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Abstract: Thirteen wood parameters were predicted using near infrared (NIR) spectra in the range 780–2380 nm modelled
by biorthogonal partial least squares regression. The analysis of parameters and NIR measurements was done on clear-
wood samples from the base and midstem of Scots pine (Pinus sylvestris L.) from trees at two sites. Calibrations based on
the measured parameters at seven growth rings (cambial age ranging between 6 and 42 years) could be divided into three
groups: (i) the best accuracy was found for longitudinal modulus of elasticity (r > 0.9) followed by bending, compression,
and cell length (0.8 < r < 0.9); (ii) microfibril angle, longitudinal hardness, proportion of latewood, and creep with correla-
tions in the range of 0.7–0.8; and (iii) tangential hardness, cell diameter, and cell wall thickness with 0.4 < r < 0.7. It was
also shown that juvenile (cambial age £20 years) and mature wood can be classified using NIR techniques.

Résumé : La régression bi-orthogonale partielle par les moindres carrés a été utilisée pour modéliser 13 paramètres du
bois à l’aide de spectres de transmittance dans les longueurs d’onde allant de 780 à 2380 nm dans le proche infrarouge
(PIR). L’analyse des paramètres et des mesures de transmittance dans le PIR a été réalisée sur des échantillons de bois
sain provenant de la base du tronc et de la portion intermédiaire de la cime de tiges de pin sylvestre (Pinus sylvestris L.)
récoltées dans deux stations. Les étalonnages basés sur la mesure des paramètres dans sept cernes annuels (âge cambial
variant de 6 à 42 ans) pouvaient être divisés en trois groupes : (i) la plus grande précision a été obtenue pour le module
d’élasticité longitudinal (r > 0,9) suivi par la flexion, la compression et la longueur des cellules (0,8 < r < 0,9), (ii) l’angle
des microfibrilles, la dureté longitudinale, la proportion de bois final et le fluage de retour avaient un coefficient de corré-
lation de 0,7–0,8 et (iii) la dureté tangentielle, le diamètre des cellules et l’épaisseur des parois cellulaires avaient un coef-
ficient de corrélation variant entre 0,4 et 0,7. Nous avons aussi montré que l’utilisation de la transmittance dans le PIR
permet de distinguer le bois juvénile (âge cambial £20 ans) du bois mature.

[Traduit par la Rédaction]

Introduction

Wood is mostly regarded as a raw material without well-
defined and -described properties. The utilization and view
of wood as an engineering material needs a scientific-based
description of wood in, for example, structural, chemical,
and mechanical terms, as is done for other materials. Thus,
wood could then be included in common material databases,
thereby making it possible to choose as an alternative in
construction other than that where wood normally is used to-
day. Such a renewed view founded on documented proper-
ties ought to widen the assortment of wood products and
further develop the forest industry. The rapid progress in

process analytical technology and data pattern recognition
facilitate the implementation of this more advanced view of
wood (Bowyer 2000).

Variation in wood properties depends on genetic and
environmental interactions during the growth of individual
trees. Earlywood and latewood, juvenile and mature wood,
as well as sapwood and heartwood in conifers are examples
of such properties that result from natural physiologic proc-
esses (Hillis 1987; Larson 1994; Gartner 1995; Zobel and
Sprague 1998). Most of the variation (e.g., in fibre length,
density and chemical composition) is found within trees
(Zobel and van Buijtenen 1989). Wood properties vary radi-
ally and longitudinally within a tree, and all show variation
within each growth ring.

Near infrared (NIR) spectroscopy is of interest as a pro-
cess analytical technique to characterize wood because it is
a fast and nondestructive method and suitable for online
measurements. NIR absorbance spectra are the result of
overtone vibrations in bonds of structural groups (e.g., O-H,
C-H and N-H) in polar molecules. An advantage is that NIR
radiation penetrates deeper into samples than ultraviolet,
visible, or infrared radiation does (Osborne et al. 1993,
Burns and Ciurczak 2001). Studies have also shown that
NIR spectroscopy can be used to predict moisture content
(Thygesen and Lundqvist 2000a, 2000b); cellulose, hemi-
cellulose, and lignin (Shultz and Burns 1990; Wright et al.
1990; Axrup et al. 2000; Hodge and Woodbridge 2004);
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fibre length (Marklund et al. 1999; Hauksson et al. 2001);
microfibril angle (MFA) (Schimleck et al. 2001a; Jones et
al. 2005); density (Hoffmeyer and Pederson 1995;
Schimleck et al. 2001b, 2002); and aggregated mechanical
strength properties of wood, such as modulus of elasticity
(MOE) and rupture (Gindl et al. 2001; Thumm and Meder
2001; Kelly et al. 2004).

