inputs (xi) is used to predict a specific response
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or target value (yi). This robust machine learning algorithm can perform both classification
and regression in linear and non-linear problems with minimal risk [63]. It can employ
different non-linear mapping functions such as sigmoid, polynomials, and radial basis func-
tions (RBFs) for solving problems. Unlike traditional regression techniques (for example,
polynomial fitting), support vector machine regression (SVR) is a non-parametric regression
model in which the regression hyperplane is determined to improve the capability of the
SVM by optimizing the distance of nearby data points [64]. Further, Figure 4 describes the
use of support vectors to develop a hyperplane. It should be noted that the support vectors
indicate data points from either class that are nearest to the hyperplane. Support vector
regression (SVR) can be obtained by extending the SVM from the classification problem to
the regression problem. Its regression function is expressed in Equation (5). The relevant
derivation procedures can be found in the work [65].

f (x, αi, α∗i ) = ∑N
i=1(α

∗
i − αi)

(
XT

i X
)
+ b (5)

in which XT
i X = φ(x), where φ(x) is the kernel function, α, α∗ are Lagrange multipliers,

and N is the number of observations.
Different from most ML models, SVM models can achieve better predictions without

the use of hidden layers. They can significantly improve the model’s flexibility by using
various kernel functions with different polynomial functions.

3.5. Decision Tree

The decision tree (DT) method is widely applied in spatial data mining, known as a
tree structure, which can be a binary tree or a non-binary tree. The DT model represents a
mapping relationship between object attributes and object values. The DT method consists
of three basic parts: decision nodes (which aid in feature storage), decision links (which
aid in criteria selection), and decision leaves (which aid in classification). In this, each
non-leaf node represents a test on a feature attribute, each branch represents the output of
the feature attribute in a given range, and each leaf node stores a category of solutions [66].
A path from the root to the leaves stands for the value of input parameters and each leaf
indicates the value of targeted parameters. To establish the DT model for the gasification
process, it is required to describe the input and output vectors as X and Y distributions,
respectively. Further, a trained dataset (D) in the DT can be obtained using Equation (6).
After that, the input space can be divided into m units, and the DT model can be written as
shown in Equation (7):

D = {(x1, y1), (x2, y2), . . . , (XN , YN),} (6)

f (x) = ∑M
m=1 Cm I(x ∈ Rm) (7)

where n signifies the number of features, N indicates the sample size, and Cm refers to the
fixed output value for the mth unit.

3.6. Random Forest

Random forest (RF) is an evolved version of the DT algorithm. Rather than utilizing a
single huge DT, various DTs can make an RF learning algorithm to overcome the challenges
of the overfitting of the DT [66]. In the RF algorithm, a number of created DTs that have
been trained with subsets of the original data are used to learn concurrently. The number
of decision trees that are executed concurrently varies depending on the task and has a
significant impact on the algorithm’s performance. The RF regression problem can be
solved using a normal binary decision tree that has many branches, a root, many nodes,
and leaves. A branch is essentially a chain of nodes that extends from the root to the leaves,
with each node denoting a property. To determine splitting criteria for the regression tree, a
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Gini index (GI) is the best principle to judge the classification quality for RF algorithms [67].

Giniindex(D(o), k∗) = ∑
|D(s)|
|D(o)|Gini(D(s)) (8)

k∗ = argminGiniindex(D(o),k∗)

where the D(o) dataset is classified into subset D(s), and the GI for each subset can be
evaluated by Equation (8). The GI value of subsets can show the purity of subsets, and a
lower GI value suggests a higher quality of classification. k∗ is an optimal attribute, and
the minimum GI value based on the k∗ can be selected as the result.

3.7. Gradient Boosting Algorithm

Recently, the family of gradient boosting (GB) algorithms has grown with a number of
novel concepts (such as XGBoost [68], LightGBM [69], and CatBoost [70]) that place a dual
emphasis on speed and accuracy. XGBoost is a modular ensemble strategy that has shown
to be an effective and dependable way to handle machine learning problems. With the use
of selective sampling from high-gradient examples, LightGBM is an accurate model that
is dedicated to providing incredibly quick training performance. In order to increase the
accuracy, CatBoost modifies the computation of gradients to prevent prediction shifts [71].
GB is an additive weighted-sum approximation of function F∗(x)

Fm(x) = Fm−1(x) + ρmhm(x), (9)

where ρm is the weight of mth function, and these functions are ensembles as DTs. This
additive approximation is constructed iteratively. First, it is required to determine a constant
approximation of F∗(x), as in Equation (10):

