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A B S T R A C T

Harvested forage is the main raw feed for ruminant animals in Sweden, and is commonly cultivated in mixed
stands of legume and grass species. The fraction of legume on a dry matter basis, known as botanical composition
(BC) is a very important indicator of forage quality. In this study, hyperspectral imaging and near-infrared
spectrometer (NIRS) based methods were used to estimate BC, to overcome the shortcomings of hand separa-
tion, which is time and resource consuming. Timothy and red clover mix samples were collected from different
harvests in 2017–2019 from multiple sites in Northern Sweden and hand separated. The samples were syn-
thetically mixed to 11 different BC levels, i.e., 0–100 % clover content. Two different instruments (Specim
shortwave infrared (SWIR) hyperspectral imaging system and Foss 6500 spectrometer) were used to collect
spectral data of samples milled to two levels of coarseness. Three different regression analyses: partial least
squares regression (PLSR), support vector regression (SVR) and random forest regression (RFR), were used to
build BC estimation models. The effects of the milling particle sizes and the different instruments on the per-
formances of the models were compared. The data from second harvest in 2019 were used for independent
validation as evaluation, and the rest of data were randomly split for model calibration (75 %) and validation
(25 %). The models were iteratively run 1000 times with different splits, to check the effect from the splitting of
calibration and validation datasets. Among different regression analyses, PLSR performed best, with mean Nash-
Sutcliffe efficiency (NSE) for model evaluation from 0.76 to 0.87, varying for different instruments and milling
sizes. Finer milling made the model accuracies slightly higher. This study developed quick and robust methods to
determine the BC of timothy grass and red clover mixtures, which can provide useful information for farmers or
researchers.

1. Introduction

In Sweden, forage grasslands occupy a greater proportion of agri-
cultural lands than any other crop (44 % in 2022, [1]) and are the main
feed source for ruminant animals. Forage quantity and quality are the
main drivers of forage profitability and affect the efficiency of dairy and
meat industries.

The main species of grass-legume mixed forage are timothy (Phleum
pratense L.) and red clover (Trifolium pratense L.), and fields are typically
harvested 3 to 4 times, depending on the latitude. Botanical composition
(BC), is usually expressed as the proportion of clover or grass on a dry

weight basis, in a mixed sward, and affects both biomass and quality of
the forage [2,3]. BC varies among growing stages and harvests within
the growing season, and it is highly associated with nitrogen fertilization
requirements and forage quality. For example, Tessema et al. [4] found
that the legume proportion was higher in non-fertilized ley fields
compared to fields with nitrogen fertilization. Dindová et al. [5] re-
ported that the increase of grass proportion increased the fibre content
and yield of forage in the first harvest, whereas in the second and third
harvests, increasing grass proportion improved the organic matter di-
gestibility and net-energy for lactation. Determining BC accurately
could help to recognize forage crop statuses, such as biomass, nitrogen
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content and forage quality [4–8].
BC estimation in research studies is typically based on destructive

field sampling and hand separation, which is time and resource
consuming. Such methods are not appropriate for farming enterprises,
and it is more typical for farmers to use visual assessments, which are not
accurate and may not be representative of the whole field. It is typical
for relevant stakeholders, such as scientists, advisors and farmers, to
take samples from the field and mill them for forage quality analyses. A
potential post-harvest BC determination method involves laboratory-
based hyperspectral or near-infrared spectrometer (NIRS) scanning of
milled samples, and could be an efficient tool to rapidly and accurately
determine BC. Previous studies have reported the utilization of these
types of instruments to estimate forage traits, such as using laboratory
NIRS to detect legume-grass mixed forage quality [9], using laboratory
and handheld NIRS to estimate lucerne-grass mixed forage nutritive
values [10], and using laboratory NIRS and hyperspectral imaging to
predict forage maize quality [11]. There are also several studies that
focused on BC estimation using NIRS measurements, such as prediction
of clover content in clover-grass mixed forage [12], prediction of the
proportion of ryegrass, cocksfoot, tall fescue and clover in mixed forages
[13], and BC estimation of lucerne-grass mixtures [14]. To the best of
our knowledge, estimation of forage BC using hyperspectral imaging has
not previously been tested. Furthermore, milling particle size, which
affects sample surface scattering [15,16] and light absorption [17], has
been reported to affect the performance of using mid-infrared spectro-
scopic analysis to estimate the plant leaf nutrient content [18], however
its effect on BC prediction models has not been explored.