The NIR technique is now applied routinely in food,
chemical, and pharmaceutical industries for process control
and determination of product quality (Osborne et al. 1993;
Burns and Ciurczak 2001). Because of the large amount of
overlapping vibrations, interpretation of NIR models is not
as straightforward as for the fundamental vibrations found
in the infrared spectrum. However, multivariate models are,
besides being predictive, also useful in the interpretation.
Partial least squares (PLS) regression is often used to obtain
calibrations between spectral data and reference variables
(Martens and Næs 1989). An obstacle in interpretation of
PLS models is that that the commonly used basic PLS algo-
rithms either result in nonorthonormal loading vectors or
nonorthogonal score vectors. Therefore, orthogonal factor-
ization of the PLS solutions (Ergon 2002) gives a standard-
ized platform for interpretation independent of applied PLS
algorithms (Lestander and Geladi 2005; Lestander and Rhén
2005). The result of biorthogonal partial least squares
(BPLS) regression has orthonormal loading vectors and or-
thogonal score vectors as in principal component analysis
(PCA).

Based on the fact that NIR reflectance spectra of wood
contain information on structural or physical and chemical
properties, one objective was to use NIR data modelled by
BPLS to predict variation of properties describing structure
in wood and mechanical parameters and to interpret results.
Another objective was to investigate if juvenile and mature
wood could be classified by NIR spectroscopy. The overall
objective was to study the possibilities to characterize
wood, especially complex parameters like modulus of elas-
ticity, by NIR spectroscopy online analysis in sawmills or
later in the wood-refining process to determine wood prop-
erties in real time.

Materials and methods

Wood samples and determination of wood properties
Scots pine (Pinus sylvestris L.) was used as a model

species in this study. Wood samples were collected from
eight (4 � 2) representative trees in two stands (64809’N,
19840’E) in northern Sweden. The stands were subjected to
different silvicultural regimes, and more details are given
by Eriksson (2005). Stem disc sections in each tree were
taken from stump height and midstem between two branch
whorls 20 and 30 internodes up in the trees of the 56- and
85-year-old stands, respectively. Clear-wood samples for
testing mechanical properties, representing specific cambial
ages (ring number from pith) of 6, 11, 15, 20, 26, 33, and
42 years, were taken from the stem sections according to
Fig. 1. The two highest and two lowest cambial ages were
selected to maximize the age intervals and the number of
samples in the top and base, respectively, for the two stands.
In the interval from 11 to 26 years, the cambial age of 20
years was chosen because this cambial age by rule of thumb

is often set to be the limit between juvenile and mature
wood of Scots pine in boreal forests. Samples to test MOE
and bending strength were taken from the same disc and
were taken at position A from one side, whereas samples to
test creep of MOE were taken from the adjacent side in the
tangential direction. Samples for compression strength and
Brinell hardness in the tangential direction were taken at po-
sition B and from either side. Stem discs from position C
were taken for measurements of Brinell hardness in the lon-
gitudinal direction. Samples representing cambial age of
6 years were missing from stump height, and samples repre-
senting cambial age of 42 years were missing from midstem
for one of the stands, so that the total number of analysed
samples was 100. Samples for measurements using NIR
spectroscopy and to determine reference values for structural
characteristics were taken from the samples to test creep of
MOE. The samples scanned by NIR had radial, tangential,
and longitudinal dimensions of 1.7–17.9 mm, 50.6–
75.2 mm, and 19–21 mm, respectively (Fig. 1).

The following reference variables were determined for the
target growth rings using clear-wood samples (see text above,
Table 1, and Fig. 1):

1. Proportion of latewood according to Mork’s (1928) defi-
nition measured on 20 �m thick sections in the radial �
tangential plane by using a light microscope.

2. Tracheid length (mean measured length-weighted con-
tour length), mean tracheid width, and mean cell wall
thickness (CWT) within targeted cambial ages were ana-
lysed using a Kajaani FiberLab 3.5 optical fiber dimen-
sion analyzer (Metso Automation Inc., AB, Solna,
Sweden).

