Simulating Model for Soil Water and Heat Conditions

Description of the SOIL model

Per-Erik Jansson

Institutionen för markvetenskap
Avdelningen för lantbrukets hydroteknik
Swedish University of Agricultural Sciences
Department of Soil Sciences
Division of Agricultural Hydrotechnics
Simulating Model for Soil Water and Heat Conditions

Description of the SOIL model

Per-Erik Jansson
Preface

This is an update of the third technical description of the SOIL water and heat model first distributed during September 1996. The present report represents a detailed technical description of the SOIL water and heat model. Compared with the technical report by Jansson (1991) it includes a number of model developments. The present report is also part of the help to the WinSOIL program version 1.2. In addition to this report the user of the model are recommended to use the help. Previous users manual provided for MS-DOS version of SOIL are only valid in some minor parts and consequently they are not recommended to be used in connection with the windows version of the model. Some information that still refers to the MS-DOS version in this report may be invalid.

A bibliography is presented representing reports and papers with examples of how the SOIL model has been used. The reference list only includes documents that are referred to in this report which are not found in the bibliography.

Those who are interested in copies of the soil model are referred to our internet server where from which the model is also distributed:

ftp://bgfserver.mv.slu.se/demo/soil.zip

or

http://www.mv.slu.se/bgf/soil.htm

A user group is defined at majordomo@pinus.slu.se. If you want to join this group and obtain information on new version of the model please send an e-mail to: majordomo@pinus.slu.se and include the text: SUBSCRIBE SOILUSER NAME@XXX.XX

Uppsala 11 May, 1998

Per-Erik Jansson
Table of Contents

1. Introduction .. 9
 1.1 Purpose of using the SOIL model ... 9
 1.2 Basic assumptions ... 9
 1.3 Example of inputs .. 10
 1.4 Example of Outputs ... 13
 1.5 Experiences from model use ... 15

2. Theory and structure of model ... 17
 2.1 Soil heat flow ... 17
 2.1.1 Heat capacity, unfrozen conditions ... 18
 2.1.2 Thermal conductivity, unfrozen conditions ... 18
 2.1.3 Upper boundary condition .. 19
 2.1.4 Mixed composition of toplayer .. 20
 2.1.5 Lower boundary condition .. 21
 2.2 Soil frost .. 22
 2.2.1 Freezing point depression and heat capacity of frozen soil 22
 2.2.2 Thermal conductivity, frozen soil .. 25
 2.2.3 Frost boundary ... 25
 2.2.4 Influence of ice on water flows ... 26
 2.2.5 Frost heaving ... 27
 2.3 Soil water flow ... 27
 2.3.1 Bypass flow in macropores ... 28
 2.3.2 Soil hydraulic properties .. 29
 2.3.3 Hysteresis effects on soil hydraulic properties 32
 2.3.4 Water vapour flow .. 33
 2.3.5 Upper boundary condition ... 33
 2.3.6 Lower boundary condition ... 34
 2.3.7 Groundwater outflow .. 34
 2.3.8 Groundwater inflow ... 37
 2.4 Potential transpiration ... 38
 2.5 Water uptake by roots .. 39
 2.6 Dynamic behaviour of plant related properties ... 41
 2.7 Evaporation from the soil surface... 42
 2.7.1 Surface energy balance approach .. 43
 2.7.2 Empirical approach for soil evaporation .. 45
 2.8 Evaporation of intercepted water ... 46
 2.9 Snow Dynamics .. 48

3. Model input .. 51
 3.1 Driving variables ... 51
 3.2 Initial values ... 55
 3.3 Physical parameters .. 56

4. Numerical computation ... 61
 4.1 Soil Compartmentalization ... 61
 4.1.1 Difference approximation of soil heat and water flow equations 61
 4.1.2 Compartmentalization of soil properties .. 62
 4.2 Integration time step and bypass of slow processes 63

5. List of symbols .. 64
 5.1 Sorted by symbol names .. 64

6. Acknowledgement .. 72

7. Summary in Swedish (Sammanfattning) ... 72
 7.1 Modellens Struktur ... 72
 7.2 Markfysikaliska egenskaper ... 73
 7.3 Vegetationen och markytan ... 73
7.3.1 Potentiell avdunstning ... 73
7.3.2 Markyteavdunstning ... 74
7.3.3 Avdunstning av intercepterat vatten ... 74
7.3.4 Aktuell transpiration ... 74
7.4 Avrinning och behandling av grundvatten .. 75

8. References ... 76

9. Bibliography .. 77
1. Introduction

1.1 Purpose of using the SOIL model

A number of problems concerning hydrological and/or thermal processes in the soil can be elucidated using the model. Both applied and basic scientific problems have been solved including:

- simulation of regulating factors for biological and chemical processes in the soil.
- assessment of the importance of different factors
- identification of gaps in our present knowledge
- formulation of new hypotheses
- generalisation of results to new soils, climates and time periods
- prediction of the influence of management e.g. soil heat extraction, mulching, drainage, irrigation and plant husbandry

1.2 Basic assumptions

The model, initially developed to simulate conditions in forest soils, has recently been generalised to elucidate water and heat processes in any soil independent of plant cover. This was possible since the model is based on well known physical equations. The fundamental nature of these physical equations allows the model to be adapted to many different types of ecosystems providing that we have quantitative knowledge of the governing properties of these systems.

The basic structure of the model is a depth profile of the soil. Processes such as snow-melt, interception of precipitation and evapotranspiration are examples of important interfaces between soil and atmosphere. Two coupled differential equations for water and heat flow represent the central part of the model. These equations are solved with an explicit numerical method. The basic assumptions behind these equations are very simple.

1) The law of conservation of mass and energy

2) Flows occur as a result of gradients in water potential (Darcy’s Law) or temperature (Fourier’s law).
1.3 Example of inputs

The soil profile is divided into a number of layers and for each layer, and each boundary between layers, these two basic principles are considered. The number of layers and the thickness of each layer can be varied depending on accuracy requirements.

The calculations of water and heat flows are based on soil properties such as:

- the water retention curve
- functions for unsaturated and saturated hydraulic conductivity
- the heat capacity including the latent heat at thawing/melting
- functions for the thermal conductivity

Water retention and unsaturated conductivity for a clay soil is illustrated in Figure 1.

Figure 1. Physical soil properties of the Lanna clay soil, water retention (left) and unsaturated hydraulic conductivity (right). *Fysikaliska markegenskaper för lerjord vid Lanna, vattenbindning (till vänster) och oättad konduktivitet (till höger).*

The most important plant properties are:

- development of vertical root distributions
- the surface resistance for water flow between plant and atmosphere during periods with a non limiting water storage in the soil
- how the plants regulate water uptake from the soil and transpiration when stress occurs
- how the plant cover influences both aerodynamic conditions in the atmosphere and the radiation balance at the soil surface.

An example how the surface resistance may vary during the development of a crop is illustrated in Figure 2.
Surface resistance - barley crop

Figure 2. The surface resistance for a barley crop as specified by a set of parameter values.

All properties are represented as parameter values. Numerical values are assigned to a number of different parameters representing properties of the soil-plant-atmosphere system. For each parameter a certain range reflects differences between different types of crops, forests, soils or the range reflects a typical variation found within a certain area.

Meteorological data are the driving variables to the model, but in contrast to parameters the numerical values of driving variables vary with time.

The driving variables govern the flows at the boundaries between atmosphere and soil and between plant and atmosphere. Most important of those are precipitation and air temperature (see Fig. 3) but air humidity, wind speed and cloudiness are also of great interest due to their influence on evaporation.
The essential input data for running the model is stored in databases accessible using interactive graphical programmes. Separate databases for climate data and soil properties are available on IBM-PC standard diskette format.

The required information on soil properties is large compared to what is normally available from standard field investigations. To determine these properties by independent measurements in each application with the model would be time-consuming and very labour-intensive, especially since some of these properties (e.g. hydraulic conductivity) show substantial spatial heterogeneity. The use of the database enables the user to estimate a reasonable range for such soil properties from commonly available information such as soil texture and organic matter content. Most of the material in the database originates from investigations in arable land in Sweden but the material is continuously updated with new sites including forest soils.

Figures 1 - 3 are examples of graphical representations of input data to the model. The graphic features are an integrated part of the database programmes and plotting can be done on all standard graphic monitors such as CGA, EGA, VGA and Hercules as well as by printing devices which support any dot or vector-based graphic standard.
1.4 Example of Outputs

Results of a simulation are obtained as time series either of variables which represent individual layers in the soil such as:

- temperature
- content of ice
- content of unfrozen water
- water potential
- vertical and horizontal flows of heat and water
- water uptake by roots
- storage’s of water and heat

![Figure 4. Simulated soil temperature and soil water content at different levels in a soil profile.](image)

Simulerad marktemperatur och markvattenhalt för olika djup i en markprofil.
In addition some output variables are represented as a single variable such as:

- snow depth
- water equivalent of snow
- frost depth
- surface runoff
- drainage flow
- deep percolation to ground water

Figure 5. Simulated transpiration and discharge. Ackumulerade summor av simulerad transpiration och dränring.

Figure 6. Simulated ground water level and discharge (tile drains at 1 m depth). Simulerad grundvattenytta och dränringssföde genom dränningssrör på 1 meters djup.
It is a well known fact that no simulation model yields better results than can be expected from the quality of input data. Assessment of the uncertainty in the input data is therefore the first step when the model is to be used. Sometimes field measurements are available which enable a quantitative test of the model. The interpretation of discrepancies found between the measurements and the model predictions requires a lot of care and a basic knowledge of the different processes in the system. An improvement of the fit can normally be obtained after adjustments of some soil or plant properties. Nevertheless, it is not always the case that all input data including the physical properties of the system are correctly estimated just because a good fit is obtained when testing the model.

Figure 4 - 6 gives examples of typical results from model predictions in a standard application with an agricultural crop on a clay soil. Note that we can always simulate a much more complete picture of both the temporal pattern and of the interaction between variables than can be achieved by intensive field measurements. However, this should not lead us to believe more in the model predictions than in observations of the real system. Instead we have to design our field measurements to achieve an optimum test of the simulated results. We should concentrate on variables which are easy to measure and which have a strong connection to other variables in the soil-plant-atmosphere system. A typical example is soil water tension, which is easy to measure with a conventional tensiometer, but in addition reflects other factors such as soil water flow and water uptake by roots. Unsaturated water flows are very difficult to measure in field soils and in this case we must always rely on model predictions. However, tracers can be used as indicators of the actual water flow paths in the soil.

1.5 **Experiences from model use**

The model is helpful in elucidating how different processes and properties in the system interact. We are always constrained to investigate a limited part of the whole system with respect to both time and space. The model can be used as a tool to extend our knowledge.

The fundamental physical equations are well known and accepted but we still have to test their validity at different field scales. A general problem is that our knowledge of soil properties normally originates from small soil samples. The role of small soil units compared to larger units is not well understood and we have to find out how we can combine information which represents different scales. Areal mean values of soil properties such as the hydraulic conductivity are hard to determine even from intensive measurement programmes and it is not certain that the use of an areal mean will be the best choice for the model simulations.

One important aspect when testing the model is that parameter values should ideally have been estimated independently of the field measurements which are used to test the model predictions. In such a case we will learn about how the system behaves even when model predictions fail. On the other hand we will seldom learn about how nature behaves by using calibration procedures even if good agreements between simulated and observed variables are obtained. The estimated parameter values which result in a good agreement must always be compared with other independent estimates if a model application is to have scientific interest.

1) Do not be happy just because the model output is in agreement with observations; try instead to find out why there are no discrepancies.

2) Be happy when the model and the reality are different; then you have a key to new knowledge.

3) The model can provide you with a much better answer to an applied question than is possible with many field investigations. In many cases we cannot wait for the results from long term field investigations.
4) An adviser using a good mathematical model will certainly be efficient if he/she is successful in combining the results from the model with critical thinking. The model will stimulate an examination of problems if the adviser as well as the scientist gets an opportunity to play with the model.

5) An adviser who believes too much in the figures from a mathematical model will be equally poor as the one who fully trusts results from field investigations.
2. Theory and structure of model

The SOIL model represents, in one dimension, water and heat dynamics in a layered soil profile covered with vegetation. As the solution to model equations is performed with a finite difference method, the soil profile is divided into a finite number of layers (Fig. 7). Compartments for snow, intercepted water and surface ponding are included to account for processes at the upper soil boundary. Different types of lower boundary conditions can be specified including saturated conditions and ground water flow. In this chapter, the underlying concepts and equations are described for each component of the model.

2.1 Soil heat flow

Heat flow is the sum of conduction and convection:

\[q_h = -k_h \frac{\partial T}{\partial z} + C_w T q_w + L_v q_v \]

(1)

where the indices \(h \), \(v \) and \(w \) mean heat, vapour and liquid water, \(q \) is flow, \(k \) is the conductivity, \(T \) is the temperature, \(C \) is the heat capacity, \(L \) is latent heat and \(z \) is depth. The convective term may be included or not in the solution depending on whether the switch HEATWF is put ON or OFF. Normally the convective term is important at high flow rates as during heavy snow melt infiltration. The general heat flow equation is obtained when combining Eq. (1) with the law of energy conservation:
\[
\frac{\partial (CT)}{\partial t} - L_f \rho \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) - C_w T \frac{\partial q_w}{\partial z} - L_v \frac{\partial q_v}{\partial z} - s_h
\]

(2)

where indices \(i\) and \(f\) mean ice and freezing respectively, \(t\) is time, \(\rho\) is density, \(L\) is latent heat, \(\theta\) is the volumetric water content, and \(s\) is a source/sink term. The two terms on the left represent changes in sensible and latent soil heat contents, and the last term to the right accounts for, e.g., the soil heat exchange of a heat pump system.

2.1.1 Heat capacity, unfrozen conditions

Soil heat capacity equals the sum of heat capacities of soil constituents. Solid soil constituents are given on a volumetric basis. Heat capacity of air is negligible, such that:

\[
C = f_s C_s + 6C_w
\]

(3)

where index \(f_s\) is the volumetric fraction of solid soil material including mineral and organic matter. \(C_s\) and \(C_w\) are heat capacities for solid material and water, respectively. \(C\), here given for unfrozen soil, can also be computed for a frozen soil (cf. Eq. (18)). \(C\) is never explicitly given for a partly frozen soil since temperature, in this case, is obtained by special calculations (see Eqs. (19) - (25)).