F0(x) = arg min
α

∑N
i=1 L(yi, α). (10)

Further, subsequent models are required to minimize, as in Equation (11):

(ρm, hm(x)) = arg min
ρ,h

∑N
i=1 L(yi, Fm−1(xi) + ρh(xi)) (11)

Now, instead of solving the optimization problem, here, each hm can be treat as a
greedy step for F∗(x). For that, each model is required to be trained with different hm of
new datasets D = {xi, rmi}N

i=1, and the pseudo-residuals rmi can be calculated as

rmi =

[
∂L(yi, F(x))

∂F(x)

]
F(x)=Fm−1(x)

where the value of ρm is consequently computed by solving a line-search algorithm.

4. Evaluation Methods

ML can be applied at the moment to make highly accurate predictive models and
understand the associations between the input variables and output responses of highly
non-linear processes. Since each feature contributes separately to an ML model, the corre-
lations in numerous input characteristics helps to maintain all the properties of a model.
Therefore, various techniques to determine the degree of correlation between two or more
variables in ML models are included in this section.

4.1. Mean Impact Value (MIV)

The mean impact value (MIV) is mainly applied to the modification of the neural
network model. It can evaluate the importance of the variables to the alternation of the
weight matrix in the neural network [72]. It can help to observe the impact change of the
ith independent variable on the output result, which is formulated in Equations (12) and
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(13). The sign of the MIV shows the positivity and negativity of the independent variable
on the dependent variable, and the absolute value indicates the degree of the independent
variable’s influence on the dependent variable [73].

IVi = Y(1)
i −Y(2)

i (12)

MIVi =
1
m ∑m

j=1 IVi(j), i = 1, 2, . . . , n (13)

where IVi is the change value vector by influence on the output after the changes in
independent variable, Yi is the corresponding output vector when the independent variable
changes, and m is the number of observations for independent variable vectors, including
n variables. Additionally, to understand the applicability of the MIV with an ML model,
kindly see ref. [72].

4.2. Pearson Correlation Coefficient

The linear connection between two variables can be discovered using the Pearson
coefficient technique, which is quantified in statistics as in numbers between −1 and 1 [74].
If the correlation coefficient is larger than 0, it means a variable is increasing with another
variable and showing a positive connection between them. Generally, a higher absolute
value of the correlation coefficient indicates a stronger connection between these two
variables. To determine the Pearson correlation coefficient for a problem, let us suppose
(X1, X2, X3, . . . , Xn) and (Y1, Y2, Y3, . . . , Yn) are n-dimensional random variables, and they
have a correlation. Further, the Pearson correlation coefficient of Xi and Yi can be defined
as in Equation (14):

rxy =
N ∑N

i=1 xiyi −∑N
i=1 xi ∑N

i=1 yi√
N ∑N

i=1 x2
i −

(
∑N

i=1 xi

)2
√

N ∑N
i=1 y2

i −
(

∑N
i=1 yi

)2
(14)

4.3. Shapley Additive Explanation (SHAP)

SHAP analysis has been successfully applied to biomass thermochemical conver-
sion studies, in wastewater sludge pyrolysis [75], in the biomass microwave pyrolysis
process [76], hydrothermal processing [77], and the biomass and plastic co-pyrolysis pro-
cesses [78]. To quantify the feature importance [79] in ML models, the Shapley additive
explanation (SHAP) algorithm has been developed in [80], which is based on the magnitude
of feature attributes and can help to analyze feature importance and their effects on results.
SHAP is based on the combined cooperative game theory approach, which can provide
a degree of relevance to each characteristic at a given prediction along with three other
parameters: local accuracy, missingness, and consistency. Further, following the definition
of additive feature attribution with three properties, the SHAP value for the explanation
ML model can defined as in Equation (15):

ϕi( f , x) = ∑z′⊆x′/{i}
|z′|(M− |z′| − 1)!

M!
(

fx
(
z′ ∪ {i}

)
− fx

(
z′
))

(15)

where |z′| is a subset of non-zero entries in x′/{i}, |z′|(M− |z′| − 1)!/M! is the fraction of
permutations with the feature {i}, and ( fx(z′ ∪ {i})− fx(z′)) is the marginal contribution
of the feature {i} to condition z′.

4.4. Regression Evaluation Methods

To assess the prediction performance of these ML models, it is required to evaluate
various features, as shown in Table 2. In the evaluation indicators, a smaller value of the
SSE, MSE, MAE, RMSE, MeanRE, and MaxRE for the ML models indicates the higher
prediction accuracy of a model. Meanwhile, the higher the value of R2, the better the
prediction performance [81].