3. MFA in the S2 layer of 20 and 10 iodide-stained trach-

Fig. 1. Sampling of clear wood in Scots pine stem discs and corre-
sponding coordinate system in radial (R), tangential (T), and long-
itudinal (L) direction perpendicular to each other. Wood sections A
and B and stem disc C show positions for taking subsamples for
different measurements (see text).
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eids from earlywood and latewood, respectively, mea-
sured by using a light microscope. The method is de-
scribed in Eriksson (2005). Overall mean MFA for each
target growth ring was calculated from the means of ear-
lywood and latewood and the measured proportion of la-
tewood.

4. Compression strength in the longitudinal direction deter-
mined according to the European standard EN 408 (CEN
2003) on samples with radial dimension, r, tangential
dimension, t, and longitudinal dimension, l, where r is
the width of three successive growth rings with the target
growth ring in the middle and r = t if r £ 6.3 mm other-
wise t = 6.3 mm, l = 6t.

5. Brinell hardness in tangential (HT) and longitudinal (HL)
direction analysed according to Holmberg (2000) by
applying a load of 490.5 N on a steel sphere that was
10 mm in diameter. The load was applied for 15 s, held
constant for 30 s, and released for 15s. Samples were
20 mm long in the tested direction.

6. MOE, bending strength, and creep of MOE in longitu-
dinal direction was analysed according to the European
standard EN 408 (CEN 2003) by a four-point bending
test on samples that were three growth rings wide with
tangential and longitudinal dimensions of 6.3 mm and
120.5 mm, respectively. This kind of four-point test ex-
poses the sample to compression and to tensile that is
orthogonal to the applied force on the opposite side of
the sample. Creep of MOE is the decrease of MOE over
time and is expressed here as MOE at 1000 h relative to
initial MOE. The load to determinate creep of MOE was
ca 20% of the maximum stress and the duration of this
test was 1000 h.

Samples used to analyse the mechanical properties were
conditioned at 20 8C and 65% air humidity before measure-
ments. The analysis of compression strength, MOE, bending
strength, and Brinell hardness was conducted using a Houns-
field 5000 Universal Testing Instrument. Creep was deter-
mined in an apparatus using hanging weights. Further
information regarding analysed reference variable measure-
ment is given by Eriksson (2005).

The A samples (Fig. 1) that were selected to be scanned
by NIR were embedded at 60 8C for 1 h with a mixture of
equal amounts of camphor (C10H16O) and naphthalene
(C10H8) having C=O and C=C double bonds besides C–H
bonds. These substances were premixed and heated at 40 8C
and this mixture was used to improve the ability to cut sec-
tions for determining latewood proportion. The aim of this
treatment was also to conserve the wood prior to NIR meas-
urement and future nondestructive analyses. Schimleck et al.
(2003) removed extractives in wood samples by extracting
them during 18 h with warm acetone (C3H6O) containing
C=O double bonds and C–H bonds.

NIR spectroscopy
A NIR spectrometer (Foss NIRSystems 6500, Höganäs,

Sweden) with a fibre-optic probe was used to collect spec-
tral data. The wood samples were placed on a thin glass
slide (1.0 mm distance to the sample) covering the measure-
ment probe and centred over the measurement area of the
probe that was 4 mm in diameter. Because the width of the
target rings varied, overlapping spectral information fromT
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the nearest neighbouring rings was sometimes included in
the collected spectra. The NIR measurements were con-
ducted in the radial direction (R) on the plane perpendicular
to the longitudinal direction (L) with the surface in RT-
plane illustrated in Fig. 1 by a shaded plane at the bottom
of sample A. Mean spectra of 32 scans were collected for
each sample around the target growth rings. The reflectance
spectra (r) were recorded at room temperature (ca. 20 8C)
between 780 and 2380 nm (801 wavelengths) with spectral
resolution of 2 nm and transformed into absorbance values
(x) using x = log(r –1), where x and r are vectors of values.
The collected NIR spectra were ordered in a matrix (X) of
dimension N � K with each row of the N spectra in the
matrix constituting absorbance values of K wavelengths:
from the first row [x11 x12 x13...x1K] to the Nth and last row
[xN1 xN2 xN3...xNK] with K columns. Each of the correspond-
ing reference variables was ordered in column vectors (y)
containing the N observed values (scalars) of the actual
reference variable [y1 y2 y3...yN]T (the column vector is
written here as a transposed row vector of scalar values)
with the dimension N � 1.