2.1.2 Thermal conductivity, unfrozen conditions

Thermal conductivity is a complex function of soil solids and soil moisture. For humus, i.e., organic matter, the thermal conductivity function is adapted from a figure in de Vries (1975):

\[
k_{hc} = h_1 + h_2 \theta
\]

(4)

where \(h_1\) and \(h_2\) are empirical constants. For unfrozen mineral soil an empirical conductivity function is adapted from Kersten (1949):

\[
k_{hm} = 0.143 \left(a_1 \log \left(\frac{\theta}{\rho_s} \right) + a_2 \right) 10^{a_3 \rho_3}
\]

(5)

where \(a_1\), \(a_2\), \(a_3\) are constants and \(\rho_3\) is the dry bulk soil density (Fig. 8). The logarithmic argument, \(\theta/\rho_s\), is equivalent to the soil water content expressed on a mass basis.
2.1.3 Upper boundary condition

The upper boundary condition can be specific in different ways. If soil surface temperature, \(T_s \), is not measured, the simplest way (where the switch SUREBAL is put OFF) is to assume for snow free periods that:

\[
T_s = T_a \tag{6}
\]

where the indices \(s \) and \(a \) mean surface and air respectively. If the interaction between aerodynamic properties, plant cover and surface evaporation is of interest, the surface temperature may also be calculated by solving the heat flow equation at the soil surface (The switch SUREBAL is put ON). This physical approach is described in the section 0 which is also relevant for the boundary condition for the water flow equations.

2.1.3.1 Influence of snow

For periods with snow cover, soil surface temperature is given by assuming steady state heat flow (see Fig. 9) between the soil and a homogeneous snow pack:

\[
T_{ss} = \frac{T_1 + aT_a}{1 + a} \tag{7}
\]

where the index 1 means the top soil layer, and the snow surface temperature is assumed to obey Eq. (6). The weighting factor, \(a \), is given by:
where Δz denotes thickness.

If the amount of liquid water in the snow pack (S_w) exceeds a constant threshold, $S_{w\text{lim}}$, soil surface temperature, T_{ss}, is put equal to 0°C.

\[
q_h = k_{\text{snow}} \frac{T_A - T_{ss}}{\Delta z_{\text{snow}}} \\
q_h = k_h \frac{T_{ss} - T_1}{\Delta z_1/2}
\]

Figure 9. The steady state assumption of heat flow through the upper soil layer and the snow pack.

During conditions when the snow depth is below a certain value Δz_{cov} the soil surface temperature will be calculated as a weighted sum between the calculated temperature below the snow and an estimated soil surface temperature from bare areas. The mean soil surface temperature is then given by:

\[
T_s = (1 - \frac{\Delta z_{\text{snow}}}{\Delta z_{\text{cov}}})T_s + \frac{\Delta z_{\text{snow}}}{\Delta z_{\text{cov}}}T_{ss}
\]

2.1.4 Mixed composition of top layer

Calculation of soil surface heat flow, $q_h(0)$, requires special attention. Convective heat inflow is given by precipitation throughfall and/or snow melt multiplied by the relevant surface temperature and the heat capacity of liquid water (cf. Eq. (1)). Since thermal properties of humus and mineral soil differ markedly, special treatment is required for a thin humus layer when numerical requirements demand that the top compartment represents a layer thicker than the humus layer. Three special cases for heat conduction are given, depending on the depth of the insulating litter or humus layer.

For negligible depths, i.e., less than 5 mm, thermal conduction in humus is neglected:
\[q_h(0) = 2k_{hm} \frac{(T_e - T_i)}{\Delta z_i} \quad (10) \]

For a humus layer thicker than 5 mm but less than half the depth of the top soil layer a steady-state solution, analogous to the one for snow, gives the boundary temperature between humus and mineral soil:

\[T_b = \frac{T_i + aT_s}{1 + a} \quad (11) \]

where

\[a = \frac{k_{hm}(\Delta z_i / 2 - \Delta z_{humus})}{k_{hm} \Delta z_{humus}} \quad (12) \]

This finally yields

\[q_h(0) = k_{ho} \frac{(T_e - T_b)}{\Delta z_{humus}} \quad (13) \]

For humus layers thicker than half the top soil layer, Eq. 12 degenerates into the standard solution, i.e.:

\[q_h(0) = 2k_{ho} \frac{(T_e - T_i)}{\Delta z_i} \quad (14) \]

2.1.5 Lower boundary condition

The lower boundary condition for heat conduction can be given as a temperature or as a constant flow which may be zero or equal to a constant geothermal contribution, \(q_h \) (low). The temperature, \(T(\text{low}) \) is calculated from the assumed values of mean air temperature \(T_{\text{mean}} \) and the amplitude of air temperature, \(T_{\text{amp}} \) during the year (see Fig. 10) from, an analytical solution of the conduction equation.

\[T(z,t) = T_{\text{mean}} - T_{\text{amp}} e^{-\frac{z}{d_a}} \cos \left((t - t_{ph}) \omega - \frac{z}{d_a} \right) \quad (15) \]

where \(t \) is the time, \(t_{ph} \) is the phase shift, \(\omega \) is the frequency of the cycle and \(d_a \) is the damping depth. The frequency is defined as:
\[\omega = \frac{2\pi}{\gamma_{cycle}} \]

(16)

where \(\gamma_{cycle} \) is the length of the period and the damping depth, \(d_a \), is given as:

\[d_a = \sqrt{\frac{2D}{\omega}} \]

(17)

where \(D \) is the thermal diffusivity which is given as the ratio between the thermal conductivity, \(k_{th} \), and the heat capacity, \(C \), of the soil at a moisture content that equals the selected initial conditions.

Heat convection at the lower boundary condition depends on the presence of a ground water table in the profile. For an unsaturated profile convection follows percolation from the lowest soil layer. When a horizontal net ground water flow is present, convection follows this flow and is neglected for all layers below ground water level.

2.2 Soil frost

Treatment of frost in the soil is based on a function for freezing point depression and on an analogy between processes of freezing-thawing and drying-wetting, i.e., the liquid-ice interface is considered equal to the liquid-air interface. Thus, unfrozen water below zero is associated with a matric potential and an unsaturated conductivity. Freezing gives rise to a potential gradient which in turn forces a water flow according to the prevailing conductivity. This causes a capillary rise of water towards the frost zone and it also allows drainage of snow melt through the frost zone when frozen soil temperatures are close to 0 °C.

2.2.1 Freezing point depression and heat capacity of frozen soil

The simplifying assumption is made that all water at the temperature, \(T_f \), is frozen except of a residual unfrozen amount, \(\theta_f \), calculated as:

Figure 10. The air temperature calculated using a set of parameter values. Lufttemperaturens variation under året beräknad med givna parametervärden.
\[\theta_f = d_1 \theta_{silt} \]

(18)

where is a constant and \(\theta_{silt} \) is volumetric water content at a soil water potential corresponding to pF 4.2. For temperatures below \(T_f \), heat flows and temperatures are calculated in analogy with unfrozen conditions. For temperatures between 0 °C and \(T_f \) a soil heat capacity is first calculated:

\[C_f = f_s C_s + f_i C_i + \delta_f C_w \]

(19)

This is used to calculate heat content of soil, \(E_f \), at the temperature \(T_f \):

\[E_f = C_f T_f - L_f w_{ice} \]

(20)

Where \(w_{ice} \) is the mass of water available for freezing which is calculated as:

\[w_{ice} = w - \Delta z \delta_f \rho_{water} \]

(21)

where \(w \) is the total mass of water. Relative fraction of latent heat of ice to the total heat content of soil is given at \(T_f \) by:

\[f_{lat} = \frac{L_f w_{ice}}{E_f} \]

(22)
Freezing point depression, which depends on soil texture (Fig. 11), is then expressed by the ratio between latent heat contents of E at temperature $T(0 > T > T_f)$ and E_f at temperature T_f:

$$r = \left(1 - \frac{E}{E_f}\right) \frac{d_2 \lambda + d_3}{\min\left(1, \frac{E_f - E}{E_f + L_f w_{\text{ice}}}\right)}$$

where d_2 and d_3 are empirical constants and λ is the pore size distribution index (cf. Eq. (41)). The second term in Eq. (23) is inserted to ensure that temperatures close to T_f never exceed free water temperatures at equivalent heat contents. Sensible heat content, H, is given by:

$$H = E(1 - fL_{\text{sat}})(1 - r)$$

Temperature is finally achieved as a function of sensible heat content:

$$T = \frac{H}{C_f}$$

When the upper boundary condition is given as a measured temperature of the uppermost layer and the temperature corresponds to a partially frozen soil ($T_f < T < 0$), the heat content, E_f, is calculated from the temperature, T_f. This is accomplished through an approximate inversion of Eq. (23):
2.2.2 Thermal conductivity, frozen soil

Thermal conductivity of a fully frozen organic soil is calculated with a similar equation as for unfrozen organic soils but including a second degree coefficient to account for the influence of ice on the conduction in the soil.

\[k_{M}^{\text{frozen}} \approx (1 + 2Q \left(\frac{\theta}{100} \right)^2) k_{M}^{\text{unfrozen}} \] \hspace{1cm} (27)

where \(Q \) is the thermal quality of the soil layer (see eq. 30).

Thermal conductivity of fully frozen mineral soil (Fig. 8) is adapted from Kersten (1949):

\[k_{hi} = b_1 10^{b_2 \theta} + b_3 \left(\frac{\theta}{\rho_s} \right)^{10^{b_4 \theta}} \] \hspace{1cm} (28)

where \(b_1 \) to \(b_4 \) are empirical constants. For temperatures between 0 °C and \(T_f \) a weighted conductivity is used:

\[k_h = Q k_{hi} + (1 - Q) k_{hv} \] \hspace{1cm} (29)

where the thermal quality, \(Q \), (the mass ratio of frozen water to total amount of water) is deduced from energy relations:

\[Q = \frac{(E - H)}{L_j W_{ice}} \] \hspace{1cm} (30)

2.2.3 Frost boundary

For purposes of model output frost boundaries are calculated in a separate subroutine as isotherms of 0 °C. The somewhat less realistic assumption of linear heat variations with depth between discrete layers give these isotherms a strong dependence on compartmentalisation. Not more than two frost layers are allowed for output purposes.
2.2.4 Influence of ice on water flows

Two different calculations are made in the model to reduce the hydraulic conductivity under partially frozen conditions. The interpolation procedure for obtaining the boundary conductivity between two layers may optionally (see section "switches" in user’s manual) be replaced by a procedure in which the boundary conductivity is selected as the minimum conductivity of the two layers. This will normally substantially reduce the flow towards the layer where freezing is taking place and the clear tendency to overestimate redistribution during freezing will be reduced (Lundin, 1990).

In addition to the alternative interpolation procedure an impedance factor is considered when the hydraulic conductivity of a partially frozen layer, \(k_{wf} \), is calculated:

\[
k_{wf} = 10^{-f_{ci}Q} k_w
\]

(31)

where \(Q \) is the thermal quality, \(f_{ci} \) is an impedance parameter and \(k_w \) is the hydraulic conductivity of the layer calculated from the unfrozen water content without accounting for occurrence of ice.

![Figure 12. The flow paths and the hydraulic conductivities for the two domain approach. (After Stähli et al, 1996)](image)

A two domain approach was introduced in the model by Stähli et al. (1996) after suggestions from Johnsson & Lundin (1991). The new approach separates between one low flow domain which is the same as used previously when estimating water flows in the partially unfozen soil and a high flow domain (see Figure 12). The high flow domain allows rapid flow of infiltrating water provided that air filled pores were present at time of infiltration. The flow in the high flow domain is based on a unit gravitational gradient and the hydraulic conductivity, \(k_{hf} \):

\[
k_{hf} = k_w(b_{bw}) - k_w(b_{tw} + b_{ice})
\]

(32)
where \(k_w(\theta_w) \) is the hydraulic conductivity corresponding to all volume occupied by water and \(k_w(\theta_r + \theta_{oi}) \) is the hydraulic conductivity corresponding to the volume occupied by water and ice in the low flow domain.

At the soil surface, water may infiltrate into the low flow domain until the capacity of this domain is reached, i.e. the unsaturated conductivity \(k_w(\theta_r) \) times the total water potential gradient. The surplus water enters the air filled pores to a degree that is limited to the conductivity of the high flow domain \((k_{hf}) \). If also the capacity of the high flow domain is reached by the snow melt or precipitation the surface pool will receive an input of water.

Water infiltrating in the high flow domain is assumed to have a temperature close to 0 °C. As it percolates through the high flow domain, it may refreeze to a certain degree depending on the soil temperature. The heat which is released from freezing in the high flow domain causes melting of ice in the finest ice filled pores, shifting the boundary between the low flow domain and the ice domain toward larger pores. Thus, refreezing of infiltrating water is treated as a redistribution \((q_{in freeze}) \) from the high flow to the low flow domain:

\[
q_{in freeze} = \alpha_h \Delta z \frac{T}{L_f} \tag{33}
\]

where \(\alpha_h \) is a heat transfer parameter, \(\Delta z \) is the thickness of the layer, \(T \) is the temperature of the layer and \(L_f \) is the latent heat of freezing.

2.2.5 Frost heaving

Frost heave is optionally treated (see section "switches" in user’s manual) in a simplistic way. A soil compartment will heave if the total volume of ice and unfrozen water exceeds the porosity of the soil in a layer.

