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Abstract

In-field soil spectroscopy represents a promising opportunity for fast soil analysis,

allowing the prediction of several soil properties from one spectral reading repre-

senting one soil sample. This facilitates data acquisition from large amounts of

samples through its rapidity and the absence of required chemical processing.

This is of particular interest in agriculture, where the chance to retrieve informa-

tion from soils directly in the field is very appealing. This review is focused on in-

field visible to near infrared (Vis–NIR) spectroscopy (350–2500 nm), aimed at ana-

lysing soils directly in the field through proximal sensing. The main scope was to

explore the available knowledge to identify existing gaps limiting the reliability

and robustness of in-field measurement, to foster future research and help transi-

tion towards the practical application of this technology. For this purpose, a litera-

ture review was performed, and surveyed information encompassed sensor range,

carrier platforms in use, sensor type, distance to the soil sample, measurement

methodology, measured soil properties and soil management, among many

others. From this, we derived a list of tools in use with their spectral measurement

properties, including the potential cross-calibration with soil spectral libraries

from laboratory spectroscopy of soil samples and potential measured target soil

properties. Different instruments and sensors used to measure at varying wave-

length ranges and with different spectral qualities are available for a large range

of prices. The most frequently analysed soil properties included soil carbon con-

tents (soil organic carbon, soil organic matter, total carbon), texture (clay, silt,

sand), total nitrogen, pH and cation exchange capacity. Future perspectives com-

prise the implementation of larger databases, including different instruments and

cropping systems as well as methodologies combining existing knowledge regard-

ing laboratory spectroscopy with in-field methods. The authors highlight the need

for a broadly accepted measurement protocol for in-field soil spectroscopy, foster-

ing harmonization and standardization and consequently a more robust applica-

tion in practice.
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1 | INTRODUCTION

Capturing the spatial variability of soil properties across
landscapes is necessary for the efficient management of nat-
ural resources such as precision agriculture, non-point
source pollution modelling and planning of resource
use (Waiser et al., 2007). Current tiered investigation
approaches and sampling strategies can be improved by
using proximal sensing. Proximal soil sensing refers to field-
based methods that sense the soil in proximity to the
ground, ranging from outside the soil—that is, within a
maximum distance of two metres (Viscarra Rossel
et al., 2011)—where the probe does not enter the measured
soil volume, to methods in close contact to the soil includ-
ing measurements facilitated by the shank of a mobile plat-
form (Christy, 2008) and contact probes (Metzger
et al., 2023). Both contact and distance measurements can
be made in static and mobile mode, moving over or
through the soil affecting the measurement settings and
resulting data quality. The use of proximal soil sensing
techniques could increase the number of measured soil
samples that are necessary for an adequate characteriza-
tion of soil heterogeneity at field scale. Thus, proximal
sensing directly in the field became a challenge and it
gained interest due to its potential advantages (Kuang
et al., 2012). These technologies involve either on-the-go
sensors, mounted on agricultural vehicles or hand-held
instruments, which can be used for site-specific manage-
ment (Christy, 2008; Metzger et al., 2023). Due to the high
sampling density allowed, these sensors are considered
more effective in capturing field variability, hence addres-
sing the problem of selecting the correct soil sampling
strategy to ensure representative soil samples (Figure 1).

In this framework, soil spectroscopy offers a promising
option for soil analysis, with advantages such as the pre-
diction of several soil properties from just one spectral
measurement, facilitating data acquisition from large
amounts of samples through its rapidity and the absence
of required chemicals or extractions (Metzger et al., 2023).
In addition, handling is simple, sample presentation is
flexible with modern instrumentation and measurements
can be performed in a totally non-destructive way—
without contact if required or with minimum invasion in
case of taking soil cores or changing sample presentation
on-site without taking samples away (Minasny &
McBratney, 2008; Viscarra Rossel & Behrens, 2010). Spec-
tral measurements, therefore, offer a fast and efficient

option to identify certain properties of objects and mate-
rials, that is soil, in a non- or minimum-destructive or
invasive way. This is of particular interest in an agricul-
tural context, where information from soils and plants is
needed regularly to support management decisions.
Usually, this involves soil sampling and laboratory ana-
lyses that requires laboratory equipment and consum-
ables. The option to do such measurements in the field
and to retrieve information shortly after — if not
instantly — is therefore very intriguing.

2 | IN-FIELD SOIL
SPECTROSCOPY

Soil spectroscopy works due to energy–matter interac-
tions: a material can reflect, absorb, scatter and emit elec-
tromagnetic radiation in a characteristic manner
depending on its molecular composition and structure,
resulting in a unique spectral signature (Shaw &
Burke, 2003). Infrared diffuse reflectance spectroscopy is
based on the principle that radiation containing all rele-
vant frequencies in a certain range is directed to the sam-
ple. The radiation will cause individual molecular bonds
in soil constituents to vibrate, either by bending or
stretching, and energy will thereby be absorbed. A
specific bond in a specific chemical context will absorb a
specific energy quantum. As the energy quantum is
directly related to frequency (and inversely related to
wavelength), energy at different spectral bands will be
absorbed to various degrees depending on the soil com-
position, which in turn will result in a corresponding
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reflectance spectrum (Horta et al., 2015; Miller, 2001;
Stenberg et al., 2010). Reflectance is typically measured
in relation to a reference material and will, in addition to
what is absorbed, be affected by scatter, which is a func-
tion of soil composition, for example, mineralogy, texture
and structure (Nocita et al., 2015).