Energies 2023, 16, 6524 13 of 21

Table 2. Statistics to evaluate the performance of ML models, adopted from [81–83].

Statistical Methods Mathematical Formulation

Actual error (AE) |Actual − Predicted values|

Sum of squares error (SSE) ∑n
i=1

(
ypredict − yi

)2

Standard deviation (SD)
√

∑(actual−mean)2

n

Mean absolute error (MAE)
1
n ∑n

i=1

∣∣∣(ypredict − yi

)∣∣∣
Mean standard error (MSE)

1
n ∑n

i=1

(
ypredict − yi

)2

Relative absolute error (RAE)
[∑n

i=1(Predicted−actual value)2]
1/2

[∑n
i=1 Actual value2]1/2

Root mean square error (RMSE)

√
1
n ∑n

i=1

(
ypredict − yi

)2

Normalized root mean squared error (NRMSE)
RMSE

Average o f observed values

Average relative error (MeanRE) Mean
(

y−ypredict
y × 100%

)
Maximum relative error (MaxRE) Max

(
y−ypredict

y × 100%
)

Mean absolute deviation (MAD)
1
n ∑n

i=1|Actual output−mean actual output|

Coefficient of determination
(

R2 ) (1− (sum o f squre errors/sum o f squares))

Adjusted coefficient of determination
(
adj(R2) ) 1−

[(
1− R2)× n−1

n−k−1

]
Linear correlation coefficient (RD )

√
1− ∑n

i=1(yp,i−ya,i)
2

∑n
i=1(ya,i−ya)

2

Regression correlation coefficient (RC )
√

1− ∑n
i=1(yp,i−ya,i)

2

∑n
i=1(ya,i)

2

5. Application of Artificial Intelligence in Gasification Process

The AI method has been widely used to estimate the outputs by gasification [84]
in a downdraft gasifier [85], a circulating fluidized-bed gasifier [86], and a bubbling-bed
gasifier [87] with good accuracy. Based on recent progress, in this section, recent AI-based
gasification systems are critically reviewed. A significant amount of literature has been
written in the last four years on modeling and forecasting the performance of gasification
systems. The majority of these studies have examined the impact of operating parameters
on performance. These applications are classified in this section.

5.1. AI in Prediction and Performance Evaluation

AI shows unique advantages in the prediction, evaluation, and optimization of gasifica-
tion systems. In recent years, ML approaches for predicting biomass gasification production
have been widely studied and reviewed [81]. The implementation of other ML methods,
such as RF, GBR, XGB, SVM, and ANN, has been widely acknowledged in the field of
biomass and waste transition. For instance, various applications of AI-based models in the
context of prediction have been applied in the gasification process:

• ANN and particle swarm optimization (PSO)-based hybrid models were built to
predict the product yield, which reduced the deviation of CO concentration from
13.93 to 8.39% [57].

• The GBR model is more convincing than the ANN model in predicting syngas compo-
sitions with real experimental data [88].

• A hybrid AI approach is remarkably satisfied, with a 0.134% mean prediction error to
predict the hydrogen concentration in a downdraft fixed-bed gasifier [89].

• A stochastic GB (SGB) decision tree framework is proposed in [90] for modeling and
quantifying the degradation kinetics of biomass, which shows high performance with
a 0.993 determination coefficient.



Energies 2023, 16, 6524 14 of 21

• An AI-based hybrid model for solid fuel classification in energy harvesting from
agricultural residue is discussed in [91].

• An ANN model is used to estimate the performance efficiency of a gasification system
by using the back-propagation method. The study predicts the chemical exergy, and
there are very few studies available in the context of chemical exergy analysis [85].

• Five different machine learning models are applied with an optimized ensemble model
for predicting lower heating value (LHV) and syngas yield [80].

• Moreover, another study shows that the Gaussian-type kernel with a least-squares
SVM can provide the best monitoring for biochar prediction [92].

5.2. Design of Integrated Gasification Systems

There are numerous research studies on integrated gasification systems, as highlighted
in [93]. A study focused on the modeling of a solid-oxide fuel cell (SOFC), which utilized
three integrated processes including gasification to achieve the most optimal system from
the perspective of energy and economics [94]. Further, in another research direction, the
Aspen Plus simulator was used to develop a circulating fluidized bed (CFB)-based fuel-cell-
integrated system. Thereafter, the created data set was utilized to train the artificial neural
network (ANN) model and examine the impacts of different torrefied biomass samples
on PEM fuel cell outputs for a sophisticated integrated system [95]. Additionally, based
on the multi-level factorial and design of experiment methodology, a configuration of the
tri-generation process such as valorization, gasification, and solid-oxide fuel cell (SOFC),
is discussed in [96]. Moreover, a configuration for the hybridization of geothermal and
biomass energies is analyzed in [97], in which geothermal heat is employed for water
heating and steam generation. In order to assess the feasibility of the proposed systems
and to compare their performance, detailed simulation models are made based on the first
and second laws.