Partial least squares regression (PLSR) is commonly used to estimate
crop nutritional characteristics with NIRS data [10,11,19] and BC [14].
PLSR has also been extensively used for in situ hyperspectral measure-
ments for plant parameter estimation, such as cotton carotenoids [20],
winter wheat leaf area index [21], tobacco photosynthetic capacity [22]
and forage quality [23,24]. Moreover, several machine-learning based
algorithms, such as support vector machine (SVM) and random forest
(RF), are broadly applied for hyperspectral or NIRS data related classi-
fication or regression analyses; for example, nitrogen concentration
estimation [25,26], wheat disease detection [27], and plant species
classification [28,29].

The main research objective of this study was to build robust spectral
data-based BC estimation models. Secondary objectives were to explore
the effects of different spectral instruments and milling methods on the
performances of the regression models.

2. Materials and methods

2.1. Field data collection

Field forage samples, which consisted of mixtures of grass (timothy;
Phleum pratense L.) and legume (red clover; Trifolium pratense L.), were
taken at several harvests (1st, 2nd and 3rd) between 2017 and 2019
from different fields at four sites (Ås, Lännäs, Öjebyn, and
Röbäcksdalen) in Northern Sweden (Fig. 1).

A 76-cm diameter hoop was used to delineate 336 samples, which
were cut and hand separated into grass and clover. The separated
samples were oven dried at 60◦C for 48 h to determine dry matter (DM)
concentration and then BCwas calculated. More detailed information on
the samples is presented in Morel et al. [23] and Sun et al. [30]. Pairs of
separated dried timothy and red clover samples in same treatment plots
taken from 1st and 2nd harvests in 2017–2019 were manually
re-combined to obtain synthetic samples with BC (expressed as per-
centage of red clover content, %) ranging from 0 to 100 %, with 10 %
increments. Re-combined synthetic samples were then milled using a
knife mill (SM300 Rostfrei, Retsch GmbH, Haan, Germany), through a
2-mm sieve, referred to as coarse milling. After the scanning of the
milled samples using the hyperspectral and NIRS instruments, all of the
milled samples were re-ground using a cyclone mill (Cyclotec 1093

sample, Foss Tecator, Höganäs, Sweden) with a 1-mm sieve, which
pulverised samples to extremely small particles, referred to as fine
milling. All of the samples were then rescanned using hyperspectral and
NIRS instruments. Before scanning with hyperspectral and NIRS in-
struments, milled samples were placed in a fan-forced oven at 60◦C for
approximately 2 h to reduce and standardize the accumulated moisture.
In total, 132 synthetic samples were created, spanning different loca-
tions, years, and harvests.

2.2. Spectral data acquisition

Spectral signatures were acquired using two laboratory instruments:
(i) a NIR Foss 6500 spectrometer (Foss AS, Hillerød, Denmark) and (ii) a
Specim shortwave infrared (SWIR) 3 hyperspectral camera (Specim,
Spectral Imaging LTD., Oulu, Finland). The Foss spectrometer is a non-
imaging system that measures the absorbed light spectrum from 400 to
2500 nm at 2 nm intervals. After the sensor calibration with a spectralon
(Spectralon®, Labsphere Inc., Sutton, New Hampshire, USA) as white
reference, each sample was filled into a spinning cup for scanning. After

Fig. 1. Geographic locations of different sites in Sweden used in this study.
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each scanning, the sample was put back to its own container. For each
sample, the scanning was replicated by refilling the spinning cup from
the same milled samples. The Specim SWIR 3 instrument acquires
hyperspectral images within the 1000–2495 nm spectral range, with a
spectral interval of approximate 5.2 nm. The Specim SWIR 3 instrument
was mounted on a machine (Umbio AB, Umeå, Sweden) which contains
its own light source and movable platform. Before each sampling scan-
ning, the shutter of the camera was closed to get the dark reference;
afterwards the shutter was opened and the moveable platform was
moved slightly forward to measure the incident light for getting the
white reference. Then the same samples, placed in two Petri dishes as
replicates, were moved forward with the moveable platform to scan the
samples, after which the platform was moved backwards for the next
scanning (See Fig. 2). The hyperspectral images were processed using
Breeze software (Prediktera AB, Umeå, Sweden) to remove the back-
ground and export averaged absorbance spectra for samples in each
Petri dish.