Since a rapid and cost-effective evaluation of soil
properties is essential for monitoring soil conditions,
and conventional laboratory measurements are costly
and time-consuming, the latter could not be considered
as appropriate for large datasets. In recent decades, the
use of soil reflectance spectroscopy, particularly in the
infrared (IR) and visible–near infrared (Vis–NIR) ranges,
has become a powerful technique to simplify soil studies
(Barra et al., 2021). Soil spectroscopy is considered a
rapid, cost-effective, quantitative and environmentally
friendly technique, which can provide hyperspectral data
with numerous wavebands and various waveband width
properties, both in the laboratory and in the field. It has
been evaluated as a possible additional method to labora-
tory analysis for monitoring soil parameters, to address
the need for continuous information about soils, while
reducing the cost of soil analyses (Li et al., 2022). The
non-destructive nature of such a technique allows simul-
taneous and repeatable measurements, representing a

significant advantage over conventional laboratory mea-
surements (Pasquini, 2018). In situ soil reflectance spec-
troscopy application requires proper environmental
conditions, such as non-rainy days to work in the field,
and various pretreatment methods to mitigate the effect
of soil moisture content, soil roughness and vegetation
cover (Gehl & Rice, 2007).

Different instruments and sensors are available for
spectral measurements, consequently, different ranges in
wavelength or frequency range or channel bandwidth and
number are used (Pandey et al., 2020). Wavelength ranges
in use cover gamma range, ultraviolet, visible, NIR, short
wave infrared (SWIR), medium infrared (MIR), IR and
microwaves or frequencies in the radar range. The exact
definitions and use of these ranges differ in the literature
(Pandey et al., 2020; Thenkabail & Lyon, 2011). For the
sake of simplicity, and because it is used very often, we
will focus on Vis–NIR, ranging from 350 to 2500 nm, and
consisting of the visible (350–750 nm), NIR (750–1100 nm)
and SWIR (1100–2500 nm; Ng et al., 2022; Rodrigues
et al., 2022), referred to from here onwards as full range.
Depending on the number of single channels available, we
can define multispectral (3–40) or hyperspectral (>40)
sensors. Vis–NIR spectroscopy, a rapid and easy-to-use tech-
nique, has a very good potential for in-field measurements,

FIGURE 1 Overview of proximal soil sensing as distinguished from remote sensing (left) and a close-up of sensing methodologies used

in the field and lab (middle), and examples of surface sample preparation (right). Symbols from Booysen et al. (2019).
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due to its simplicity, robustness and flexibility, allowing
the estimation of several soil chemical and physical prop-
erties, such as texture (especially the clay fraction),
organic and total carbon, carbonate and cation exchange
capacity (CEC; Stenberg et al., 2010). To make full use of
the advantages of Vis–NIR spectroscopy, measurements
directly in the field should be strived for, as time-
consuming efforts like sampling, packing and marking
samples that need to be transported to a laboratory for
further pretreatments before analysis can be avoided.
Robust field instruments are now available and are
becoming more affordable and user-friendly (Gullifa
et al., 2023). Achieving successful field measurements
would be of great benefit to agriculture, as it could facili-
tate denser sampling and an improved spatial resolution,
supporting the delineation in management zones and
variable rate inputs applied (Sarkhot et al., 2011).

Sensors can be relatively small, and even smaller sen-
sor heads can be attached to the actual sensor by fibre
optics. There are also several commercial and semi-
commercial instruments available for point and on-
the-go analyses (Ben-Dor et al., 2017; Wetterlind
et al., 2015). Despite this, most of the studies and applica-
tions focus on stationary sampling and laboratory ana-
lyses of dried and sieved samples. During the last
decades, much focus has been put on the development of
large regional, national or even transnational soil spectral
libraries (SSLs; Nocita et al., 2015; Orgiazzi et al., 2018).
A representative database, such as an SSL, with soil spec-
tra and known properties analysed by a reference
method, is required to calibrate the spectra to the proper-
ties of interest such as soil organic carbon, as shown by a
mapping approach using the LUCAS topsoil database
(Castaldi et al., 2019; Nocita et al., 2014). However, these
lab-derived SSLs are entirely based on spectra measured
under very controlled conditions from dried and sieved
soils. As spectra are influenced by both water content
(Lobell & Asner, 2002) and structure (Udelhoven
et al., 2003), the use of SSLs and already calibrated pre-
diction models cannot be expected to work without cor-
recting for the discrepancy between field and laboratory
spectra. In addition, moist or wet samples for calibration
typically result in reduced prediction performance
(Knadel et al., 2014; Stenberg, 2010). One reason for this
is probably that moisture influences the entire spectrum
to some extent due to scattering, and more strongly in
specific spectral regions due to absorption. This tends to
override less pronounced spectral features of other soil
constituents (Knadel et al., 2022; Lobell & Asner, 2002;
Stenberg, 2010). As moisture content will vary between
samples—and thus also the moisture effects—an addi-
tional dimension is added for moist samples, making
calibration work overwhelming. Despite the challenges

involved, applying SSL-based calibrations on field sam-
pled spectra appears as the most realistic and reasonable
way forward; several large SSLs are already built and
under development (Dangal et al., 2019; Demattê
et al., 2022). However, the challenges dealing with dis-
crepancies between field and laboratory spectra need to
be addressed.

