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Abstract 

Forest and soil properties change across landscapes due to the complex interactions 

between various environmental factors. In many landscapes, topography exerts a 

major influence on the variation in soil moisture conditions, which in turn largely 

affects soil properties and processes. This thesis synthesises the results from four 

studies (papers I-IV), with the underlying aim to increase the understanding of how 

environmental factors, in particular, soil moisture, control the variation of nutrient 

accumulation, carbon storage, and tree growth within boreal landscapes. The four 

studies were all based on an extensive survey of a 68 km2 boreal forest landscape in 

northern Sweden. In Paper I, soil moisture conditions were predicted using multiple 

terrain indices. The results emphasised within-study validation and how digital 

elevation model resolution together with user-defined thresholds influence 

prediction accuracy. Paper II focused on how multiple environmental drivers 

influence the variation in soil carbon-to-nitrogen (C/N) ratios, with a noteworthy 

result that the ratio decreases as soil moisture conditions increase. Paper III presented 

how, soil moisture conditions significantly controls the distribution and partitioning 

of carbon stocks, with large increases in total carbon stock observed as soil moisture 

conditions increases, which was observed at both plot and landscape scale. The 

results in paper IV showed that, estimates of forest site quality decrease in response 

to increased soil moisture conditions. In conclusion, the research discussed in this 

thesis emphasises the importance of studying forest ecosystems on a landscape scale, 

an approach that can provide key insights into the factors that influence variation of 

different attributes of boreal forest ecosystems. 

Keywords: boreal forest, carbon stock, C/N ratio, site quality, soil properties, soil 

moisture, landscape, ALS 

  

Soil moisture conditions control nutrient 
accumulation, carbon storage and tree 
growth in boreal forests landscapes 



 
 

Sammanfattning 

Variationen i ett skogslandskap är resultatet av en stor mängd komplexa 

interaktioner mellan olika miljöfaktorer. I de flesta landskap spelar topografin en 

avgörande roll för variationen i markfuktighet, vilket i sin tur har stor påverkan på 

markens egenskaper och processer. Avhandlingen binder samman resultat från fyra 

studier (Studie I-IV), med syftet att öka förståelsen för hur olika miljöfaktorer, 

särskilt markfuktighet, styr ackumuleringen av näringsämnen, kolförråd och skogens 

tillväxt i ett borealt landskap. Alla studier baserades på en omfattande inventering 

inom ett 68 km2 skogslandskap i Västerbotten. Studie I fokuserade på att skatta 

variationen i markfuktighet med hjälp av olika terrängindicier baserade på digitala 

höjdmodeller. Resultaten visade att höjdmodellernas upplösning spelar en 

avgörande roll för modellers noggrannhet, samt vikten av att validera modeller inom 

studieområden. I Studie II, låg fokus på kol-kväve (C/N) kvoter i marken där låga 

kvoter indikerar högre näringstillgång. Variationen i C/N kvoten relaterades till 

dominerande trädslag, jordart och markfuktighet. En ökad markfuktighet ledde till 

en signifikant minskning av kvoten. Studie III fokuserade på markfuktighetens roll 

för skogens kolförråd samt dess påverkan på fördelningen ovan och under jord. Det 

totala kolförrådet ökande markant med markfuktigheten, framförallt orsakat av en 

ökning i det organiska jordlagret. I Studie IV skattades den potentiella trädtillväxten 

över hela studieområdet, där en minskad potentiell tillväxt påvisades med ökande 

markfuktighet. Avhandlingen bidrar med ett unikt landskapsperspektiv som ger 

viktiga insikter om skogsekosystems variation och dess kontrollerande processer. 

Nyckelord: kolförråd, kol-kväve (C/N) kvot, skogslandskap, tillväxt, markfuktighet, 

fjärranalys, skogsmark 
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The boreal forest provides a wide range of ecosystem services. One of  the 

critical services being the ability to sequester and store vast amounts of 

carbon (C), which plays a major role in climate change mitigation, in addition 

to providing renewable resources (Ameray et al. 2021). It has been calculated 

that boreal forests store approximately one-third of the entire terrestrial C 

stock (Pan et al. 2011), with the majority stored in the soil as soil organic 

carbon (SOC) (Bradshaw & Warkentin 2015). Given that northern latitudes 

are expected to undergo major shifts in weather patterns in the coming 

decades due to climate change, it is important to understand how key 

environmental factors cause variation in the forest systems. Deciphering the 

connections between ecosystem services and the forest landscape variation 

is therefore essential. Forest landscapes should not be viewed as uniform 

entities; but rather considered to be heterogeneous landscapes characterised 

by distinct variations in functions and roles. However, spatial information 

about forest and soil properties is often the primary limiting factor for 

spatially distributed models and land management. It should be noted that 

past and present forest management across much of the boreal landscape 

adds further complexity to the interpretation of which factors drive variation 

in boreal forest ecosystem attributes (Gauthier et al. 2023). Recent decades 

have seen significant advances in landscape analysis which are mostly linked 

to improvements in the remote sensing of soil and forest attributes (Coops et 

al. 2021; Shary 2023). However, large knowledge gaps still exist, and will 

need to be addressed if we are to reliably understand how different 

environmental factors influence the variation in forests across boreal 

landscapes.  

1. Introduction 
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1.1 Environmental factors 

Forests vary across distances due to changes in environmental factors, which 

vary in importance. For instance, climate – primarily measured in terms of 

temperature and precipitation – is a key factor that drives variation in forest 

characteristics at the regional and global scales. On the other hand, soil 

properties have a central role influencing the variation in forest ecosystems 

across all scales from global to within a single stand. Soil formation are 

commonly described using the five soil forming factors, namely, climate, 

biota, time, parent material and topography (Jenny 1941). Anthropogenic 

influence, such as forestry and agriculture also exerts an impact on soil 

formation; as such, this factor is either included within biota or as a sixth soil 

forming factor. On small spatial scales, many of these factors can be 

considered constant, which allows researchers to focus on a limited subset of 

environmental factors. 

1.2 Topographic control of forest hydrology 

At the landscape scale (defined as up to tens of km2 in this thesis), local 

topography commonly plays a central role in determining the hydrological 

flow paths across the landscape; hence, topography is a primary controlling 

factor for the spatial variability in soil moisture conditions as well as 

biogeochemical processes (Högberg 2001; Ågren et al. 2014). This is 

particularly true within boreal landscapes because of glacial history. In till 

soils, which dominate the boreal region, hydrological conductivity generally 

increases exponentially towards the soil surface (Lind & Lundin 1990). 

Because of this, neighbouring areas can greatly vary in groundwater table 

depth and soil moisture conditions. This variation can range from local 

conditions where tree growth is limited by the lack of soil moisture, to areas 

where forest growth is constrained by too much water leading to anoxic 

conditions (Simard et al. 2009; Sikström & Hökkä 2016). Because of the 

strong connection between topographic variation and forest hydrology, 

topographical information has become essential for mapping stream 

networks and predicting soil moisture conditions as well as soil properties 

(Beven & Kirkby 1979; Murphy et al. 2008; Ågren et al. 2014). In addition 

to the accumulation of water, hydrological pathways also control the 

transport of nutrients and mineral solutes (Jutebring Sterte et al. 2021), and 

hence likely to affect the variation in forest growth.  
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1.3 Nutrient accumulation 

In boreal landscapes, nitrogen (N) levels commonly limit forest growth 

potential (Tamm 1991), and thereby influence various fundamental 

ecosystem processes as well as species composition. Evidence of these 

dynamics is that remarkable differences in nutrient availability, vegetation 

composition and forest growth can be observed when moving from recharge 

to discharge areas (Giesler et al. 1998). Within a range of 100 meters, it is 

possible for the soil carbon-to-nitrogen (C/N) ratios to shift from a high value 

of 35-40 in recharge areas, to as low as 15-20 in groundwater discharge areas 

(Giesler et al. 2002). Although groundwater discharge areas constitute only 

a small portion of the landscape, they nevertheless receive nutrients from the 

considerably larger groundwater recharge areas through topographically 

driven hydrological pathways. The differences in forest growth between 

these areas involves complex interactions among additional ecosystem 

factors such as microbial turnover rates, retention of N in mycorrhiza and the 

nitrogen fixation (Högberg et al. 2017). However, it is important to state that 

the distribution of these areas is predominantly controlled by 

topographically-driven hydrological pathways, which largely influence soil 

moisture conditions (Kuglerová et al. 2016). 

1.4 Carbon storage 

It is well established that the accumulation of SOC is significantly influenced 

by soil moisture conditions (Olsson et al. 2009; Dalsgaard et al. 2016; 

Wiesmeier et al. 2019). Soil moisture conditions affect both the carbon inputs 

via the regulation of plant production, as well as decomposition rates. The 

accumulation of above-ground carbon stocks is significantly affected by 

growth conditions at the site, as well as disturbances, such as forest fires and 

forest management (Gauthier et al. 2015; Ameray et al. 2021). Both above- 

and below-ground carbon stocks have attracted extensive research across 

various scales due to its key link to the global carbon cycle (Bradshaw & 

Warkentin 2015; De Vos et al. 2015; Wiesmeier et al. 2019). National forest 

soil inventories is a valuable resource for studying environmental drivers of 

carbon stocks (Callesen et al. 2003; Hounkpatin et al. 2021). However, 

studies on smaller landscape scales are rare, limiting our understanding of 

variation of C stocks, along with how this information can be used to develop 

sustainable forest management practices.  
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1.5 Site quality 

The direct comparison of forest growth across landscapes is complex 

because of the variation in stand characteristics such as tree age, stem density 

and species composition. This is particularly true in landscapes affected by 

forest management. Site quality describes a specific site’s forest growth 

potential, determined by the physical and biological factors which 

characterizes a particular location (Assmann 1970; Bontemps & Bouriaud 

2014). In comparison to measures such as stem volume growth, site quality 

can be considered constant. Site productivity is a quantitative measure of site 

quality that refers to the proportion of growth potential realised by the given 

stand (Skovsgaard & Vanclay 2008). Reliable estimates of site quality and 

site productivity are important for the sustainable management of forest 

resources and has therefore received a lot of research attention to develop 

improved model approaches (Tomé et al. 2006; Bontemps & Bouriaud 2014; 

Appiah Mensah et al. 2023). One significant drawback of the most 

commonly used methods for assessing site productivity lies in their reliance 

on fixed sample plots, requiring information about age and species, which 

imposes constraints on the possibility of extrapolating findings across 

broader scales (Hägglund & Lundmark 1977; Skovsgaard & Vanclay 2008). 

Therefore, the use of approaches to estimate site quality which are 

independent of both age and species has the potential to provide unbiased 

assessments of forest growth potential across broader scales (Tomé et al. 

2006). Soil properties are usually considered a main determinant of site 

quality and site productivity (Hägglund & Lundmark 1977; Skovsgaard & 

Vanclay 2008). Therefore, improved understanding on how soil moisture 

affects the variation in site quality may provide valuable information for 

further growth models.  
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1.6 Remote sensing 

Recent decades have been characterised by significant advances in remote 

sensing, which have also greatly improved the quality of landscape analysis. 

Airborne Laser Scanning (ALS) has emerged as a valuable tool for extracting 

landscape properties, such as topography, as well as resolving the three-

dimensional properties of forest vegetation structure. 

Because topography plays a central role in determining hydrological flow 

paths, topographical models have long been used to extract hydrological 

features across landscapes. ALS has greatly increased the accuracy and 

resolution of digital elevation models (DEM), which in turn has led to 

significant advances in the terrain indices used to model hydrological 

pathways and soil moisture conditions. However, the predictive performance 

of different terrain indices is highly dependent on the selection of an optimal 

DEM resolution and user-defined thresholds (Sørensen & Seibert 2007; Lin 

et al. 2010; Ågren et al. 2014). This type of hydrological maps has also 

proven effective when used to predict the spatial patterns in soil properties 

(Zinko et al. 2005; Seibert et al. 2007; Li et al. 2017). The combination of 

machine learning techniques, multiple terrain indices, and additional 

geographical information has enabled researchers to model soil moisture 

conditions across Sweden (Ågren et al. 2021). This is important as accurate 

predictions of soil moisture conditions holds significant potential for 

improving our understanding of how forest and soil properties are regulated 

across landscapes. 

ALS has become a key method for collecting precise three-dimensional 

information about forest structure, which can be used to estimate various key 

forest characteristics with a great degree of accuracy and detail (Næsset 

2002; Tompalski et al. 2021). This technique has been widely used due to 

the ability to provide continuous and detailed forest information across large 

areas at low costs.  

One such method is the area-based approach, which is one of the most 

common modelling techniques for mapping forest attributes, such as 

standing volume, tree height, or above- and below-ground C stocks, across 

large areas (Næsset & Gobakken 2008; Kristensen et al. 2015; White et al. 

2016). The area-based approach can be divided into two steps (Næsset 2002). 

The first step involves establishing relationships between field observations 

of forest attributes and ALS metrics to create an initial model. In the second 

step, the model is applied to the entire ALS dataset at a spatial resolution that 
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corresponds to the area of the survey plots. This returns accurate, high-

resolution wall-to-wall estimates of the studied forest variable.  

Furthermore, recent research has shown that ALS data from multiple 

surveys can be used to estimate forest growth and site quality across 

landscapes by applying various modelling techniques (Socha et al. 2017; 

Noordermeer et al. 2018; Tompalski et al. 2021). However, the relationship 

between landscape estimates of site quality and soil moisture conditions has 

not been widely studied, although it should be noted that several studies have 

shown promising results after improving model accuracy (Mohamedou et al. 

2017; Appiah Mensah et al. 2023). 

1.7 Knowledge gaps 

There is a growing need to improve the understanding of the heterogeneity 

of the boreal landscape, and how environmental factors control the variation 

in key ecosystem processes. The techniques presented above provide an 

opportunity to study variation in environmental drivers and processes at high 

resolutions. By studying forest ecosystems at the landscape scale, it is 

possible to focus on a limited subset of environmental factors. To date, 

extensive survey data at smaller landscape scales are rare within boreal forest 

ecosystems. This thesis attempts to fill several of these gaps by studying 

variation across a 68 km2 boreal forest landscape with a focus on nutrient 

accumulation, carbon stocks, and site quality. 
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The overall aim of the research underlying this thesis was to further the 

understanding of how soil moisture conditions within boreal forest 

landscapes drive nutrient accumulation, carbon storage, and site quality. The 

thesis includes four Papers (Paper I-IV). Paper I focused on how topography 

controls the spatial variation in soil moisture conditions. Paper II presented 

assessments of the variability in soil C/N ratios and the relationship to 

various environmental factors, including soil moisture. The research topic of 

Paper III was how soil moisture conditions control the distribution and 

partitioning of carbon stocks, and Paper IV discussed the variation in site 

quality across a boreal landscape along with specific relationships to soil 

moisture conditions. The specific objectives of this thesis were to: 

 Evaluate how DEM resolution, thresholds values, and landscape 

type affect the potential of using terrain indices to predict soil 

moisture conditions (Paper I) 

 

 Examine variability in Carbon-to-Nitrogen (C/N) ratios, and explain 

how this variation is influenced by specific environmental factors  

(Paper II) 

 

 Further understanding about how soil moisture conditions control 

the spatial variation and partitioning of carbon stocks across a 

managed boreal forest landscape (Paper III). 

 

 Study the variation in site quality on the landscape scale and 

describe the relationships to soil moisture conditions (Paper IV). 

  

2. Research objectives 
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The individual papers included in this thesis stated several hypothesis that 

are directly related to soil moisture conditions:  

 Soil moisture conditions within a boreal landscape can be 

predicted using terrain indices (Paper I). 

 C/N ratios decrease towards discharge areas (Paper II). 

 Soil moisture conditions controls C stocks at the landscape scale, 

where increased soil moisture conditions are associated with 

larger SOC stocks, which primarily is a result of an increase in 

the organic layer C stocks (Paper III). 