In order to reduce noise, 10 bands from the beginning and end of
each instrument were removed and the remaining bands were used for
the regression analyses. Following the spectral data control, two samples
were removed from the analysis because of unexpected abnormal
spectral signatures, and the remaining 130 samples were used for
regression analyses.

2.3. Regression analyses

Before building multivariate regression models, which comprised
PLSR, SVM based regression (support vector regression, SVR), and RF
based regression (RFR) models, the sensitivity of each spectral band to
the clover content was evaluated using univariate linear regressions in
the R environment [31].

All of the multivariate regressions were tested in the R environment
[31]. PLSR integrates principal component analysis and multiple linear
regressions to decompose complex data matrices and correlate the pre-
dictor and response variables consequently so that only the most
important linear combinations are utilized in the regression. The PLSR
was run using the “pls” package [32] with a 10-fold cross-validation to
optimize the number of principal components with minimum root mean
squared error (RMSE). SVM allocates data from vector covariates into

multidimensional feature space with kernel definition, where the linear
regression can be implemented, therefore SVM can be used for regres-
sion analysis and the continuous output could be produced [33]. The
SVR was operated using the “e1071” package [34], and the
hyper-parameters (ε, C and γ [35]) were optimized based on a grid
search with a radial basis kernel. ε is the function which could discipline
prediction errors within the ±ε range. C is the parameter which de-
termines the penalty weight of deviations outside ±ε. γ is a radial based
kernel-specific parameter that contains the deviation between errors
derived from the bias and variance in the adjusted model [24]. RF al-
gorithm trains multiple different nonparametric trees using 2/3 of the
samples (in-bag) and the rest 1/3 of the samples (out-of-bag) are used for
internal cross-validation [36]. Once the different trees were trained, the
averaging result from all of the trees is used as the final output from RF
[37], and RF is able to run regression analysis (RFR, [38,39]). The
“RandomForest” package was used to conduct RFR [40], and the ‘tuneRF’
function was used to optimize the user-defined number of features
(mtry), which is used to split nodes of each decision tree, and the
parameter ntree, user-defined number of trees for forest construction,
was set at the default value of 500.

2.4. Model evaluation

The coefficient of determination (R2) was used to evaluate the uni-
variate linear analyses (i.e., band sensitivity analysis to BC and band
collinearity analysis). For the multivariate regression analyses of BC
estimation, the data from 2nd harvest in 2019 was used for independent
evaluation, and the remaining data were randomly split for model
calibration (75 %) and validation (25 %), respectively. For exploring the
effect from the splitting of calibration and validation datasets, the
models were iteratively run 1000 times with different splits.

The multivariate regression modelling accuracies were assessed
using the Nash-Sutcliffe model efficiency (NSE), the Root Mean Square
Error (RMSE), Ratio of Performance to Inter-Quartile distance (RPIQ)
and bias [38,41], as described by equations (1)–(5), respectively.

Fig. 2. Illustration of the hyperspectral imaging instrument containing Specim SWIR 3 camera, light source, moveable platform, and the running computer.
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(4)

Bias=

∑n

i=1
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n
(5)

Where Obsi and Simi are observed and simulated values, Obs and Sim are
mean observed and simulated values, and n is the total number of ob-
servations. Q1 and Q3 are the first and third quartiles of observed
values. All of the calculations were implemented in R environment [31].

For evaluating the distributions patterns (e.g., absorbance over
bands with different clover contents, NSE values derived from 1000 it-
erations), the mean and standard deviation values were computed in R
environment using the functions “mean” and “sd” [31].

3. Results

3.1. Absorbance spectra

Table 1 shows the mean and standard deviations of absorbance
spectra of coarse and fine milled samples as acquired from both in-
struments (Foss and Specim). The distributions of absorbance over
bands with different clover contents (0, 50 % and 100 %) from two in-
struments (Foss and Specim) with different milling methods are illus-
trated in Fig. 3.

The samples with higher clover content tended to have higher overall
absorbance values, especially for samples with coarse milling. The
particle size also affected absorbance – mean and standard deviation
values of absorbance from both instruments for coarse milled samples
were higher than for fine milled samples. This indicated that fine milling
reduced the spectral noise of sample absorbance compared to coarse
milling. The differences of absorbance values between different clover
content were greater with coarse milling than fine milling (mean values

increased from 0.21 to 0.27 and 0.21 to 0.26 for Foss and Specim in-
struments with coarse milling, whereas mean values increased from 0.18
to 0.2 and 0.18 to 0.19 for Foss and Specim instruments with fine
milling) (Table 1).