Two paths can be followed to harmonize field and
laboratory spectra. First, measures in the field can be
taken to produce spectra that resemble the corresponding
laboratory spectra to the largest possible degree. In addi-
tion, mathematical algorithms and procedures can be
adopted to reduce the influence of moisture and texture.
Algorithms addressing moisture effects were recently
reviewed by Knadel et al. (2022).

This literature review intends to give an overview of
current measurement techniques and studies, to gain a bet-
ter understanding of past and ongoing research and rele-
vant debates about in-field soil spectroscopy. The review
aimed to explore the knowledge available to identify gaps
limiting in-field measurement accuracy and robustness,
including the potential cross-calibration with SSLs from
lab spectroscopy of soil samples. Therefore, this review
contains a list of used tools with their spectral and
measured properties. Moreover, it emphasizes current
in-field application methods, existing studies and
commercial applications using this technology for agri-
cultural purposes—including an overview of target
properties measurable with soil spectroscopy in the
field, potential application and use cases.

3 | MATERIALS AND METHODS

3.1 | Criteria for literature search and
information extraction

A literature search was carried out from January to
March 2022 on Scopus, ScienceDirect and Web of Science
databases, then updated in May, June and July 2023. The
terms used for the queries in Title and Keywords fields
were the following: Soil proximal sensing AND in situ
AND NIR AND Soil spectroscopy. Other additional key-
words were soil, Vis–NIR, field, lab, sample preparation and
subsampling. Duplicates were removed, and two papers
were discarded after being considered non-relevant. The
final list of publications resulting from the search included
103 references. Five of the analysed references were
reviews, while 13 papers dealt only with dried and sieved
samples. Before performing analyses on the dataset, the
references dealing with laboratory analyses only were taken
out and were only used for the discussion and under-
standing of the methodologies. The final number of
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references considered was 90; the complete list is pro-
vided as Supplementary Material (S1).

For the selected literature items, we collected infor-
mation on five levels (Figure 2):

1. ‘Bibliographic’ is the bibliographic information about
each article.

2. ‘Main topic of the study’—is whether the study
was about in-field or lab measurements, if a comparison
is performed, if it is a research paper or a review, if it is
a multi-sensor study, and so forth. To cover all the avail-
able information, the ‘other’ categories were included.

3. ‘Target soil property’ is the property (or properties)
studied, number and type.

4. ‘Sensor characteristics’ are the characteristics of the
sensor used and of the scanning method.

5. ‘Conclusions’ are the main conclusions of the papers
summarized.

In Table 1, the categories used for analysing the
literature are reported. The complete list of extracted
information, including the discussed categories but also
much more related information, can be found in the
Supplementary Material (S2).

For better understanding of the statistical terms: the
term ‘reliability’ refers to the consistency of a measure.
One can consider three types of consistency: over time
(repeatability), across items (internal consistency) and
across different researchers (inter-rater reliability). In
statistics, a measure is said to have a high reliability if it
produces similar results under consistent conditions. In

practical terms, it is the degree to which data, and the
insights gleaned from it, can be trusted and used for
effective decision-making. Reliability is the quality of
being dependable, trustworthy or of performing consis-
tently well. Reliability requires working as expected in
normal, well-known circumstances. Robustness is the
capability of performing without failure under a wide
range of possible conditions (Jones, 2021).

4 | RESULTS

4.1 | Grouping of papers

For this study, the selection of publications about soil
spectroscopy comprised studies ranging from 2006 to
2023. The maximum number of articles per year (16) was
in 2022, followed by 2015 (10) (Figure 3). The published
articles were spread over a total of 35 academic journals
and 1 workshop proceeding. It can be assumed that the
number of publications per year will further grow after
2023, reflecting the actuality and importance of research
in the field of soil spectroscopy. The covered studies
stemmed from 23 countries spanning all continents and
one continental region (Antarctica), with the highest
number of papers coming from China (14), Germany
(11) and the United States (8).

Most of the investigated studies focused on in-field
measurements only (28), but other studies also compared
field and lab measurements (23), integrating acquisition
methods, sample preparation and algorithms for analysis.

1. Bibliographic

2. Main topic of the study

3. Target soil property

4. S

In- …

individually or in group.

5. Conclusions

…

FIGURE 2 Types of gathered

information.
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Only five papers were literature reviews, the others were
original research papers. The investigated soil properties
were grouped into different classes, of which soil organic
carbon/soil organic matter (SOC/SOM) estimation was by
far the most investigated subject (31 papers; Figure 4).
Chemical, physical and hydrological properties were also
studied by means of soil spectroscopy, often to support soil
classification and mapping purposes. With lower occur-
rences, the other investigated properties were pH, total N,
nutrients (macro and micro), texture and granulometric
fractions, clay content, hydraulic features, carbonates,
CEC, bulk density, electrical conductivity, contaminants
and heavy metals and mineralogy. Soil classes, soil respira-
tion, microbial biomass and root density are properties
found only in one article each. Prediction accuracy was
also a target of several studies, as well as the effect of mois-
ture on prediction accuracy. Three papers dealt with soil
salinity assessment. One paper focused on archaeological
soil characterization. Other papers compared multiple sen-
sors and their capacity to be used for the prediction of soil
parameters, and examined the possibilities to use existing
SSLs to predict from field-collected spectra or developing
new devices to scan soils with Vis–NIR (Figure 5).