5.3. In Gasification of Municipal Solid Waste

When municipal solid waste (MSW) is not properly managed, it can cause severe health
and environmental problems by polluting the air, water, and soil. Due to its porous nature
and the non-linear relationships between different factors, the modeling and simulation of
the gasification process of MSW is difficult and computationally complex. Regarding this,
an ML model is developed in [20] for MSW gasification, but despite its prediction capability,
the developed model undergoes several deficits, such as the consideration of catalyst
properties. Thus, this study is devoted to creating an inclusive ML model to understand
the non-catalytic MSW gasification process. Further, three ML approaches, SVM, RF, and
GBR, are applied to characterize the MSW gasification process for parameter identification.
In addition, SHAP analysis is also used to attain the best-performing responses in the
modeling process [80]. Furthermore, recently, five sophisticated soft computing models,
DT, XGB, RF, MLP, and SVR, have been developed to analyze the performance of MSW
gasification in fluidized-bed gasifiers [98]. These five models are optimized using the PSO
technique. As a result, the heating value of gas (LHV), the heating value of gasification
products (LHVp), and the syngas production in the process of MSW gasification can all be
predicted by using the developed model.

5.4. For Environment Protection and Performance Analysis

For the prediction of environment-affecting parameters of gasification, Ref. [99] high-
lights the experiences of environmental modeling. In addition, in a study, a genetic-
algorithm-based AI model is proposed to minimize the CO2 emission in the process of
anaerobic digestion [100]. Further, ANN and TOPSIS techniques are used in the multi-
criteria optimization of three distinct subsystems (heating, cooling, and electricity) to
determine the optimal point for high energy efficiency and less CO2 emission in the gasifi-
cation process [58].
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In the context of performance analysis, the use of thermogravimetric analysis to
determine the mass loss in the gasification environment is a potential method for compre-
hending the chemical reactions, reactivates, and kinetic characteristics of the gasification
material [101]. Additionally, according to [102], the genetic-algorithm-based ML model has
shown the best performance in polygeneration systems to effectively evaluate the access
of power, heat, freshwater, and hydrogen generation using biomass and solar energy. The
extra heat in output gases can be employed to boost the desalination system’s ability to
perform reverse osmosis to raise the steam water’s intake pressure [103].

Accordingly, during the literature review, AI showed unique advantages in the predic-
tion, evaluation, and optimization of gasification systems, which is promising and attractive.
Based on recent progress, this article summarizes several critical AI-based technologies for
the future development of gasification systems. Additionally, various applications of AI in
gasification systems are included in Table 3.

Table 3. AI-based applied technologies in gasification process.

Work Errors/Accuracy Research Area Refs.

Linear regression and SVM applied in
updraft gasifier R2 ≈ 0.99, 0.008 < MSE < 2.66 SVM classification [75]

Automated sludge pyrolysis R2 ≥ 0.813, RMSE ≤ 12.51 RF, regression [104]
Co-gasification of coal–biomass blend Exergy = 34.19% HHV prediction [105]
Environmental impact of palm kernel shell Improved to 65.44 vol% Steam gasification, Cao sorbent [106]
Experimental and AI-based study on catalytic
reforming during pyrolysis Structure modeling, pyrolysis [107]

Emission control in reactors Chemical looping [108]
ML algorithms to determine heat capacity R2 = 0.99347 Oil reservoir [109]
Emission control in anaerobic digestion Emission = 36.3% H2 production [100]
GB-based electrochemical and thermal
tri-generation process Exergy efficiency = 34.6% Multi-objective optimization [110]

Back-propagation (BP) neural network for
microwave-assisted cracking Efficiency = 95.7% Catalytic pyrolysis [111]

Prediction of torrefaction severity index Mean error = 0.9784 Adaptive regression [112]
Economically feasible design of wind turbine
integrated gasification process Exergy increased by 7.3% Thermodynamic analysis, [113]

100-year scaling of fluidized-bed and circulating
fluidized-bed reactor. fouling mitigation, clustering [114]

Multi-objective optimization for flash cycling of
SOFC system Exegetic efficiency = 53.23% Performance analysis [115]

6. Future Research Directions

With the advantage of ML modeling, gasification is becoming a promising technology.
However, the incorporation of various research methodologies into the gasification process
may be a required step to develop more accurate and robust systems.