 Soil moisture conditions controls the variation of site quality, 

with the best conditions for forest growth located under 

intermediate soil moisture conditions (Paper IV). 

 

Figure 1. Schematic overview of how the papers included in this thesis are connected to 

the distribution of soil moisture across a hillslope. Papers I, III and IV focused on the 

entire landscape whereas Paper III focused on forests located on mineral soils. 

Illustration: J Lokrantz/Azote. 
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All of the papers included in this thesis involved analysis of data collected 

from the same survey grid within the Krycklan catchment (Laudon et al. 

2013, 2021). In this section, an overview of the soil and forest survey, remote 

sensing data, and soil moisture modelling used are provided. This is followed 

by separate sections where the methods applied in the individual papers are 

described. Further details can be found in the individual papers. 

3.1 Study site 

The Krycklan catchment covers 6790 ha and is situated in northern Sweden 

(Lat. 64°23´N, Long. 19° 78´E) (Fig. 2). The land cover is dominated by 

forests, accounting for 87% of the total area, but mires (9%) and lakes (1%) 

are also present (Laudon et al. 2013). The climate is classified as a cold 

temperate humid type, with snow cover for approximately five months of the 

year. The catchment has a gentle topography ranging from 127 to 372 m 

above sea level (m.a.s.l). The highest post-glacial coastline is located at 

approximately 257 m.a.s.l, which divides the catchment area in two distinct 

areas. Unsorted sediment soils (51%) of glacial till origin dominate the upper 

parts of the catchment, while post glacial sorted sediments of primarily 

fluvial or lacustrine delta origin dominate at lower altitudes. The bedrock is 

dominated by Svecofennian metasediments/metagreywacke (94%). The 

forests consist primarily of Scots pine (Pinus Sylvestris L.) (63%) and 

Norway spruce (Picea abies (L.) H. Karst) (26%), along with certain 

deciduous species (mostly Betula spp.). The forests are managed by 

conventional rotation forestry, and are thus predominantly even-aged and 

mostly artificially regenerated, with thinning and clear-felling representing 

the standard silvicultual practices.  

3. Methods 
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Figure 2. Map of the Krycklan catchment, including the locations of the 441 survey plots 

included in the soil survey, distributed over a 350 x 350 m square grid. 

3.2 The survey grid 

The data used in all four studies included in this thesis were based on a survey 

grid of plots with a 10 m radius (314 m2) spread across the entire study area; 

the survey grid was established in the fall of 2014. The goal of the survey 

was to measure approximately 500 survey plots located in forest with the 

overall aim of developing methods for remote-sensing mapping of forest 

biomass. A regular square grid, with 350 m spacing between plots that 

covered the entire area was created using a randomly chosen origin. The 

exact positions of plot centres were measured using a high-precision GPS 

instrument (Trible GeoXTR GNSS receiver; Trible, Westminster, CO).  
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3.3 Soil survey 

The Krycklan soil survey was conducted during the snow free seasons of 

2019 and 2020, in a way that largely followed the methods of the Swedish 

Forest Soil Inventory (SFSI) (Fridman et al. 2014), with some modifications. 

Soil sampling was carried out within a 1 m radius subplot, with additional 

measurements spread across the entire plot (Fig. 3b). The organic layer was 

sampled volumetrically using a 10 cm diameter corer with a serrated blade 

to a maximum depth of 30 cm, excluding the litter layer. The organic layer 

samples were collected from 1-9 pre-defined sample points within the 1 m 

radius subplot until a target volume of 1.5 L was obtained. At each organic 

layer sample point, the organic layer thickness was measured and the humus 

form classified. Within the subplot, a soil pit was dug to a depth of 65 cm (or 

to bedrock or boulder) measured from top of the mineral soil.  

Mineral soil samples (ca. 500 mL) were collected at three fixed intervals: 

depth of 0-10 cm (M10); depth of 10-20 cm (M20); and depth of 55-65 cm 

(M65) measured from the top of the mineral soil. Parent material and soil 

texture was determined at predefined depths in the upper and lower parts of 

the soil profile. Each soil profile was classified according to the World 

Reference Base for Soil Resources (IUSS Working Group WRB 2015). 

Stoniness was estimated using the rod penetration method at 12 points spread 

across the entire 10 m survey plot (Viro 1952; Stendahl et al. 2009). 

Soil analysis of all samples was performed on the fine fraction (<2 mm) 

after samples had been dried at 65 C°, sieved and homogenised. A subsample 

was ground into a fine powder, which was subsequently analysed for C and 

N concentrations by mass spectrometry (DeltaV IRMS coupled to a Flash 

EA 2000, Thermo Fisher Scientific, Bremen, Germany). The analyses were 

performed on 5-50 mg of soil material, depending on the organic matter 

content.  
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Figure 3. Overview of the main data sources included in the Papers. Soil sampling depths 

of the soil survey (a), a schematic illustration of the 10 m radius survey plots (b), soil 

moisture modelling (c), and the bi-temporal ALS data (d). Illustration: J Lokrantz/Azote. 

3.4 Forest survey 

The forest survey was conducted twice with a five-year interval. The first 

forest survey was conducted in the fall of 2014 and finalised in the spring of 

2015, thereafter repeated in the fall of 2019 and finalized the following 

spring. Within each survey plot, diameter at breast height (DBH, 1.3m) and 

species identity was recorded for all trees with a DBH >4 cm (Fig. 3b). A 

sub-sample of trees was chosen to survey tree height, measured using a laser-

guided hypsometer, for the purpose of capturing variation in the tree size of 

different species. The heights of the remaining trees were estimated using 

specifically developed local species-specific tree height functions that were 

fitted to the sub-sampled tree data from the surveys. Forest state variables 

used in this thesis included above- and below-ground biomass, and basal-

area weighted height (Lorey’s mean height) which was estimated on 

individual tree level and summarized for each plot. 
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3.5 Field classifications of soil moisture conditions 

Each survey plot was assigned to one out of five soil moisture classes based 

on the average depth to the groundwater table which was estimated from its 

landscape position, soil type and vegetation patterns. The classification was 

done both in the forest and soil survey. The five soil moisture classes used 

were dry, mesic, mesic-moist, moist and wet, and are described below; 

further details can be found in the field instructions of the Swedish National 

Forest Inventory (NFI) (Swedish NFI 2014).  

 Dry soils have an average depth to the groundwater table of > 2 

m. Dry areas tend to be coarse textured and are often found on 

top of hills, ridges and eskers. The predominant soil types are 

Leptosols, Arenosols, Regosols and Podzols, and these areas 

often have a thin organic layer. 

 Mesic soils have an average depth to the groundwater table 

between 1-2 m. Soil types are dominated by Podzols with thin (4-

10 cm) mor layer, which is commonly covered by dry land 

mosses. It is possible to walk dry-footed even directly after rain 

of shortly after snowmelt.  

 Mesic–moist soils have an average depth to groundwater table < 

1 m. They are often located in lower parts of the landscape such 

as toe-slope areas. Whether you can cross in shoes and keep your 

feet dry depends on the season because the soils tend to stay wet 

seasonally following snowmelt or heavy rain events. Peat mosses 

are common, and trees commonly tend to grow on elevated 

humps. Podzols are common, but often with a thicker organic 

layer compared to mesic sites. The organic layer is often 

classified as peaty mor. 
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 Moist soils are characterised by an average depth to groundwater 

of <1 m. Surface water is often visible in depressions within the 

plot. These areas are commonly located in the lower parts of the 

landscape, e.g. at the lowest parts of slopes and flat areas below 

larger ranges. It is possible to cross these areas in regular shoes 

without getting wet by using tussocks and higher-lying ground. 

Even during dry spells, stepping in depressions result in water 

forming around the feet. The vegetation includes wetland mosses, 

trees commonly grow on elevated humps and the predominant 

soil types are Histosols, Gleysols, and Regosols. 

 Wet soils have a ground water table close to the soil surface. Wet 

areas are often located on open peatlands and coniferous trees 

seldom develop into stands. Drainage conditions are so weak that 

these areas cannot be crossed in regular shoes without getting the 

feet wet. Permanent pools of surface water are common within 

these areas the typical soil types are Histosols and Gleysols. 

3.6 Remote sensing data 

Remote sensing in the form of ALS was a crucial source of topographic 

information (paper I-IV) and estimation of forest variables (Paper III and 

IV). ALS, which is also commonly referred to as LiDAR (Light Detection 

And Ranging) is an active remote sensing technology that measures distance 

based on reflected laser light. ALS generates a georeferenced, three-

dimensional point cloud of the landscape by transmitting laser pulses, which, 

echoes back from the vegetation and ground surface below. High resolution 

ALS was conducted across the entire study area in late summer of 2015 and 

2019 (Fig. 3d). The raw ALS data were pre-processed by classifying point 

returns as ground, unclassified, or noise. A digital terrain model was then 

generated and the ALS points were normalised to represent tree canopy 

height above the ground surface. In all of the included studies, the DEMs 

generated from point clouds had an average point density of 20 points per 

m2.  
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For each survey plot, ALS metrics from both acquisitions runs were derived 

separately using Fusion software (McGaughey 2016). The metrics were 

calculated on 12.5 x 12.5 m (Paper III) and 10 x 10 m (Paper IV) resolutions 

describing canopy height and canopy density, including measures such as 

mean height, maximum height, standard derivation, heights at certain 

percentiles of height distributions (e.g. 95th) and proportion of points 

reflected in vegetation.  

The area-based approach was used to obtain estimates of forest variables 

across the entire study area (Næsset 2002). The variable of interest in Paper 

III was the tree C pool, while for Paper IV it was Lorey’s mean height (basal 

area weighted mean height) at each survey occasion to model site quality. In 

the first step, predictive models were developed by regressing observed 

forest attributes from the survey plots on corresponding ALS metrics 

extracted for each plot. Model assessment was based on regression fit 

statistics and studies of residual plots. In the second step, the models were 

applied to the individual grid cells covering the entire catchment to generate 

wall-to-wall estimates of the studied forest attributes. 

3.7 Soil moisture modelling 

The modelling of soil moisture conditions was a central element of all studies 

included in this thesis. Paper I evaluated seven different terrain indices as 

well as two readily available soil moisture maps (see detailed descriptions in 

Paper I). The terrain indices differed in approaches but all used various 

information extracted from the DEM. For example, the Topographic 

Wetness index (Papers I and II) is defined as ln(a/tanβ), where a is the local 

upslope contributing area and tanβ is the local slope (Beven & Kirkby 1979). 

Papers I, II and IV utilised a recently developed soil moisture map that covers 

all of Sweden, and which was created by combining machine learning and 

geographical information, e.g. multiple terrain indices, climate data, and 

quaternary deposits (Ågren et al. 2021). The training and validation data set 

consisted of almost 20,000 soil moisture classifications (section 3.5) from 

the NFI, spread across the entire country. In the same study, the survey grid 

included in this thesis was used as an independent validation dataset. The 

model output was a soil moisture map which shows the predicted probability 

(0–100%) that a point is classified as wet, the SLU moisture map has a 

resolution of 2 x 2 m.   
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3.8 Evaluation of the soil moisture predictions (Paper I)  

The overall aim of Paper I was to predict soil moisture conditions across the 

entire study area using different terrain indices, as well as evaluate how DEM 

resolution and user-defined thresholds influence the results. The terrain 

indices were calculated using seven different hydrologically-corrected 

DEMs (0.5, 1, 2, 4, 8, 16 and 32 m). The Depth To Water (DTW) (Murphy 

et al. 2008) and Elevation Above Stream (EAS) (Rennó et al. 2008) indices 

were calculated using stream networks, which can be calculated using 

different stream initiation thresholds. For each DEM resolution, DTW and 

EAS were calculated on stream networks based on a stream initiation 

threshold of 1, 2, 4, 8, 16 and 32 ha. The downslope index (DI) (Hjerdt et al. 

2004) includes a predefined vertical distance threshold in Paper I was set to 

1 and 2 m. As such, a total of 146 different maps were used to predict soil 

moisture conditions (Table 1). The value corresponding to each plot centre 

coordinate was extracted from all of the layers and related to field observed 

soil moisture. To determine which terrain index offers the most accurate 

predictions, all layers were assessed using Orthogonal Projection to Latent 

Structures (OPLS) analysis (Eriksson et al. 2006). The OPLS represents a  

modification of the partial least squares (PLS) regression, and was carried 

out using the multivariate program SIMCA 16.0 (Eriksson et al. 2006). 

Table 1. All terrain indices and soil moisture maps included in Paper I. 

Terrain index Abbr. Source Layers (n) 

Topographic Wetness Index TWI (Beven & Kirkby 1979) 8 

Depth To Water DTW (Murphy et al. 2008) 48 

Elevation Above Stream EAS (Rennó et al. 2008) 48 

Downslope Index DI (Hjerdt et al. 2004) 16 

WILT1 WILT (Meles et al. 2020) 8 

Relative topographic position RTP (Newman et al. 2018) 8 

Plan curvature PlanC (Wilson & Gallant 2000) 8 

SLU soil moisture map SLU (Ågren et al. 2021) 1 

SMI SMI (Naturvårdsverket 2021) 1 

1Wetness Index based on Landscape and Topography 
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3.9 Environmental factors that influence soil C/N ratios 
(Paper II) 

In an attempt to explain factors that influence the variation in nutrient 

accumulation, Paper II focused on the variations in soil C/N ratios. More 

specifically, Paper II examined individual relationships between 

environmental factors and several soil properties, i.e., C/N ratio, C%, and 

N%, across 391 plots and at three sampling depths (O, M10, M20). The 

research focused on the following environmental factors; topography, parent 

material, soil texture and dominant tree species. It should be noted that 

Histosols, i.e., soils with an organic layer thickness of ≥40 cm were excluded. 

The topographic attributes included elevation, aspect, slope, and TWI. The 

TWI was used since it is among the most commonly used topographical 

indices in landscape analyses. TWI was calculated using a DEM with a 

resolution of 16 x 16m, as this resolution was found to be the optimal 

resolution within the Krycklan catchment (Paper I). Parent material was 

classified for each survey plot according to sorted and unsorted sediments. 

Soil texture was determined in the field, and grouped according to four 

different classes based on parent material. The effects of topography on soil 

properties were analysed via linear regression and by calculating Spearman’s 

rank correlation values. A one-way ANOVA, followed by Tukey´s test, was 

conducted to examine the significance of C%, N% and C/N ratio differences 

between dominant tree species and soil texture classes. 

3.10 Carbon stocks (Paper III) 

The focus of Paper III was how changes in soil moisture conditions influence 

the variation observed in C stocks. The total C stock was divided into three 

different pools; i.e., the organic layer C pool, the mineral C pool, and the tree 

C pool. The organic layer C pool was calculated by multiplying the C% of 

the sample by its dry weight and divided on the total sampled area.  The 

mineral C pool was estimated down to  a depth of 50 cm based on the  C% 

measured at each sampling depth (M10, M20 and M65), bulk density, 

corrections for stoniness (Stendahl et al. 2009), and linear interpolation 

between measured layers. Following the SFSI, the bulk density of the 

mineral soil layers was estimated using a pedotransfer function that depends 

on C% and sample depth (Nilsson & Lundin 2006). The total SOC pool at 

each survey plot was obtained by combining the organic and mineral C pools. 
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For plots with an organic layer thickness >30 cm (maximum sample depth 

or the organic layer), the organic C stock was calculated to a maximum of 1 

m via downward extrapolation.  

The tree C pool included both above- and below-ground biomass, which 

was calculated using tree species-specific allometric functions (Marklund 

1988; Petersson & Ståhl 2006). The total tree C pool was calculated by 

combining above- and below-ground estimates for each plot, this value was 

then converted to Mg C ha-1, under the assumption of a C concentration of 

50%. 