3.2. Band sensitivity

The linear fits between absorbance values of each band with clover
contents had overall poor performances (R2 < 0.5, Fig. 4). The distri-
butions of the fits accuracies from two different milling methods tended
to follow similar patterns, yet a clear offset is evident, with higher R2

values for the coarse milled samples. The spectral region between 1000
and 1450 nm responded differently, as R2 values first increased from
1000 nm to 1300 nm and then decreased until 1450 nm for the fine
milled samples, and the R2 values were higher for the fine milled sam-
ples than for the coarse milled samples in the spectral region from 1200
nm to 1400 nm (Fig. 4). There was very little difference between the two
different instruments at the same wavelengths (accuracies had similar
values and distributions).

3.3. Model performance

Fig. 5 shows the distributions of the NSE values of model calibration,
validation and evaluation calculated from the 1000 iterations with
different random splitting of calibration and validation datasets. Table 2
further summarizes the distributions. Compared to the NSE values from
model calibration (mean values range from 0.93 to 0.99, Table 2), the
NSE values decreased for validation (mean values range from 0.58 to
0.97, Table 2) and evaluation (mean values range from − 0.21 to 0.87,
Table 2). The extent of the decrease depended on the model type, with
the biggest drop for RFR, followed by SVR and PLSR. This could suggest
an overfitting problem. Among different regression models, PLSR out-
performed SVR and RFR with mean NSE values from iterative runs of
0.96–0.99, 0.89–0.97 and 0.76–0.87 for calibration, validation and
evaluation (Table 2). The better performances of PLSR also translate into
a smaller deviation for model validation and evaluation (Table 2)
compared to SVR and RFR. This suggests that PLSR is more robust than
SVR and RFR to estimate BC. Regarding the effect of milling methods,
the coarse milling produced higher deviation of NSE values (Fig. 5,
Table 2) compared to the fine milling, which indicates that the coarse
milling made the modelling less stable with the iterative runs. The dis-
tributions of NSE values obtained with spectral data from the Foss and
Specim instruments does not suggest any performance differences be-
tween the two instruments (Fig. 5, Table 2).

Table 3 provides a summary of the statistical indicators, derived from
models with median calibration NSE values from the 1000 iterations
with different instruments and milling methods (Fig. 5). Similar to re-
sults shown in Fig. 5, model calibration accuracies were high, with NSE,
RMSE, RPIQ and bias ranging from 0.93 to 0.99, 2.8 %–8.41 %, 6.54 to
20.4, and − 0.31 %–0.63 %. However, for the model validation, the ac-
curacies declined as the range of NSE, RMSE, RPIQ, and bias varied
between 0.62 and 0.98, 4.74 % and 19.89 %, 2.51 and 12.65 as well as
− 3.78 % and 2.9 %. Performances with the evaluation dataset showed
obvious modelling differences. PLSR performed best, with ranges for the
statistical indicators as follows: NSE, 0.78 to 0.85; RMSE, 12.27 %–14.8
%; RPIQ, 3.72 to 4.48, and bias, − 5.25 %–10.05 %. RFR performed least
effectively, with ranges of the statistical indicators as NSE, − 0.17 to
0.42; RMSE, 24.18 %–34.21 %; RPIQ, 2.81 to 3.12; and bias, − 14.83 and
26.7. SVR performed moderately with ranges of the statistical indicators
as NSE, 0.62 to 0.69; RMSE, 17.6 %–19.58 %; RPIQ, 1.61 to 2.27; and
bias, − 7.02 %–10.74 %. Among these three regression algorithms, PLSR
outperformed SVR and RFR, regardless of the instrument or the milling
size. In contrast, RFR showed the poorest performance.

The effects of milling method on the model accuracy varied between
instruments and algorithms (Table 3). Using the best performing algo-
rithm, i.e., PLSR, as an example, the difference between coarse and fine

Table 1
Absorbance (mean± standard deviation) for samples (coarse milling with 2-mm
sieve or fine milling with 1-mm sieve) with different clover contents, scanned by
different instruments (Foss and Specim).