There are many ways of grouping or clustering large
amounts of papers, and with this review, we tried to analyse

contrasting perspectives which comprise the location of the
study and the position of the sensor with respect to the soil
target, sensors used and analytical approaches, among others.

4.2 | Sensors and instruments

Various Vis–NIR spectrometers were used in the reviewed
studies, varying in the spectral range, spectral resolution,
and so forth, reflecting a rapid development of portable
spectral devices, with a likely increasing potential for in-
field use. The spectral resolution (bandwidth) of the hyper-
spectral devices ranged from 3 to 16 nm depending on the
instrument and wavelength region, but spectra are often
produced with a resampled resolution of 1 or 2 nm, which
in the case of full range spectrometers results in more than
2000 data points. For multispectral devices, the bandwidth
can range from only three bands in the visible range (Red,
Green, Blue: RGB) to up to 40 bands including the red
edge and NIR range (Biney et al., 2023; Bockholt, 2020;
Fitzgerald et al., 2006).

Most studies used at least one full-range spectrometer
(51) or multiple spectrometer ranges (26), either supple-
menting each other—different spectrometers for different
spectral regions—or comparing full-range and reduced
range spectrometers (Figure 5). Some studies also used
sensors in the visible and NIR range (350–1000 nm,
n = 4) as well as the SWIR range (1000–2500 nm, n = 1),
while two studies used mid-infrared instruments.

Most of the sensors reflect ‘traditional’ sensor types,
as seen above. Newer sensor types, such as micro-
electromechanical systems (MEMS), offer cheaper and
more flexible development of measurement devices in a
multispectral range, but they are much less represented in
current publications, since they represent a relatively novel
development. Recently, Ng et al. (2020), Tang et al. (2020)
and Metzger et al. (2023) compared a MEMS-based spec-
trometer to a full range spectrometer.

FIGURE 3 Number of soil spectroscopy papers per year

evaluated in this review.

FIGURE 4 Aggregation of study topics covered in this review.

FIGURE 5 Overview of the sensor ranges utilized in the

reviewed studies.
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The most used spectrometer instrument brand was by
far ASD (Malvern Panalytical, Malvern, UK) with a total
of 62 mentions: 46 mentions for ASD FieldSpec devices,
8 for ASD AgriSpec, 7 for ASD LabSpec and 1 for ASD
QualitySpec Trek. Other brands included Veris (10), Bru-
ker (10), Agilent (9) and Spectral Evolution (4).

4.3 | Measurements and platforms

In several studies, the soils were measured with a contact
probe (32). Contact probes are usually connected to the
spectrometer via a fibre optic cable. They are placed in con-
tact with the soil sample to exclude ambient light and use
an internal light source to guarantee constant light inten-
sity. The constant lighting makes the contact probe particu-
larly suitable for in-field use, as the operation does not
depend on the natural lighting conditions. In 18 publica-
tions, multiple sensor types were used, mostly involving
contact probes in field studies and bare fibre measurements
in top-down field measurements simulating remote sensing
or lab measurements making use of an external light source
(Figure 6). Measurements without a contact probe were
mostly bare fibre measurements without an active light
source (passive light source such as sunlight, n = 15) or
measurements with an active light source (active light
source as in laboratory measurements for comparisons,
n = 14). In eight publications, the sensors were included in
a shank for soil tillage, which is dragged horizontally
through the soil or a probe that is inserted vertically in a
mobile, on-the-go measurement platform.

Depending on the use case and the sensor type
(Figure 6), there are different platforms on which the spec-
trometers are used (Figure 7). Apart from using multiple
platform types (35), the most used type was portable by
humans, either in a case or an adapted backpack for ease
of use. In 15 papers, the transport on tractors was specified
allowing static and on-the-go measurements, and in
4 papers, benchtop mounted instruments, including porta-
ble instruments, were used in benchtop configuration in

the lab. Only four publications considered in this study
mentioned airborne moving platforms.

The distance between the sensor and the soil sample in
the considered papers varied largely (Table 2). The most
used distance was 0 cm, mostly due to the use of contact
probes. Making use of, or evaluating different distances was
found 15 times, followed by measuring 10–200 cm away
from the sample surface (with bare fibre, n = 10), more
than 200 cm (n = 8) and 0–10 cm (n = 6).

There were many possibilities to collect the spectra
involving various degrees of sample handling. In most of
the studies (25), only the soil surface was scanned, in
14 studies, the soil was scanned at the surface and addition-
ally in the laboratory. Often the soil samples for the labora-
tory were then taken from a topsoil volume (usually top
10 or 20 cm). Sometimes the sampled cores or vertical pro-
files were measured spectrally. On-the-go measurements
from moving platforms were used in 11 studies (Figure 8).

4.4 | Predicted soil properties and
management

Soil spectroscopy has been used to determine several dif-
ferent soil properties (Figure 9). Most of the studies
focused on SOC/SOM and chemical and physical soil

FIGURE 6 Overview of the types of sensors. FIGURE 7 Number of different platforms used as sensor

carrier in the investigated studies.

TABLE 2 Distances between the sensor and the soil sample.