2.3 Soil water flow

Water flow in the soil is assumed to be laminar and, thus, obey Darcy’s law as generalised for unsaturated flow by Richard (1931):

\[
q_w = -k_w \left(\frac{\partial \psi}{\partial z} - 1 \right) - D_v \frac{\partial c_v}{\partial z} \tag{34}
\]

where \(\psi \) is the water tension, \(c_v \) is the concentration of vapour in soil air and \(D_v \) is the diffusion coefficient for vapour in the soil. The general equation for unsaturated water flow follows from Eq. (34) and the law of mass conservation:

\[
\frac{\partial \theta}{\partial t} = -\frac{\partial q_w}{\partial z} + s_w \tag{35}
\]

where \(s_w \) is a source/sink term.
2.3.1 Bypass flow in macropores

An optional switch (CRACK) to account for bypass flow has been included in the model to consider rapid flow in macropores during conditions when smaller pores are only partially filled with water (Fig. 12). The amount of water in the macropores is not accounted for explicitly. Instead, the infiltration flow rate at the soil surface or the vertical flow in the macropores at any depth in the soil profile, \(q_{in} \), determines the partitioning into ordinary Darcy flow, \(q_{mat} \), and bypass flow, \(q_{bypass} \).

\[
q_{mat} = \max \left(k_w(\theta) \left(\frac{\partial \psi}{\partial z} + 1 \right), q_{in} \right) \quad 0 < q_{in} < S_{mat} \tag{36}
\]

\[
q_{bypass} = 0 \quad 0 < q_{in} < S_{mat} \tag{37}
\]

\[
q_{mat} = S_{mat} \quad q_{in} \geq S_{mat} \tag{38}
\]

\[
q_{bypass} = q_{in} - q_{mat} \quad q_{in} \geq S_{mat} \tag{39}
\]

where \(k(\theta) \) is the unsaturated conductivity at a given water content, \(\psi \) is the water tension and \(z \) is the depth co-ordinate. At the soil surface, \(q_{in} \) is the infiltration rate. At other depths in the soil, \(q_{in} \) is the vertical flow rate in the macropores (\(q_{bypass} \)) from the layer immediately above. \(S_{mat} \) is defined as:

\[
S_{mat} = a_{scale} a_r k_{mat} pF \tag{40}
\]

where \(k_{mat} \) is the maximum conductivity of smaller pores (i.e. matrix pores), \(a_r \) is the ratio between compartment thickness and the unit horizontal area represented by the model, \(pF \) is \(10^{log} \) of \(\psi \) and \(a_{scale} \) is an empirical scaling coefficient accounting for the geometry of aggregates.
The calculated water flow in the matrix \((q_{\text{mat}})\) is used to update the water contents and the water tensions in the numerical solution, whereas \(q_{\text{bypass}}\) is directed without delay to the next soil compartment. However, \(q_{\text{bypass}}\) can never reach layers below the water table depth, which is the lower boundary condition for the use of Richard's equation.

2.3.2 Soil hydraulic properties

Two different soil hydraulic properties are important namely the water retention curve and the unsaturated conductivity function. Both properties are considered as unique functions of the water content with or without hysteresis effects. Figure 13 shows how experimental data of water retention can be used when estimating coefficients in the function proposed by Brooks & Corey (1964) which is used in an intermediate range of the water retention curve (see Fig. 14).

\[
\begin{align*}
S_e &= \left(\frac{\psi}{\psi_a} \right)^{-\lambda} \\
\lambda &= \Delta \log S_e \quad \Delta \log \psi
\end{align*}
\] \hspace{1cm} (41)

where \(\psi_a\) is the air-entry tension and \(\lambda\) is the pore size distribution index. Effective saturation is defined as:

\[
S_e = \frac{\theta - \theta_r}{\theta_s - \theta_r}
\] \hspace{1cm} (42)

where \(\theta_s\) is the porosity and \(\theta_r\) is the residual water content. Calculation of the parameters \(\lambda\), \(\psi_a\) and \(\theta_s\) is done by least squares fittings of Eqs. (41) and (42) to experimental data, preferably from undisturbed soil cores or in situ measurements (see Fig. 13). Such experimental data usually yield a good fit over an intermediate range of tensions.

As an alternative expression to the Brooks & Corey expressions the equation by van Genuchten (1980) has been introduced:
\[S_x = \frac{1}{(1 + (\alpha \psi)^{gn})^{gm}} \]

(43)

where \(\alpha, gn \) and \(gm \) are empirical parameters.

In order to get a good fit in the whole range, Eqs. (41) and (42) are fitted only to data corresponding to tensions below a threshold value, \(\psi_c \). The relation between water content and tension above this threshold is assumed log-linear:

\[
\log \left(\frac{\psi}{\psi_x} \right) = \frac{\theta_x - \theta}{\theta_x - \theta_{wilt}} \quad \psi_x < \psi < \psi_{wilt}
\]

(44)

where \(\theta_x (= \theta(\psi_x)) \) is the threshold water content and \(\theta_{wilt} \) is the water content at wilting point, defined as a tension of 15 000 cm water.

In the range close to saturation, i.e. from \(\theta_s \) to \(\theta_m \), a linear expression is used for the \(\theta - \psi \) relationship.

\[
\psi = \psi_m - \left(\frac{\theta_s - \theta_x + \theta_m}{\theta_m} \right) \psi_m
\]

(45)

where \(\psi_m \) is the tension which corresponds to a water content of \(\theta_s - \theta_m \). The three different parts of the water retention curve is illustrated for a sandy soil below (Fig. 14.)

Figure 14. An example of how three different expressions in the water retention curve are used in different ranges. The pF value corresponds to the logarithm of tension expressed in cm. *Ett exempel på hur 3 olika uttryck används för att beskriva pF-kurvan. pF motsvarar logaritmen av tensionen uttryckt i cm vattenpelare.*
Following Mualem (1976), and using the analytical expressions according to Brooks & Corey (41) and (42), the unsaturated conductivity is given by:

\[k_w = k_{sat} S_c \left(\frac{\alpha + 2}{\lambda} \right)^{2 + (2 + n) \lambda} \] \hspace{1cm} (46)

and

\[k_w = k_{sat} \left(\frac{\psi - \psi_m}{\psi} \right)^{2 + (2 + n) \lambda} \] \hspace{1cm} (47)

\(k_{sat} \) is saturated conductivity and \(n \) is a parameter accounting for pore correlation and flow path tortuosity. Eqs. (41) and (42) are used for water contents in the matrix pores. In case of using the van Genuchten equation the corresponding equation for the unsaturated conductivity is given by:

\[k_w = k_{sat} \left(\frac{1 - (\alpha \psi)^{m-1} \left(1 + (\alpha \psi)^m \right)^{1 + \lambda}}{1 + (\alpha \psi)^m} \right) \] \hspace{1cm} (48)

where the coefficients \(a \), \(g_n \) and \(g_m \) are the same as used in eq. (43).

\[k_{sat} = 0.0260 \text{ cm min}^{-1} \]
\[k_{mat} = 0.0001 \text{ cm min}^{-1} \]
\[\theta_s = 53.5 \]
\[\theta_r = 12.2 \]
\[\lambda = 0.4 \]
\[\psi_m = 256 \text{ cm water.} \]
\[n = 1 \]

Figure 15. The unsaturated conductivity for a clay soil calculated with the parameter values given above. Omättnad konduktivitet beräknad för en lerjord med angivna parametervärden.

To account for the contribution of macropores, an additional contribution to the hydraulic conductivity is considered when water content exceeds \(\theta_i - \theta_m \) (see Fig. 15.).

\[k_w = 10 \left(\log(k_w(\theta_i - \theta_m)) - \frac{\theta - \theta_s}{\theta_i - \theta_s} \log \left(\frac{k_{sat}}{k_{sat}(\theta_i - \theta_m)} \right) \right) \] \hspace{1cm} (49)

where \(k_{sat} \) is the saturated conductivity which includes the macropores \(k_w (\theta_i - \theta_m) \) is the hydraulic conductivity calculated from Eqs. (46-48).
All the hydraulic conductivities are scaled with respect to temperature effects which are simplified to a linear response in the normal range from 0 °C to 20 °C which is the reference temperature used. In addition to this dependence which is related to the viscosity of water also a minimum unsaturated conductivity is applied. Thus the conductivity is given by:

\[k_w = (r_{AOT} + r_{AIT} T_s) \max(k_w^*, k_{minuc}) \] \hspace{1cm} (50)

where \(r_{AOT} \), \(r_{AIT} \) and \(k_{minuc} \) are parameter value. \(K_w^* \) is the conductivity according to Eqs. (46-49).

2.3.3 Hysteresis effects on soil hydraulic properties

The hysteresis may be assumed in the water retention curve and in the unsaturated conductivity function depending on the switch HYSTERES.

The calculation of hysteresis is based on three multiplicative functions considering the time since start of sorption loop (\(R_{hage} \)), the shift point pF-value (\(R_{hshift} \)) and the accumulated rate of water content increase (\(R_{hacc} \)). These three functions are governed by common parameter values for all layers and they can all vary between zero and unity. In addition for each layer one parameter \(p_{physmax} \) gives the maximal effect.

Thus

\[\psi = \psi^* 10^{R_{hmax}} \] \hspace{1cm} (51)

where \(\psi^* \) is the reference value of water tension, and \(R_h \) is the hysteresis effect calculated as:

\[R_h = R_{hage} R_{hshift} R_{hacc} \] \hspace{1cm} (52)

The age response is given as:

\[R_{hage} = e^{-a_{ AGE} \Delta t_{shift}} \] \hspace{1cm} (53)

where \(\Delta t_{shift} \) is the time elapsed since last major shift from a desorption to a sorption process.

The shift point response is:

\[R_{hshift} = \max \left(R_{hage}, \min \left(\frac{\log \psi - a_{PF1}}{a_{PF2} - a_{PF1}} \right) \right) \] \hspace{1cm} (54)

and finally the accumulated change of water content is defined as:

\[R_{hacc} = \min \left(1, \frac{\Delta \theta_{sorp}}{a_{them}} \right) \] \hspace{1cm} (55)

where the \(\Delta \theta_{sorp} \) is the accumulated increase of water content at a rate that exceeds the threshold value \(a_{\theta} \) since the last major shift from desorption to sorption. The \(\Delta \theta_{sorp} \) is reset to a value that corresponds to continuous change in the total hysteresis response when a new sorption process starts.

Similar as for the water tension the hydraulic conductivity is given as:

\[k_w = k_w^* 10^{R_{hmax}} \] \hspace{1cm} (56)
2.3.4 Water vapour flow

The soil vapour flux was introduced as a switch (VAPOUR) which includes the vapour flow as an optional contribution to both the water and energy flow in the soil (see Eqs. 1 and 34).

Vapour flows between adjacent soil layers will be calculated from gradients in vapour pressure and diffusion coefficient. The diffusion coefficient is adjusted because of deviations from diffusion in free air by use of a parameter \(d_{vapb} \). The vapour flow is given by:

\[
q_v = -d_{vapb} f_a D_0 \frac{\partial c_v}{\partial z} \quad (57)
\]

where \(f_a \) is the fraction of air filled pores, \(D_0 \) is the diffusion coefficient in free air which is given as a function of the soil temperature as:

\[
D_0 = \left(\frac{T + 273.15}{273.15} \right)^{1.75} \quad (58)
\]

c_v is the vapour concentration which is given by the vapour pressure. Thus:

\[
c_v = \frac{Me_v}{R(T + 273.15)} \quad (59)
\]

where \(M \) is the molar mass of water, \(R \) is the gas constant, \(T \) is the soil temperature and the vapour pressure \((e_v) \) is given by:

\[
e_v = e_s e^\psi \quad (60)
\]

where \(e_s \) is the vapour pressure at saturation and \(\psi \) is the soil water tension. The later expression is used from the basic assumption that the liquid phase is in equilibrium with the gas phase in the soil.

2.3.5 Upper boundary condition

Boundary conditions at the soil surface are given by separate subroutines accounting for snow melt and interception of precipitation by vegetation.

Water coming from snow or from precipitation infiltrates into the soil providing that the infiltration capacity is high enough. Otherwise a surface pool of water will be formed on the soil surface. Water in the surface pool can either infiltrate with a delay into the soil or be lost as surface runoff. The surface runoff, \(q_{surf} \), is calculated as a first order rate process:

\[
q_{surf} = a_{surf} (W_{pool} - w_{p_{max}}) \quad (61)
\]

where \(a_{surf} \) is an empirical coefficient, \(W_{pool} \) is the total amount of water in the surface pool and \(w_{p_{max}} \) is the maximal amount which can be stored on the soil surface without causing any surface runoff.

The fraction of the total soil surface that is covered with water \((f_{c_{pool}}) \) is given by:
\[f_{\text{expav}} = \frac{W_{\text{pool}}}{f_{wcov\text{tot}}^{\text{f}}} \]

(62)

when the total amount of water is less than \(f_{wcov\text{tot}} \) which is a parameter value.

The infiltration capacity at the soil surface is calculated from the saturated conductivity of the topsoil and assuming a unit gradient. During conditions with frost in the soil the saturated conductivity can be reduced because of the ice content in the soil.

A physical barrier for infiltration such as a roof can also be simulated by setting a value larger than zero for the \(i_{\text{cav}} \) parameter.

Another special feature is the simulation of a furrow similar pattern on the soil surface. In this case only a fraction \((f_{\text{infbypass}}) \) of the infiltration is going directly to the second compartment of the soil. This means that the furrow receives only \((1-f_{\text{infbypass}}) \) of the total infiltration rate originating either from the surface pool or from precipitation.

2.3.6 Lower boundary condition

Different options exist for the lower boundary depending on whether saturated or unsaturated conditions are assumed. If saturated conditions are assumed a ground water outflow as calculated according to the section below will be added to the lower boundary as defined here.

The vertical water flow from the lowest compartment may be calculated by a unit gradient (UNITG = 1) i.e. by gravitational forces only or it may be assumed equal to zero (UNITG=3). Providing that the soil profile is unsaturated (GWFLOW=0) the lower boundary condition may also be defined as a constant soil water tension, \(\psi_{\text{bottom}} \) (UNITG =0) or a dynamic soil water tension (UNITG=2). If ground water is considered (GWFLOW>=1) the ground water table \(z_{\text{sat}} \) (UNITG=2) may also be specified as a dynamic variable (DRIVDRAIN ON). Alternatively, if UNITG=4 the flow is calculated as:

\[q_{\text{deep}} = \frac{8k_{\text{s}}(z_{\text{sat}} - z_{p2})^2}{d_{p2}^2} \]

(63)

where \(k_{\text{s}} \) is the conductivity of lowest layer, \(z_{\text{sat}} \) is the simulated depth of the ground water table, \(z_{p2} \) is the depth of a drain level with a parallel geometry at a spacing distance of \(d_{p2} \).