Modelling
The overlapping and wide peaks of overtone vibration in

the NIR wavelength interval give highly collinear neigh-
bouring wavelengths. Solutions based on ordinary least
squares (OLS) regression, also called multiple linear regres-
sion, will in such cases give poorly defined solutions. There-
fore, multivariate methods, such as principal component
regression but preferably PLS regression (Wold et al. 1983;
Martens and Næs 1989) that maximize covariance, have to
be used to obtain unique solutions. This is also valid when
the number of variables is greater than the number of obser-
vations as in this study.

The prediction using BPLS regression is exactly the same
as PLS prediction provided that the same number of model
components is used. One advantage is that BPLS gives
orthonormal loadings and orthogonal scores in the interpre-
tation of the solution. For mean-centred data, the BPLS
model for the calibration set is

½1� y ¼ XbBPLS þ f

where y is a vector having dimension N � 1 and containing
values of the response variable, X is the spectral matrix
(N � K) consisting of N calibration objects and K wave-
lengths, b is a vector (K � 1) of the BPLS regression co-
efficients, and the vector f (N � 1) contains the residual
values.

The BPLS regression results in values of the bBPLS regres-
sion coefficients (see eq. 4) such that the predicted values
(yp) of the reference variable can be calculated in this case
by using centred NIR spectra from other wood samples. If
the values of the reference variable are also known (yt), a
residual vector (ft) can be calculated. For data centred to
the calibration set, predictions using test sets are calculated
as

½2� yp ¼ yt þ ft ¼ XtbBPLS

Here, the vector yp with dimension J � 1 contains the pre-
dicted values, the vectors yt and ft (J � 1) consist of known

reference values and the residuals (ft = yp – yt), respectively.
The matrix Xt (J � K) constituting a test set for validation,
is built up with J measured and centred spectra of K wave-
lengths. The vector bBPLS contains the coefficients calcu-
lated according to eq. 4 below.

BPLS factorization according to Ergon (2002) uses sing-
ular value decomposition to orthogonalize the PLS solution.
Here, the factorization is done by the way of the orthogonal-
ized PLS algorithm (Martens and Næs 1989), and therefore,
the decomposition is based on the product of the orthogonal-
ized score vectors in the T matrix, of the non-normalized
loading vectors in the transposed P matrix, and of the PLS
weights in the W matrix and is written as follows:

½3� X ¼ ðTPTWÞWT þ E ¼ ðUSVTÞWT þ E

¼ TbV
T
b þ E

where T with dimension N � A is the matrix of orthogonal
score vectors, A is the number of model components, the
superscript T denotes a transposed matrix, P (K � A) and
W (K � A) are the matrices of loading and weight vectors,
respectively, calculated according to the orthogonalized PLS
algorithm and E is the residual matrix (N � K). Further, U
(N � A) is the orthogonal matrix of eigenvectors fulfilling
UTU = I, where I is the identity matrix, S (A � A) is the
diagonal matrix constituting the square roots of the eigen-
values of T (the diagonal elements are singular values and
the off-diagonal elements are zero), V(A � A) is the ortho-
gonal matrix of eigenvectors fulfilling VTV = I, the ortho-
gonalized score matrix Tb (N � A) is calculated from US
and finally, the matrix of orthonormalized loading vectors
Vb (K � A) is calculated from VTWT.

The score vectors (tb) of the Tb matrix and the loading
vectors (vb) of the Vb matrix are different than those of the
PLS solution, and the components may have reversed order.
The nonorthogonalized PLS algorithm can also be factorized
into a BPLS solution (Ergon 2002; Lestander 2003).

The BPLS regression coefficients are calculated as

½4� bBPLS ¼ VbðTT
bTbÞ�1TT

by ¼ VbqBPLS

In loading plots, variables in the same direction as the q
vector (qBPLS ¼ ðTT

bTbÞ�1TT
by) are positively or negatively

related to the response variable y.
Mathematical pretreatments of NIR spectra may remove

information of physical properties of the measured wood
samples, e.g., particle size and particle shape of irregular
surfaces. There are also scattering phenomena, such as Mie
scattering on the microscopic scale and Rayleigh scattering
on the molecular scale (Born and Wolf 1999), that may be
influenced by pretreatments. Therefore, the only pretreating
of spectral data done prior to BPLS modelling was mean
centring.