Distance to sample (cm) Count

0 47

Other, multiple 15

10–200 10

More than 200 8

0–10 6

Undefined 3

Other 1

8 of 18 PICCINI ET AL.
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properties such as total element content or soil texture
parameters, respectively. However, many other soil
properties were studied, indicating the large potential
for multiple parameters detection of soil spectroscopy.
The soil use and management type (Table 3) show that
most studies focused on conventional tillage (24) or did
not mention soil management although indicating the
cropping system (18). A total of 17 studies compared dif-
ferent soil management systems, among them conven-
tional, reduced or zero tillage as well as grassland. The
soil management systems reflected by cropping systems
were vineyards and orchards, paddy soils and sugar
cane. A total of 16 of the evaluated studies did not give
any information about the soil management or crop and
vegetation system investigated.

5 | DISCUSSION

5.1 | Measurement purpose

There are multiple purposes for which Vis–NIR spec-
troscopy is applied in the analysis of soils and cropping
systems. In our review, we found two main purposes.
First, as a rapid and cost-effective method to assess soil
characteristics as an alternative to wet chemical ana-
lyses in the laboratory for agricultural soil assessments
(Barra et al., 2021; Biney et al., 2020; Metzger
et al., 2023). Therefore, usually, a subsample of the field
is taken and measured, whose value is then attributed to
the field or a section of the field. This would be, in fact,
only an extension of traditional laboratory analysis with
a new (faster and cheaper) method. Second, the tech-
nique can be used as a ground-truthing or calibration
method for air and spaceborne sensing or other imaging
approaches, where the entire surface is recorded
(Ben-Dor et al., 2017; Hong et al., 2020; Pandey et al.,
2020). Both methods are increasingly more combined for
mapping purposes at field scale for decision support in an

agricultural context (Yuzugullu et al., 2020) or on regional
scale for mapping and monitoring of soil properties
(Castaldi et al., 2019; Yuzugullu et al., 2024).

Depending on the purpose of the measurements, the
position where the spectrum is measured can vary in
the soil: while for agriculture very often soil information
down to a certain depth is required (i.e., rooting or tillage
depth), ground-truthing for satellites requires informa-
tion of the undisturbed soil surface. In some cases, it
might be also advantageous to take the fresh soil out of
the field and analyse it ex situ, whereas measurement
directly in the field promises the least effort. Different
cropping systems were traditional soil tillage with inten-
sive ploughing in contrast to soil conserving methods
with the extreme of no-till methodology. Grassland use
also reflects different soil management with temporary
grassland as part of a crop rotation, which remains undis-
turbed for one to several years. Intensive soil disturbance
by conventional tillage produces a well-mixed layer in
the topsoil, which can be measured as a representative
sample by soil spectroscopy. In less or non-disturbed sys-
tems, such as strip or no till or grassland, usually, a gradi-
ent of soil properties establishes with soil depth over
time. This is often well reflected by SOC/SOM and nutri-
ents, but also by soil density, and so forth. Often plant
residues are much more prominent and living plant roots
are present in the subsurface. This is most pronounced in
grassland systems. These differences have significant con-
sequences for spectral measurements and subsequently
for analysis and evaluation and/or correction methodol-
ogy. While well mixed topsoil allows for a topsoil measure-
ment procedure, soils with established gradients likely
need a representation of that gradient in the spectral mea-
surements in depth to give representative data.

Although soil spectroscopy may not be as precise
per individual measurement compared to laboratory
analysis, it is more cost-efficient (Debaene et al., 2014;
Li et al., 2022; Viscarra Rossel & Brus, 2018), providing a
balance between accuracy and cost. Since this technique
is cheaper, simpler and more practical to use, many more
measurements can be made across space (laterally and
vertically) and time, so that, as an ensemble, the data are
more informative (England & Viscarra-Rossel, 2018). It is
evident that the accuracy and robustness of the measure-
ments, predicted soil properties and even resulting maps
are better when local or regional soil samples are com-
bined with laboratory analysis to adjust and support the
calibration and parameter prediction (Castaldi et al.,
2019). When the remote sensing component is also used
to strategically identify the optimal sampling position
according to spatial distribution and spread of soil hetero-
geneity, it is often called precision or support sampling
(Yuzugullu et al., 2020; Yuzugullu et al., 2024).

FIGURE 8 Approaches to soil scanning.
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5.2 | Choice of sensor and platform

Each type of sensor has its advantages and disadvantages,
that is, using a contact probe eliminates the influence of
external light and its variability, but only a small fraction of
the surface (about 2 cm2) is measured. Whereas, when pas-
sive sampling with the bare fibre (and field-of-view lenses)
is used, a larger portion of the soil surface can be measured,
giving a more integral view (Debaene et al., 2023). In the
case of bare fibre measurements, sometimes lenses are used
to better define the field of view (e.g., 4�; Debaene
et al., 2023). This can also be scaled up to using sensors on
UAVs and satellites, where the spatial resolution, as well as
the spectral resolution, become lower, but in turn bigger
areas can be scanned (thus also enhancing the influence of
distorting factors, unfortunately). These different sensor
types must be taken into consideration in conjunction with
the measurement purpose, and the appropriate setup

decided upon. This makes the task of defining one best
practice for in situ Vis–NIR spectroscopy rather challenging
and calls for a differentiated view on the topic.

Most of the paper evaluated here emphasized the fact
that models with laboratory spectra are generally more
robust (Sleep et al., 2022), but some papers underlined
that the method is suitable for in situ measurements. Yet,
a procedure to link field and laboratory samples and
measurements to be able to use SSLs with new field sam-
ples must be defined (Biney et al., 2020; Yin et al., 2023).