Clover content (%) Foss Specim

Coarse Milled Fine Milled Coarse Milled Fine Milled

0 0.21 ± 0.18 0.18 ± 0.16 0.21 ± 0.12 0.18 ± 0.10
10 0.21 ± 0.18 0.19 ± 0.16 0.21 ± 0.13 0.18 ± 0.10
20 0.22 ± 0.18 0.18 ± 0.16 0.22 ± 0.13 0.17 ± 0.09
30 0.22 ± 0.18 0.18 ± 0.16 0.22 ± 0.13 0.17 ± 0.10
40 0.22 ± 0.18 0.18 ± 0.16 0.23 ± 0.13 0.17 ± 0.09
50 0.23 ± 0.19 0.18 ± 0.17 0.23 ± 0.13 0.18 ± 0.10
60 0.24 ± 0.19 0.19 ± 0.17 0.24 ± 0.14 0.18 ± 0.10
70 0.25 ± 0.19 0.19 ± 0.17 0.25 ± 0.14 0.18 ± 0.10
80 0.25 ± 0.20 0.19 ± 0.17 0.25 ± 0.14 0.18 ± 0.11
90 0.26 ± 0.20 0.19 ± 0.18 0.25 ± 0.14 0.18 ± 0.11
100 0.27 ± 0.21 0.20 ± 0.17 0.26 ± 0.15 0.19 ± 0.11
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milling methods was minor with the Foss, whereas there was clear dif-
ference with the Specim, where calibration accuracies increased (NSE
and RPIQ values increased by 0.2 and 9.56, and RMSE values decreased
by 3 %) from coarse milling to fine milling. The validation accuracies
increased with fine milling as NSE increased from 0.83 to 0.98, RPIQ
increased from 4.01 to 12.65, and RMSE declined from 12.74 % to 4.74
%. In contrast, the evaluation accuracies decreased with fine milling
(NSE decreased from 0.85 to 0.78, RPIQ decreased from 4.48 to 3.72,
and RMSE increased from 12.27 % to 14.8 %).

The accuracy of BC estimation was affected by the milling methods,
the instruments, and the regression models. Overall, comparing different
regression algorithms and milling methods, PLSR with fine milling
performed best, based on its higher accuracy. The PLSRmodel results for
Specim and Foss instruments with finemilling from Table 3 are shown in
Fig. 6, and indicate that the difference in performances of Specim and
Foss was minor.

Fig. 3. Absorbance distributions over bands with different clover contents (0, 50 % and 100 %) from two instruments (Foss and Specim) with different milling
methods (coarse milling with 2-mm sieve and fine milling with 1-mm sieve). The solid and dashed lines show mean and standard deviation of absorbance values.

Fig. 4. Accuracies of linear correlations between absorbance values of each band and the clover contents, using data obtained from different instruments and
milling methods.

J. Peng et al.
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Fig. 5. Variations of Nash-Sutcliffe Efficiency (NSE) calculated from 1000 iterations using partial least squares regression (PLSR), random forest regression (RFR),
and support vector regression (SVR) derived from spectral data obtained from a NIR Foss 6500 spectrometer and a Specim SWIR 3 hyperspectral camera, after either
coarse milling or fine milling. The horizontal lines in each boxplot indicate the first quartile, median and third quartile of NSE values. The upper end of the black line
is the upper bound for detecting outliers (Q3 + 1.5 × (Q3–Q1)) and the bottom end of the black line is the lower bound for detecting outliers (Q1 − 1.5 × (Q3–Q1)).
Black dots represent outliers.

J. Peng et al.
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Table 2
Mean values and Standard deviations of Nash-Sutcliffe Efficiency (NSE) calculated from 1000 iterations using partial least squares regression (PLSR), random forest
regression (RFR), and support vector regression (SVR) derived from spectral data obtained from different instruments (NIR Foss 6500 spectrometer and Specim SWIR 3
hyperspectral camera) and different milling methods (coarse milling and fine milling).

Instrument Milling Calibration Validation Evaluation

PLSR RFR SVR PLSR RFR SVR PLSR RFR SVR

Foss Coarse Milled 0.99 ± 0.006 0.95 ± 0.005 0.99 ± 0.008 0.95 ± 0.02 0.71 ± 0.109 0.91 ± 0.046 0.8 ± 0.056 − 0.04 ± 0.092 0.66 ± 0.067
Fine Milled 0.99 ± 0.005 0.95 ± 0.004 0.98 ± 0.009 0.95 ± 0.023 0.69 ± 0.084 0.87 ± 0.048 0.87 ± 0.041 0.4 ± 0.084 0.44 ± 0.163