Test sets
One problem in using test sets on relatively small data

sets is that global modelling often has to be applied—all
observations excluding outliers are used for calibration mod-
elling and for validation that by rule of thumb often consist
of about one-seventh of the observations. If observations
belonging to the outer shell of the model space are included
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in the validation set, prediction error will increase because
of the low density of observations in the neighbouring
model space. In large sets of observations, local models of
observations surrounding the observations that are going to
be predicted can be used.

In this study, we used two types of validation. The first
was based on leaving one observation out in each remod-
elled and centred calibration set. This reflects cross valida-
tion, but it can be argued that it also reflects a real situation
where a new observation is predicted. The leave one out
modelling is here denoted L1O. In all, up to 100 calibration
runs using L1O modelling were done for each wood para-
meter. The second type was based on distances to the global
model centre using PCA for the NIR spectra alone. The
Euclidian distance to the centre of the PCA model was cal-
culated for each spectral observation, and the observations
were reorganized in order of increasing distance. A window
consisting of every seventh ordered observation was created
and used as a test set in the first round of validation. The
following six rounds of validation used test sets that were
moved downstream one position for each validation round
and after seven validations 98 of the 100 observations had
been used as test sets. This modelling of evenly distributed
observations in the test set is here called ED7 modelling. It
should be noted that these types of test sets were not in-
dependent and the studied wood samples were not ideal for
obtaining independent and external test sets. However, the
methods used gave guidance in selection of the number of
components.

Number of components
The number of model components was based on the first

local minimum of the prediction error calculated as the root
mean square error of prediction (RMSEP; see following sec-
tion). The second local minimum was sometimes used if the
first local minimum was of high value and found in the first
or second component. In both the L1O and the ED7 model-
ling the mean value of the RMSEPs in the different vali-
dation rounds were used to find local minima in prediction
error.

Model diagnostics and software
The validation diagnostics were based on the vector of re-

siduals (ft) according to eq. 2 and the different multivariate
models were evaluated using several diagnostics according
to Table 2.

RMSEP and bias have the same unit as the reference vari-
able. The Q2 gives the amount of explained variation and is
dimensionless as is the ratio of performance to deviation
(RPD), which reflects the predicative ability of the calibra-
tion. RPD values based on independent test sets and in the
range of 1.5–2.5 indicate that calibrations can be used for
coarse screening purposes (Schimleck et al. 2003). Values
>2.5 are satisfactory for screening, whereas models with
RPD values >10 have excellent performance (Williams and
Sobering 1993). The L1O and ED7 approach to obtain test
sets implied several PLS models and diagnostic values given
below are mean values.

All PLS remodelling was done in Matlab (The Math-
works, Inc., Natick, Mass.) and PLS_Toolbox (Eigenvector
Research, Manson, Wash.; Wise et al. 2003). PCA model-

ling and the use of jack-knifing (Westad and Martens 2000)
to find significant (p £ 0.05) regression coefficients were
based on SIMCA version 10.0 (Umetrics AB, Umea, Sweden).
Global PLS models done in SIMCA were transformed us-
ing code published by Lestander (2003) into BPLS models.

Interpretation of models
Interpretation was based on BPLS models and significant

PLS regression coefficients for the different wood para-
meters. All data were included in these models using the
number of model components that minimized RMSEP
according to the L1O approach. Interpretation was focused
on strength parameters and the two first components with
the highest degree of explained variation.

Results and discussion

Overview of studied wood parameters
The wood parameters, except for MFA of earlywood and

latewood, were modelled by PCA. Figure 2 shows the calcu-
lated loading and score values that explained 70% of the
variation. In the resulting three significant components, the
parameters MFA and HT showed no grouping or close
association to each other or other parameters. The tracheid
dimensions width and CWT formed one group as well as
the mechanical property parameters MOE, bending, and
compression, which were grouped together with proportion
of latewood. The HL was associated with the later group.
Tracheid length and creep showed close association with
each other.

The first PCA component explained 63% of the variation
in reference parameters and separated MFA from the mech-
anical property parameters (MOE, bending, and compres-
sion; Fig. 2). It also divided the data set according to the
two sites indicating that the main difference between the
stands was found in MFA and grouped strength parameters,
but also that MFA was negatively correlated with strength.
The second component was associated with longitudinal
differences between upper and lower locations in the trees
and spanned between hardness on one side and tracheid
dimensions and creep on the other side.