5.3 | Linking in-field to laboratory
spectroscopy

The literature on the subject is scarce and relatively recent,
starting with two papers in 2009 (Morgan et al., 2009; Vis-
carra Rossel et al., 2009), to 21 papers in the present

FIGURE 9 Main groups of soil

properties being predicted in the

reviewed publications. A detailed

overview of the soil properties is given in

the Supplementary Material.

TABLE 3 Overview of the management types covered by the studies.

Management Count Description

Conventional 24 Intensive soil tillage, usually ploughing (crops: wheat, barley, grain and silage maize, lettuce,
soybean, cotton, alfalfa, potato, taro, green cover crop, bare soil or no info on crop)

No/reduced
tillage

3 Arable cropping with no (direct seeding) or reduced (shallow harrowing, strip tillage, etc.) soil
disturbance

Grassland 2 Grassland, 1 year to permanent

Multiple 17 Two to five different soil management types contain: conventional (12), grassland (9), reduced
tillage (3), no-tillage (4), paddy soil (1), orchard (3), forest (1), agroforest (2), mining region soil
(1) and urban soil (1)

n.a. 16 No information (13), natural ecosystems (3)

Vineyard/orchard 4 Close to no or reduced tillage, cultivation of woody or shrubby species

Sugar cane 2 Perennial crop for 4–8 years with soil tillage before planting and reduced tillage during cultivation

Undefined soil
management

18 Agricultural land use but no clear statement on soil and/or crop management

Paddy soil 4 Regular flooding without tillage before sampling

10 of 18 PICCINI ET AL.
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review (Supplementary Material). About 70% of these
papers are more recent than 2018. Therefore, it can clearly
be seen as a new research focus in the field of soil spectros-
copy. Currently, most papers deal only with comparing
prediction results obtained using laboratory samples ver-
sus field samples. Even though more than 70% of papers
present field spectra and the corresponding laboratory
spectra, no link between those spectra is provided. Mostly,
a prediction model comparison is given. However, we
found few attempts truly linking lab-derived databases
with in-field spectroscopy with the aim of taking advan-
tage of the existing knowledge. Viscarra Rossel et al.
(2009) successfully employed field spectra to spike an
existing SSL. Franceschini et al. (2018) and Guo et al.
(2019) tried to correct field moist spectra with the external
parameter orthogonalization (EPO; Roger et al., 2003)
method, to obtain similar results to the dry spectra models.
However, it is noteworthy that it is difficult to evaluate
such an amount of literature since the results are not black
and white. For instance, many papers present different
definitions of what field spectra are (surface, core, contact
probe, etc.). Moreover, laboratory spectra have often differ-
ent meanings between studies, too (laboratory wet, dry,
dry and sieved, etc.). As underlined before, some methods
can be employed to diminish those external effects
(e.g., EPO method to correct for soil moisture), spectra pre-
treatment to correct for soil roughness, among others.
Mostly, the differences between spectra are related to soil
moisture and environmental factors related to physical soil
properties (Knadel et al., 2022).

5.4 | Data quality control

The use of reflectance spectroscopy may have the same
analytical quality as the traditional laboratory methods for
some properties. Several studies demonstrated that Vis–
NIR reflectance spectroscopy can be used to accurately
determine important soil constituents, such as organic
carbon, clay, sand and CEC (Demattê et al., 2019).
Soriano-Disla et al. (2014) found soil water content,
texture, SOC, CEC, exchangeable Ca and Mg, total N,
pH, concentration of metals or metalloids, microbial
size and activity could be successfully predicted. Gener-
ally, MIR spectroscopy produced better predictions than
Vis–NIR, but Vis–NIR still outperformed MIR for sev-
eral properties (e.g., biological ones). An advantage of
Vis–NIR is the instrument portability. In-field predic-
tions for clay, water, total organic carbon, extractable
phosphorus, and total N appear to be similar to labora-
tory methods, but there are issues regarding, for exam-
ple, sample heterogeneity, moisture content and surface
roughness (Soriano-Disla et al., 2014).

The types and the range of spectral sensors influence
the quantification of soil properties, but Romero et al.
(2018) observed that there is a small difference between
sensor measurements. Taking into consideration these
small differences, caused by geometry and equipment
variation, Ben-Dor et al. (2015) determined a protocol to
standardize measurements between sensors. The accu-
racy of a sensor can be measured by means of measure-
ment repeatability at the same time and place, and the
correlation with reference measurements of soil proper-
ties (Sinfield et al., 2010). Demattê et al. (2019) found that
predictions of soil properties using different sensors
showed high reproducibility, which is associated with
the analytical capacity of the reflectance spectroscopy
technique.

Laboratory soil spectroscopy measurements are prone
to errors due to differences in equipment and procedures
used (Ge et al., 2011; Knadel et al., 2013; Pimstein
et al., 2011), soil preparation and sub-sampling (Ben-Dor
et al., 2015) as well as the temperature and humidity dif-
ferences of the lab environments (Chabrillat et al., 2019).
In-field measurements are additionally affected by the in-
situ conditions but also by differences in measurement
procedures, which are usually more pronounced than
among laboratory approaches. For instance, static or
mobile measurements reflect different data quality. A
reduced integration time over a specific sampling point
for mobile, moving platform approaches lead to a lower
signal to noise ratio, reducing the accuracy and robust-
ness of a subsequent prediction. However, for mobile
approaches, this decreased single point measurement
quality is traded for an increased spatial sampling den-
sity, which allows for a higher accuracy of the overall
prediction in a field and likely better mapping results, on
the other hand.