2.3.7 Groundwater outflow

Groundwater flow may be considered with different approaches. The different approaches can be combined to account for water flows in different parts of the soil profile depending on the presence of artificial drainage systems and/or topographical and hydrogeological conditions. The groundwater flows are considered as a sink term in the one dimensional structure of the model.

The physically based-approaches can conceptually be compared with a drainage system (see Fig. 16). Water flow to drainage pipes occurs when the simulated groundwater table is above the level of the pipes, i.e., flow occurs horizontally from a layer to drainage pipes when the soil is saturated. In the simplest empirical approach (GWFLOW 1) the horizontal flow rate, \(q_{\text{wp}} \), is assumed to be proportional to the hydraulic gradient and to the thickness and saturated hydraulic conductivity of each soil layer:
where d_u is the unit length of the horizontal element, z_p is the depth of the drainage pipe, z_{sat} is the simulated depth of the ground water table and d_p is a characteristic distance. Note that this is a simplification where the actual flow paths and the actual gradients are not represented. Only flows above the drain level z_p are considered.

\[
q_{wp} = \int_{z_p}^{z_{sat}} \frac{k_s (z_{sat} - z_p)}{d_u d_p} \, dz
\]

(64)

Figure 16. The geometrical assumptions behind the groundwater flow towards a sink point in the saturated zone of the soil.

A more physically-correct picture of the flow situation may be considered based on of either the classical equations presented by Hooghoudt (1940) and Ernst (1956). Following, Hooghoudt the total flow to pipes is given by:

\[
q_{wp} = \frac{4k_{s1}(z_{sat} - z_p)^2}{d_p^2} + \frac{8k_{s2}z_D(z_{sat} - z_p)}{d_p^2}
\]

(65)

where k_{s1} and k_{s2} are the saturated conductivities in the horizon above and below drainage pipes respectively, z_D is the thickness of the layer below the drains and d_p is the spacing between parallel drain pipes. In the model, the flows for specific layers above the drain depth are calculated based on the horizontal seepage flow for heterogeneous aquifers (Youngs, 1980), corresponding to the first term in the Hooghoudt equation:

\[
q_{wp1} (z) = \frac{8k_s(z)(hu - hl + \frac{(hl^2 - hu^2)}{2(z_{sat} - z_p)}(z_{sat} - z_p)}{d_p^2}
\]

(66)

where hu and hl are the heights of the top and bottom of the compartment above the drain level z_p. Below the drain depth the flow is calculated for each layer as:

\[
q_{wp2} (z) = \frac{8k_s(z)(z_{sat} - z_p)r_{cor}(z)}{d_p^2}
\]

(67)
where the correction factor r_{corr} may be calculated (GWFLOW 5 or 6) based on the equivalent layer thickness (z_d) as:

$$r_{corr}(z) = \frac{z_d \Delta z}{z_D}$$ \hspace{1cm} (68)

where z_d and d_p are related as:

$$d_p = \frac{(d_p - z_D \sqrt{2})^2}{z_d} + \frac{8}{\pi \ln \left(\frac{z_d}{r_p \sqrt{2}} \right)}$$ \hspace{1cm} (69)

where r_p is the diameter of the drain pipe.

Alternatively, the correction factor is based on estimated sums of the radial (r_r), horizontal (r_h), and vertical (r_v) resistances for each layer. The correction factor is then (GWFLOW 3 or 4) given as:

$$r_{corr}(z) = \frac{(r_r(z) + r_h(z) + r_v(z)) \Delta z}{r_{ref} z_D}$$ \hspace{1cm} (70)

where the r_{ref} is the horizontal resistance as included in eq. (67). The separate resistances for each compartment within the z_D layer are given:

$$r_r(z) = \sum_{i=1}^{n} \frac{\Delta z}{k(z)}$$ \hspace{1cm} (71)

$$r_h(z) = \frac{(d_p - \cos(0.5 \pi (z_D - z)) z_D)^2}{8 K(z) z_D}$$ \hspace{1cm} (72)

$$r_v(z) = \frac{1}{n} \sum_{i=1}^{n} \frac{d_p}{\pi K(z)} \ln \frac{z_D}{r_p}$$ \hspace{1cm} (73)

A return flow (inflow) from the drain pipes or from ditches may be calculated based on straight forward use of the Darcy equation. In this case, the different radial and vertical resistances are neglected and only the horizontal resistance from eq. (64) is applied.

Vertical redistribution within the saturated zone is calculated based on the assumption that the water content will only change in the uppermost saturated layer. Redistribution is calculated such that the losses from all the other layers are satisfied.

One additional empirical approach is based on a first-order recession equation. Unlike the case for the physically-based approach, this sink term will only be calculated in the layer where the ground water table is located and no account is taken of flow paths in the saturated part of the soil profile. When the ground-water level, z_{sat}, is above the bottom of the profile, a net horizontal water flow is given as a sum of ‘base flow’ and a more rapid ‘peak flow’:

$$q_{net} = q_1 \max(0, z_1 - z_{sat}) + q_2 \max(0, z_2 - z_{sat})$$ \hspace{1cm} (74)

where q_1, q_2, z_1, z_2 are parameters obtained by fitting techniques, and z_{sat} is defined as the level where the matric potential is zero.
2.3.8 Groundwater inflow

In a similar way to groundwater outflow (drainage), a horizontal source flow may be defined. The source flow could either be the simulated outflow from a previous simulation (for quasi-two dimensional modelling) or set to a constant value, q_{suf}, for a specific layer, q_{int}.

In addition, a source flow from a water-filled ditch or stream to the soil profile will be simulated (GWFLOW switch 2, 4 or 6) when the drainage depth is above the groundwater level in the simulated profile.
2.4 Potential transpiration

Transpiration is defined as a potential rate when neither soil water deficits nor low soil temperatures influence the water loss. Unless given directly as a driving variable, daily potential transpiration, TR_p, is calculated from Penman’s combination equation in the form given by Monteith (1965):

$$ L_o TR_p = \frac{\Delta R_n + \rho_a c_p (e_s - e)}{\Delta + \gamma \left(1 + \frac{r_s}{r_a} \right)} $$

(75)

where R_n is net radiation available for transpiration (i.e. $R_n - R_{nt}$, see Fig. 20)), e_s is the vapour pressure at saturation, e is the actual vapour pressure, ρ_a is air density, c_p is the specific heat of air at constant pressure, L_t is the latent heat of vaporisation, Δ is the slope of saturated vapour pressure versus temperature curve, γ is the psychrometer ‘constant’, r_s is an ‘effective’ surface resistance. The aerodynamic resistance, r_a, is calculated as:

$$ r_a = \frac{\ln^2 \left(\frac{z_{ref} - d}{z_o} \right)}{k^2 u} $$

(76)

where the wind speed, u, is given at reference height, k is von Karman’s ‘constant’, d is the displacement height and z_o is the roughness length. d And z_o are given explicitly as model parameters.

The roughness length, z_o is optionally estimated by functions following data presented by Shaw and Periera (1982). Thus:

$$ z_o = \max(h_{canopy} \min(f1, f2), z_{o min}) $$

(77)

where $f1$ and $f2$ are defined as:

$$ f1 = 0.175 - 0.098 p_{denom} + (-0.098 + 0.045 p_{denom}) \log(\text{PAI}) $$

(78)

(78)

and PAI is the plant area index which is defined as the sum of leaf area index (LAI) and the P_{addins} which is a parameter together with h_{canopy}, p_{denom} and $z_{o min}$.

Also the displacement height may be estimated by function as derived from the suggestions presented by Shaw and Periera (1982).

$$ d = \min(z_{ref} - 0.5, (0.80 + 0.11 p_{denom} - (0.46 - 0.09 p_{denom}) e^{-0.16 + 0.28 p_{denom} / \text{PAI}} h_{canopy}) $$

(79)
The surface resistance is either considered as a direct function of parameter values (see 0) or it may be calculated as a function of leaf area index (LAI), global radiation (R_{gw}) and vapour pressure deficit (e_s - e_a). In the later case the surface resistance is given by:

\[r_s = \frac{1}{\max(LAI g_l, 0.001)} \]

(80)

where \(g_l \) is the leaf conductance which is given by the Lohammar equation (Lindroth, 199x) as:

\[
g_l = \frac{R_{ris}}{R_{ris} + g_{ris}} \frac{g_{max}}{1 + \frac{(e_s - e_d)}{g_{vpd}}} \]

(81)

where \(g_{min}, g_{max} \) and \(g_{vpd} \) are parameter values.

2.5 Water uptake by roots

Water uptake by roots is assumed to equal actual transpiration, without considering any variations in the water storage of vegetation. Waring et al. (1979) indicated that, for forests, water in vegetation may contribute a considerable amount to transpiration during short periods. Thus, careful interpretation of simulated water uptake rates should be made if within day resolution is considered for a forested site.

Reduction of potential to actual transpiration is performed separately for each depth where the normalized root density, \(r(z) \) is above zero. Root density may be expressed by root length per unit soil volume, or by any other pertinent measure of roots.

Reduction because of dry soil is supposed to act through the stomatal mechanism and xylary tissue resistance, which both have shown to be very sensitive to transpiration rate. The water tension response, \(R_p \) which has been given an analytical form of wide applicability (see Fig. 17.), therefore reacts to the same transpiration demand at all levels:

\[
R_p(z) = \min \left(\left(\frac{\psi(z)}{\psi_c} \right)^{p_1 \psi(z) + p_2}, p_3 + \frac{\psi(z)}{\psi_{cw}} (1 - p_3) \right) \]

(82)

where \(p_1, p_2 \) and \(p_3 \) are parameters as well as the \(\psi_c \) and \(\psi_{cw} \) a critical tension where reduction begins.
Reduction because of low soil temperatures acts primarily through a lowered conductivity between root surface and xylem and is, thus, responding to temperature at each depth. The analytical form of the soil temperature response (see Fig. 18), R_T, was proposed by Axelsson & Ågren (1976):

$$R_T(z) = 1 - e^{-\tau_{\text{max}}(T(z))^{\tau}}$$ \hfill (83)

Figure 17. The response of water uptake by roots to soil water tension using different parameter values. Responsen av markvattentensionen på vattenupptagningen genom rötter.

Flexibility of a root system to reallocate roots from layers where a deficiency occurs to layers which have an excess of water is accounted for in the model. Actual transpiration is first calculated without any compensatory uptake as:

$$TR_a = TR_p^* \int_0^z \overline{R}_p(z)R(z)r(z)dz$$ \hfill (84)

where z_r is the maximal root depth. The compensatory uptake is finally accounted for when calculating the total transpiration:

$$TR_a = TR_a^* + \int_{\text{anov}} \left(TR_p^* - TR_a^*\right)$$ \hfill (85)

Figure 18. The response of water uptake by roots to soil temperature using different parameter values. Curve (a) corresponds to the default curve suggested by Axelsson & Ågren (1976). Responsen av marktemperaturen på vattenupptagningen genom rötter. Kurva (a) motsvarar den som föreslogs av Axelsson & Ågren (1976).
where \(f_{\text{amn}} \) is the degree of compensation. The compensatory uptake is distributed to the layers where \(R_i' \) is less than unity zero according to the relative fraction of the roots in layers with an excess of water.

2.6 Dynamic behaviour of plant related properties

Some properties which have typical temporal patterns during the season can be varied as a function of the day number \(t_{\text{day}} \) in the year or they can be given as driving variables in a special file (see "additional driving variable file" in the user’s manual) or may be changed step wise by using the switch CHAPAR (see "switches" in the user’s manual). The properties which can be given as functions of time are divided into one group for above ground properties (Surface resistance, \(r_s \), Leaf area index, LAI, Roughness length, \(z_o \), displacement height, \(d \) and/or height of canopy and albedo of vegetation) and one for below ground properties (Root depth, \(z_r \)).

The temporal function is defined by:

\[
\begin{align*}
 x &= (1 - \alpha)x(i-1) + \alpha x(i) \quad (86) \\
 x &= x(1) \quad t \leq t_{\text{day}}(1) \quad (87) \\
 \alpha &= \left[\frac{t - t_{\text{day}}(i-1)}{t_{\text{day}}(i) - t_{\text{day}}(i-1)} \right]^{c_{\text{form}}(i-1)} \quad t_{\text{day}}(i-1) < t \leq t_{\text{day}}(i) \quad (88) \\
 x &= x(i) \quad t > t_{\text{day}}(i) \quad \text{and} \quad t_{\text{day}}(i+1) = 0 \quad (89)
\end{align*}
\]

where \(x(i) \) is the parameter defined at day number \(t_{\text{day}}(i) \) in an array from 1 to \(n \). Up to 5 day numbers can be defined, with values \(> 0 \) and \(\geq 365 \). If \(t_{\text{day}}(i) \) is set to 0, only indices lower than \(i \) will be considered.

![Graphical representation of the interpolation procedure used for some plant related properties according to Eq. (55-58).](image)

Figure 19. Graphical representation of the interpolation procedure used for some plant related properties according to Eq. (55-58). **Grafisk återgivning av interpolationsförfarandet av växtrelaterade egenskaper enligt ekvationerna (55-58).**
Depth distribution of roots, \(r(z) \), can be defined either as a fraction of roots in each horizon according to parameter values or as a functional relationship (uniform, linear or exponential). In a similar way to the uniform and linear function the exponential form is normalized making the integral of the whole soil profile equal to unity. The fraction of roots below a depth \(z \) is given by:

\[
\int_{z_0}^{z} r(z) = \frac{1 - e^{-k_r(z/z_r)}}{1 - r_{frac}}
\]

where it can be shown that the exponential extinction coefficient \(k_r \) equals \(-\ln(r_{frac})\). \(r_{frac} \) is a parameter in the model.

2.7 Evaporation from the soil surface

Soil evaporation can be calculated by two different approaches in the model. The more empirical approach is based on a Penman type equation and the more physically based approach is developed from an iterative solution of the energy balance including both water and heat flow at the soil surface. The empirical approach is normally used when the water balance conditions are of major interest, since it will not influence the soil surface temperature or heat flow. The iterative solution of the energy balance is recommended when the feedback between temperature and water conditions is of interest.

Common to both approaches is the partitioning of net radiation between the plant canopy and the soil surface assuming the Beer's law to be valid (Impens & Lemeur, 1969):

\[
R_{as} = R_{na} e^{-k_m LAI}
\]

where \(R_{as} \) is the net radiation above the plant canopy, \(R_{na} \) is the net radiation at the soil surface, \(k_m \) is an extinction coefficient and \(LAI \) is the leaf area index.