Modelling
The 13 studied wood parameters were based on RPD divi-

ded into three groups with different correlations to the mod-
elled NIR spectra; see Tables 3 and 4 where the results of
validation are presented. The highest correlation (Q = 0.91)
was found for MOE followed by bending strength (0.84 <
Q < 0.88), cell length (0.77 < Q < 0.82) and compression
strength (0.83 < Q < 0.86). The second group included
MFA with a correlation of about 0.8 with variation in the
range of 0.76–0.84, HL (0.70 < Q < 0.75), creep (0.71 < Q
< 0.74), and proportion of latewood (0.78 < Q < 0.81).
The third group (lowest RPDs) included CWT (0.47 < Q
< 0.63), cell diameter (0.49 < Q < 0.58), and HT (0.56 < Q
< 0.66).

There was a clear tendency in the modeling that increased
variation width within a reference variable, defined as the
ratio of maximum and minimum for the reference variables,
resulted in models with higher prediction accuracy (data not
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shown). Normalization of reference variables in the model-
ing did not affect this tendency.

The results for some wood parameters (e.g., MFA)
showed predictions of somewhat lower accuracy than would
be expected based on other published data. The embedding
of samples and the thin glass in between sample introduce
variability in the spectral data. The constant circular meas-
urement area of the probe introduces additional variance if
targeted ring widths were less than the measurement dia-
meter; in such cases, neighbouring rings contributed to the
collected spectra. Also, varying sample dimensions that, in
some cases, were less than the measurement diameter intro-

duced spectral variation. In this study, the values of the
reference variables were analysed from wood subsamples
other than those used to collect NIR data (see Fig. 1). All
this introduced variation and sampling errors that lowered
calibration accuracy. The analysis explained 58.1%–69.8%
of the variation in MFA. In this study, MFA was measured
on 20 and 10 tracheids in earlywood and latewood, respec-
tively, using a light microscope. These numbers of tracheids
may be too small to obtain representative means of the
whole tracheid population of a whole ring. Other studies
showing NIR calibrations with higher accuracy for MFA
used X-ray spectroscopy to determine MFA values (e.g.,

Fig. 2. Biplot of the first two loading (+) and score (first site: solid triangles, base; open triangles, top; 2nd site: solid circles, base; open
circles, top) components of a PCA model explaining 70% of the variation. The percentages of explained variation are given within parenth-
esis. Bend, bending strength; Comp, compression strength; CWT, cell wall thickness; HL and HT, Brinell hardness in longitudinal and tan-
gential direction, respectively; MFA, microfibril angle; Length, cell length; Width, cell width.

Table 2. Diagnostics used for evaluation of calibration models.

Diagnostic Calculation*
Root mean square error of prediction (RMSEP) RMSEP ¼ ½fTt ftJ�1�1=2
Coefficient of multiple determination (Q2) Q2 ¼ 1� fTt ftðyTt ytÞ�1

Bias Bias = 1TftJ–1

Ratio of performance to deviation (RPD) RPD ¼ ½ðyTc ycÞðI � 1Þ�1½fTt ftðJ � 1Þ�1J�1��1�1=2

*I, number of observations the calibration set; J, number of observations the test set.
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Evans 1999), i.e., calibrations between two different spectro-
scopic methods (e.g., Schimleck et al. 2003); in some cases,
the calibrations were also based on the same subsample.

Interpretation of models
The different validations (L1O and ED7) gave the number

of components to minimize prediction error. Global BPLS
models using all observations and mean number (integer) of
components were calculated to produce data for interpreta-
tion.

In Fig. 3, which is an example of two orthogonal loading
vectors explaining 46.7% of the variation in MOE, it is
shown that the fit to the qBPLS loading direction was related
to the two trend lines with loading vector vb1 or vb2 as inde-
pendent variable in a first-order polynomial fitted to the
data. Further, it seems from the wavelengths with significant
coefficients (large solid circles) that they were associated to
the two trends: the fðvb1Þ and the fðvb2Þ trend to wavelengths
>1990 nm and <1990 nm, respectively.

Wavelengths with significant bBPLS coefficients were for
the whole MOE model located in 9 regions and 12 single
wavelengths at 780–820 (N–H), 1040–1098 (N–H, C–H, C–
C, close to the detector shift at 1100 nm), 1200–1226 (C–
H), 1360–1374 (C–H), 1432–1440 (N–H, O–H, C–H),
1774–1796 (C–H, O–H), 1904–1912 (O–H), 1970, 1978,
2118–2128, 2152, 2220, 2226–2232, 2236, 2240, 2316,
2322 (C–H), 2354, 2358, 2368, and 2376 nm. The chemical
assignments within parenthesis are according to lists pub-
lished by Osborne et al. (1993) and Shenk et al. (2001).