The individual C pools and the total C stocks were analysed for different 

soil moisture conditions observed in field. The relationship between C stocks 

and SLU soil moisture map was evaluated using linear regression, using 

polynomial regressions in most cases. The relationships from the SLU soil 

moisture map were then extrapolated over the entire study area to gain a 

landscape-level picture. The tree C pool was mapped over the entire study 

area using the area-based approach. 

3.11  Site quality modelling (Paper IV) 

In Paper IV, a plot-level site quality estimate was derived using data from 

the two forest surveys. Site quality was here defined as the asymptote of a 

growth model exhibiting a sigmoidal shape. The site quality parameter 

represented the theoretical site-specific maximum mean tree height at the site 

when time approaches infinity. Site quality was estimated using an age-

independent difference formulation of the commonly used Richard’s growth 

model (Richards 1959), originally presented by Tomé et al. (2006). 

𝑌𝑖+𝑎 = 𝐴 {1 − 𝑒−𝑘𝑎 [1 − (
𝑌𝑖

𝐴
)
𝑚
]}

1

𝑚
 (Equation 1) 

Where Y is Lorey’s mean height in metres, and A is the asymptote maximum 

tree height (m) when time approaches infinity. The parameter k was related 

to the growth rate whereas m is a shape parameter related to the point of 

inflection. The number of periods was denoted as a, which in Paper III was 

five years. The parameter k describes the relative height growth between the 

two observations of Lorey’s mean height and a global parameter b: 
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𝑘 = 𝑏 ∗ (
𝑌𝑖+𝑎

𝑌𝑖
)  (Equation 2) 

Equation 2 was substituted into Equation 1 to obtain estimates of the global 

parameters m and b. The parameters were estimated using the generalised 

non-linear least squares regression method. A plot-specific site quality (Ao) 

was then derived by an algebraic reformulation (Equation 3) of Equation 1.  

𝐴𝑜 = (
𝑌𝑖+𝑎

𝑚−𝑒−𝑘𝑎𝑌𝑖
𝑚

1−𝑒−𝑘𝑎
)

1

𝑚
  (Equation 3) 

The plot specific site quality was calculated using the field measured Lorey’s 

mean height. The same equation was used to estimate site quality across the 

entire study area using the ALS estimated Lorey’s mean heights from the bi-

temporal ALS. Site quality was then related to soil moisture conditions on 

plot and landscape level. Furthermore, a non-parametric Kruskal-Wallis test 

(Kruskal & Wallis 1952), followed by a Dunn-Bonferroni post-hoc test 

(Dunn 1964), was used to test for significant differences between soil 

moisture classes in order to determine whether the highest site quality values 

occur at intermediate soil moisture conditions.  
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The extensive forest and soil survey data analysed in the studies underlying 

this thesis provide unique insights about the variation in the ecosystem 

properties of a boreal forest landscape. The Papers included in this thesis 

focused on studying how strong of an effect soil moisture exerts on the 

variation in soil properties and forest growth potential within a forest 

landscape in northern Sweden. In the following sections, I will highlight the 

most important results and discuss the relevance of these findings. 

4.1 Topographic control of soil moisture conditions 

In accordance to the overall objectives of this thesis, the assumption that 

topography drives variation in soil moisture conditions needed to be tested. 

Paper I described how topography influence the variation in soil moisture 

conditions by using a wide range of terrain indices at different digital 

elevation model resolutions and thresholds. Overall, the results confirmed 

that the tested terrain indices hold potential in predicting soil moisture 

conditions (Lin et al. 2006; Grabs et al. 2012; Ågren et al. 2014). However, 

the research also revealed that DEM resolutions has differential effects on 

the results depending on the terrain index, and that parent material caused 

challenges in the predictions. The OPLS analysis including all 147 soil 

moisture predictors  revealed how DEM resolution, including user defined-

thresholds (relevant for DTW, EAS and DI) contributed to large differences 

in the soil moisture predictions (Fig. 4).  

4. Results and discussion 
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Figure 4. The OPLS loading plot, which illustrates the predicted soil moisture conditions 

for various terrain indices. Coloured guides connect terrain indices in order of DEM 

resolutions (circle size depict the resolution size).  

The OPLS results showed that the optimum DEM resolution for soil moisture 

predictions differed between the terrain indices. When ranking the terrain 

indices, DTW showed the best performed and was closely followed by the 

SLU soil moisture map. DTW performed best at DEM resolutions of 1 m, 

while the commonly used TWI showed optimal performance at DEM 

resolution of 16 m. The results agreed with previous reports that DEM 

resolution and the thresholds chosen for terrain index calculations have 

noticeable effects on the predictive ability of different models (Lin et al. 

2010; Ågren et al. 2014). The reasons for this is different depending on the 

terrain index considered. The results in Paper I highlighted the challenges 

caused by various landscape types, for instance, flat sorted sediment areas. 

These areas, due to their obvious topographic characteristics of overall 

flatness, are not strongly influenced by the assumption that topography 

drives variation in soil moisture, and this must be taken into account during 

modelling. Paper I provided valuable information about the challenges of 

modelling soil moisture conditions using topographical information and the 

importance pre-evaluation within study areas. 
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4.2 Soil properties in relation to environmental factors 

Paper II provided empirical evidence that supports: (1) the significance of 

topographically-driven hydrological conditions, with C/N ratios decreasing 

as soil moisture increased; (2) that dominant tree species significantly 

impacts C/N ratios in the organic layer; and (3) that soil texture is the most 

important factor for explaining variations in soil chemical properties within 

mineral soil. The organic layer exhibited a mean C/N ratio of 39, ranging 

from a minimum of 19 to a maximum of 87. Mineral soil mean C/N ratio 

decreased from 29 to 25 with sampling depth while maintaining a large 

range. The studied environmental factors showed varying influences on the 

C/N ratio that were dependent on the sampling depth. In the organic layer, a 

significant decrease in C/N ratio was observed in relation to increased soil 

moisture conditions, which were modelled using TWI (R2=0.11, p<0.001). 

The topographic control on C/N ratio was strongest in unsorted sediments 

(R2=0.15, p<0.001), where topography is the main driver behind the 

variation in soil moisture conditions. Although a large share of variation 

remained unexplained, this relationship was in line with the presented 

hypothesis which was based on reports that there can be large differences in 

C/N ratios within short distances (Giesler et al. 1998). The relationship 

between organic layer C/N ratio and TWI was stronger in comparison to 

previous studies (Zinko et al. 2006; Seibert et al. 2007), most likely related 

to better DEM resolution, sample size and study area.  

The analysis of C/N ratios in different forest types showed significant 

differences in the samples of the organic layer, where plots dominated by 

pine had significantly higher C/N ratios compared to plots dominated by 

other tree species. This is in line with previous findings including both 

garden experiments (Vesterdal et al. 2008; Hansson et al. 2011; Getino-

Álvarez et al. 2023) as well as survey studies (Spohn & Stendahl 2022). On 

the other hand, no significant differences in C/N ratios were observed in 

mineral soil samples, which suggests that the influence of tree species on 

C/N ratio decrease with depth.  

In mineral soils, the C/N ratio was mainly affected by soil texture. 

Significant differences was only observed for mineral soil samples in sorted 

sediments. There was a gradual decrease in C/N ratios from coarse to fine-

textured soils; this result could be explained by the higher charge density of 

fine textured soils, along with decreased microbial decomposition due to 

steric hindrance (Lützow et al. 2006). The study demonstrated that multiple 
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environmental factors influence variations in soil chemical properties within 

a boreal landscape, yet also revealed sizeable challenges in sufficiently 

explaining this variation.  

4.3 Soil moisture and carbon stock partitioning 

The results presented in Paper III showed that soil moisture conditions have 

a large effect on the spatial distribution and partitioning of carbon stocks. 

The total SOC pool had a mean 94 Mg C ha-1 including peat soils. Total SOC 

stock ranged from 9 to 959 Mg C ha-1. Both ranges and means within the 

study area was similar to what was reported in previous, nationwide studies 

across Sweden (Olsson et al. 2009; Hounkpatin et al. 2021). On average, the 

total SOC pool accounted for 62% (94 Mg C ha-1) of the total C stock (152 

Mg C ha-1). The results showed a large increase in the total SOC pool when 

moving from dry to wet areas. This change was mainly explained by an 

increase in the organic layer C pool (Fig. 5). In a majority of the plots (57%), 

the SOC pool contained over 50% of the total C stock. The proportion of the 

total C stock stored in the tree C pool decreased as soil moisture increased.  

 

Figure 5. A stacked bar chart showing the individual C pools (tree, organic layer, and 

mineral soil C pools) across different soil moisture conditions. 
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A similar trend was observed when the size of different C pools were 

assessed across the modelled soil moisture conditions. The relationship 

between modelled soil moisture and the size of the total SOC pool could be 

described through polynomial regression (R2=0.40) (Fig. 6). The modelled 

relationship was used to extrapolate SOC stocks across the entire landscape, 

which could be visually compared to the high resolution estimates of the tree 

C pool estimated using the area-based method (Fig. 7). The study provided 

interesting insights about the variation in separate organic and mineral soil 

C pools, and revealed how the sizes of these pools demonstrate co-variation 

with the tree C pool. Together the results provided empirical evidence of soil 

moistures importance for the magnitude and spatial variation for SOC stocks. 

 

Figure 6. Total SOC pool as a function of modelled soil moisture conditions. The 

calculated polynomial function is shown as a red line, with the dashed lines representing 

the boundaries of the 95% prediction intervals. The modelled soil moisture represents 

the probability of a plot being predicted as wet. 
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Figure 7. Tree C distribution map derived from ALS data using the area-based method 

(a), and the total SOC stock distribution derived by regression analysis of modelled soil 

moisture conditions (b). Areas with low tree C pool (white) are dominated by clear-cuts 

and open peatland.  
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4.4 Landscape level variation in site quality and how it is 
affected by soil moisture conditions 

Paper IV presented plot- and landscape-level estimates of site quality. In this 

study, site quality (A0) was defined as a site-specific maximum attainable 

mean tree height when time approaches infinity. Despite considerable 

variation in site quality estimates, consistent relationships with soil moisture 

was observed, considering both observed soil moisture conditions at the plot 

level (Fig. 8) and the modelled soil moisture at the landscape-level (Fig. 9). 

The lowest site quality was found in the highest soil moisture conditions, 

which was expected due to saturated soil conditions, that will lead to decline 

in tree growth potential (Laamrani et al. 2014; Van Sundert et al. 2018). Plots 

on mesic sites showed a significantly higher site quality in comparison to the 

wet and moist (Kruskal-Wallis chi-squared = 24.633, df = 4, p-value <0.001) 

(Fig. 8).  

 

Figure 8. The relationship between plot estimates of site quality and soil moisture 

conditions.   
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Figure 9. The modelled regression between mapped estimates of site quality (A0) and 

soil moisture. The plot displays a random sample of 5000 (10%) raster cells. The 

regression line is shown in red, with the dashed lines representing the 95% prediction 

intervals. The modelled soil moisture denotes the probability of a point being predicted 

as wet. The colours correspond to the colours in the SLU soil moisture map.  

The site relationship between modelled soil moisture and wall-to-wall 

estimates of site quality was described by a second-degree polynomial 

regression, which captured 11 % of the total variation (Fig. 9). Although 

there was a weak tendency for lower site quality in the driest areas on the 

plot-level, this trend was not observed on the landscape-scale. This 

discrepancy could be explained by the  utilised soil moisture map, which was 

primarily developed to locate high soil moisture conditions and is therefore 

less successful at differentiating between dry and mesic areas (Ågren et al. 

2014). Secondly, the combination of low productive forests within the study 

area, and a short study period, may cause the ALS estimated difference in 
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tree height between years to be uncertain or not captured at all. Additionally, 

it could be postulated that a five-year period may not contain enough 

information for the successful extraction of site quality estimates. 

Nonetheless, this study provided valuable insights into how site quality can 

be estimated using bi-temporal ALS data, an approach which is under rapid 

development (Socha et al. 2017; Tompalski et al. 2021). The research 

covered in Paper IV stands out from previous studies based on the extensive 

amount of survey data that was gathered from a small landscape, which 

enables the investigation of individual environmental factors. The results 

highlight the necessity of improving site quality estimates to capture 

variation within boreal landscapes, and to improve these estimates by 

considering environmental drivers.  
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This thesis contributes with increased knowledge about the variation of 

boreal forest ecosystems, focusing on the importance of soil moisture as a 

key environmental factor. This thesis synthesises strong empirical evidence 

about the variation of soil properties, C stocks, and site quality across the 

landscape level (here defined up to tens of km2).  

 

 The importance of topography in determining soil moisture 

conditions in boreal forests was shown in the analyses presented in 

Paper I. The results highlighted the importance of within-study 

validation when predicting soil moisture conditions using terrain 

indices, in particular, the potentially differential effects of DEM 

resolution and landscape type on various metrics.  

 

 The research presented in Paper II provided valuable insights 

concerning variation in soil chemical properties on a landscape scale 

by revealing a wide range of soil C/N ratios that were characterised 

by considerable variation. Although many environmental factors 

remain similar or constant across the studied landscape, e.g., climate, 

the results showed large variation in soil properties. The result 

highlights the complexity of interactions among various 

environmental factors, which influence forest soils in different ways.  

  

5. Conclusions 
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 In Paper III, soil moisture was shown to be a key driver of C stocks 

and partitioning. The total C stock increased rapidly with soil 

moisture conditions, with the largest increase observed for the 

organic layer C pool. The overall size and reported ranges of the 

SOC pool were similar to what has been observed in areas around 

Sweden in previous studies; this shows the importance of 

understanding what environmental factors have the largest effect on 

carbon accumulation at landscape levels.  

 

 In Paper IV, site quality was estimated using an age-independent 

model approach, which showed large variation across the study area. 

Areas with high soil moisture showed significantly lower site quality 

values. Furthermore, there was a tendency for lower site quality in 

the driest sites, however only on plot-level. 
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The ambitious soil and forest survey that was conducted within this thesis 

has generated an extensive data set that has great potential to provide further 

insight into the variation in boreal forest ecosystems at a smaller landscape. 

Standing alone, this survey fills an important gap in the current research area, 

due to the study scale, which was 68 km2, in combination with the large 

amount of survey plots. Adding to the value of this survey is its particular 

setting, by adding to the unique research infrastructure that is the Krycklan 

catchment study and the Svartberget experimental forests. The research 

infrastructure includes long-term climate and hydrological measurements, 

atmospheric observatory systems, forest management trials and much more. 

The combined soil and forest survey adds an important missing piece both 

outside and within this setting, offering valuable empirical field data for 

testing and validating models. Because of the same sampling methods as the 

Swedish national forest soil inventory, there are now great possibilities for 

studies testing results and relationships found also at the national scale. 

However, on a national scale, climate is a main driver of the variation in 

many soil properties, which can overshadow other important factors. By 

combining the data from the Krycklan landscape and national scale, we can 

begin to evaluate the challenges associated with scaling and extrapolating 

relationships identified from plot or stand scales to larger, regional scales. 

Hence, this work can provide an important setting for testing results found 

on both larger and smaller scales. The Papers included in this thesis are only 

the first initial steps using this data, which has potential to further test various 

hypotheses. For instance, additional chemical analyses focusing on pH and 

base saturation, could provide valuable insight furthering our understanding 

of the nutrient accumulation, while other analysis of the huge sample archive 

can answer many other important questions in the future.  

6. Final remarks and future perspectives 
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Skogen bidrar med en mängd viktiga ekosystemtjänster som i sin tur varierar i 

betydelse beroende på var i landskapet man befinner sig. Skogslandskapets förmåga 

att binda och lagra koldioxid gör att den är en viktig motståndskraft mot den globala 

uppvärmningen. Kol lagras in bland annat i träden, men framför allt i marken. 