The energy flows and resistances in the soil-plant-atmosphere system are illustrated in Fig. 20.

\(^K \) water balance; balance, water
2.7.1 Surface energy balance approach

The physically based approach, for calculating soil evaporation, originates from the idea of solving the equation of heat flow at the soil surface boundary. According to the law of conservation of energy:

\[R_{ns} = LE_s + H_s + q_h \]

(92)

where \(R_{ns} \) is the available net radiation at the soil surface, \(LE_s \) is the latent heat flow to the air, \(H_s \) is the sensible heat flow to the air and \(q_h \) is the heat flow to the soil. The three different heat flows are estimated by an iterative procedure where the soil surface temperature is varied according to a given scheme.

\[H_s = \rho_a c_p \frac{(T_s - T_a)}{r_{as}} \]

(93)

\[LE_s = \frac{\rho_a c_p (e_{surf} - e_a)}{\gamma r_{as}} \]

(94)

\[q_h = k_h \frac{(T_s - T_l)}{\Delta z_1} + Lq_v \]

(95)

where the vapour flow \(q_v \) (following eq. 57) from the soil surface to the central point of the uppermost compartment is given by:

\[q_v = d_{vapb} f_a D_0(T) \frac{C_v - C_{v1}}{\Delta z} \]

(96)

where \(d_{vapb} \) is the tortuosity given as an empirical parameter, \(D_0 \) is the diffusion coefficient for a given temperature, \(f_a \) is the fraction of air filled pores. \(C_v \) and \(C_{v1} \) are the concentrations of water vapour at the soil surface and at the middle of the uppermost compartment respectively.

2.7.1.1 Resistance approach for soil heat flow

As an alternative, the heat flow can be calculated using a simplified resistance approach valid for daily mean values. The flow is then given by:

\[q_h = \frac{T_s - T_l}{r_{soil}} \]

(97)

\[\kappa \] energy balance; balance, energy
where the \(r_{soil} \) represents the integrated resistance of the uppermost 20 cm of the soil profile. The existence of an organic topsoil is accounted for when the resistance is calculated from the thermal conductivity of humus, \(k_{ho} \), and of mineral soil, \(k_{hm} \):

\[
r_{soil} = \frac{\Delta z_{\text{humus}}}{k_{ho}} + \frac{0.2 - \Delta z_{\text{min}}}{k_{hm}}
\]

(98)

where \(\Delta z_{\text{humus}} \) and \(\Delta z_{\text{min}} \) are the thickness of humus and mineral soil, respectively in the upper 20 cm of the soil profile.

2.7.1.2 Stability correction and resistance below vegetation canopy

The aerodynamic resistance is influenced by the atmospheric stability through the Richardson number \((R_i) \) and the crop cover \((r_{ab}) \).

\[
r_a = \frac{r_a}{\sqrt{1 - a, R_i}} + r_{ab}
\]

(99)

where \(a_i \) is a parameter with default value 16 taken from to Rosenberg (1978). The Richardson number is calculated as:

\[
R_i = g(h - z_o) \frac{(T_A - T_s)}{(T_A + 273.15)u^2}
\]

(100)

where the resistance between the soil surface and the crop canopy, \(r_{ab} \), is made proportional to the leaf area index.

\[
r_{ab} = r_{alai} \text{LAI}
\]

(101)

where \(r_{alai} \) is a parameter

2.7.1.3 Moisture availability at the soil surface

Vapour pressure at the soil surface is given by the surface temperature, \(T_s \), the water tension of the uppermost layer and an empirical correction factor, \(e_{corr} \), accounting for steep gradients in moisture between the uppermost layer and the soil surface.

\[
e_{\text{surf}} = e_s(T_s)e^{\left(\frac{-W M g e_{corr}}{R(T_s + 273.15)}\right)}
\]

(102)

where \(R \) is the gas constant, \(M \) is the molar mass of water and \(g \) is the gravity constant.
The empirical correction factor depends on a parameter \(\psi_{es} \) and a calculated mass balance at the soil surface, \(\delta_{surf} \), which is allowed to vary between the parameters \(s_{def} \) and \(s_{excess} \) given as mm of water.

\[
e_{corr} = 10^{(-\delta_{surf} \psi_{es})}
\]

(103)

\[
\delta_{surf}(t) = \max(s_{def}, \min(s_{excess}, \delta_{surf}(t-1) + (1 - E_s - q_v)\Delta t))
\]

(104)

where \(I \) is the infiltration rate, \(E_s \) is the evaporation rate and \(q_v \) is the vapour flow from soil surface to the central point of the uppermost soil layer.

2.7.2 Empirical approach for soil evaporation

The radiation energy reaching the soil surface, \(R_{ns} \), is used to calculate the soil surface evaporation, \(E_s \), using the Penman combination equation:

\[
LE_s = \frac{\Delta R_{ns} - q_h + \rho_a c_p (e_s - e)}{\Delta + \gamma \left(1 + \frac{r_{as}}{r_{ss}}\right)}
\]

(105)

where \(r_{as} \) is the sum of the aerodynamic resistance and \(r_{ss} \) is the surface resistance at the soil surface.

The aerodynamic resistance between the soil surface and the reference height, \(r_{as} \), is calculated in the same way as in the physically based approach using Eq. (82).

The surface resistance at the soil surface, \(r_{ss} \), can be given by two alternative empirical functions accounting for moisture conditions at the soil surface and the water tension in the uppermost soil layer, either:

\[
r_{ss} = r_p (\log \psi - 1 - \delta_{surf}) \quad \psi > 100
\]
\[
r_{ss} = r_p (1 - \delta_{surf}) \quad \psi < 100
\]

(106)

or

\[
r_{ss} = \max(0, r_{p1} \max(\psi - \psi_{2}, 0) - r_{p2} \delta_{surf})
\]

(107)

where \(r_p \) is an empirical coefficient and \(\psi \) is the water tension in the uppermost layer. As above, \(\delta_{surf} \) is the mass balance at the soil surface, in units of mm water, which is allowed to vary between \(s_{def} \) and \(s_{excess} \). The mass balance at the surface is calculated by Eq. (94) as in the energy balance approach. The soil surface temperature will also be estimated if the switch

\(K \) mass balance; balance, mass
SUREBAL is put to the value 1. This is done by first solving the heat balance equation for the sensible heat flow to the air as:

\[H_s = R_{ns} - LE_s - q_h \] \hspace{1cm} (108)

where the soil heat flow, \(q_h \), is taken as a weighted sum of the heat flow from the preceding time steps. The soil surface temperature is finally given as:

\[T_s = \frac{H_s r_{ns}}{\rho c_p} + T_a \] \hspace{1cm} (109)

2.8 Evaporation of intercepted water

A simple threshold formulation gives the interception rate of precipitation, \(S_{int} \), by the vegetation canopy:

\[S_{int} = \min \left(P, \frac{(S_{max} - S_i(t-1))}{\Delta t} \right) \] \hspace{1cm} (110)

where \(P \) is precipitation, \(S_{max} \) is the interception storage threshold, and \(S_i(t-1) \) is the interception storage remaining from the previous time step. \(S_{max} \) is a function of the leaf area index, LAI:

\[S_{max} = i_{LAI} LAI \] \hspace{1cm} (111)

where \(i_{LAI} \) is a parameter.

Infiltration to the soil, \(q_w(0) \) is then:

\[q_w(0) = \max(0, P - S_{int}) \] \hspace{1cm} (112)

In forests, evaporation of intercepted water may considerably exceed transpiration rates with equivalent local-climatic conditions.

The potential evaporation rate, \(EI_p \), from interception storage can either be calculated from the Penman combination equation assuming a surface resistance \((r_{int}) \) representing the resistance to the single source point of the whole canopy. When potential transpiration is used as a driving variable a constant relation between wet surface evaporation rate and potential transpiration rate is assumed:

\[EI_p = e_{rat} TR_p \] \hspace{1cm} (113)
where \(e_{rel} \) is a parameter. If the Penman combination equation is used to calculate \(EI_p \), the \(e_{rel} \) value is given by the equation above and not taken as a parameter.

Actual evaporation from the canopy is limited either by the potential daily rate, \(EI_p \), or by the interception storage, \(S_{int} \):

\[
EI_a = \min \left(EI_p, S_{int} + \frac{S_i(t-1)}{\Delta t} \right)
\] (114)

where \(S_i(t-1) \) is the residual intercepted water which remains from the previous time step (\(\Delta t \)) if the actual evaporation, \(EI_a \), was smaller than the interception storage. Remaining intercepted water at the present time step is calculated as:

\[
S_i(t) = S_i(t-1) + (S_{int} - EI_a) \Delta t
\] (115)

When evaporation of intercepted water, \(EI_a \), takes place the potential transpiration rate, \(TR_p \) is reduced based on the assumption that evaporation and transpiration are complementary in time:

\[
TR_p^* = \max \left(0, TR_p - \frac{EI_a}{e_{rel}} \right)
\] (116)

Evapotranspiration, i.e., the total water loss to the atmosphere per unit ground surface, is calculated as the sum of actual transpiration and wet surface evaporation. This yields the final expression for daily evapotranspiration, \(ET \):

\[
ET = EI_a + E_s + TR_a
\] (117)
2.9 Snow Dynamics

Precipitation partitioning into rain and snow is made in a temperature interval

New Snow

Ice

Old Snow

Liquid

Air

Melting/Freezing

Outflow infiltrates into the soil or enter the surface pool

Figure 21 The snow model, subdivision of snow into two compartments and the different water flow paths. Snö rutinen med uppdelning av snön i två skikt och med de olika vattenflöden som beräknas i modellen.

Snow is separated into liquid water and the total water equivalent. The entire snow pack is considered to be homogeneous both horizontally and vertically and only day to day variations are calculated. The fundamental part of the model is the melting-freezing function which combines the two separate budgets. Daily amount of snow melt, M, is made up by a temperature function, M_T, a function accounting for influence of solar radiation, M_R, and the soil surface heat flow, $q_h(0)$:

$$M = M_T T_a + M_R R_s + \frac{f_{qs} q_h(0)}{L_f}$$

(118)

where T_a is air temperature and R_s is global radiation. Melting will affect the whole snow pack, whereas refreezing will only affect a limited surface layer. Refreezing efficiency is, therefore, inversely proportional to snow depth, Δ_s:

$$M_T = m_T$$ \hspace{1cm} \text{for} \hspace{1cm} T_a \geq 0

(119)

$$M_T = m_T \min \left(1, \frac{m_f}{\Delta_s} \right)$$ \hspace{1cm} \text{for} \hspace{1cm} T_a < 0

where T_a is air temperature and m_T and m_f are parameters.
Albedo is markedly reduced with age of snow surface, such that radiation absorption increases with time. This is the reason for making M_R dependent on the age of the surface snow, t_{sage}:

$$M_R = m_{R_{\min}} (1 + s_1 (1 - e^{-s_2 t_{sage}})) \quad (120)$$

where $m_{R_{\min}}$, s_1 and s_2 are parameters. Age of surface snow is determined by the number of days since the last snowfall. To reduce the influence of mixed precipitation and minor showers, snowfall is counted in this context only for snow spells larger than a critical value, $P_{s\min}$, and for precipitation with thermal quality above a threshold value $Q_{s\min}$.

The accumulation of free water in the snow pack is calculated on a daily basis as:

$$S_{w1} = S_{w1\text{res}} + P_r + M \quad (121)$$

where $S_{w1\text{res}}$ is the free water remaining from the previous day, P_r is the rain precipitation, and S is the water equivalent (total amount of water in the snow pack) and with the restriction that $0 < S_{w1} < S$. If the free water is above a given retention threshold, $S_{w1\text{max}}$, it will be released as infiltration:

$$q_w(0) = \max(0, S_{w1} - S_{w1\text{max}}) \quad (122)$$

such that the remaining amount of free water becomes:

$$S_{w1\text{res}} = S_{w1} - q_w(0) \quad (123)$$

The retention capacity is assumed to be a fixed fraction, f_{ret}, of the snow pack water equivalent:

$$S_{w1\text{max}} = f_{\text{ret}} S \quad (124)$$

The snow pack not only contributes melt water to infiltration but soil surface temperature is also influenced through snow depth and thermal conductivity (cf. Eqs. 7 and 8).

Snow thermal conductivity, k_{snow}, is sensitively related to snow density, ρ_{snow} (Corps of Engineers, 1956):

$$k_{\text{snow}} = s_k \rho_{\text{snow}}^2 \quad (125)$$

where s_k is an empirical parameter, and snow density is a weighted average of the old snow pack (i.e. the density of snow remaining from the previous day ρ_{old}) and precipitation density, ρ_{prec}:

$$\rho_{\text{snow}} = \frac{\rho_{\text{prec}} \Delta z_{\text{prec}} + \rho_{\text{old}} \Delta z_{\text{old}}}{\Delta z_{\text{snow}}} \quad (126)$$
where $\Delta \xi$ indicates depth and the indices represent old snow pack, precipitation and updated snow pack.

A perfectly frozen precipitation is assumed to have a constant, minimum density, ρ_{min}. For mixed precipitation, density depends on the ratio of rain, P_r, to total precipitation, P:

$$\rho_{\text{prec}} = \rho_{\text{min}} + (\rho_{\text{water}} - \rho_{\text{min}}) \frac{P_r}{P}$$ \hfill (127)

Depth of precipitation is then automatically given as:

$$\Delta \xi_{\text{prec}} = \frac{P}{\rho_{\text{prec}}}$$ \hfill (128)

Density of the old snow pack increases with the relative amount of free water in the pack and with overburden pressure, i.e., with increasing water equivalent. Density also generally increases with age. The age dependency is accounted for by updating density as the maximum of the previous day's density or:

$$\rho_{\text{old}} = \rho_{\text{min}} + s_{\text{dil}} \frac{S_{\text{wi}}}{S_{\text{wi max}}} + s_{\text{dw}} S_{\text{res}}$$ \hfill (129)

where s_{dil} and s_{dw} are parameters and S_{res} is the water equivalent of the snow pack from the previous day. Depth of old pack is given by definition as:

$$\Delta \xi_{\text{old}} = \frac{S_{\text{res}}}{\rho_{\text{old}}}$$ \hfill (130)
3. Model input

Three classes of input data may be distinguished. Driving variables are the climatic data which govern the model. Initial values are required to define a starting point at a specific time and physical parameters are constants needed to express relevant properties for the different processes in the model. However, some of these properties may be varied with time and this could either be done by using time dependent functions for some of the parameters or by selecting a new value of a certain parameter to be valid at a specified date (see Switches CHAPAR).