Specim Coarse Milled 0.96 ± 0.018 0.93 ± 0.006 0.96 ± 0.023 0.89 ± 0.044 0.58 ± 0.128 0.85 ± 0.056 0.76 ± 0.093 − 0.21 ± 0.133 0.59 ± 0.155
Fine Milled 0.99 ± 0.005 0.95 ± 0.004 0.96 ± 0.018 0.97 ± 0.012 0.69 ± 0.102 0.85 ± 0.049 0.86 ± 0.033 0.19 ± 0.064 0.59 ± 0.126

Table 3
Statistical analysis results (NSE,RMSE, RPIQ and bias) for forage botanical composition (BC) estimation modelling derived from spectral data obtained from different
instruments (NIR Foss 6500 spectrometer and Specim SWIR 3 hyperspectral camera) and different milling methods (coarse milling and fine milling) using partial least
squares regression (PLSR), support vector regression (SVR), and random forest regression (RFR).

Instrument Milling Indicator Calibration (n = 83) Validation (n = 25) Evaluation (n = 22)

PLSR RFR SVR PLSR RFR SVR PLSR RFR SVR

Foss Coarse Milled NSE 0.99 0.95 0.99 0.95 0.62 0.96 0.85 − 0.17 0.63
RMSE (%) 2.94 6.95 3.48 6.85 18.84 6.29 12.35 34.21 19.21
RPIQ 20.40 17.24 8.63 7.30 9.55 3.19 4.45 2.86 1.61
Bias (%) 0.00 − 0.03 0.00 0.52 1.01 2.50 1.71 26.70 10.74

Fine Milled NSE 0.98 0.95 0.98 0.95 0.63 0.91 0.84 0.42 0.62
RMSE (%) 3.95 7.05 4.03 6.74 19.89 9.80 12.50 24.18 19.58
RPIQ 15.19 13.65 8.51 7.42 6.12 2.51 4.40 2.81 2.27
Bias (%) 0.00 0.63 0.38 − 1.09 − 2.79 2.14 10.05 3.02 − 1.83

Specim Coarse Milled NSE 0.97 0.93 0.97 0.83 0.63 0.91 0.85 − 0.08 0.69
RMSE (%) 5.93 8.41 5.82 12.47 19.52 9.66 12.27 32.82 17.60
RPIQ 10.12 9.45 6.54 4.01 6.21 3.07 4.48 3.12 1.68
Bias (%) 0.00 0.00 − 0.28 0.47 − 2.09 0.66 2.42 13.93 8.52

Fine Milled NSE 0.99 0.95 0.96 0.98 0.67 0.86 0.78 0.20 0.68
RMSE(%) 2.80 7.22 6.44 4.74 18.45 11.30 14.80 28.21 17.86
RPIQ 19.68 7.76 7.62 12.65 5.31 3.25 3.72 3.08 1.95
Bias (%) 0.00 0.08 − 0.31 − 1.10 2.90 − 3.78 − 5.25 − 14.83 − 7.02

Fig. 6. Observed vs. estimated clover content for selected PLSR models with data from fine milled samples (Table 3).
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4. Discussion

4.1. Sample absorbance patterns

In this study, samples with higher clover content had higher absor-
bance values. Red clover, and more generally legumes, usually absorbs
more light than grasses because of pigmentation differences, i.e., clover
plants have higher concentrations of light-absorbing pigments, such as
chlorophyll, carotenoids and anthocyanins [42–44]. Because legumes
can fix atmospheric nitrogen they typically have higher crude protein
concentration than grasses [45]. One possible explanation why samples
with higher clover content absorbed more light could be that after the
drying and milling processes, these pigments were still functional, to a
certain extent. These findings are confirmed by previous studies that
explored the effect of different drying treatments on pigment contents of
green plant leaves and showed that with oven drying at approximately
60◦C, there was no obvious change in concentrations of chlorophyll and
carotenoids, yet variations were reported among studied species [46,
47]. Lewicki and Duszczyk [48] showed that the dehydrated leaves still
absorb light after drying because of the preserved pigments. In this
study, the absorbance differences among samples with different clover
contents under coarse milling were larger, which might be because

larger sized particles absorb more light, whereas smaller particles reflect
more light [17].