Variationen i kolinlagringens storlek styrs av olika miljöfaktorer som varierar i 

betydelse beroende på en mängd olika faktorer. På global och regional skala spelar 

klimatet en stor roll, oftast kopplat till skillnader i temperatur och nederbörd. På en 

lokal landskapsskala (tiotals kvadratkilometer) är det andra faktorer som driver 

variationen. Topografi styr vattnets rörelse genom landskapet och har därför stor 

påverkan på markfuktighet. Markfuktigheten i sin tur, har stor inverkan på 

skogsmarkens egenskaper, så som dess förmåga att lagra kol, mängden näring som 

finns tillgänglig och hur snabbt träden växer. I denna avhandling undersökte jag 

därför markfuktighetens effekt på näringstillgång, kolförråd och skogens tillväxt. 

Analyserna baserades på omfattande inventeringar av både skog och mark inom ett 

68 km2 stort skogslandskap i Västerbotten. Genom att relatera mätningar och prover 

från inventeringen till högupplösta markfuktighetskartor och fjärranalys kunde jag 

undersöka markfuktighetens betydelse som miljöfaktor. Resultaten visade att 

markfuktighet spelade en viktig roll för näringsförhållanden i marken, som ökande 

ju blötare det var. Dessutom så ökade det totala kolförrådet markant vid högre 

markfuktighet, vilket var främst kopplat till en ökning av kolinlagring i markens 

organiska lager. Genom att mäta skillnaden i trädhöjder i fält innan och efter en 

femårsperiod, i kombination med fjärranalys kunde jag dessutom beräkna  

variationen i tillväxtförhållanden över hela det studerade landskapet. Resultaten 

visade på en tydlig minskning av tillväxtpotential i landskapets blötaste områden. 

Sammantaget visar jag i min avhandling på markfuktighetens stora betydelse för 

variationer i näringsförhållanden, kolförråd och skogstillväxt.  
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Abstract. Soil moisture has important implications for
drought and flooding forecasting, forest fire prediction and
water supply management. However, mapping soil moisture
has remained a scientific challenge due to forest canopy
cover and small-scale variations in soil moisture conditions.
When accurately scaled, terrain indices constitute a good
candidate for modelling the spatial variation of soil mois-
ture conditions in many landscapes. In this study, we eval-
uated seven different terrain indices at varying digital eleva-
tion model (DEM) resolutions and user-defined thresholds
as well as two available soil moisture maps, using an ex-
tensive field dataset (398 plots) of soil moisture conditions
registered in five classes from a survey covering a (68 km2)
boreal landscape. We found that the variation in soil mois-
ture conditions could be explained by terrain indices, and the
best predictors within the studied landscape were the depth to
water index (DTW) and a machine-learning-generated map.
Furthermore, this study showed a large difference between
terrain indices in the effects of changing DEM resolution and
user-defined thresholds, which severely affected the perfor-
mance of the predictions. For example, the commonly used
topographic wetness index (TWI) performed best on a res-
olution of 16 m, while TWI calculated on DEM resolutions
higher than 4 m gave inaccurate results. In contrast, depth to
water (DTW) and elevation above stream (EAS) were more
stable and performed best on 1–2 m DEM resolution. None
of the terrain indices performed best on the highest DEM res-
olution of 0.5 m. In addition, this study highlights the chal-
lenges caused by heterogeneous soil types within the study
area and shows the need of local knowledge when interpret-
ing the modelled results. The results from this study clearly
demonstrate that when using terrain indices to represent soil
moisture conditions, modelled results need to be validated,

as selecting an unsuitable DEM resolution or user-defined
threshold can give ambiguous and even incorrect results.

1 Introduction

Soil moisture represents plant-available water at the land sur-
face that is not derived from groundwater, rivers and lakes
but instead in the pores of the soil. It consists of unsatu-
rated soil, affected by variable temporal and spatial dynamics
that regulate fundamental ecosystem functions such as plant
growth, nutrient cycling and carbon accumulation (Olsson et
al., 2009; Högberg et al., 2017; Wang et al., 2019). Soil mois-
ture also has important implications for drought and flooding
forecasting, forest fire prediction and water supply manage-
ment (Koster et al., 2010; Robock, 2015; O et al., 2020).
While temporal variability in soil moisture is largely deter-
mined by precipitation, temperature and soil characteristics,
topography acts as a first-order control of spatial variation in
soil moisture within most landscapes (Florinsky, 2016).

Predicting soil moisture patterns across space and time
remains an important scientific challenge, limited by large
temporal variability, small-scale heterogeneous responses to
precipitation inputs and local soil properties. While small-
scale spatial variability often limits the use of empirical mea-
surements for upscaling, temporal dynamics superimposed
on such heterogeneous patterns create an additional chal-
lenge. Due to the effect that topography has on the spa-
tial variation in soil moisture conditions, such information
is a fundamental part of soil moisture modelling. A digi-
tal elevation model (DEM) is a digital representation of a
terrain surface, often generated using remote-sensing tech-
niques such as photogrammetry or airborne light detection
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and ranging (lidar). Terrain indices extracted from DEMs
have become widely used in soil and hydrologic sciences
predicting surface water and groundwater flow paths and soil
moisture conditions.

An early and successful approach to modelling soil mois-
ture conditions was the topographic wetness index (TWI)
developed by Beven and Kirkby (1979). TWI is a function
of both the slope and upslope contributing area and is still
widely used in landscape modelling. TWI has been shown
to be sensitive to DEM resolution (Western et al., 1999;
Sørensen and Seibert, 2007; Lin et al., 2010) and the spe-
cific flow algorithms used (Sørensen et al., 2006; Kopecký
et al., 2021). TWI has been followed by several other terrain
indices based on similar approaches such as the downslope
index (DI) (Hjerdt et al., 2004) and the Wetness Index based
on Landscape position and Topography (WILT) (Meles et al.,
2020).

Some topography-based indices use stream networks in
the calculations, which are derived from flow accumulation
grids such as the depth to water index (DTW) (Murphy et
al., 2008) and elevation above stream (EAS) (Rennó et al.,
2008). Using this approach, streams are defined with a so-
called stream initiation threshold, which is the accumulated
area required to form surface water. Selecting an appropri-
ate stream initiation threshold has proven to be difficult due
to temporal dynamics (Ågren et al., 2015) and soil textures
(Ågren et al., 2014). Thresholds, such as stream initiation,
used in terrain indices can be as, or even more, important
as selecting the correct DEM resolution for the soil moisture
modelling.

The use of airborne lidar has increased both the accuracy
and resolution of DEMs and, as a result, soil moisture mod-
elling (Murphy et al., 2011; Ågren et al., 2014; Leach et
al., 2017; Kopecký et al., 2021). However, the resolutions
of DEMs used for hydrological modelling must reflect to-
pographic features that are key elements in the hydrological
response (Quinn et al., 1995). This means that higher reso-
lutions do not necessarily result in better predictions, as the
microtopography does not always control hydrological flow
paths. Hence, there is a concern that the development of lidar-
derived high-resolution DEMs has changed resolutions from
being too coarse for small-scale hydrological modelling to
being too high for many applications. With the use of ter-
rain indices, there is often an optimal resolution depending
on landscape type and specific feature of interest (Gillin et
al., 2015). Despite rapid lidar development, finding the op-
timal DEM resolution of terrain indices has remained rela-
tively unexplored, with only a few exceptions (Seibert et al.,
2007; Lin et al., 2010; Ågren et al., 2014).

In addition to DEM resolutions and user-defined thresh-
olds, soil moisture modelling using terrain indices must take
the local variations in soils and landforms into consideration.
Across former glaciated landscapes, soil hydraulic properties
are often relatively consistent with unconsolidated ablation
till overlaying basal till and/or bedrock. This means that hy-

drological pathways are significantly affected by the topog-
raphy, resulting in soil moisture conditions in neighbouring
areas differing greatly within short distances because of the
local topography (Rodhe, 1987). The topographical effect on
hydrological pathways is less pronounced in flat sorted sed-
iment areas due to often low topographic variation and soils
with consistent hydrological conductivity at depth (Bachmair
and Weiler, 2011). In landscapes with varying quaternary de-
posits, accurate soil moisture predictions become more chal-
lenging (Güntner et al., 2004; Grabs et al., 2009; Zhu and
Lin, 2011; Ågren et al., 2014), with consideration of these
factors becoming important when interpreting modelled soil
moisture.

Recent promising approaches for accounting for landscape
and soil variations have combined multiple terrain indices
and other mapped information. One example of such an ef-
fort is the Swedish soil moisture index (SMI) that com-
bines DTW and the soil topographic wetness index (STI)
(Buchanan et al., 2014) and accounts for soil transmissivity
estimated from the quaternary deposit maps. An alternative
is to use machine learning (Abowarda et al., 2021). Ågren
et al. (2021) adjusted the soil moisture maps to local condi-
tions over the whole of Sweden by training the model on field
data from 16 000 plots and information from 28 maps. Key
to this work were high-resolution terrain indices calculated
for different resolutions and thresholds. However, while ma-
chine learning is an excellent way of generating predictive
models, it is difficult to interpret how the model combines
indices with multiple resolutions and thresholds for different
landscape types. Due to the large applications, wide uses and
availability of terrain indices there is a need of understand-
ing the underlying effects that DEM resolution, user-defined
thresholds and landscape types have on the modelled results.
Using terrain indices to model soil moisture conditions on
inappropriate scales and landscape types may result in inac-
curate predictions.

The aim of this study was, therefore, to evaluate how DEM
resolution, thresholds and landscape types affect soil mois-
ture predictions from a range of readily available terrain in-
dices. We did this by examining which digital terrain index
provided the best prediction of field-determined soil moisture
classes within a heterogeneous but well-studied landscape in
the boreal region, the Krycklan catchment study (Laudon et
al., 2021). Using a detailed forest and soil survey that cov-
ered the entire catchment allowed for a test and performance
evaluation of different terrain indices, in order to find the op-
timal resolutions and thresholds for modelling soil moisture.

2 Methods

2.1 Site description

The 68 km2 Krycklan study catchment is situated in the
northern part of Sweden (lat. 64◦23′ N, long. 19◦78′ E)
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Figure 1. The Krycklan catchment showing the quaternary deposits survey and plots as black circles.

(Fig. 1). The catchment has a gentle topography, with a
poorly weathered gneissic bedrock and elevations ranging
from 127 to 372 m a.s.l. The highest postglacial relict coast-
line crosses the area at around 257 m a.s.l. The upper parts
are dominated by glacial till, while the lower parts are dom-
inated by sorted sediments of sand and silt. The climate is
characterized as a cold temperate humid type with persistent
snow cover during the winter season (Laudon et al., 2021).
The 30-year mean annual temperature (1986–2015) is 2.1 ◦C,
with the highest monthly mean temperature in July and low-
est in January (14.6 and−8.6 respectively). The mean annual
precipitation equals 619 mm where more than 30 % falls as
snow. Land cover is dominated by forest (87 %) and a mo-
saic of mires (9 %) and lakes. Due to forest management,
Krycklan is a complex mosaic of forest stands of different
age classes and species composition. Forests are dominated
by Scots pine (Pinus sylvestris L.) and Norway spruce (Picea

Abies (L.) H. Kartst.), covering 63 % and 26 % respectively.
Understorey vegetation is dominated by ericaceous shrubs,
consisting mostly of bilberry (Vaccinium myrtillus) and cow-
berry (Vaccinium vitis-idaea) covering moss mats of Hylo-
comium splendens and Pleurozium schreberi. Peatlands and
wet areas have a vegetation dominated by Sphagnum species
(Laudon et al., 2013). Forest soils are dominated by well-
developed iron podzol. In addition to analysis over the en-
tire catchment area, Krycklan was divided into two sub-areas
(till and sorted sediment) according to the quaternary de-
posits map, in order to analyse the effects of landscape types
(Fig. 1).

2.2 Forest survey

A forest survey grid was established in 2014, consisting
of 500 10 m radius survey plots (314.15 m2) covering the en-
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tire Krycklan catchment, with each plot spaced 350 m apart.
The survey plot locations were calculated using a randomly
chosen origin and oriented along the coordinate axis of the
SWEREF 99 TM projection. Each nominal plot location was
located in the field using a Garmin GPS 62stc GNSS re-
ceiver, and plot centres were marked with an aluminium pro-
file. During a revisit, high-accuracy centre positions were
placed in the field using a Trimble GeoXTR DGPS receiver.
Plots without high-precision GPS locations, plots located on
or outside the catchment boundaries, arable land, lakes and
roads were excluded in this study. In total, soil moisture clas-
sifications were made for 398 plots during the autumn of
2014 and the spring of 2015.

2.3 Soil moisture field classification

Soil moisture classes were registered in the field following
the protocol of the Swedish national forest inventory (NFI)
(Fridman et al., 2014), based on an estimation of each plot’s
average depth to groundwater level during the vegetation pe-
riod estimated from its position in the landscape, vegetation
patterns and soil type. This approach reduces the discrepan-
cies caused by seasonal variation and provides an indicator
of the general soil moisture conditions, which is the focus of
this study. Survey plots were categorized in five classes – dry,
mesic, mesic–moist, moist and wet – which are described and
presented below and can be found in more detail in the field
instruction (Swedish NFI, 2014).

– Dry soils have an average groundwater table more than
2 m below the soil surface. Dry areas tend to be coarse-
textured and can be found on the top of hills, ridges
and eskers. The soils are mainly Leptosols, Arenosols,
Regosols or Podzols (with thin organic and bleached
horizons).

– Mesic soils have an average groundwater table between
1–2 m below the soil surface. Podzol is the dominating
soil type with a thin fairly thin (4–10 cm) organic mor
layer covered mainly by dryland mosses (e.g. Pleuroz-
ium schreberi, Hylocomium splendens and Dicranum
scoparium). They can be walked on dry-footed even di-
rectly after rain or shortly after snowmelt.

– Mesic–moist soils have an average groundwater table
depth less than 1 m. Mesic–moist areas are often lo-
cated on flat ground in lower-lying areas or lower parts
of hillslopes. The soils tend to wet up on a seasonal
basis. Whether you can cross in shoes and keep your
feet dry depends on the season and the time since the
last heavy rain or snowmelt event. Patches of wetland
mosses (e.g. Sphagnum sp., Polytrichum commune) are
common, and trees commonly tend to grow on humps.
Podzols are commonly found but often with a thicker or-
ganic layer compared to mesic sites. The organic layer
is often classified as peaty mor.

– Moist soils have an average groundwater table depth
less than 1 m below the soil surface. The groundwater
table is often visible in depressions within the plot. Ar-
eas classified as moist are found at lower grounds, at the
lowest parts of slopes and flat areas below larger ranges.
One can cross in shoes and keep one’s feet dry by utiliz-
ing tussocks and higher-lying areas. When stepping in
depressions, water should form around the feet even af-
ter dry spells. The vegetation includes wetland mosses
(e.g. Sphagnum sp., Polytrichum commune, Polytrichas-
trum formosum). Trees often grow on small mounds,
and the soil type is most often Histosol, Regosol or
Gleysol.

– Wet soils are areas where the ground water table is close
to the soil surface, and permanent pools of surface wa-
ter are common. These areas are often located on open
peatlands. Drainage conditions are very bad, and it is
not possible to cross these areas in shoes without ending
up with wet feet. Coniferous trees seldom develop into
stands. The soil type is most often Histosol or Gleysol.