In situ soil conditions such as soil moisture, structure,
stone content, coarse organic residues, smearing and
small-scale heterogeneity, mottles and redox features
affect the overall performance of field-based soil reflec-
tance spectroscopy applications that require proper envi-
ronmental conditions and various pretreatment methods
to mitigate the effect of moisture content, soil roughness
and vegetation cover (Gehl & Rice, 2007; Stenberg, 2010).
There is, however, some discussion of the extent to which
factors, such as soil aggregation and heterogeneity, affect
the reliability of in situ derived soil prediction for Vis–
NIR. For example, Waiser et al. (2007) found that clay
contents predicted from Vis–NIR scans of dried in situ
soil are more accurate than predictions from measure-
ments of field-moist in situ soil. Spectral measurements
of dried and ground soil resulted in the most accurate
predictions of clay content: in this case, the effect of
soil moisture appears to be more attenuating than soil
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structure or aggregation (Waiser et al., 2007). Efforts in
correcting for the effect of soil moisture have received
growing attention in the literature: for example, air dry-
ing the sample reduces the intensity of bands that are
related to water, thus signals associated with other soil
properties are not masked or hidden. Moreover, EPO
(Roger et al., 2003) has been used as a Vis–NIR pre-
processing step to remove the effect of soil moisture from
spectra (Minasny et al., 2011). Although bare soil condi-
tions are most favourable for in-field measurements, in
real field conditions, the presence of either green vegeta-
tion or straw and mulch is very common, and may lead
to overestimation of SOC (Bartholomeus et al., 2011).

5.5 | Processing and use of in-field
spectroscopy data

The analysis of the collected publications (Supplementary
Table S1) reflects an immense range of possibilities to math-
ematically pre-process the spectra to extract the maximum
information, as well as many mathematical modelling
approaches to relate the information contained in the spec-
tra to target properties (e.g., laboratory results). The mathe-
matical pre-processing algorithms involve smoothing the
spectrum over a defined number of points—simple or more
advanced smoothing algorithms such as the Savitzky–Golay
algorithm (Savitzky & Golay, 1964), baseline corrections—
continuum removal (Crucil et al., 2019), standard normal
variate (SNV; Barnes et al., 1989), multiplicative scatter cor-
rection (MSC; Geladi et al., 1985) and first and second
derivatives combined with Savitzky–Golay smoothing, to
name the most often used ones. Other pre-processing algo-
rithms dealing with the negative influence of soil moisture,
such as EPO and direct standardization (DS), are described
in more detail by Knadel et al. (2022). It is very common to
test several algorithms on a particular dataset, including
combining multiple algorithms to obtain the best modelling
results. As such, for example, Gras et al. (2014) tested 42 com-
binations of pre-processing algorithms—and Cambou et al.
(2016) made the same approach for 35—from which the best
combination could be selected. So far, there are few sugges-
tions on how to choose the right combination of pre-
processing methods. We found only one data mining tool
supporting decisions on the use of algorithms, PARACUDA
II® (Carmon & Ben-Dor, 2017; Gholizadeh et al., 2018).

The problem of algorithm selection gets more com-
plex when different modelling techniques are also taken
into consideration. Methods for Vis–NIR predictions of
soil properties are purely empirical. The first step is the
collection of a SSL containing the ideal duo of target soil
properties and corresponding soil spectra. Then, the rou-
tine of spectral preprocessing, followed by fitting of any

number of calibration model types (Soriano-Disla
et al., 2014), is performed.

Commonly used algorithms include partial least squares
regression (PLSR; Hutengs et al., 2019), random forest (RF),
support vector machines (SVMs) and M5Rules (CUBIST;
Munnaf & Mouazen, 2022) or neural network models
(Tiwari et al., 2015; Wang et al., 2019). Additionally, the
selected model validation represents an additional source of
variability. Here, the methods include splitting of a dataset
into a calibration and validation set to test the model perfor-
mance on unknown samples (Breure et al., 2022), the use
of different datasets from different sources to construct a
larger, eventually more representative dataset and the use
of different cross-validation techniques. The cross-validation
methods vary with (i) the number of samples left out in
each run—for example, Bricklemyer and Brown (2010)
used leave-one-out cross-validation, while Chen et al.
(2019) used a five-fold cross-validation; (ii) the method with
which the dataset is split—for example, Christy (2008) used
a fuzzy c-means algorithm, and Sleep et al. (2022) split the
dataset with the Kennard–Stone algorithm (Ramirez-Lopez
et al., 2014); and, (iii) the times the model run is repeated—
for example, Hutengs et al. (2019) used a 100 times repeated
double cross-validation.

Based on the plethora of possibilities to set up the
spectral prediction models, it can be assumed that
the choice of modelling approach can also be a source of
error. Apart from the model choice, their predictive
quality also depends on the precision and accuracy of
the reference laboratory measurements (Rayment
et al., 2012; Reeves III, 2010). Limitations of soil spec-
troscopy are often caused by the shortage of calibration
services and the lack of harmonized standard operating
procedures (Benedetti & van Egmond, 2021). To
overcome these obstacles, the Global Soil Spectral
Calibration Library and Estimation Service was proposed
(Shepherd et al., 2022). The selection of reference spectra
is one of the important steps dealing with calibration and
bias. The calibration-related error and bias can likely be
improved using standardization and best practice proto-
cols, when data stem from different sources, reflecting
different measurement processes and use of methods as
described above.