4.2. Model performance

The regression modelling results (Fig. 5 and Table 2) show that PLSR
performed better than SVR and RFR. Several other studies have also
reported that PLSR outperformed other statistical methods such as SVR
and even deep learning (DL) in the application of hyperspectral data
[49]. PLSR links the spectral data and the target variables using a linear
multivariate model by compressing and reducing the large number of
collinear spectral variables to a few non-correlated latent variables with
statistical determination of the relative contribution of the target vari-
able to the spectral variables. PLSR also maximizes the correlation be-
tween the response and latent variables; hence it has strong ability to
deal with dimensionality and noise in predictor variables [20,50,51].
Compared to other forage BC estimation models built from NIRS data
using PLSR, the model accuracy from this study was similar to Cha-
taigner et al. [13] and Karayilanli et al. [14], but higher than Wachen-
dorf et al. [12]. In the current study, SVR performed similarly to PLSR,
yet slightly poorer for the validation and evaluation subsets. Axelsson
et al. [52] reported that SVR performance was weakened by

Fig. 7. The collinearity analysis between different bands. The values indicate the coefficient of determination (R2) determined by linear fit between the absorbance of
each band with the absorbance of all other bands for each instrument (Foss and Specim) and each milling method (coarse milling with a 2-mm sieve and fine milling
with a 1-mm sieve).
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multicollinearity if the full hyperspectral spectrum was used, and that
selection of the most relevant bands should be conducted before running
SVR. In addition to SVM based regression analyses, several other SVM
based classification studies also reported that the feature selection can
address the multicollinearity issue and, eventually, improve the per-
formance of SVM [53–55]. In contrast to PLSR, RFR did not provide
satisfactory results, especially for the validation and evaluation. Similar
findings were recently reported by Morel et al [23] when using RFR for
the prediction of forage quality parameters using in situ Yara-N sensor
spectral data. The reason might be that RFR has difficulty extrapolating
variables outside the range of its training datasets due to a poorer
coverage ability (lower availability for data outside the training datasets
range) derived from its relatively higher-level flexibility for non-linear
relations fitting compared to other machine-learning algorithms, e.g.,
SVM [23,38]. This shortcoming tunes the RF model towards the training
data and its predicted values rarely fall outside the training data range
[56,57]. The high dimensionality of hyperspectral data might worsen
the extrapolation problem. Several studies reported the challenge of
using RF and hyperspectral data for classification purposes, due to the
high dimensionality (and thus high multicollinearity) of the spectral
data (e.g. Ref. [58,59]). Other studies propose selecting the most
important variables by computing the variable importance scores before
applying RF algorithms to improve modelling performance [60,61],
which should be tested and applied in the future.

This study showed that finer milling led to more accurate modelling
results. A possible reason is that finer milling reduces the noise (i.e.,
specularity) from the spectral data, as the particle size influences spec-
tral signatures [62]. Fig. 7 shows that milling reduced the collinearity,
represented by R2 of linear fits between bands, e.g. 400–1400 nm and
1000–2500 nm for the Foss; and 1050–1400 nm and 1450–2450 nm for
the Specim. Ikoyi and Younge [15] explored the effect of particle size on
macro-mineral concentration estimation using NIRS spectrum and they
found that model calibration accuracy was higher using data collected
frommilled dry hay samples with finer particle size. They explained that
the reason could be that smaller particle size resulted in less spectral
noise. However, considering practical applications, fine milling is less
time and resource efficient compared to coarse milling, and the differ-
ence of performances related to the milling methods might not justify
the use of fine milling samples. From a practical perspective, if a com-
mercial laboratory was to offer a BC estimation service, the milling
process should ideally be the same as for other forage quality analyses.

The difference of the performance between the instruments was not
obvious– each has pros and cons. The Specim instrument has less bands,
which could reduce the collinearity of input parameters. However, the
Specim has an imaging sensor, in which imaging, processing, and data
pre-processing are relatively time-consuming [11]. Foss has a
non-imaging sensor, which needs less data pre-processing [10], but the
data is relatively more redundant.

5. Conclusions

This study explored how well forage BC can be estimated by
hyperspectral and NIRS data obtained from different instruments,
different milling methods, and different regression algorithms. The main
conclusions are:

(i) Samples with higher clover content had slightly higher absor-
bance values. Finer milling decreased this absorbance difference
but also reduced the spectral noise.

(ii) Among different regression analyses for BC estimation, PLSR
generally performed most optimally.

(iii) Overall, the regression modelling accuracies from data with finer
milling were higher than for coarse milling.

(iv) There was no obvious accuracy difference between spectral in-
struments. However, processing of the data obtained from the

Specim instrument requires more time and computation
resources.
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