2.4 Digital terrain indices

The study utilized a lidar-based digital elevation
model (DEM) created from an airborne laser scanning
in August 2015. A 0.5× 0.5 m DEM was generated from a
point cloud with 10 points per square metre. Horizontal and
vertical errors were 0.1 and 0.3 m, respectively. The DEM
was resampled from 0.5 m to resolutions of 1, 2, 4, 8, 16, 32
and 64 m. Nine commonly used digital terrain indices were
calculated using DEMs with eight resolutions of 0.5, 1, 2,
4, 8, 16, 32 and 64 m (Table 1). The indices depth to wa-
ter (DTW) and elevation above stream (EAS) use extracted
stream networks in their calculations, with the size of the
stream network being set by the stream initiation threshold.
For each resolution, DTW and EAS were calculated for the
stream initiation thresholds 1, 2, 4, 8, 16 and 32 ha, which
is the range of the expected variability in the study region.
The downslope index (DI) was calculated with vertical
distances of 2 and 4 m. A total of 146 terrain indices maps
of soil moisture were produced. Field plot centre values for
all indices maps were extracted for evaluation. All of the
digital terrain indices were calculated using Whitebox Tools
(Lindsay, 2016b), an open-source program developed at the
University of Guelph, Canada. The code for aggregating the
DEM and the Python code for the calculations can be found
in the “Code and data availability” section. In addition to
the terrain indices that we calculated from the DEM, we
also used two soil moisture maps downloaded from external
sources: the SLU soil moisture map (Ågren et al., 2021) and
a soil moisture index map (SMI) developed by the Swedish
Environmental Protection Agency (Naturvårdsverket, 2021).
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Table 1. All indices calculated in this study. Calculations were made for resolutions of 0.5, 1, 2, 4, 8, 16, 32 and 64 m. 1 Calculations were
also done for stream initiation thresholds of 1, 2, 4, 8, 16 and 32 ha. 2 Calculated with vertical distances of 2 and 4 m. All GIS calculations
were carried out using Whitebox Tools (Lindsay, 2016b), except for SLU soil moisture map and SMI, which were downloaded from other
sources.

Digital terrain indices Abbreviation Total
number of

layers

Topographic wetness index TWI 8
Depth to water DTW1 48
Elevation above stream EAS1 48
Downslope index DI2 16
Wetness Index based on Landscape position and Topography WILT 8
Relative topographic position RTP 8
Plan curvature PlanC 8
SLU soil moisture map SLU 1
SMI SMI 1

2.5 DEM preprocessing and extraction of stream
networks

Prior to hydrological modelling, the DEM was preprocessed
to make it hydrologically accurate using the two-step breach-
ing approach suggested by Lidberg et al. (2017). This ap-
proach works by first carving a short path into the DEM
at locations where culverts and previously mapped streams
intersect road embankments. Remaining depressions were
resolved by a complete breaching approach using the tool
Breach depressions in Whitebox Tools (Lindsay, 2016a).
Two flow pointer grids and flow accumulation (FA) grids
were extracted from the hydrologically corrected DEM using
theD-infinity flow routing algorithm (D∞) (Tarboton, 1997)
and the multiple flow direction algorithm (MD∞) (Seibert
and McGlynn, 2007). D8 (O’Callaghan and Mark, 1984) and
D∞ (Tarboton, 1997) are both commonly used and widely
implemented flow routing algorithms. MD∞ is an attempt to
combine these two approaches and disperses flow like D∞
up to a user-defined threshold (aiming to simulate diffuse
groundwater flows), after which it switches to operate like
D8 without dispersion (aiming to simulate channelized flow
of surface waters). Stream networks were extracted from the
flow accumulation raster using stream initiation thresholds
1, 2, 4, 8, 16 and 32 ha. Streams during different conditions
can be mapped by varying the stream initiation thresholds.
Larger stream initiation thresholds represent streams during
low flow conditions, while smaller thresholds represent con-
ditions at high flow rates.

2.5.1 Topographic wetness index (TWI)

TWI predicts soil moisture based on local slope and the
area’s specific catchment area (Eq. 1), where α is the spe-
cific catchment area, and β is the slope of the grid cells in
degrees (Beven and Kirkby, 1979).

TWI= ln(α/ tanβ) (1)

This was calculated using the D∞ flow algorithm for all
eight DEM resolutions.

2.5.2 Depth to water (DTW)

The depth to water index predicts soil moisture using the sur-
face water source grid (stream network) and the surrounding
landscape (Murphy et al., 2008). The DTW index refers to
the least-cost path from any cell in the landscape to the near-
est surface water cell (DTW= 0) channel. DTW is expressed
as Eq. (2), where dzi and dxi represent the vertical distance
between two cells.

DTW=
[∑ dzi

dxi
a

]
xc (2)

The constant α is equal to 1 if the path between the cells
connects parallel to the cell boundaries or

√
2 if it connects

the cell diagonally; xc is the size of the raster cells. Cells
located far away or at higher elevation from the flow chan-
nels will have high DTW values, meaning that the cells are
drier. Stream cells were calculated using the source layers
with extracted streams from the (MD∞) pointer described
above. DTW was calculated for each of the six stream initia-
tion thresholds and eight DEM resolutions.

2.5.3 Elevation above stream (EAS)

EAS indicates soil moisture using the source layer with
extracted streams described above and the original DEM
(Rennó et al., 2008). EAS is calculated from the elevation
difference between a grid cell in the landscape and the near-
est stream cell calculated from the nearest flow path from the
(MD∞) pointer grid. EAS was calculated for each of the six
stream initiation thresholds and eight DEM resolutions.
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2.5.4 Downslope index

The downslope index represents the length of a flow path
required to drop a given vertical distance d (m) (Eqs. 3
and 4) (Hjerdt et al., 2004). The algorithm calculates the dis-
tance downslope required to travel in order to descend d m.
The downslope index can be reported both as a distance d
and a gradient, tanαd, where the horizontal distance to the
point d m below follows the steepest directional flow path.

tanαd =
d

Ld
(3)

Local linear interpolation is used between the two points to
calculate the value of Ld. The slope angle between the start-
ing point and the target point is represented by αd. For ele-
vation differences approaching zero, the values of tanαd ap-
proach the local ground surface gradient, tanβ:

tanαd = tanβ. (4)

The downslope index was calculated for 2 and 4 m as the
given vertical distances.

2.5.5 Wetness Index based on Landscape position and
Topography (WILT)

WILT assumes that soil moisture is inversely proportional to
1X and 1Z in a groundwater-dominated landscape, where
1Z is the depth to groundwater, and 1X is the horizontal
distance to the nearest surface water feature (Eq. 5) (Meles
et al., 2020). WILT is a modification of TWI, obtained by
dividing the upslope contribution area A by 1X and 1Z:

WILT= ln
(

A

1X ·1Z · tanβ

)
. (5)

In this study, we calculated WILT, where A was the upslope
source area using D∞ flow accumulation, as with the TWI
calculations. 1X was derived from the downslope distance
to stream and lakes using surface waters. 1Z was the eleva-
tion difference between the DEM and modelled groundwater,
represented by a DTW calculated for the property map.

2.5.6 Relative topographic position (RTP)

RTP is an index for the local position of a point in the land-
scape relative to its surroundings, which accounts for eleva-
tion distribution (Eq. 6). Within a user-specified local neigh-
bourhood size, the RTP function uses the central elevation
relative to the minimum (zmin), mean (µ) and maximum ele-
vation (zmax):

RTP=
(z0−µ)

(µ− zmin)
, if z0 < µ or

RTP=
(z0−µ)

(µ− zmax)
, if z0>=µ. (6)

RTP index is bound by the interval of [−1, 1], indicating
whether the cell is above or below the filtered mean (New-
man et al., 2018).

2.5.7 Plan curvature (PlanC)

The plan curvature represents the curvature of the surface
perpendicular to the direction of the slope direction (Wilson
and Gallant, 2000). This index shows the divergence and con-
vergence of slopes, where values are positive for convergent
areas and negative for divergent ridges. The plan curvature
was chosen for its influence on the downslope convergence
and divergence of water flow paths.

2.5.8 Soil moisture index (SMI)

We also included an SMI from the national land cover
database of the Swedish Environmental Protection Agency
(Naturvårdsverket, 2021). This SMI was calculated as

SMI=
(

0.7×
1

DTW

)
+ (0.3×STWI). (7)

This is a weighted map combining DTW and a modified TWI
calculation, the Soil Topographic Wetness Index (STWI)
(Buchanan et al., 2014), which accounts for soil transmis-
sivity estimated from the quaternary deposit maps. The SMI
map has a resolution of 10 m.

2.5.9 SLU soil moisture map

A recent development in soil moisture mapping has been the
use of machine learning to combine multiple soil moisture
indices into one map (Lidberg et al., 2019; Abowarda et al.,
2021; Ågren et al., 2021). Ågren et al. (2021) developed a
new soil moisture map of Sweden by utilizing a variety of
nationwide information, including the above-mentioned ter-
rain indices, climate data and quaternary deposits. Training
data consisted of nearly 16 000 field plots spread across the
Swedish forested landscape from the national forest inven-
tory. The final map showed the probability (0 %–100 %) of
a soil being wet. The SLU soil moisture map was produced
at 2 m resolution, while the input digital terrain indices were
calculated in multiple scales.

2.6 Statistics

2.6.1 Orthogonal Projections to Latent
Structures (OPLS)

To ascertain which digital terrain index provides the best pre-
diction of soil moisture within this heterogeneous landscape,
we used Orthogonal Projections to Latent Structures (OPLS)
analysis. Field classifications of soil moisture at each plot
were used to evaluate the terrain indices through direct plot
by plot comparison. OPLS was carried out on the entire
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catchment. The OPLS was carried out using the multivari-
ate statistical program SIMCA 16.0, Umetrics, Umeå. The
method of OPLS is a modification of partial least-squares
regression (PLS) (Eriksson et al., 2006). In OPLS, the sys-
tematic variation in the predictors (X) is divided into two
parts: one part that is predictive for the determinant (Y ) (in
this case, the field-determined soil moisture classes) and the
orthogonal, i.e. not related to Y . OPLS produces a model
with improved interpretability compared to the ordinary PLS
method. The method is used to identify important variables
for predicting Y and singling out less important variables
containing “noise”. High positive or negative loadings on
the predictive axis (pq[1]) indicate variables that are, respec-
tively, positively or negatively correlated with Y , with in-
creased correlation further away from origin. The orthogo-
nal axis shows how much of the variation for each variable
was not correlated with the determinant (Y ). Before analy-
sis, all variables were transformed to fit normality using a
log transformation in SIMCA. SIMCA 16.0 also calculates
the influence of each X variable in the model called “vari-
able importance on projection” (VIP). VIP components of an
OPLS model are VIP predictive and VIP orthogonal as well
as VIP total component. The VIP values are regularized such
that if allX variables had the same importance for the model,
they would all take the value 1. VIP values larger than 1 for
either VIP component indicateX variables that are important
for that part of the model (Eriksson et al., 2006). Analysis
was carried out in SIMCA 16.0, and figures were produced
using R version 4.0.2 (R Core Team, 2020) and the package
ggplot2 (Wickham, 2016).

2.6.2 Confusion matrix

To evaluate the effects of landscape type, i.e. sorted sediment
and till soils within the catchment, we used the terrain in-
dex that performed best in the OPLS analyses and its cor-
respondence to the two wettest soil moisture classes (wet
and moist). The overall conformance of the best terrain in-
dex with the combined wet and moist classes was assessed
using confusion matrixes, accuracy (ACC) (Eq. 8) and the
Matthews correlation coefficient (MCC) (Eq. 9). The con-
fusion matrix consists of true positives (TP) values, so ac-
curately predicted wet plots, and false positive (FP) values
where dry plots were predicted wet, true negative (TN) val-
ues, where the map correctly predicted dry plots, and false
negative (FN) values, where the map predicted dry areas on
wet plots. Accuracy (ACC) was assessed for each of the plots
by

ACC=
TP+TN

TP+TN+FP+FN
. (8)

The confusion matrix was further evaluated using the
Matthews correlation coefficient (MCC), for which a value
of 1 indicates a perfect fit, 0 no better than random predic-

Table 2. Percentage of observations in the five soil moisture classes
for the entire Krycklan catchment and divided into till and sorted
sediment areas.

Soil moisture classes

Soil moisture Dry Mesic Mesic– Moist Wet Plots
class moist (n)

Entire catchment 10 % 60 % 15 % 8 % 8 % 398
Till 9 % 57 % 15 % 10 % 10 % 293
Sorted sediment 12 % 69 % 13 % 3 % 3 % 105

tions and −1 a perfect negative correlation. MCC was calcu-
lated as

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (9)

For unbalanced datasets such as this, MCC is the best mea-
sure of model performance (Boughorbel et al., 2017).

3 Results

3.1 Field data

The field survey showed that the dominant soil moisture class
was mesic, making up 60 % of the survey plots in the catch-
ment (Table 2). Mesic–moist was the second largest class
with 15 % of the plots; the moist and wet classes each made
up 8 %. The driest class (dry) made up 10 % of the total plots
in the catchment. Dividing the catchment into till and sorted
sediment areas using the quaternary deposit map (Fig. 1), the
proportion of classes became substantially different. Only
6 % of the plots in the sorted sediment area were classified
as moist or wet, compared to 20 % in the till areas. A larger
percentage (12 %) of plots were found in the driest class in
the sorted sediment areas compared to the till areas (9 %).

3.2 OPLS analysis

The OPLS analysis loading plot showed large variation in
performance within and between terrain indices (Fig. 2). Fig-
ure 2 only shows the variable names from the best resolu-
tion for each digital terrain index and threshold based on the
VIPpredictive value shown in Fig. 3, as the graph would be too
cluttered if all 146 variable names were displayed. There is
an interactive plot in the “Code and data availability” section
where the name of each variable can be found. The general
patterns of the effects of scale and threshold are indicated
by the size and colour of the dots in the OPLS loading plot
(Fig. 2). In order to help the reader to visualize the effects of
scales and resolution, the indices and thresholds have been
grouped together using coloured guides to connect terrain in-
dices moving from high to low resolutions.

The OPLS analysis demonstrates that the DTW was a
strong predictor of soil moisture classes (Fig. 3) but only if
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Figure 2. OPLS loading plots for the Krycklan catchment and DEM-derived terrain indices in respect of soil moisture predictions. Variables
that cluster closely within the same neighbourhood along the far sides of the horizontal axis are the more robust soil moisture predictors
across DEM scales. Coloured guides connect terrain indices moving from small to large resolutions as depicted by the symbol size. In the
loading plot, predictive performance increases with increased distance from 0 on the predictive axis (pq[1]). Negative and positive values on
the (pq[1]) axis correspond to negative and positive correlations with Y . The orthogonal axis (poso[1]) represents how much of the variation
for each variable was not correlated with the determinant (Y ). For the reader who is interested in the details, we have published an electronic
version of this graph where all labels are visible by moving the cursor over each circle (“Code and data availability” section).

Figure 3. VIPpredictive values for the best-performing variable for
each terrain index. In OPLS, VIPpredictive < 1 are variables that are
better at explaining Y .

the optimal resolution and stream initiation threshold were
used (Fig. 2). DTW loadings were located below zero on the
predictive axis due to a negative relationship to soil mois-
ture classes. Generally, the DTW variables were clustered to-
gether according to thresholds, with decreasing performance
for coarser DEM resolutions. The loading of EAS followed
the pattern of DTW, and both terrain indices had the high-
est predictive performance at stream initiation thresholds of
1 and 2 ha in DEM resolutions of 1–4 m. The highest reso-
lutions of 0.5 m had a lower predictive performance (Fig. 2).
Increased stream initiation thresholds above 2 ha lowered the
predictive performance and added noise, as shown on the or-
thogonal axis (poso[1]).

The SLU soil moisture and SMI maps both performed
well and were the second and fourth best terrain indices, re-
spectively, for predicting soil moisture classes (Fig. 3). SMI
scored lower on the predictive axis (pq[1]) and had slightly
higher variation not related to the soil moisture classes com-
pared to the SLU soil moisture map (Fig. 2). The SLU soil
moisture map and DTW were the best-performing soil mois-
ture predictors and had a very similar VIPpredictive value
(Fig. 3).
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Figure 4. Orthophoto (© Lantmäteriet) (a) and hill-shaded DEM (b) covering a till area within the Krycklan catchment. Below, maps of the
highest-performing maps of different terrain indices in order of VIPpredictive with simplified common symbology for terrain indices (c–j)
based on value distribution for the visual comparison.