3.1 Driving variables

The SOIL model can be run in several simulation modes depending on the purpose of the simulation. Each mode has its own requirements for driving variables. If, for example, soil temperature is simulated with variations within the day and with soil moisture treated as constant, a measured top soil temperature will suffice as a single driving variable. If the aim is to simulate effects of soil heat extraction on an annual basis, air temperature, precipitation and heat extraction rate will suffice as measured driving variables, since in this case potential transpiration can be given as a simplified analytical function to account for annual variations.

The most common simulation mode, thus far, has been to simulate, on an annual basis, both soil heat and water flows in a natural, vegetated soil. This mode requires the input of the following meteorological variables once a day: Precipitation, air temperature, relative humidity, wind speed, net radiation and global, shortwave radiation. Ideally, these variables should be measured at a reference height above vegetation, but being daily sums or averages, it will commonly be sufficient to use data from a nearby standard meteorological network station. If, by chance, a reliable measure of potential transpiration can be given, this measure will substitute relative humidity, wind speed and net radiation. If, on the other hand, some of the driving variables are not measured, they can be substituted by analytical expressions or they can be deduced from other measurements. Global radiation can be substituted by degree of cloudiness or duration of bright sunshine. Relative humidity, wind speed and cloudiness could each be substituted by parameter values representing average conditions for longer time periods. Net radiation can be substituted by global radiation. The minimum requirement to produce realistic results from simulations of annual heat and water flows is to have only measured precipitation and air temperature.

In the present form, treatment of driving variables and simulation mode options mainly reflect past development and use of the model but new options can easily be included, if needed for a specific purpose.

Potential transpiration is normally calculated in the model by Monteith's equation (Eq. 48) in which case account is also made for heat flow into the soil. Potential transpiration can also be given directly as a measured time series or as an analytical expression:

$$ TR_p = 0 $$

$$ TR_p = TR_{p_{\text{max}}} \sin \left(\frac{(t - t_{p_{\text{max}}} + \Delta t_r)}{2\Delta t_r} \pi \right) $$

$$ t - t_{p_{\text{max}}} \geq \Delta t_r $$

$$ t - t_{p_{\text{max}}} < \Delta t_r $$

This function gives a "smooth pulse" with a half width of Δt_r and a maximal value of $TR_{p_{\text{max}}}$ at time $t_{p_{\text{max}}}$.

51
Precipitation can be given as a series of pulses, with regular frequency and specified pulse height. Normally, however, it is given as a measured time-series. To account for the precipitation phase, i.e., whether snow or rain, thermal quality, \(Q \), i.e., relative fraction of frozen water, is calculated from air temperature, \(T_a \):

\[
Q = 0 \quad T_a > T_{\text{max}} \\
Q = \frac{(T_a - T_{\text{max}})}{(T_{\text{min}} - T_{\text{max}})} \quad T_{\text{min}} \leq T_a \leq T_{\text{max}} \\
Q = 1 \quad T_a < T_{\text{min}}
\]

(132)

Where all precipitation is assumed to be rain for air temperatures above \(T_{\text{max}} \) and to be snow for air temperatures below \(T_{\text{min}} \). Between these limits proportions vary linearly. Rain, \(P_r \), and snowfall, \(P_s \), is, thus, given from precipitation as:

\[
P_r = (1 - Q)P \\
P_s = QP
\]

(133)

(134)

Measured precipitation, \(P_m \), is almost always less than the "true" value, \(P \), primarily because of wind-losses. These losses are more pronounced for snowfall than for rain. An acceptable long-term, average, correction can be given by multiplying the measured value by a constant fraction, different for rain and snowfall:

\[
P = (c_{\text{rain}} + Qc_{\text{snow}})P_m
\]

(135)

For Swedish conditions, the Swedish Meteorological and Hydrological Institute (SMHI) recommends a rain correction of 7% and a snow correction of 15%, meaning that \(c_{\text{rain}} = 1.07 \) and \(c_{\text{snow}} = 0.08 \).

Air temperature is normally supplied as a measured value, sometimes being the average of a night- and a day-time temperature. It can also be given an analytical form:

\[
T_a = T_{\text{mean}} - T_{\text{amp}} \cos \left(\frac{t - t_{\text{ph}}}{y_{\text{cycle}}} \frac{2\pi}{2\pi} \right)
\]

(136)

which, with correct choices of parameters \(T_{\text{mean}} \), \(T_{\text{amp}} \), \(t_{\text{ph}} \) and \(y_{\text{cycle}} \), can properly represent both diurnal and annual variations.

Topsoil temperature, when used as a driving variable, is supplied as a measured time-series.

The air humidity can either be expressed as relative humidity, \(h_r \), or as the actual vapour pressure (\(e \)). The air humidity, is normally supplied as a measured time-series but if it is not available a constant value of the relative humidity can be specified as a parameter. The vapour pressure, \(e_a \), will be calculated from air temperature if the relative humidity is used and from the vapour pressure, \(e_a \), the vapour pressure deficit, \(\Delta e \), is calculated:
The saturated vapour pressure function, $e_s(T)$, is defined by:

$$e_s(T) = 10^{\frac{12.5553 - 2667}{T + 273.15}}$$ \hspace{1cm} T \geq 0 \hspace{1cm} (139)$$

$$e_s(T) = 10^{\frac{11.4051 - 2333}{T + 273.15}}$$ \hspace{1cm} T < 0 \hspace{1cm} (140)$$

where e_s is calculated in (Pa) and T in °C.

Wind speed is normally supplied as a measured time-series but it can be substituted by a constant parameter value if it is not available. Wind speeds less than 0.1 mm/s are rejected and replaced by this lower limit.

Net radiation would ideally be supplied as a measured time-series but in most cases it has been estimated from other meteorological variables. It can be deduced from global radiation, R_g, air temperature, T_a, vapour pressure, e_a, and relative duration of sunshine, n_{sun}, as the sum of net shortwave, R_{ns}, and net loss of longwave radiation, R_{nl}, the latter given by Brunt’s formula:

$$R_n = R_{ns} - R_{nl}$$ \hspace{1cm} (141)$$

where

$$R_{ns} = R_g (1 - \alpha_r)$$ \hspace{1cm} (142)$$

and

$$R_{nl} = 86400 \sigma (T_a + 273.15)^4 (r_1 - r_2 \sqrt{e}) (r_3 + r_4 n_{sun})$$ \hspace{1cm} (143)$$

where α_r is shortwave r_1 to r_4 are empirical parameters and σ is Stefan-Boltzmann’s constant.

As an alternative formula for the net long wave radiation the user may also chose:

$$R_{nl} = 86400 \sigma ((T_a + 273.15)^4 - (r r_1 - rr_2 \sqrt{e}) (T_a + 273.15)^4) (rr_3 + rr_4 n_{sun})$$ \hspace{1cm} (144)$$

where the temperature of the soil surface T_s is explicitly used.

The albedo value will be calculated as a function of the albedo for vegetation and the albedo of the soil surface as:

$$a_r = a_{soil} e^{-LAI k_{soil}} + (1 - e^{-LAI k_{soil}}) a_{veg}$$ \hspace{1cm} (145)$$
where \(a_{\text{seg}} \) is given as parameter values similar to other vegetation characteristics (see 0). The \(k_m \) is the same parameter as used for extinction of net radiation and \(a_{\text{soil}} \) is calculated as:

\[
a_{\text{soil}} = a_{\text{dry}} + e^{-k_m \log(\psi)}(a_{\text{wet}} - a_{\text{dry}})
\]

where \(k_m \) is parameter as well as the albedo for a dry \((a_{\text{dry}}) \) and wet soil \((a_{\text{wet}}) \) respectively. The soil water tension of the uppermost layer \((\psi_f) \) is allowed to vary from \(10^1 \) to \(10^7 \) cm.

Relative cloudiness, \(n_c \), can be used to calculate relative duration of sunshine, \(n_{\text{sun}} \):

\[
n_{\text{sun}} = 1 - n_c
\]

Duration of bright sunshine, \(\Delta t_{\text{sun}} \), can also be used to estimate relative duration of sunshine:

\[
n_{\text{sun}} = \frac{\Delta t_{\text{sun}}}{\Delta t_{\max}}
\]

Daylength, \(\Delta t_{\max} \), is calculated as a function of the latitude:

\[
\Delta t_{\max} = 1440 - \frac{120}{\text{rad}} \arccos(a_1)
\]

where rad is a radian and the argument in the arc cosines function \(a_1 \) is given as:

\[
a_1 = \min(1, \max(-1, \frac{\sin(\text{rad} \cdot \text{lat}) \cdot \sin(\text{rad} \cdot \text{dec})}{\cos(\text{rad} \cdot \text{lat}) \cdot \cos(\text{rad} \cdot \text{dec})})
\]

where the declination \(\text{dec} \) is given as:

\[
\text{dec} = -23.45 \cos \left(3.14 \cdot \frac{(t_{\text{day}} + 10.173)}{182.61} \right)
\]

Global shortwave radiation is normally supplied as a measured time-series. If not directly measured, it can be deduced from potential global radiation, \(R_{\text{pris}} \), and relative duration of sunshine, \(n_{\text{sun}} \), with Ångström's formula:

\[
R_{\text{is}} = R_{\text{pris}}(r_3 + r_6 n_{\text{sun}})
\]

where \(r_3 \) and \(r_6 \) are turbidity constants.

Potential global radiation above the atmosphere is given as a function of the declination, \(\text{dec} \), and daylength, \(\Delta t_{\max} \):

\[
R_{\text{pris}} = 1360 \cdot 60 \cdot a_2 \cdot \Delta t_{\max}
\]
where daylength, Δt_{max} is given by Eq. (139) and

$$a_2 = \sin(rad \cdot \text{lat}) \cdot \sin(rad \cdot \text{dec}) \cdot \frac{\cos(rad \cdot \text{lat}) \cdot \cos(rad \cdot \text{dec})}{\Delta t_{\text{max}} / 120 \cdot rad \cdot 15} \sin\left(rad \cdot 15 \left(24 - \frac{\Delta t_{\text{max}}}{120}\right)\right)$$

(154)

where the declination dec is given by Eq. (141).

Two man-made climatic impacts can also be considered:

Irrigation can be given as a measured time-series or specified to take place at certain soil moisture conditions. The irrigation is considered either as totally above vegetation ($i_{\text{frac}} = 0$), totally at the soil surface ($i_{\text{frac}} = 1$) or with any other partition ($0 < i_{\text{frac}} < 1$) between the vegetation and the soil.

The control of irrigation is governed by the actual soil water storage S_{swat} which is the sum of water storage in a number of layers (n_{lay}). When S_{swat} drops below a critical threshold S_{min}, irrigation of an amount i_{irr} takes place at an intensity i_{irr}.

Soil heat extraction rate from a specified layer, z_{hpc}, can be given as a measured time-series but may also be given as a function of air temperature according to governing rules for commercially available soil heat pump equipment:

$$s_h = s_{h1} \quad T_a < T_{hpc}$$

$$s_h = \min(s_{h_{\text{max}}}, s_{h1} + s_{h2}(T_{hpc_{\text{lim}}}, T_a)) \quad T_a \geq T_{hpc}$$

(155)

(156)

where s_{h1} is a constant heat extraction required for hot water purposes, T_{hpc} a critical temperature below which domestic heating is necessary and s_{h2} and $T_{hpc_{\text{lim}}}$ are design parameters in the air temperature dependence.

When the soil temperature drops below $T_{hpc_{\text{cut}}}$ the extraction rate will be reduced according to

$$s_h = 0 \quad T_s \leq T_{hpo}$$

$$s_h = s_h \cdot \frac{T_s - T_{hpo}}{T_{hpc_{\text{cut}}} - T_{hpo}} \quad T_s > T_{hpo}$$

(157)

where T_{hpo} is the temperature at which the heat extraction reaches ceases.

3.2 Initial values

Initial values are needed for all state variables in the model, i.e., snow water equivalent, snow thermal quality, interception water storage, heat and water contents in each of the soil compartments.

Initial soil water contents may be specified as a (measured) profile or as a constant value for the whole profile. Initial water contents may also be deduced from a soil water potential profile or
from a constant, i.e., equilibrium potential in the whole profile. If a ground water table exists above the lower boundary it should be separately assigned a starting value.

Initial soil heat contents are commonly given directly only in combination with the INSTATE option when several consecutive simulations must be started with the same initial values, specified only once before the first simulation. Heat contents are complex functions of solid soil properties, soil freezing, soil water content, compartment thickness and soil temperature. Thus initial soil temperatures are instead normally used to specify initial heat content values. Initial temperatures can be given either as a single value or as a (measured) profile. When heat content is calculated from temperature in partially frozen conditions, the same solution is used as in Eq. (26).

3.3 Physical parameters

Different types of parameters are found in the computer program. Option parameters are used to choose between different simulation modes etc. Initial value parameters have no meaning except to provide a starting point for the simulation. Parameters defining soil compartment thickness are important when concerning numerical stability. Physical parameters, as defined in this section, refer only to those parameters (i.e. constant) which are intrinsic components of process equations.

The number and type of physical parameters are good measures of the degree to which a model rests on basic physical foundations. An attempt has been made in Table 1 to classify the physical parameters in the SOIL model according to present model applications. Class A refers to those parameters whose values are well established, whereas class B refers to parameters whose values rest on more subjective grounds. A₁ parameter values have been measured directly with surmountable effort. A₂ parameters have values taken from established knowledge. B₁ parameter values have been optimized from time-series of the entity to be predicted by the model, whereas B₂ parameter values are more or less safe 'guessimates', based as far as possible on the best existing knowledge. Division of parameters into the various process categories is somewhat arbitrary, and it should be clear that several parameters directly influence more than one process.