6.1. Uncertainty in Machine Learning

In ML modeling, statistics are crucial in understanding the relevance between the input
and output features [80]. This “underestimation” or “misunderstanding” increases the un-
certainty in research to evaluate algorithms. Therefore, it is noteworthy to explain the types
of uncertainty corresponding to the machine learning algorithm. In ML modeling, there are
three factors where uncertainty can arise: (1) noise in the collected datasets; (2) prediction
range; and (3) valid model selection [44]. Further, to manage these uncertainties, several
optimization techniques can be used. The standard way to perform uncertainty analysis in
most modeling practices is to perform a simple sensitivity analysis. However, in the context
of managing uncertainties, there are many optimization techniques that can be applied to
manage uncertainties, such as stochastic optimization [116] and robust optimization [117].
In all, robust optimization has gained a lot of attention in the past decade.



Energies 2023, 16, 6524 16 of 21

6.2. Data-Driven Approaches to Manage Uncertainty

Uncertainty-based data-driven ML methods can be a useful addition to address the
limitations of traditional modeling methods for better prediction and accuracy in the
gasification process. Recently, in Ref. [83], various applications of data-driven ML methods
to biodiesel research were reviewed, with the conclusion that data-driven ML methods
have proven superior in the modeling of complex chemical processes as compared to
traditional methods. The data-driven approach to creating an uncertainty set is practically
the preferred choice when no prior knowledge of the uncertainty distribution is available. In
addition, data-driven uncertainty sets can be developed by using a variety of statistical and
analytical methodologies, including data-driven chance-constrained programs [118], data-
driven RO [119], forward and backward deviation [120], kernel density estimation [121],
and kernel support vector clustering [122], which can help to improve the performance of
ML models.

6.3. Response Surface Methodology as ML Techniques

Most studies in the field of response surface methodology (RSM) have focused on its
application for multi-objective optimization. Recently, a study evaluated the performance
of RSM as an ML technique in the gasification process [123], where the high validity of root
mean square errors was evaluated at 0.235, 0.438, 0.294, and 1.999. Therefore, in the future,
the design of gasification parameters by using the RSM can be a valuable approach.

6.4. Hybrid Machine Learning Models

The broader energy industry has shown enormous potential for the hybridization
of ML models with other ML approaches or cutting-edge statistical methodologies. Re-
searchers have also considered hybrid models to simulate thermochemical processes more
recently [124]. Hybrid models often provide more accuracy and generalizability than
conventional models but at the expense of an increase in computing burden. For instance,
ensemble approaches with GB can transform a number of ineffective and underwhelming
models into powerful ones. Therefore, an ensemble model can be an important future
research direction to increase model resilience, even when there are little data available for
model training, as demonstrated in recent work [98].

6.5. Automated Machine Learning

Applying an automated ML (AutoML) framework is more prevalent than trying out
different ML model techniques. It is challenging, even for ML experts, to include all current
best practices in their modeling [80]. Many obstacles to organizing high-performance
ML models may be removed via autoML. Additionally, it only ever provides the optimal
ML algorithm, which includes data splitting/processing, feature engineering, parameter
modifications, and model selection procedures [125]. Several autoML frameworks, such
as auto-sklearn [126], TPOT [127], Auto-WEKA [128], and AutoGluon [129], have been
created throughout the years. Since AutoML was created for specialists with outstanding
system performance, these frameworks are renowned for being quicker, more reliable, and
significantly more accurate for the ML modeling of tabular data. Hence, these approaches
can be used to better understand and explain the optimized ML results.

7. Conclusions

Biomass gasification is becoming increasingly popular in industrial and commercial
settings for a variety of reasons, including sustainable goals. Gas production in the gasifica-
tion process always depends on various parameters and properties of materials. Numerous
modeling approaches, including computational fluid dynamics and thermodynamic and
kinetic models, are frequently used to develop gasification systems. The traditional models
are sometimes impractical and often challenging to bring a reliable relation between pa-
rameters. Hence, the use of ML-based AI methods is becoming a promising integration to
add intelligent retrieval to traditional modeling approaches. Therefore, this study critically
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reviewed the application of the AI-based approach in gasification technology. In addition,
future aspects and requirements of modeling in the gasification process are also concluded.
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