Home About Browse Search

Spring water stress in Scots pine

interaction of snow and soil temperature

Mellander, Per-Erik (2003). Spring water stress in Scots pine. Diss. (sammanfattning/summary) Uppsala : Sveriges lantbruksuniv., Acta Universitatis Agriculturae Sueciae. Silvestria, 1401-6230 ; 287
ISBN 91-576-6521-4
[Doctoral thesis]

[img] PDF


Water use and net carbon assimilation during spring was examined on Scots pine trees exposed to different soil warming dynamics in the field. Sap flow, needle water potential and net carbon assimilation were measured on trees that were exposed to a wide range of soil temperature regimes caused by manipulating the snow cover on tree-scale soil plots. This made it possible to quantify the sensitivity of water uptake and recovery of gas exchange by Scots pine in the critical transition from winter dormancy to the growing season, which can be influenced by silvicultural practices. A part of the study was to find a tool for estimating the coupled effect of belowground and aboveground climate on transpiration, as well as to adapt this tool to the harsh climate of the boreal forest. Combining the results of field experiments on tree susceptibility to water stress with a physically based SVAT model as well as a model for estimating the recovery of photosynthesis helped to predict spatial and inter-annual variability of snow depths, soil warming, water uptake and net primary productivity during spring within different Scots pine stands across the landscape. This could provide a better basis for a more frostconscious forest management. The studies have confirmed the importance of low soil temperatures in combination with aboveground climate for root water uptake and net carbon assimilation during spring, when soil warming occurs after the start of the growing season. The studies have also confirmed that earlier, controlled laboratory studies on the inhibiting effects of low soil temperature on water relations and gas exchange for seedlings or saplings also hold true on mature trees in the field. The experimental data served well as the basis for model analyses of the interaction between belowground and aboveground conditions on water use and net photosynthesis. The results of the field studies and model analyses suggest that the effect of soil temperature on tree water uptake and net photosynthesis during spring, in conjunction with aboveground conditions, are factors that need to be considered in forest management in areas susceptible to soil frost and low soil temperatures.

Authors/Creators:Mellander, Per-Erik
Title:Spring water stress in Scots pine
Subtitle:interaction of snow and soil temperature
Series Name/Journal:Acta Universitatis Agriculturae Sueciae. Silvestria
Year of publishing :September 2003
Number of Pages:39
ALLI. Mellander, P-E., Bishop, K. & Lundmark, T. The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand. Forest Ecology and Management (Accepted). II. Strand, M., Lundmark, T., Söderbergh, I. & Mellander, P E. 2002. Impact of seasonal air and soil temperatures on photosynthesis in Scots pine trees. Tree Physiology, 22: 839-847. III. Mellander, P-E., Stähli, M., Gustafsson, D. & Bishop, K. Modelling the effect of low soil temperatures on water uptake by Scots pine. (Manuscript). IV. Mellander, P-E., Bergh, J. Lundmark, T. & Bishop, K. Recovery of photosynthetic capacity in Scots pine: a model analysis of forest plots with experimentally manipulated winter/spring soil temperature regimes. (Manuscript). V. Cienciala, E., Mellander, P-E., Kučera, J., Opluštilová, M., Ottosson- Löfvenius, M. & Bishop, K. 2002. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Canadian Journal of Forest Research, 32: 693-702. VI. Mellander, P-E., Bishop, K. & Lundmark, T. Modelling a decade of soil temperature in the Scots pine stands of a boreal landscape (Manuscript).
Place of Publication:Uppsala
ISBN for printed version:91-576-6521-4
Publication Type:Doctoral thesis
Full Text Status:Public
Agris subject categories.:F Plant production > F60 Plant physiology and biochemistry
F Plant production > F61 Plant physiology - Nutrition
Subjects:Not in use, please see Agris categories
Agrovoc terms:cold, soil temperature, transpiration, roots, water potential, carbon dioxide, anabolism, frost, silviculture, pinus sylvestris
Keywords:Low temperature, soil warming, transpiration, root water uptake, carbon dioxide assimilation, soil frost, silvicultural practice, Pinus Sylvestris
Permanent URL:
ID Code:366
Department:(NL, NJ) > Dept. of Environmental Assessment (until 080831)
Deposited By: Staff Epsilon
Deposited On:26 Sep 2003 00:00
Metadata Last Modified:02 Dec 2014 10:04

Repository Staff Only: item control page


Downloads per year (since September 2012)

View more statistics