Ideally all parameters should be of type A, but in some cases this will not even be theoretically possible. This is the case, for instance, for groundwater parameters. Since groundwater movements are governed by forces outside the system, groundwater should in a strict sense be regarded as a driving variable. When present in the model, it is, however, possible to predict groundwater movements with reasonable accuracy, provided there is a sufficiently long time-series for estimation.

The number of model parameters depend on the degree to which driving variable processes have been included. If, for instance, net radiation is measured, there will be no need to include albedo in the model. On the other hand, it is a rather subjective choice not to include Brunt’s coefficients (cf. Eq. 110) as model parameters when net radiation is calculated from other available climatic data. It is also a rather subjective choice when parameters are not explicitly expressed in the programme, simply implying their values to unity or zero, or to a fixed numerical value. This is done, for instance, when putting density of mineral soil solids to 2.65 g/cm, thereby implying a unique relationship between dry bulk density and porosity.

It is not meaningful to discuss generally the sensitivity of a model to variations in parameter values, but from present applications of the SOIL model, a few parameters have always been found to be of importance. Surface resistance and interception threshold represent the major controls of water loss to the atmosphere. Soil heat balance is strongly affected by depth of the humus layer, and on an annual basis, both heat and water balances depend sensitively on snow melt which is primarily determined by the two constants relating melting to air temperature and global radiation. The parameter values which are most difficult to determine accurately for soil
water calculations, are the saturated conductivity and parameters that controls the unsaturated conductivity (e.g. the tortuosity factor).

Table 1. Physical parameters for the various parts of the SOIL model. Parameter derivations is A: directly measured (1) or established knowledge (2), or B: estimated by fitting techniques (1) or ‘guesstimates’ (2)

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>Definition</th>
<th>Parameter derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>A2</td>
<td>B1</td>
</tr>
<tr>
<td>Driving variables</td>
<td>c_{rain}</td>
<td>Wind correction, rain</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>c_{snow}</td>
<td>Wind correction, snow</td>
<td>x</td>
</tr>
<tr>
<td>Soil properties</td>
<td>a_{scale}</td>
<td>Aggregates, scaling</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\lambda</td>
<td>Pore size distribution</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\theta_r</td>
<td>Residual water content</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\theta_m</td>
<td>Water content for macropores</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\theta_s</td>
<td>Porosity</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\theta_w</td>
<td>Water content at wilting point</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\psi_a</td>
<td>Air entry pressure</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>k_{sat}</td>
<td>Saturated conductivity, including macropores</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>k_{minac}</td>
<td>Minimum conductivity</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>a, gn, gm</td>
<td>Van Genuchten coefficients</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Tortuosity factor</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>\psi_x</td>
<td>Upper limit for use of the Brooks & Corey expression</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>p_{hysmaxc}</td>
<td>Maximal hysteresis on conductivity function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p_{hysmac}</td>
<td>Maximal hysteresis on water retention</td>
<td>x</td>
</tr>
<tr>
<td>Group</td>
<td>Parameter</td>
<td>Definition</td>
<td>Parameter derivation</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>a_{PP1}</td>
<td>Lower threshold in shift point function</td>
<td>A_1</td>
</tr>
<tr>
<td></td>
<td>a_{PP2}</td>
<td>Upper threshold in shift point function</td>
<td>A_2</td>
</tr>
<tr>
<td></td>
<td>a_{al}</td>
<td>Range for obtaining hysteresis during sorption</td>
<td>B_1</td>
</tr>
<tr>
<td></td>
<td>a_{o0}</td>
<td>Threshold rate to obtain hysteresis during sorption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a_{hysk}</td>
<td>Age response coefficient</td>
<td>B_2</td>
</tr>
<tr>
<td></td>
<td>a_{1-3}</td>
<td>Thermal conductivity, Kerstens equation, unfrozen soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b_{1-4}</td>
<td>Thermal conductivity, Kerstens equation, frozen soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h_{1-2}</td>
<td>Thermal conductivity, Organic soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Δz_{humus}</td>
<td>Thickness of humus layer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$q_d(low)$</td>
<td>Geothermal heat flow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d_1</td>
<td>Unfrozen water content coefficient</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d_2</td>
<td>Freezing point depression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d_3</td>
<td>Freezing point depression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f_{c1}</td>
<td>Impedance parameter for the effect of ice on hydraulic conductivity</td>
<td></td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>α_r</td>
<td>Albedo for vegetation and soil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α_{veg}</td>
<td>Albedo for vegetation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α_{dry}</td>
<td>Albedo for dry soil</td>
<td></td>
</tr>
</tbody>
</table>

x: Included |
<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>Definition</th>
<th>Parameter derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α_wet</td>
<td>Albedo for wet soil</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Displacement height</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>z_0</td>
<td>Roughness length</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_s</td>
<td>Surface resistance</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>e_rat</td>
<td>Evaporation ratio</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>i_LAI</td>
<td>Specific interception capacity</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_sint</td>
<td>Surface resistance</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>LAI</td>
<td>Leaf area index</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>ψ_{kg}</td>
<td>Surface vapour pressure</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_{a_{alai}}</td>
<td>Aerodynamic resistance</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>a_{ri}</td>
<td>stability coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_{y}</td>
<td>Coefficient in soil surface</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_{y1}</td>
<td>Coefficient in soil surface</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_{y2}</td>
<td>Coefficient in soil surface</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_{y3}</td>
<td>Coefficient in soil surface</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>k_m</td>
<td>Extinction coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>s_{d}</td>
<td>Maximal deficiency at soil</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>s_{mean}</td>
<td>Maximal excess at soil surface</td>
<td>x</td>
</tr>
<tr>
<td>Root water uptake</td>
<td>ψ_{c}</td>
<td>Critical soil water tension</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>p_1</td>
<td>Water tension function</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>p_2</td>
<td>Water tension function</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>t_1</td>
<td>Temperature function</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>t_2</td>
<td>Temperature function</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>f_{amov}</td>
<td>Compensatory uptake</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>r_{frac}</td>
<td>Exponential root function</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>z_{r}</td>
<td>Root depth</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Daynumber for Root</td>
<td>x</td>
</tr>
<tr>
<td>Group</td>
<td>Parameter</td>
<td>Definition</td>
<td>Parameter derivation</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>Ground water</td>
<td>z_1</td>
<td>Ground water depth</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>z_2</td>
<td>Ground water depth</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>q_1</td>
<td>Ground water flow</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>q_2</td>
<td>Ground water flow</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>d_p</td>
<td>Characteristic distance</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>z_p</td>
<td>Depth of drain pipes</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layer for source flow</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rate of source flow</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>w_{pmax}</td>
<td>Maximal amount of water stored on the surface without causing surface runoff</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>f_{covtot}</td>
<td>Amount of water on the soil surface when entire area is covered</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>$f_{inffrac}$</td>
<td>Fraction bypassing to second layer</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>a_{surf}</td>
<td>Surface runoff coefficient</td>
<td>x</td>
</tr>
<tr>
<td>Snow</td>
<td>T_{max}</td>
<td>Rain threshold</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>T_{min}</td>
<td>Snow threshold</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S_1</td>
<td>Age coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>S_2</td>
<td>Age coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>P_{amin}</td>
<td>Age coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Q_{amin}</td>
<td>Age coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>s_{dl}</td>
<td>Snow density</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>s_{dw}</td>
<td>Snow density</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>p_{min}</td>
<td>Snow density</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>s_{wmin}</td>
<td>Liquid water threshold</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>m_f</td>
<td>Refreezing</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>m_{Rain}</td>
<td>Melting coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>m_T</td>
<td>Melting coefficient</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>f_{ret}</td>
<td>Retention capacity</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>s_k</td>
<td>Thermal conductivity</td>
<td>x</td>
</tr>
</tbody>
</table>
4. Numerical computation

The two partial differential equations (2) and (32) are solved with an explicit forward difference method (Euler integration). This solution requires the soil profile to be approximated with a discrete number of internally homogeneous layers.

Slowly changing state variables are bypassed and changes of the integration time step are made during simulation to speed up execution times.

4.1 Soil Compartmentalization

The soil profile (Fig. 7) is divided into a number of compartments (maximum 22) with arbitrary thickness. Compartment thicknesses are the same for state variables of both heat and water.

To ensure conditions at the lower boundary the soil profile should normally be deep enough to make vertical soil heat flow close to zero. To simulate variation of heat flow within the day, for one week, a profile depth of about one metre is normally required. If the annual cycle is to be simulated, profile depth must extend to between 10 and 20 m, depending on soil type. Site specific groundwater conditions also influence the necessary depth. A minimum soil depth must include the root zone and the underlying unsaturated zone where capillary rise can occur. This depth, however, is normally well above the depth required to obtain a well defined lower boundary condition to the heat flow equation.

The chosen thickness of individual compartments depend on temporal extent and resolution of the simulation. The thickness of compartments are chosen to account for the morphological structure of the soil and numerical requirements of the solution method. Since both variation in vertical soil properties and temporal variations of state variables are most pronounced near the soil surface the smallest compartments are needed there. A compartment thickness of not more than 2 cm is needed to simulate variation within the day. If only annual resolution is required the smallest compartment can be extended to about 10 cm thereby decreasing the necessary execution time by a factor of 25 compared to the solution with the 2 cm compartment.

4.1.1 Difference approximation of soil heat and water flow equations.

To calculate the flow between two adjacent compartments, a finite difference approximation is made. The governing gradients of temperature (Eq. 1) and total water potential (Eq. 31) are calculated linearly between the mid-points of consecutive compartments. The flow is given by:

\[q_{i,i+1} = k_{i,i+1}(\theta_{i,i+1}) \frac{\phi_i - \phi_{i+1}}{\Delta z_i + \Delta z_{i+1}} \]

where \(i \) designates the layer number, \(\Phi \) the appropriate potential and \(\Delta z \) the layer thickness.

In case of the water flow the total potential is the sum of both matric potential and the gravity potential. The gravity potential is directed from the soil surface downwards which justify the use of a single ended approximation of the inter-block conductivity between compartments. Thus the water flow may be given as:

\[q_{i,i+1} = k_{i,i+1}(\theta_{i,i+1}) \frac{\psi_i - \psi_{i+1}}{\Delta z_i + \Delta z_{i+1}} + k_{i,i+1}(\theta_i) \]

61
The numerical solution is sensitive to the choice of inter-block conductivity (Haverkamp & Vauclin, 1979). A number of different methods to obtain this inter-block conductivity were discussed by Halldin et al. (1977). The solution used by the SOIL model is obtained by defining conductivity at the boundary between two bordering compartments. States, and parameters defining conductivities, are assumed to vary linearly between mid-points of compartments. Water content at the boundary between two compartments is, thus, given by:

$$\theta_{i+1} = \frac{\Delta z_i \theta_i + \Delta z_{i+1} \theta_i}{\Delta z_i + \Delta z_{i+1}}$$ \hspace{1cm} (160)

The only exception to this procedure is the gravity generated flow of water which is using the water content of the upper compartment instead of the boundary water content.

4.1.2 Compartmentalization of soil properties

Soil heat and water characteristics must be defined for each compartment and thermal and unsaturated conductivity's must be defined for each boundary between compartments in the soil profile. Available field data representing these properties seldom coincide exactly with the chosen discretization of the soil profile.

Continuous profiles of soil properties are obtained by linear interpolation between, and extrapolation outside of measurement or sampling depths (Fig. 21). From a continuous profile of a parameter, \(p(z) \), discrete parameter values are obtained for each compartment by:

$$p_i = \int_{z_i}^{z_{i+1}} \frac{p(z) dz}{z_{i+1} - z_i}$$ \hspace{1cm} (161)

where \(z_i \) and \(z_{i+1} \) are the upper and lower boundaries of compartment \(i \). Conductivity parameters are calculated for each boundary between compartments by:

$$p_{i,i+1} = \frac{\Delta z_{i+1} p_{i+1} + \Delta z_i p_i}{\Delta z_i + \Delta z_{i+1}}$$ \hspace{1cm} (162)

Figure 22. Graphical representation of how the model calculates soil parameters to represent a soil profile. Grafisk återgivning av hur modellen representerar markegenskaper från uppmätta mätpunkter i en markprofil.
4.2 **Integration time step and bypass of slow processes**

Integration time step must be chosen to avoid numerical instabilities in the simulation. With Euler integration one must normally choose the simulation time step equal to the shortest step necessary for the most variable condition. This may result in inconceivably long execution times, if long-term simulations are made, even for a moderate compartmentalisation of the soil. Conditional changes of the time step are made during simulation to avoid such execution times. A base time step is given initially for the simulation, but during conditions of high infiltration rates the time step is substantially decreased. Water flow rates into the top soil layer and into a layer slightly below top soil are used as tests. The occurrence of frost in the soil also decreases the time step.