The overtone bands in NIR spectra overlap making inter-
pretation more difficult. This was further complicated by the
conserving medium that contained double bonds of C=O and
C=C besides C–H bonds. According to the significant wave-
lengths (Fig. 3) the MOE parameter involved C–H, O–H,
and C–C in combination with C–H vibrations, as well as
N–H vibrations. None of the significant wavelengths in the
MOE model were targeted to the double bond C=C as ob-
served for bending or C=O as in compression strength and

Table 3. Mean values of L1O modelling to predict wood parameters.

Parameter No.* A RMSEP Q2 Bias RPD
MOE 99 10 1457.2 0.822 678.5 3.19
Bend 99 10 11.63 0.712 2.54 2.95
Tracheid length 100 8 0.282 0.597 –0.1451 2.92
Creep 71 5 0.0428 0.553 0.0093 2.88
Comp 99 8 4.87 0.686 1.94 2.66
MFA 100 8 3.65 0.677 0.82 2.58
MFA earlywood 100 8 3.86 0.698 0.64 2.58
MFA latewood 100 8 4.49 0.620 0.05 2.50
HL 96 6 6.72 0.559 1.06 2.46
Latewood 100 8 0.0872 0.603 0.0199 2.15
HT 96 1 2.87 0.440 0.83 2.04
Tracheid width 100 6 2.68 0.241 0.55 1.89
CWT 100 7 0.41 0.220 0.07 1.88

Note: See Table 1 for definitions of parameters. Variables are as follows: A, number of model com-
ponents; RMSEP, root mean square error of prediction; Q2, coefficient of multiple determination; RPD,
ratio of performance to deviation.
*Number of test set observations equal to number of PLS models.

Table 4. Mean values of seven rounds of ED7 modelling to predict wood parameters.

Parameter
Mean no. of
observations A RMSEP Q2 Bias RPD

MOE 13.9 10 1476.80 0.830 –24.32 3.18
Bend 13.9 9 12.30 0.778 0.22 2.91
Comp 13.9 10 4.34 0.739 –0.18 2.87
Tracheid length 14.0 6 0.3015 0.674 –0.0078 2.72
MFA latewood 14.0 8 4.30 0.652 0.13 2.64
MFA earlywood 14.0 8 4.28 0.585 0.12 2.57
MFA 14.0 8 4.04 0.581 0.11 2.55
Late wood 13.3 8 0.0689 0.652 –0.0016 2.53
CWT 14.0 8 0.3061 0.403 0.0015 2.40
HL 13.4 3 7.79 0.485 0.06 2.30
Creep 9.9 5 0.0626 0.510 –0.0006 2.27
Tracheid width 14.0 8 2.15 0.334 0.02 2.24
HT 13.4 1 2.62 0.336 0.02 2.24

Note: See Table 1 for definitions of parameters. Mean number of observations was calculated from the
seven test sets.
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creeping. Compression strength also showed influence from
the S-H band. Creep and in particular tracheid length were
influenced by N–H overtones.

Concerning structural parameters, tracheid length and
MFA showed higher correlations to NIR spectra than CWT
and tracheid width did. The NIR spectra were collected from
the RT plane in which tracheids with their fibre bundles
were cut. This RT surface then contained a distribution that
consisted of more or less random cross sections of cut trach-
eids, i.e., sampling along the variation in longitudinal direc-
tion of the tracheids with tapering ends. We speculate that
this may be the reason why the parameters tracheid width
and CWT had low correlations with the NIR spectra.

The projection of the orientation of microfibril bundles in
the RT plane is dependent on the cross-section angle. Higher
angles present a larger surface of the microfibril bundles in
the RT plane provided that the tracheid orientation is ortho-
gonal to the RT plane. We hypothesize that, besides chemi-
cal explanations, this may be a cause to the higher explained
variation (58.1%–69.8%) for MFA than for CWT and trach-
eid width.

The two NIR models explained 59.7% and 67.4% of the
varitation in tracheid length. It may be possible that the
NIR radiation interfered with lumen width and depth in cut
tracheids and with surface boundaries between tracheids
and, thus, penetrated deeper the longer the tracheid length
was. If such phenomena occurred, then absorbance patterns
related to mean penetration depth ought to correlate with
mean tracheid length.