The downslope index (DI) was shown to be a good soil
moisture class predictor. DI was positively correlated to soil
moisture classes and therefore located on the positive pq[1]
axis. DI2m (d=2 m) performed better than DI4m (d = 4 m)
with higher loading on the predictive axis and lower loading
on the orthogonal axis. For both DI2m and DI4m, a resolu-
tion of 2 m had the highest predictive performance (pq[1])
with the lowest noise. Resolutions below 2 m and above 8 m
reduced the performance of the predictions substantially.

The performance of TWI was highly sensitive to the res-
olution of the DEM; too fine or too coarse resolutions gave
nonsensical results. For this landscape, 16 m was found to be
the optimal resolution for TWI calculations (Fig. 3).

WILT showed the highest value on the positive predictive
axis at 8 and 4 m resolution, which was also true for RTP. The
WILT loadings were slightly higher than the best-performing
TWI on the predictive axis (pq[1]) but also much higher on
the orthogonal axis, indicating a large variation not related
to soil moisture (Fig. 2). RTP showed no clear clustering,

similar to TWI, and performed worse compared to the above-
mentioned terrain indices (Fig. 3). Plan curvature scored low
on the horizontal axis, indicating that this variable was not
a good soil moisture predictor for this landscape, something
also confirmed by the VIPpredictive value being below 1.

3.3 Visual evaluation

Wet and moist soil conditions within the catchment are
mostly found on mires or as riparian soils along streams, as
shown in Fig. 4. In the IR orthophoto (Fig. 4a), mires can
be seen in the flatter areas (Fig. 4b) in the northern parts of
the selected area. Several small stream channels in the bot-
toms of valleys drain the area from northwest to southeast,
which borders onto wet riparian soils. Modelled soil mois-
ture conditions of the best-performing indices showed simi-
lar but varied agreement with natural features when visual-
ized (Fig. 4), with DTW and SLU soil moisture maps clearly
delineating the mire in the northwest corner and around
the lake, as well as the drier hilltops in the southeast cor-
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Figure 5. Maps of TWI, DTW and hill-shaded DEM at 1, 4, 8, 16 and 32 m resolution. Best-performing rasters in the OPLS analysis are
outlined in red.

Figure 6. Maps of DTW at 1 m resolution with stream initiation thresholds from 1 to 32 ha.

ner (Fig. 4). With the appropriate resolution and thresholds,
many of the terrain indices were able to represent the vari-
ation of soil moisture conditions in more or less accurate
ways after visual comparison. RTP had a poor performance
in the OPLS, which is in line with the results demonstrated
in Fig. 4j, where it predicted dry areas within the mire.

Figure 5 illustrates differences in the effects of increased
DEM resolution represented by modelled results for TWI and
DTW with a 1 ha streamflow initiation threshold. Varying
DEM resolution had larger effects on the spatial variation
of soil moisture conditions using TWI compared to DTW,
which was less affected; this is illustrated by the large differ-
ences moving from TWI at 1 m resolution to 32 m. The dis-
tribution of wet areas was not affected by DEM resolution for
DTW compared to TWI. To visualize the effects of different
user-defined stream initiation thresholds, DTW maps calcu-

lated for 1, 2, 4, 8, 16 and 32 ha stream networks were created
(Fig. 6). Increasing the streamflow initiation threshold short-
ens the stream network, resulting in a drier landscape model,
and decreasing the streamflow initiation threshold models a
wetter landscape.

3.4 Confusion matrix

The overall agreement of DTW 1 m 1 ha values (DTW< 1)
in relation to wet and moist soil classes was further tested us-
ing a confusion matrix (Table 3). Over the entire catchment
area, the accuracy was 77 %, with a MCC of 0.42. Divid-
ing the catchment into till and sorted sediment areas revealed
significant differences in conformance. On the till area of the
catchment, the DTW accuracy was higher with an accuracy
of 78 % and a MCC of 0.50. On the sorted sediment area of
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Table 3. Confusion matrix of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) values, representing wet
(positive) and dry (negative) plots predicted by DTW 1 ha at 1 m
resolution and the SLU soil moisture map, as well as prediction
accuracy (ACC, %) and the Matthews correlation coefficient (MCC,
%). Confusion matrixes and statistics were calculated for the entire
catchment and divided into till and sorted sediment areas.

Area Plots TP TN FP FN ACC MCC
(n) (%)

D
T

W Entire catchment 398 61 245 61 31 77 0.42
Till 293 53 176 49 15 78 0.50
Sorted sediment 105 8 69 12 16 73 0.20

SL
U Entire catchment 398 78 255 21 44 84 0.60

Till 293 69 180 11 33 85 0.66
Sorted sediment 105 9 75 10 11 80 0.34

the catchment, DTW falsely predicted a large proportion of
the dry plots as wet (FP). Only a third of the wet plots were
predicted as wet (TP). The overall accuracy was better for
the SLU soil moisture map but showed the same pattern as
DTW in the sorted sediment area, with a low MCC value of
0.34 %.

4 Discussion

Modelling the spatial patterns of soil moisture remains an im-
portant scientific challenge and terrain indices are potentially
a useful tool. As the availability and resolution of DEMs
have increased, so have the uses of terrain indices for mod-
elling hydrological, environmental and soil properties. How-
ever, the predictive performance of terrain indices is highly
dependent on identifying the optimal spatial scales and user-
defined thresholds for modelling soil moisture (Sørensen and
Seibert, 2007; Lin et al., 2010; Ågren et al., 2014). The aim
of this study was, therefore, to evaluate how DEM resolu-
tion, user-defined thresholds and landscape types affect soil
moisture predictions from a range of readily available terrain
indices in relation to field-classified soil moisture conditions
across a boreal catchment. Our results demonstrate the po-
tential of terrain indices for modelling soil moisture when
the optimal DEM resolutions and user-defined thresholds are
selected. No previous study has been able to provide such de-
tailed data at catchment level or this large amount of terrain
indices in combination with an extensive field survey, which
clearly demonstrates the importance of selection of terrain
indices, DEM resolution and index-specific thresholds.

Several terrain indices were able to predict the spatial vari-
ation of soil moisture classes within our study area; however
our results revealed a large variation in the predictive perfor-
mance within, and between, terrain indices at different DEM
resolutions and index-specific thresholds (Fig. 3). The gen-
eral agreement of appropriately scaled terrain indices with
field classified soil moisture conditions (Fig. 2) and visual-

ized maps (Fig. 4) supports the underlying assumption that
topography acts as the main driver of spatially varying soil
moisture conditions. This is in line with many previous stud-
ies relating terrain indices to soil moisture conditions (Lin
et al., 2010; Seibert et al., 2007; Grabs et al., 2009; Mur-
phy et al., 2011; Ågren et al., 2014) and groundwater levels
(Rinderer et al., 2014).

Ground truthing is required to evaluate the performance
of different terrain indices, to prevent inappropriate choices
of resolution and user-defined thresholds, resulting in non-
representative predictions of soil moisture. As its ground
truth, this study used a uniquely extensive and high-precision
field survey within a well-studied landscape. We used field-
mapped soil moisture classes based on estimated depth to
groundwater from the soil surface guided by surrounding to-
pography and vegetation patterns as a proxy for average soil
moisture conditions, thus reducing the uncertainty associated
with the large temporal and small-scale spatial variability
of soil moisture (Murphy et al., 2011; Oltean et al., 2016;
Beucher et al., 2019; Lidberg et al., 2019). The position in
the landscape and the vegetation patterns that form the ba-
sis for the classifications stay constant over time. In contrast,
more direct soil moisture measurements using values such
as soil water content and time domain reflectometry (TDR)
are greatly affected by the specific weather conditions be-
fore, and at the moment of, measurement. On the other hand,
using soil moisture classes as the ground truth, we only eval-
uate the “average” soil moisture conditions for each site and
thereby focus on the spatial variability of relative soil mois-
ture conditions within the landscape. We do, however, ac-
knowledge that soil moisture varies greatly with season and
depends on regional weather conditions, causing stream net-
works and wet soils to expand and shrink during the year
(Ågren et al., 2015).

Our results highlight that the optimum DEM resolution for
soil moisture predictions differed depending on terrain index
and further demonstrated the large effects of DEM resolu-
tion within certain terrain indices (Fig. 5). In line with pre-
vious studies, TWI was greatly affected by DEM resolution
and was shown to perform best with a coarser 16 m reso-
lution while performing poorly with high-resolution DEMs.
This agrees well with previous studies both within Sørensen
and Seibert (2007) and Ågren et al. (2014) and outside the
study area (Lin et al., 2010; Murphy et al., 2011). However,
this is in contrast to a recent study by Riihimäki et al. (2021),
where they thoroughly investigated the effect of DEM resolu-
tion and flow accumulation algorithms on TWI calculations
in a 300 ha area of the northwestern Fennoscandian moun-
tain tundra. Their conclusion was that the D-infinity flow
routing algorithm reached its maximum explanatory power
at 3 m resolution. This highlights that the optimal DEM reso-
lution for predicting soil moisture conditions using TWI can-
not just be taken from literature as it varies from site to site,
and it is necessary to investigate the optimal resolution for
each landscape. While this has previously been shown in the
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literature, a concern with the rapidly increasing numbers of
high-resolution DEMs worldwide is that researchers will use
the most commonly used terrain index TWI and disregard
its poor performance with high-resolution DEMs. Other in-
dices, such as DTW, EAS and DI, had the best performance
for resolutions between 1 and 4 m and were stable within
this range, as shown for DTW in Fig. 5. When using high-
resolution DEMs, the importance of selecting the optimal
method for the preprocessing step (the hydrological correc-
tions of depressions) increases. The impoundments caused
by road banks (that are captured in high-resolution DEMs)
otherwise cause problems for the subsequent steps of mod-
elling the flow paths in the landscape (Woodrow et al., 2016;
Leach et al., 2017). Studies have shown that it is better to
preprocess the DEM using breaching rather than filling func-
tions (Wang et al., 2019; Lidberg et al., 2017). In this study,
we used the protocol suggested by Lidberg et al. (2017), as
that study was carried out on similar glaciated catchments in
Sweden. The highest resolution of DEM did not perform op-
timally for any of the evaluated terrain indices. This has been
highlighted by previous studies to be caused by small-scale
variations in surface topography that do not affect the overall
hydrological pathways (Gillin et al., 2015). The dependency
of DEM resolution is important for any type of digital soil
mapping, and the optimum resolutions have been shown to
be different, depending on landscape and the spatial scale of
the environmental phenomena and processes involved in the
soil property of interest (Cavazzi et al., 2013).

This study also demonstrated the effects of adjusting user-
defined thresholds associated with certain indices calcula-
tions (Figs. 2 and 6). In line with a previous study modelling
the spatial extent of wet areas, DI calculated with a 2 m given
vertical distance (d) (Eq. 3) performed best (Hjerdt et al.,
2004). DTW and EAS were among the best-performing ter-
rain indices (Fig. 3); however the overall predictive perfor-
mance was dependent on the chosen stream initiation thresh-
olds (Fig. 2). The best performance was achieved at 1 ha fol-
lowed by 2 ha streamflow initiation threshold, much in line
with previous results from the studied catchment area (Ågren
et al., 2014) and from other study areas (Oltean et al., 2016).
However, that only means that those thresholds might work
well for glaciated catchments: in other regions, these thresh-
olds might need to be adjusted. Again, our study highlights
the need for ground truthing of the digital terrain indices, as
the quality of the generated maps is so dependent on the
selected thresholds. The substantial effects of varied user-
defined thresholds for DTW and EAS highlight the impor-
tance of caution when selecting terrain indices.

The unique setting of the Krycklan catchment, with its het-
erogeneous soils, made it possible for this study to demon-
strate the challenges raised from variable landform types,
where the assumption of topography acting as a first-order
control of soil moisture becomes less valid. In the sorted
sediment areas of the Krycklan catchment, topographic vari-
ation is low and hydraulic conductivity high, allowing for

deeper infiltration of water, which decreases the topograph-
ical control of groundwater flows compared to the upper till
which dominates parts of the catchment (Jutebring Sterte et
al., 2021). The layout of the study did not allow for separate
analysis of the different land form classes due to the lim-
ited number of field plots and low variation of soil moisture
classes in the sorted sediment area (Table 1). However, us-
ing a confusion matrix of the classified best-performing ter-
rain index (DTW< 1 m) from the OPLS in conformance with
wet and dry soils, this study demonstrated a large difference
in the MCC values between the sorted sediment (0.20) and
till (0.50) parts of the catchment. The attempts of combin-
ing terrain indices and other mapped information to tackle
the challenges of soil moisture modelling faced by landscape
heterogeneity did not outperform the more basic terrain in-
dices at the entire catchment level. The confusion matrix us-
ing the SLU map and DTW’s overall conformance clearly
showed the challenges caused by the sorted sediment areas of
the catchment (Table 3). This study highlights the necessity
of adapting soil moisture predictions to local soil conditions.
These underlying factors need to be taken into consideration
when modelling soil moisture conditions on any level from
catchment, regional and national scale. One such attempt was
the SLU soil moisture map which was constructed for the
entire country of Sweden using vast amounts of field data
from 16 000 field plots across the country as training data
and several digital terrain indices at multiple resolutions and
thresholds. Even so, when evaluated on the Krycklan catch-
ment, the SLU soil moisture map ranked second among the
top predictors for soil moisture (Figs. 2 and 3) and did not
outperform several of the more simple terrain indices.

The results from this study demonstrate the potential of
terrain indices for modelling soil moisture across the land-
scape when the optimal scales and thresholds are selected
for the calculations. Terrain indices have been related to soil
properties (Seibert et al., 2007; Zajícová and Chuman, 2021),
ecological studies (Zinko et al., 2005; Bartels et al., 2018)
and site productivity (Mohamedou et al., 2017; Bjelanovic
et al., 2018) and will likely develop further as a useful tool
within many fields of study. However, it should be recog-
nized that the predictive power of terrain indices is limited
by the non-topographical drivers of the spatial variation in
soil moisture, which will always be significant and rarely
less than 50 % (Western et al., 1999). Such drivers are, for
example, soil depth, texture, hydrological conductivity, per-
meability and vegetation (Gwak and Kim, 2017). With an
increasing demand for high-resolution spatial and temporal
soil moisture models for climate, hydrology and soil mod-
elling, it is important to understand the underlying covariate
factors used to build them.
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5 Conclusion

This study was designed to test, demonstrate and visualize
the importance of appropriate scaling when modelling soil
moisture conditions using terrain indices. Although some
previous studies have drawn similar conclusions, there is still
a tendency within many fields to use the highest DEM reso-
lution available when using terrain indices to represent soil
moisture conditions as a covariate. However, one size – or
resolution in this case – does not fit all. Due to the differences
in climate, landscape types and soil texture, terrain indices
must be adapted to local conditions and calculated at appro-
priate scales and thresholds. Heterogeneous landscape types
remain a challenge for predicting soil moisture conditions
and should be taken into account when interpreting modelled
results. We, therefore, stress the importance of evaluating the
modelled terrain index results for the area of interest and not
to extrapolate the optimum terrain indices for our study ar-
eas directly or to blindly use the DEM of highest resolution
available.

Code and data availability. The code and data used in this study
for aggregating the DEM and generating the different terrain indices
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Soil moisture controls 
the partitioning of carbon stocks 
across a managed boreal forest 
landscape
Johannes Larson 1*, Jörgen Wallerman 2, Matthias Peichl 1 & Hjalmar Laudon 1

Boreal forests sequester and store vast carbon (C) pools that may be subject to significant feedback 
effects induced by climatic warming. The boreal landscape consists of a mosaic of forests and 
peatlands with wide variation in total C stocks, making it important to understand the factors 
controlling C pool sizes in different ecosystems. We therefore quantified the total C stocks in the 
organic layer, mineral soil, and tree biomass in 430 plots across a 68  km2 boreal catchment. The 
organic layer held the largest C pool, accounting for 39% of the total C storage; tree and mineral C 
pools accounted for 38% and 23%, respectively. The size of the soil C pool was positively related to 
modelled soil moisture conditions, especially in the organic soil layer  (R2 = 0.50). Conversely, the tree C 
pool exhibited a unimodal relationship: storage was highest under intermediate wetness conditions. 
The magnitude and variation in the total soil C stocks observed in this work were comparable to those 
found at the national level in Sweden, suggesting that C accumulation in boreal landscapes is more 
sensitive to local variation resulting primarily from differences in soil moisture conditions than to 
regional differences in climate, nitrogen deposition, and parent material.