Missing data and information also represent a large
constraint in many studies, hindering cross comparison
or use of studies for meta-analysis. For example, the 16
studies about soil use and management reviewed here
did not give any information on the background of the
considered soils. Since soil management can have a large
impact on the needed calibration and consequently on
the output accuracy, such missing information will likely
be reflected in larger error terms (Greenberg et al., 2022;
Karapetsas et al., 2022; Pei et al., 2019; Yin et al., 2023).
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5.6 | Applications and limits of proximal
soil sensing

As derived from the discussion above, soil spectroscopy
holds great potential for practical applications. Applica-
tions may range from decision support in agriculture,
partly replacing laboratory analysis or allowing to derive
more information, to support soil mapping (Minasny
et al., 2009), to obtain a larger sampling resolution and a
larger amount of information because of its theoretically
lower cost per unit of measurement. In this range, one can
also see the development of measurement devices and
analysis software, advancing user-friendly access to soil
spectroscopy technology.

However, the potential for lower costs or the realization
of more measurements per area as well as good data quality
depend strongly on automation and standardization of pro-
cesses and methods. Such processes and methods range
from the soil preparation over the actual in-field measure-
ment to the prediction of a value, ideally reflecting a good
prediction of soil properties including error information.
The reliability and robustness required to derive these final
values, being interpreted for decisions in agricultural man-
agement or integrated in mapping approaches as a point in
spatial models, will drive its application in practical terms.
As derived from our study, automatization rarely takes
place during measurement, analysis and even in laborato-
ries today. And for many involved processes and methods
also standardization is lacking. Therefore, labour and tech-
nology costs with respect to sampling, but also for establish-
ing the sampling, prediction and interpretation pipeline
still represent a limit of soil spectroscopy needed to be over-
come for an efficient application and use.

In many situations, the availability of spectral librar-
ies and thus calibration and validation data limit a
broader use of soil spectroscopy. Thus, the establishment
and extension of SSLs are a major driver to advance soil
spectroscopy towards a standard tool. With existing
libraries, there is still a strong demand for optimization
of prediction and validation methodology and its stan-
dardization, as mentioned above. To get more spectra
and to quality control measurements today, the support
sampling approach is well accepted to get more sampling
points for calibration and validation.

In terms of soil properties, it is evident that spectros-
copy can be used to predict several properties at the same
time from the same spectra. As discussed above, the pre-
diction accuracy and robustness varies between proper-
ties depending on spectral features available for
prediction, but also on used sensors, measurement proce-
dure, availability of calibration data and analytical
methods among others. Because of the dependence of the
final prediction on the used processes and methods, we

emphasize that their standardization is a major step
toward improving our understanding of which proper-
ties can be predicted with high or low accuracy, reli-
ability and robustness by in-field soil spectroscopy.
Therefore, future work should initially focus on stan-
dardization followed by a broader and better evalua-
tion of property prediction power and potential,
supported with integration of technical possibilities for
automatization.

5.7 | Questions and tasks for the future

Several questions remain to be answered in the future,
especially:

1. How can the hard- and software technology be
advanced towards robust use in agricultural practice,
to be applicable in regular farming and soil mapping
operations?

2. Beyond the potential of Vis–NIR spectroscopy to be ‘a
fast and cheap alternative for laboratory analyses’,
there are very few publications that evaluate the
trade-off between speed/price and the reduced accu-
racy due to model-inherent errors, with special focus
on affordable instruments (which are more likely to
be used in farm operations).

3. In-field spectral measurements need to be harmonized
as much as possible to ensure robust prediction of soil
properties. This could be facilitated by a commonly
accepted measurement protocol setting standards.

6 | CONCLUSIONS

This paper gives an overview of recent in-field soil spec-
troscopy studies, clearly underlining the large potential of
the technique and highlighting ways forward to imple-
mentation into practical farming or soil mapping opera-
tions, also pinpointing actual limits and needs for research
and practical applications.

The intrinsic ability of multi-parameter soil property
detection bears the potential for better information and
thus decision support products on managed soils and soil
borne production systems, respectively. However, tools,
approaches, processes, methods and cropping systems
where the spectroscopy is applied and evaluated differ
largely in the considered studies, increasing input vari-
ables for robust property prediction and prediction errors,
making cross-comparisons between monitored situations,
and thus method harmonization, elaborate.

Thus, ways forward advancing in-field spectroscopy
and its practical application comprise increased databases
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including different instruments and cropping systems as well
as methodologies combining existing knowledge on lab spec-
troscopy with in-field spectroscopy calibration methods. A
best practice protocol for in-field spectroscopy application
seems to be central to improve reliability of soil property mea-
surements and finally practical application of soil spectros-
copy. Based on standardized and harmonized methods and
data analysis, it seems realistic to identify which soil proper-
ties can be predicted reliably and robustly in future research.

Efforts to raise awareness of the existing knowledge
in industry and of the available technology and subse-
quently its potential in practice will likely foster the
implementation of spectroscopy in real farm operations.
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