Creep (51.0%–55.3% of variation explained) was asso-
ciated with tracheid length according to the PCA model.

The mechanical property parameters MOE, bending, and
compression showed the highest correlations, with 68.6%–
83.0% explained variation. The four-point test of these para-
meters includes both compression and tensile strength in the
longitudinal direction orthogonal to the applied force. These
tests also affected a larger wood volume than that of the
hardness test using a steel sphere. Only 33.6%–44.0% of
the variation in HT, the only strength parameter tested in
that direction, was explained, whereas 48.5%–55.9% was
explained in the longitudinal direction (HL).

Juvenile versus mature wood
Figure 4 presents the predicted class values obtained by

ED7 modelling of the two classes: juvenile wood, in this
case classified as cambial age £20 years, and mature wood,
with cambial age more than 20 years.

Of the 100 predicted values, two at cambial age 15 years,
four at 20 years, and five at 26 years were falsely classified
according to the limit set at 0.5. The L1O modelling gave a
higher rate (26%) of falsely classified observations. As ex-
pected, most of them (62%) were in transitional wood (cam-
bial rings 15–26) because of the gradual change from
‘‘pure’’ juvenile to ‘‘pure’’ mature wood shown by the fitted
polynomial in Fig. 4. This change was also the case when
cambial age was used as the response variable in L1O mod-
elling, which explained 47.3% of the spectral variation (data
not shown). A gradual decrease in fibril angle but increase
in fibre length, width, and CWT when going from juvenile
to mature wood has been reported in many studies (Atmer
and Thörnqvist 1982; Mencuccini et al. 1997; Mattsson
2002).

Fig. 3. Plot showing the two first loading vectors of a BPLS model with 10 components and MOE as reference variable. The large solid
circles are wavelengths with significant bBPLS coefficients, the shaded arrow shows the qBPLS-loading direction, and the shaded lines are the
two trends of the loading data: fðvb1Þ with lower slope than fðvb2Þ.
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Microfibrils in the S2 layer of the cell walls in wood, the
thickest layer constituting ca. 90% of the fibre mass (Batch-
elor et al. 2000), mainly control wood dimension stability.
In Nordic conifers, juvenile wood of the 10–20 innermost
growth rings has, when compared with mature wood, in-
creased longitudinal shrinking and swelling but decreased
tangential and radial shrinking and swelling. This can cause
economic loss if boards are warped and askew because of
heterogeneity in MFA. Therefore, documented information
of proportions of juvenile wood in single sawn boards is of
great need to avoid problems concerning warping and
dimension stability of wood.

The result showed that it is possible to use NIR spectro-
scopy to distinguish between cambial ages of wood samples.
Our results support the finding by Via et al. (2005) who
could separate juvenile from mature wood in longleaf pine
(Pinus palustris Mill.) with some overlap using principal
component regression based on NIR spectra within 1000–
2500 nm. However, age alone is not a good predictor of the
wood characteristics connected to juvenility and maturity,
respectively, and the classification made here was mainly a
split of the samples into two halves. Still, these findings
open up the possibilities for online classifications and meas-
urements of proportion of juvenile wood in sawn products.

It has also been shown that heartwood formation in Scots
pine that produces pinosylvine is possible to correlate to
NIR spectra obtained by FT-Raman spectroscopy (Berg-
ström 2003) and that the zone of intermediate wood of sap-
wood and heartwood was only a few millimetres in the
radial direction. Because also structural (e.g., lignification
of ray parenchyma cells) and other chemical changes occur

in pine heartwood, we postulate that NIR can be used to
separate these wood classes, perhaps even with lower rate
of false classifications than for juvenile and mature wood.

Conclusion
The results illustrated that it is possible to use NIR data

modelled using biorthogonal partial least squares and predict
variation of properties describing structure in wood and
mechanical parameters in clear-wood samples of Scots pine.
The general conclusion was that NIR offers good possibili-
ties to characterize wood, especially complex parameters
like modulus of elasticity. The results are of importance in
the endeavour toward documented wood properties as well
as better control of wood dimension stability.

The results support the possibilities to use online analysis
in sawmills or later in the wood-refining process to deter-
mine wood properties in real time. Thereby, it may be possi-
ble to deliver quantities of different wood qualities with
guaranteed minimum values on a specific list of parameters
according to the norm used for other materials by engineers.
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