Forests provide many life-sustaining ecosystem services. It has been suggested that management interventions 
in forest ecosystems could be among the most effective nature-based solutions combating climate  change1,2 
because forests play critical roles in global carbon (C) sequestration and long-term carbon  storage3. Boreal forest 
landscapes store approximately one third of the entire terrestrial C  pool4, with the majority of this C being stored 
below ground as soil organic carbon (SOC)5. Various biomass components including tree trunks, branches, roots, 
foliage, and deadwood also hold large C  pools6. However, the relative sizes of these above- and belowground C 
pools within boreal landscapes are rather poorly constrained. Global, national, and regional estimates of boreal 
forest C stocks are often associated with large  uncertainties7, which are typically attributed to under-sampled 
regions, a lack of remote sensing data, and differences in sampling methods and intensities between  studies4. 
This limits our ability to develop strategies for improving the carbon sequestration potential of forest landscapes.

It is well established that soil forming factors are sensitive to climate, time, organisms, parent material and 
 topography8, all of which by extension influence the development of the SOC pool. Several studies have identi-
fied climate as a key driver of SOC accumulation on global and regional scales, mainly because of its impact on 
temperature and  precipitation9,10. However, on smaller landscape scales (up to several tens of  km2), site-specific 
soil-forming factors such as local topography may be more important because some of the factors mentioned 
above can be considered constant and are thus controlled for in small scale observational  studies11. For example, 
in mountainous landscapes where the parent material can be assumed to be constant, the spatial variation in the 
SOC stock is largely regulated by differences in altitude and aspect that have large control on climatic  variability12.

The central role of local topography as a primary controlling factor of soil moisture conditions is particu-
larly evident in boreal landscapes, which are often dominated by unsorted glacial till with limited variation in 
hydrological  properties13–15. Soil moisture is a major factor governing SOC  accumulation16–18 because it influ-
ences the input of organic carbon via its effects on plant production and also controls decomposition rates. The 
accumulation of the aboveground C stock in boreal landscapes is also sensitive to disturbances such as fires 
and forest  management19, while forest productivity is tightly constrained by climate, nutrient availability, and 
water  levels20,21. Specifically, tree growth in dry sites is often limited by water and nutrient  availability22, whereas 
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excessive wetness leads to soil saturation and limits tree growth by creating anoxic conditions that are often 
associated with increased organic layer  thickness23,24.

Managed boreal landscapes are particularly heterogeneous in terms of vegetation structure and composition, 
which can enhance variation in C stocks across smaller spatial scales. However, the lack of spatially extensive 
soil moisture data means that the landscape-scale effects of management on C stocks are poorly  constrained11. 
This is a significant problem because climatic change is likely to change the water balance in boreal landscapes 
and thereby affect soil moisture conditions. Consequently, there is a clear need to improve our understanding of 
the size and distribution of C stocks on the landscape scale and to identify the factors governing them in order 
to develop sustainable forest management strategies.

To address these needs, we conducted a comprehensive forest and soil survey across a 68  km2 managed boreal 
forest catchment in Northern Sweden with the aim of quantifying the magnitude and variation of forest ecosys-
tem C stocks. We sampled 430 plots, obtaining detailed soil profile descriptions of organic and inorganic soils 
down to 50 cm in the mineral soil and performing chemical analyses of samples from fixed soil depths. The soil 
survey was combined with an extensive forest survey using the same survey grid and a high resolution airborne 
laser scanning (ALS) dataset. Recent advances in ALS have made it possible to retrieve various forest biophysical 
 properties25 and acquire high resolution topographic information, opening up new approaches to soil moisture 
modelling and digital soil mapping. For example, in Sweden ALS-derived topographical information has been 
combined with additional geographical datasets to model soil moisture conditions at a spatial resolution of 2 m 
using machine learning  algorithms26. This approach was shown to accurately delineate peat  soils27. Furthermore, 
high resolution estimates of above- and belowground biomass have been obtained by combining ALS and forest 
survey  data28–30. These developments offer new ways to identify factors controlling the magnitude and variation 
of above- and below-ground forest ecosystem carbon stocks.

The specific objectives of this study were to (i) estimate the size and spatial variation of C stocks in soil and 
trees in a managed boreal forest landscape, (ii) characterize the relationships between the sizes of these C stocks 
and soil moisture conditions (iii) and produce high-resolution wall-to-wall estimates of soil and tree C stocks 
within the landscape. We hypothesised that (i) soil C is the largest and most variable C pool across the landscape, 
(ii) soil moisture conditions control SOC levels at the landscape scale, with increased soil moisture being associ-
ated with larger SOC stocks, and (iii) soil moisture effects on the organic layer C pool are a key determinant of 
the studied landscape’s total C stock.

Methods
Site description. This study was conducted in the Krycklan catchment, situated in northern Sweden (Lat. 
64°,23′N, Long. 19°,78′E)31. The catchment has a cold temperate humid climate with a 30 year (1991–2020) mean 
annual air temperature of 2.4 ± 0.3 °C and a mean annual precipitation of 638 ± 40 mm, of which 35% falls as 
snow. The catchment spans 68  km2 and has a gentle topography, with elevations ranging from 127 to 372 m.a.s.l. 
and a poorly weathered gneiss bedrock. The soils of the upper parts are dominated by unsorted glacial till while 
those of the lower parts consist primarily of sorted sediments of sand and silt. Approximately 25% of the catch-
ment has been protected for research since 1922; ownership of the remaining area is divided among private own-
ers and forest companies. The catchment’s land cover is dominated by forests, which account for 87% of its total 
area and consist primarily of Scots pine (Pinus sylvestris L.) (63%) and Norway spruce (Picea abies (L.) H. Karst.) 
(26%). Forests in the non-protected areas are managed by conventional rotation forestry and are predominantly 
even-aged, artificially regenerated, and thinned. The forest soils are dominated by well-developed iron  podzols32. 
Mires and lakes cover 9% and 1% of the landscape, respectively, while arable land covers 2%.

Field data. The survey grid covers the entire catchment area and consists of 500 plots that each have a radius 
of 10 m and an area of 314  m2, with a spacing of 350 m between adjacent plots (Fig. 1). The survey grid is densi-
fied in a 1500 × 1500 m area around an eddy covariance tower in the centre of the study area, where the spacing 
between adjacent plots is 175 m. Plot locations were established in 2015 using a randomly chosen origin and 
were oriented along the coordinate axis of the Swereff 99 TM projection. The centre of each plot was located in 
the field using a Trimble GeoXTR GNSS receiver.

Soil survey. The soil survey was conducted during the snow-free seasons of 2019 and 2020, following the 
methods of the Swedish National Forest Soil Inventory (SFSI; http:// www- ris. slu. se). Soil profile descriptions 
and site variables such as soil moisture classes (described below), humus form, organic layer thickness, and soil 
texture were determined, measured, or recorded for each plot. The organic layer was sampled volumetrically 
using a 10 cm diameter corer to the full depth of the O-horizons or to a maximum depth of 30 cm after removing 
the litter layer and bottom layer of mosses and carefully separating them from the mineral soil below. Samples 
were collected from 1 to 9 sampling points until the target sample volume of ca 1.5 L was obtained. These points 
were distributed within a 3.14  m2 subplot close to the survey plot’s centre. Mineral soil was sampled to a depth 
of 65 cm (or to bedrock or boulder depth) at fixed intervals of 0–10, 10–20, and 55–65 cm. Total C was analysed 
on the fine fraction (< 2 mm) after samples had been dried at 65 °C, ground to a fine powder and homogenised. 
A total of 1500 individual samples were analysed for soil C concentration by mass spectrometry using a Delta 
IRMS instrument coupled to a Flash EA 2000 analyzer (Thermo Fischer Scientific, Bremen, Germany). Analyses 
were performed with 5–50 mg soil material depending on the organic matter content. Organic layer C stocks 
were calculated by multiplying each sample’s C concentration by its dry weight and then dividing the result by 
the total sampled area. Mineral soil C stocks in each sampled layer (0–10, 10–20, and 55–65 cm) were calculated 
based on the C concentration, bulk density (g/cm3), soil layer thickness (cm) and the volume percentage of 
stones and boulders using the following expression:

http://www-ris.slu.se
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The bulk density of the mineral soil horizons was calculated using the SFSI procedure, which is based on a 
pedotransfer function that depends on the C concentration and depth (cm)10,33:

The volume of stones and boulders in each plot was estimated using the stoniness index, which is determined 
by driving a 1 cm diameter metal rod into the soil using a small sledge hammer (2 kg) until the rod cannot 
penetrate further. The penetration depth (max 30 cm) is then measured from the top of the mineral soil surface. 
Measurements were done at 12 predetermined locations across each plot and the volume percentage was then 
calculated using a transfer  function34,35. The total SOC stock was calculated as the sum of the organic and mineral 
C pools. For plots with peat soils where the organic layer thickness was > 30 cm, the total C stock was calculated 
to a maximum depth of 1 m from the organic layer surface. In these plots, the C stock of the organic layer was 
estimated by collecting samples to a maximum depth of 30 cm and extrapolating downwards.

Forest survey. The forest survey was conducted in the late fall of 2019 and the early spring of 2020. A total 
of 488 plots were surveyed, of which 430 were also included in the soil survey (Fig. 1). All trees within each 10 
m radius plot were measured and the stem diameter at breast height (DBH; 1.3 m) of trees with DBH > 4 cm 
was recorded along with the heights of saplings. In regenerating/young forests and some other stands with very 
high stem densities, the plot radius was reduced to 5 m to limit the time needed for surveying. Species and DBH 
were recorded for all trees and tree heights were measured using a laser-guided hypsometer on a subjectively 
selected sub-sample of at least three trees that were chosen to capture the tree size variation of each species. 
The height of the remaining trees was estimated using plot-level fixed mixed effects modelling for single trees 
and then imported into the Heureka system for plot biomass  calculations36. The aboveground biomass in each 
plot was estimated using allometric equations for stumps, stems, bark, dead and living branches, and foliage for 
Scots pine, Norway spruce, and birch, with tree height and DBH as independent  variables37. For Lodgepole pine 
(Pinus contorta Bol.), we used the same functions as for Scots pine; other deciduous species were modelled using 
the birch functions. Belowground biomass was estimated for individual trees using species-specific allometric 
equations with DBH as the independent variable and were summarized per  plot38. The total tree C pool was cal-
culated by summarizing the above- and belowground biomass for each plot and then converting to Mg C  ha−1, 
assuming a C concentration of 50% in biomass.

(1)Storage = Concentration (%)× BulkDens × LayerThickness × (100− StoneVol)/100

(2)BulkDens = 1.5463× EXP(−0.3130× CarbonConc0.5)+ 0.0027× Depth

Figure 1.  Topography of the Krycklan catchment and locations of soil and forest survey plots (represented as 
black and grey dots, respectively). Forest surveys were also conducted on soil survey plots. Most plots are located 
on the vertices of a 350 × 350 m grid but there is a densified 175 × 175 m grid around an Eddy covariance tower 
in the catchment’s centre. The map was created using Esri ArcGIS Pro 3.0.2, https:// www. esri. com/ en- us/ arcgis/ 
produ cts/ arcgis- pro/ overv iew.

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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Soil moisture classes. Each plot was assigned to one of five soil moisture classes based on its average 
groundwater table depth, which was estimated from the plot’s position in the landscape, soil texture, and vegeta-
tion patterns. The five soil moisture classes were: dry (7% of all plots), mesic (73%), mesic-moist (11%), moist 
(7%) and wet (2%). These classes are described briefly below and at greater length in previous  publications39.

• Dry soils have an average groundwater table > 2 m below the soil surface. They tend to be coarse-textured 
and can be found on hills, ridges, and eskers. Dry soils are mainly Leptosols, Arenosols, Regosols, or Podzols 
with thin organic and bleached horizons.

• Mesic soils have an average groundwater table between 1 and 2 m below the soil surface. Podzol is the 
dominating soil type with a fairly thin (4–10 cm) organic mor layer covered mainly by dryland mosses (e.g., 
Pleurozium schreberi, Hylocomium splendens and Dicranum scoparium). They can be walked on dry-footed 
even directly after rain or shortly after snowmelt.

• Mesic-moist soils have an average groundwater table depth < 1 m below the soil surface and are normally 
located on flat ground in lower-lying areas or lower parts of hillslopes. The soils become wet seasonally fol-
lowing snowmelt or heavy rain events. The feasibility of crossing with dry feet in normal shoes depends on 
the season. Peat mosses (e.g., Sphagnum sp., Polytrichum commune) in patches are common, and trees often 
grow on humps. Podzols are commonly found but often with a thicker organic layer than in mesic sites. The 
organic layer is often classified as peaty mor.

• Moist soils have an average groundwater table depth < 1 m below the soil surface and the surface water is 
commonly visible in depressions within the plot. Moist soils are found at lower altitudes, on the lowest parts 
of slopes and flat areas below larger ranges. They can be crossed in shoes without getting wet feet by utilizing 
tussocks and higher-lying areas. The vegetation includes wetland mosses (e.g., Sphagnum sp., Polytrichum 
commune, Polytrichastrum formosum). When stepping in depressions, water should form around the feet 
even after dry spells. Trees often grow on small mounds and the soil type is most often Histosol, Regosol, or 
Gleysol.

• Wet soils have a ground water table close to the soil surface and permanent pools of surface water are com-
mon. Soils are typically Histosols or Gleysols. Drainage conditions are very bad and they cannot be crossed 
in shoes without getting wet feet. Wet areas are often located on open peatlands and coniferous trees seldom 
develop into stands.

Modelled soil moisture conditions. Soil moisture conditions were modelled using the newly developed 
SLU machine learning soil moisture map with a resolution of 2   m26. The map was developed using multiple 
nationwide geographical information datasets including various terrain indices, climate data, and quaternary 
deposit information. The training and validation data consisted of almost 20,000 field soil moisture classifica-
tions (1–5) from the national forest inventory that were spread across the entire Swedish forested landscape. The 
final model used Extreme Gradient Boosting (XGBoost) to produce a 2-class model in which the depth water 
 index40 and topographic wetness  index41 were the most important predictors. The survey grid employed in the 
present study was used for external validation of the modelled soil moisture, which yielded a kappa value of 
0.5226. The model’s output is presented as a wetness index map showing the predicted probability (0–100%) of 
wetness for each pixel and is publicly available (Swedish University of Agricultural Sciences, 2022). Modelled soil 
moisture conditions for each survey plot were extracted using the coordinates of the plot’s centre.

Carbon pool mapping. Data representing all plots included in the forest survey of 2019 were used as 
ground truth for Tree C pool mapping. ALS data were acquired in August 2019 using a Reigl VQ-1560i-DW 
1064 nm (NIR) scanning system with an average point density of 20 points  m−2. The raw ALS data were pre-pro-
cessed by classifying point returns as ground, unclassified, or noise. A digital terrain model was then generated 
and the ALS points were normalised to represent the tree canopy height above the ground surface. Finally, met-
rics were generated from the ALS data to summarize the point-cloud information on the raster cell level using 
the CloudMetrics program in the Fusion software  package42. These metrics were calculated for 12.5 × 12.5 m grid 
cells using methods previously developed to generate ALS estimates on a national  scale43. Plots were excluded 
if the absolute difference between Lorey’s mean height and the ALS metric P95 (the 95th percentile of the ALS 
point cloud’s height distribution) was above 5 m. Regression models relating the observed Tree C pool at the plot 
level to several other explanatory ALS metrics were fitted and extrapolated over the entire study area. The total 
SOC stocks over the catchment area were mapped using the modelled relationship between plot-level measure-
ments of total SOC stocks and the SLU soil moisture map.

Statistics. Descriptive statistics for the different C pools were generated using the statistical software  R44. 
The relationships between modelled soil moisture conditions and C pools were evaluated by linear regression, 
using polynomial models in some cases. Predictive models with log-transformed dependent variables were 
back-transformed using smearing  estimates45 to avoid bias. As no independent data were available to assess the 
accuracy of the models’ C pool predictions, we performed leave-one-out cross-validation46 by removing one 
sample from the model dataset and fitting the selected models on the remaining plots. Model performance was 
evaluated using  R2 and RMSE.
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Results
Soil carbon pools. The mean total SOC stock down to 50 cm of mineral soil including peat soils was 94 ± 5 
(SE) Mg C  ha−1 (Table 1). Excluding peat soils, the mean total C stock was 67 ± 2 Mg C  ha−1. The mean SOC 
stock in mineral soils was 40 ± 1 Mg C  ha−1 while that in the organic layer (to a maximum depth of 1 m) was 
59 ± 6 Mg C  ha−1. Forty-nine plots were classified as peat soils (organic layer thickness > 30 cm); the mean C 
stock for these plots was 307 ± 29 Mg C  ha−1.

Tree carbon pool. The forest age varied between 0 and 272 years with a mean of 79. The mean height and 
basal area were 13 m and 21  m2  ha−1, respectively (Table 2). The total tree C pool varied from 0 to 228 Mg C  ha−1, 
with a mean of 58 Mg C  ha−1. On average, 24% of the Tree C was stored below ground and 76% above ground 
(Table 3).

Total carbon stock estimates. The total SOC pool accounted for 62% (94 ± 1 Mg C  ha−1) of the land-
scape’s total C storage (152 Mg C  ha−1), with the remaining 38% (58 ± 2 Mg C  ha−1) being stored in the tree C 
pool. The largest individual C pool was the organic layer (59 ± 6 Mg C  ha−1), which comprised 39% the total C 
stock on average, while the mineral soil C pool accounted for 23% of the total (35 ± 1 Mg C  ha−1). If peat soils 
were included, the organic soil C pool accounted for 63% of the total SOC pool. However, if peat soils were 
excluded, the mineral soil C pool comprised 60% of the overall SOC stock.

Soil moisture effects on C allocation. The size of the total C pool differed significantly between soil 
moisture classes, ranging from 100 Mg C  ha−1 in the driest class to 270 Mg C  ha−1 in the wettest (Fig. 2). This 
relationship was mainly driven by an increase in the size of the organic layer C pool in the mesic-moist to wet soil 
moisture classes. The C stored in the mineral soil C pool decreased from 37 to 18 Mg C  ha−1 between the driest 
and the wettest class; this is mainly due to the greater depth of the organic layer in wetter soils and the fact that 
sampling was only conducted to a maximum depth of 1 m below the soil surface. The mineral soil C pool depth 
was therefore reduced or zero in cases where the organic layer thickness was around or above 1 m. The tree C 
pool increased from 44 Mg C  ha−1 in the dry class to a maximum of 80 Mg C  ha−1 in the mesic-moist sites but 
then decreased as the moisture increased further, falling to 40 Mg C  ha−1 in the wettest soil class (Fig. 2).

The median proportion of the total C stock in the tree C pool increased from the dry (42%) to mesic (51%) soil 
moisture classes (Fig. 3). The majority (57%) of the survey plots had over 50% of their total stored C in the soil.

Table 1.  Soil carbon stocks (Mg C  ha−1).

Variable Case N Mean SD Median Min Max SE

Total SOC pool Including peat soils 430 94 109 62 9 959 5

Organic C pool Including peat soils 430 59 115 21 0 959 6

Mineral C pool Including peat soils 430 35 23 35 0 171 1

Total SOC pool Excluding peat soils 381 67 43 58 9 412 2

Organic C pool Excluding peat soils 381 27 33 19 0 336 2

Mineral C pool Excluding peat soils 381 40 22 37 0 171 1

Total SOC pool Only Peat soils 49 307 198 291 21 959 29

Table 2.  Field measurements of forest stand variables in the forest survey plots (n = 488).

Variable Mean SD Median Min Max SE

Age (years) 79 48 73 0 272 2

Hgv (m) 13 5 14 0 24 0.24

Basal area  (m2  ha−1) 21 12 21 0 58 0.5

Volume  (m3  ha−1) 156 111 149 0 601 5.0

Number of stems  (ha−1) 1459 1835 1178 0 33,205 83

Table 3.  Tree C pool stocks (Mg C  ha−1) in the surveyed plots (n = 488).

Variable Mean SD Median Min Max SE

Tree C pool 58 40 55 0 228 2

Above ground 44 30 41 0 170 1

Below ground 14 10 14 0 58 1
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A model to predict C pool sizes based on soil moisture. Upon relating the measured C pools to soil 
moisture predictions obtained using the SLU soil moisture map, we found that the relationship between the tree 
C and SOC pools at different soil moisture levels was unimodal (Table 4; Fig. 4), in accordance with the results 
obtained using the field soil moisture classifications (see Fig. 3). The relationship between the total SOC pool 
size and the modelled soil moisture was described well by a polynomial regression  (R2 = 0.40)(Table 4), which 
accurately captured the large increase in C stocks with increasing soil moisture (Fig. 4b). This analysis also con-
firmed that the increase in the total SOC stock was mainly due to an increase in the size of the organic layer C 
pool  (R2 = 0.50). The mineral C pool showed a significant positive linear increase with the soil moisture, but this 
trend explained only 5% of the total variation in C pool size.

To avoid confounding effects from forest management on the standing biomass across our 430 plots, we 
also evaluated the relationship between the tree C pool and soil moisture in plots containing only tree stands 
that were at least 80 years old, representing mature forests (n = 166). In this analysis, the tree C pool showed a 

Figure 2.  Sizes of the tree, organic layer, and mineral soil carbon pools for different field-classified soil moisture 
conditions.

Figure 3.  The tree carbon pool as a proportion of the total carbon stock in each of the five soil moisture classes. 
Mean values are indicated by white circles.
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Table 4.  Results obtained using linear and polynomial regression models of the relationship between carbon 
pool size and predicted soil moisture (x). RMSE values were calculated by leave-one-out cross validation 
(LOOCV) in which the Total SOC and Organic SOC stocks were retransformed using SMEAR to avoid 
logarithmic bias.

Carbon pool n Regression R2 RMSE F-stat p-value

Tree C  pool(stand age>=80) 166 y = 80.57 − 129.3x − 165.9x2 0.14 40.74 13.09 5.362e−06

Total SOC pool 430 log(y) = 4.23 + 8.51x + 3.35x2 0.40 90.24 140.3 < 2.2e−16

Organic C pool 430 log(y) = 3.32 + 13.87x + 6.12x2 0.50 95.73 209.8 < 2.2e−16

Mineral C pool 373 y = 36.43 + 0.19x 0.05 20.36 24.82 7.108e−06

Figure 4.  Carbon pool sizes as functions of modelled soil moisture conditions. Regression lines are shown 
in red and 95% prediction intervals are shown using dashed lines. The modelled soil moisture represents the 
probability of plots being classified as wet (dry − wet) based on a 2-class XGBoost model. The tree carbon pool 
modelling results shown in plot (a) are based on data for survey plots with a stand age of 80 years or above 
(results indicated by blue dots) to reduce the impact of management effects. Results for plots with a mean stand 
age below 80 years are represented by grey dots.
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weak but significant (p-value < 0.01) unimodal relationship with the modelled soil moisture, indicating that the 
proportion of the total C stock in trees is generally higher in areas with intermediate soil moisture than in those 
with very low or very high wetness.

Carbon mapping (wall‑to‑wall estimates) across the forest landscape. To map the tree C pool 
(including both the above- and belowground pools) over the entire catchment area, we developed a model based 
on the relationship between the field tree C data and ALS-derived metrics by adapting the previously-reported 
area-based  method47. The final model (Eq. 3) included two dependent ALS variables relating to height distribu-
tion (P95 and SD, i.e., the 95th percentile and the standard deviation of ALS point heights above ground, respec-
tively), and one relating to tree canopy density (VR, i.e., the proportion of ALS points reflected in the vegetation).

The agreement between the predicted and observed data was good  (R2 = 0.9, p < 0.001) (Fig. 5), and leave-
one-out cross validation indicated an acceptable goodness of fit with a RMSE of 12.4 Mg C  ha−1. The model was 
therefore used to predict the tree C pool for each 12.5 × 12.5 m raster cell within the Krycklan catchment (Fig. 6a).

To map the SOC stock across the entire catchment, we applied the polynomial function described in section 
"A model to predict C pool sizes based on soil moisture" to each 2 m cell based on the modelled soil moisture 
(Table 4). This revealed a mosaic of clear cuts (white) and mature stands with high tree C stocks, demonstrating 
the profound effects of forest management on tree C pools within the landscape (Fig. 6a). Total SOC stocks were 
highest in wetlands (peat) and the riparian zones alongside streams (Fig. 6b). The inverse relationship between 
high soil C stocks and the size of the tree C pool was particularly pronounced in the wetland areas.

Discussion
Despite the importance of boreal forests for carbon sequestration and climate mitigation, the factors governing 
C stock variation and its distribution at the landscape scales remain poorly understood. Based on a extensive 
survey of the tree and SOC pools in > 400 sample plots within a landscape-scale study area, this work provides (i) 
insights into the magnitude and variation in C stocks across a meso-scale boreal landscape; (ii) empirical evidence 
of the profound impact of soil moisture conditions on SOC stocks; and (iii) high-resolution estimates of the C 
stock distribution over a managed boreal forest landscape. Taken together, our results show how the total and 
individual organic and mineral SOC stocks vary across the boreal landscape and co-vary with the tree C pool.

Although we found that the total C stocks at the plot level are highly variable across a 68  km2 managed boreal 
forest landscape catchment, our estimate of the average landscape SOC stock (94 ± 3 Mg C  ha−1) is similar to 
previous regional and national SOC stock estimates based on the Swedish national forest soil inventory. For 
instance, a national study focusing on Swedish podzols (i.e., excluding peat soil) estimated an average total SOC 
 stock16 of 82 ± 3 Mg C  ha−1. In the same study, Olsson et al. found that the average SOC pool size in the organic 
layer was 28 Mg C  ha−1, which is identical to the value obtained in our analysis when peat soils were excluded. 
In a regional analysis covering all of northern Sweden, Hounkpatin et al. estimated a mean total SOC stock of 
73 Mg C  ha−1, which also is consistent with our results. The fact that the average SOC stocks in our boreal catch-
ment are similar to previously reported regional- and national-scale estimates for Sweden suggests that SOC 

(3)Tree C pool = 4.94+ 0.02(P95× VR)1.2 − 3.17HSD

Figure 5.  Relationship between ground truth data and the Tree C pool predicted by the ALS model (Eq. 1).
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stocks are far more sensitive to local-scale variation than to differences along the national north–south gradient 
despite the associated wide variation in climate, nitrogen deposition, and parent material.

In accordance with our first hypothesis, the total C stock increased rapidly with the soil moisture level, 
primarily because of a large increase in the size of the organic layer C pool (Fig. 2). Findings from other boreal 
landscapes support our results: multiple studies have concluded that SOC stocks increase with soil moisture 
levels, whether evaluated on the basis of drainage class or wetness  indices18,48. However, this study goes beyond 
previous works because it is based on a unique high-density soil dataset for a catchment-scale site; the catchment 
scale has received little attention in previous research. Furthermore, while organic soils often are excluded or 
considered separately from mineral soils due to differences in soil formation conditions, our work highlights 
the need to include organic soils to fully understand overall variation in C stocks in high altitude landscapes. 
Peat soils host a large proportion of the total terrestrial C stock in boreal biomes; our estimates suggest that they 
account for about one-third of the global SOC stock to a depth of 1  m49. Even though only 11% of the plots within 
this study area were peat soils, they accounted for 37% of the total measured soil C stock.

Forest management practices, particularly clear-cut harvesting, have significantly affected the natural varia-
tion of tree C stocks within boreal forest landscapes, reducing the impact of natural disturbances that previously 
had central roles such as forest fires and wind. The long history of forest management in Sweden has probably 
obscured the relationship between the tree C pool and soil moisture conditions in a way that may depend on 
site-specific conditions (Fig. 4). Additionally, the legacy of peatland drainage efforts within the catchment and 
across Fennoscandia has enhanced forest production in many areas, greatly expanding the tree C  pool50. Evalu-
ating these impacts can be challenging, but the successful application of our area-based method in this work 
clearly shows that ALS provides an effective way to systematically collect forest information in order to quantify 
aboveground carbon stocks on the landscape  scale29 while also dealing with confounding factors resulting from 
forest management interventions (Fig. 6a).

The SOC pool accounted for a large proportion of the total C stock within our studied boreal landscape, 
highlighting the presence and impact of local C stock hotspots in wet peat soils (Fig. 6b). It is notable that peat 
soils are not only found in forested and open wetlands but also in the riparian zones lining most streams. The 
proportion of C stored in trees in these wet areas is substantially lower than in other forested regions, so less 
common management practices such as continuous-cover forestry may be preferable to ensure the preservation 
of these large SOC  stocks51. More generally, the presence of large SOC stocks in riparian zones suggests a need 
for greater caution in forest management when dealing with such near-stream  areas52.

To better understand the landscape-scale variation in SOC stocks, the effects of factors such as forest pro-
ductivity, management, tree species, and fire history will have to be studied. Future work should also focus on 
exploring the combined impacts of different soil forming factors across fine spatial scales, including soil texture, 
bulk density, soil depth, and chemical properties. Special attention should be given to improving the reliability 
of bulk density estimates for unsorted sediment soils because quantifying uncertainty in this area is difficult and 
time-consuming. Following the method of the Swedish national forest inventory, we modelled bulk density in the 
mineral soil using empirical pedotransfer functions; this represents a notable weakness in our C stock estimates 
given the limited accuracy of such functions. Furthermore, we chose to focus specifically on testing soil moisture 
effects by using a state-of-the-art map based on terrain indices and other geographical information in this  study26. 
However to better understand the influence of topography as a soil forming factor we could also consider the C 

Figure 6.  Tree C distribution map derived from ALS data using the area-based method (a) and the total SOC 
stock distribution derived by regression analysis of soil moisture data (b). Areas shown in white are dominated 
by clear-cuts and open peatland. The maps were created using Esri ArcGIS Pro 3.0.2, https:// www. esri. com/ en- 
us/ arcgis/ produ cts/ arcgis- pro/ overv iew.

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
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stock in relation to individual terrain indices such as the commonly used Topographic Wetness Index (TWI)41 
and the associated effects on aboveground productivity and soil chemical properties.

Conclusion
We have presented a unique perspective on the total C stock of a managed boreal forest landscape that emphasizes 
the importance of soil moisture conditions as a key regulator of the SOC stock distribution. Our results indicate 
that the total C stock increases when moving from dry to wet areas, but the tree C stock is highest in regions 
with intermediate soil moisture levels. Landscape-scale soil moisture variation is largely governed by topography 
because it controls the distribution of water, which determines the spatial distribution of different soil types. 
To clarify the distribution and dynamics of the above- and belowground C pools, future studies should focus 
on disentangling the multiple drivers of C accumulation such as ecosystem productivity, species, forest history 
and other soil forming factors. Our results also indicate that potentially drier future conditions due to climate 
change might reduce the total landscape C storage and shift its allocation from soils towards tree biomass. This 
would have important implications for the C pool’s protection from disturbances (e.g., fire and wind throw) and 
associated risk of terrestrial C being emitted to the atmosphere.

Data availability
The dataset generated during the current study is available from the corresponding author on reasonable request.
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