In addition to conditional changes in integration time step, conditional bypasses are made to cut down execution times. If the changes in some state variable have been below a prescribed limit no flow recalculation is made. This procedure is used for water and heat flow equations separately. Since frost conditions strongly influence both water and heat flows, recalculation of both are made if any change exceeds the limit for either water or heat. Recalculation is made of flows for a number of the upper soil layers. At regular intervals the whole soil profile is updated.
5. List of symbols

5.1 Sorted by unit and description

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Category</th>
<th>(eq)/section</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{dry}</td>
<td>Albedo of dry soil</td>
<td>Parameter</td>
<td>(146)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{v}</td>
<td>Albedo of vegetation</td>
<td>Parameter</td>
<td>(145)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{w}</td>
<td>Albedo of vegetation and soil</td>
<td>Parameter</td>
<td>(142-145)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α_{wet}</td>
<td>Albedo of wet soil</td>
<td>Parameter</td>
<td>(146)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{pool}</td>
<td>Areal fraction of surface pool</td>
<td>Auxiliary, internal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_5</td>
<td>Coefficient in Ångström’s formula</td>
<td>Parameter</td>
<td>(152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_6</td>
<td>Coefficient in Ångström’s formula</td>
<td>Parameter</td>
<td>(152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_1</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_2</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_3</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_4</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(143)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rr_1</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(144)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rr_2</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(144)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rr_3</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(144)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rr_4</td>
<td>Coefficient in Brunt’s formula</td>
<td>Parameter</td>
<td>(144)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_1</td>
<td>Coefficient in freezing point depression function</td>
<td>Parameter</td>
<td>(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2</td>
<td>Coefficient in freezing point depression function</td>
<td>Parameter</td>
<td>(23,26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_3</td>
<td>Coefficient in freezing point depression function</td>
<td>Parameter</td>
<td>(23,26)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{umov}</td>
<td>Degree of compensatory uptake</td>
<td>Parameter</td>
<td>(85)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_e</td>
<td>Effective saturation</td>
<td>Auxiliary, internal</td>
<td>(41,42,43,46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_{eg}</td>
<td>Empirical coefficient used to calculate vapour pressure at soil surface</td>
<td>Parameter</td>
<td>(103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_{corr}</td>
<td>Empirical function accounting for difference in moisture between soil surface and the middle of the uppermost layer</td>
<td>Auxiliary, internal</td>
<td>(102,103)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td>Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_a</td>
<td>Fraction of air in soil</td>
<td>Auxiliary, internal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_{s}</td>
<td>Impedance parameter for the effect of ice on hydraulic conductivity</td>
<td>Parameter</td>
<td>(31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{isl}</td>
<td>Number of soil layers considered in irrigation control</td>
<td>Parameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_2</td>
<td>Parameter in water tension response function for transpiration.</td>
<td>Parameter</td>
<td>(82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Pore size distribution index</td>
<td>Parameter</td>
<td>(23,26,41,46,47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x(i)$</td>
<td>Property that can be given as temporal function of $t_{day}(i)$</td>
<td>Parameter</td>
<td>(86-89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{1}</td>
<td>Radiation melt factor for old snow</td>
<td>Parameter</td>
<td>(120)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category (eq)/ section</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>-------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>c\text{rat}</td>
<td>Ratio between potential evaporation rate and potential transpiration rate</td>
<td></td>
<td>Parameter (113)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f\text{ret}</td>
<td>Retention capacity of snow</td>
<td></td>
<td>Parameter (124)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{z2}</td>
<td>Snow age coefficient in radiation melt response on snow</td>
<td></td>
<td>Parameter (120)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i\text{sfrac}</td>
<td>Soil irrigation fraction</td>
<td></td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{T}</td>
<td>Soil temperature response on transpiration</td>
<td></td>
<td>Auxiliary, (83,84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{l}</td>
<td>Temperature coefficient when calculating R_{T}</td>
<td></td>
<td>Parameter (83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{2}</td>
<td>Temperature coefficient when calculating R_{T}</td>
<td></td>
<td>Parameter (83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i\text{scov}</td>
<td>The degree of soil cover</td>
<td></td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n\text{scov}</td>
<td>Tortuosity coefficient</td>
<td></td>
<td>Property, input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k\text{scov}</td>
<td>von Karman’s constant</td>
<td></td>
<td>Natural constant</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>S\text{res}</td>
<td>Water equivalent of snow from preceding day</td>
<td></td>
<td>Auxiliary (129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R\text{v}</td>
<td>Water tension effect on transpiration</td>
<td></td>
<td>Auxiliary, internal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p\text{F}</td>
<td>Water tension expressed as log(ψ)</td>
<td></td>
<td>Auxiliary, internal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c\text{snow}</td>
<td>Addition correction coefficient for snow-precipitation</td>
<td></td>
<td>Parameter (135)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c\text{rain}</td>
<td>Correction coefficient for rain precipitation</td>
<td></td>
<td>Parameter (135)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r\text{d}</td>
<td>Degree of freezing point depression</td>
<td></td>
<td>Auxiliary, (23,24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p\text{hysmax}</td>
<td>Maximal hysteresis effect on hydraulic conductivity, log scale</td>
<td></td>
<td>Parameter (56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p\text{hysmax}</td>
<td>Maximal hysteresis effect on water retention, log scale</td>
<td></td>
<td>Parameter (51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r(z)</td>
<td>Normalized depth distribution of water uptake</td>
<td></td>
<td>Parameter (84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a\text{R}</td>
<td>Ratio between layer thickness and unit horizontal area.</td>
<td></td>
<td>Auxiliary, (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{1}</td>
<td>Richardson number</td>
<td></td>
<td>Auxiliary, (100)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r\text{frac}</td>
<td>Root fraction</td>
<td></td>
<td>Parameter (90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a\text{scale}</td>
<td>Scaling coefficient accounting for the geometry of aggregates</td>
<td></td>
<td>Parameter (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c\text{form}</td>
<td>Shape coefficient</td>
<td></td>
<td>Parameter (88)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q\text{Q}</td>
<td>Thermal quality</td>
<td></td>
<td>Auxiliary, output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q\text{samin}</td>
<td>Thermal quality limit for snow age updating</td>
<td></td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{vapb}</td>
<td>Tortuosity coefficient in diffusion equation</td>
<td></td>
<td>Parameter (57)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a\text{Q}</td>
<td>Weighting factor</td>
<td></td>
<td>Auxiliary, (7,8,11,12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\text{day}\text{(1)}</td>
<td>Day number for specification of temporal variation within year.</td>
<td>#</td>
<td>Parameter (87-89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category (eq)/section</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
<td>------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>(t) (_{pmax})</td>
<td>Daynumber for maximum potential transpiration rate</td>
<td>#</td>
<td>Constant</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>(q_{sol})</td>
<td>Layer for the ground water source flow</td>
<td>#</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(z) (_{nhp})</td>
<td>Layer from which heat is extracted</td>
<td>%</td>
<td>Driving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) (_{r})</td>
<td>Relative humidity</td>
<td>%</td>
<td>Driving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{hpplim})</td>
<td>Air temperature used to calculate heat extraction from soil</td>
<td>°C</td>
<td>Constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{hpc})</td>
<td>Air temperature when heat extraction from soil begins</td>
<td>°C</td>
<td>Constant</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>(T) (_{aamp})</td>
<td>Amplitude of air temperature in sine function</td>
<td>°C</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{amean})</td>
<td>Mean air temperature in sine function</td>
<td>°C</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{max})</td>
<td>Rain temperature threshold</td>
<td>°C</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{min})</td>
<td>Snow temperature threshold</td>
<td>°C</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{hp0})</td>
<td>Soil temperature where heat extraction ceases</td>
<td>°C</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{hpcut})</td>
<td>Soil temperature where heat extraction will be reduced</td>
<td>°C</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T)</td>
<td>Temperature</td>
<td>°C</td>
<td>Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{b})</td>
<td>Temperature at boundary between two horizons</td>
<td>°C</td>
<td>Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{a})</td>
<td>Temperature of air at reference height</td>
<td>°C</td>
<td>Driving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{f})</td>
<td>Temperature of fully frozen soil</td>
<td>°C</td>
<td>Constant</td>
<td>-5 °C</td>
<td></td>
</tr>
<tr>
<td>(T) (_{s})</td>
<td>Temperature of soil surface</td>
<td>°C</td>
<td>Driving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T) (_{1})</td>
<td>Temperature of the uppermost layer</td>
<td>°C</td>
<td>Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_{v0})</td>
<td>Surface resistance coefficient</td>
<td>0.001s</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_{v1})</td>
<td>Surface resistance coefficient</td>
<td>0.01s</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Coefficient in water retention</td>
<td>1/cm water</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{c})</td>
<td>Critical soil water tension where reduction of transpiration begins</td>
<td>cm water</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi)</td>
<td>Soil water tension</td>
<td>cm water</td>
<td>Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{a})</td>
<td>Soil water tension at air entry</td>
<td>cm water</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{m})</td>
<td>Soil water tension at the lower boundary of Brooks & Corey's expression used</td>
<td>cm water</td>
<td>Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{x})</td>
<td>Soil water tension at the upper boundary of Brooks & Corey's expression used</td>
<td>cm water</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_{wil})</td>
<td>Soil water tension at wilting point</td>
<td>cm water</td>
<td>Natural</td>
<td>15 000</td>
<td></td>
</tr>
<tr>
<td>(r_{v2})</td>
<td>Surface resistance coefficient</td>
<td>cm water</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t) (_{sage})</td>
<td>Age of snow</td>
<td>day</td>
<td>Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma) (_{cycle})</td>
<td>Cycle of analytical air temperature</td>
<td>day</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta) (_{ph})</td>
<td>Duration of half period for potential transpiration</td>
<td>day</td>
<td>Constant</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>(t) (_{ph})</td>
<td>Phase shift of analytical air temperature</td>
<td>day</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p_{l})</td>
<td>Parameter in water tension response function for transpiration.</td>
<td>day mm(^{-1})</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category</td>
<td>(eq)/section</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>a<sub>surf</sub></td>
<td>First order coefficient in surface runoff equation</td>
<td>day<sup>-1</sup></td>
<td>Parameter</td>
<td>(61)</td>
<td></td>
</tr>
<tr>
<td>a<sub>hysk</sub></td>
<td>Age coefficient in hysteresis function</td>
<td>day<sup>1</sup></td>
<td>Parameter</td>
<td>(53)</td>
<td></td>
</tr>
<tr>
<td>c<sub>v</sub></td>
<td>Concentration of water vapour</td>
<td>g m<sup>-3</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L<sub>f</sub></td>
<td>Latent heat of freezing</td>
<td>J kg<sup>-1</sup></td>
<td>Natural, constant</td>
<td>(2,20,22,23,26)</td>
<td></td>
</tr>
<tr>
<td>L<sub>v</sub></td>
<td>Latent heat of vaporization</td>
<td>J kg<sup>-1</sup></td>
<td>Natural, constant</td>
<td>(75,92,105)</td>
<td></td>
</tr>
<tr>
<td>c<sub>ρ</sub></td>
<td>Specific heat of air (at 15 °C)</td>
<td>J kg<sup>-1</sup>°C<sup>-1</sup></td>
<td>Natural, constant</td>
<td>(75)</td>
<td>1004</td>
</tr>
<tr>
<td>H</td>
<td>Sensible heat storage</td>
<td>J m<sup>-2</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s<sub>hl</sub></td>
<td>Base rate of heat extraction from soil</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Parameter</td>
<td>(155)</td>
<td></td>
</tr>
<tr>
<td>R<sub>is</sub></td>
<td>Global radiation</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Driving</td>
<td>(81,118,152)</td>
<td></td>
</tr>
<tr>
<td>s<sub>h</sub></td>
<td>Heat source flow in soil</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Flow, output</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>LE<sub>s</sub></td>
<td>Latent heat flow from soil surface</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Auxiliary</td>
<td>(94,105)</td>
<td></td>
</tr>
<tr>
<td>s<sub>hpmax</sub></td>
<td>Maximal heat extraction rate from soil</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Parameter</td>
<td>(156)</td>
<td></td>
</tr>
<tr>
<td>R<sub>nl</sub></td>
<td>Net longwave radiation</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>n</sub></td>
<td>Net radiation</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>Na</sub></td>
<td>Net radiation at reference height</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Driving</td>
<td>(91)</td>
<td></td>
</tr>
<tr>
<td>R<sub>ns</sub></td>
<td>Net radiation at soil surface</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Auxiliary</td>
<td>(91,92,105)</td>
<td></td>
</tr>
<tr>
<td>R<sub>nsh</sub></td>
<td>Net shortwave radiation</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>pet</sub></td>
<td>Potential global radiation (no atmosphere)</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Function</td>
<td>(153)</td>
<td></td>
</tr>
<tr>
<td>H<sub>s</sub></td>
<td>Sensible heat flow</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Auxiliary</td>
<td>(93)</td>
<td></td>
</tr>
<tr>
<td>q<sub>h</sub></td>
<td>Soil heat flow, between layers</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Flow, output</td>
<td>(1,10,13,14)</td>
<td></td>
</tr>
<tr>
<td>q<sub>h</sub> (low)</td>
<td>Soil heat flow, lower boundary</td>
<td>J m<sup>-2</sup> day<sup>-1</sup></td>
<td>Parameter</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>s<sub>h2</sub></td>
<td>Air temperature dependence of heat extraction from soil</td>
<td>J m<sup>-2</sup> day<sup>-1</sup>°C<sup>-1</sup></td>
<td>Parameter</td>
<td>(145)</td>
<td></td>
</tr>
<tr>
<td>f<sub>lat</sub></td>
<td>Fraction of latent heat to total heat storage at T<sub>f</sub></td>
<td>J m<sup>-2</sup>/°(J m<sup>-2</sup>/°C)</td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E<sub>f</sub></td>
<td>Energy storage of frozen soil at temperature T<sub>f</sub></td>
<td>J m<sup>-3</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Energy storage of soil. Expressed relative to a level at 0°C and fully unfrozen soil</td>
<td>J m<sup>-3</sup></td>
<td>State, output</td>
<td>(23,24,30)</td>
<td></td>
</tr>
<tr>
<td>E<sub>l</sub></td>
<td>Energy storage of uppermost soil layer</td>
<td>J m<sup>-3</sup></td>
<td>State</td>
<td>(26)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Heat capacity</td>
<td>J m<sup>-3</sup>°C<sup>-1</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>f</sub></td>
<td>Heat capacity of frozen soil</td>
<td>J m<sup>-3</sup>°C<sup>-1</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C<sub>i</sub></td>
<td>Heat capacity of ice</td>
<td>J m<sup>-3</sup>°C<sup>-1</sup></td>
<td>Natural, constant</td>
<td>(19,26)</td>
<td></td>
</tr>
<tr>
<td>C<sub>s</sub></td>
<td>Heat capacity of solid material</td>
<td>J m<sup>-3</sup>°C<sup>-1</sup></td>
<td>Auxiliary,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category</td>
<td>(eq)/ section</td>
<td>Value</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>C_w</td>
<td>Heat capacity of water</td>
<td>$\text{J m}^{-3}\text{C}^{-1}$</td>
<td>Natural constant</td>
<td>(3,19)</td>
<td>4.210^6</td>
</tr>
<tr>
<td>q_{dis}</td>
<td>Half saturation for global radiation</td>
<td>$\text{Jm}^2\text{day}^{-1}$</td>
<td>Parameter</td>
<td>(81)</td>
<td></td>
</tr>
<tr>
<td>w_i</td>
<td>Mass of ice</td>
<td>kg m^{-2}</td>
<td>State, internal</td>
<td>(20,21,23)</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>Mass of water</td>
<td>kg m^{-2}</td>
<td>State, output</td>
<td>(21)</td>
<td></td>
</tr>
<tr>
<td>S_{wlmin}</td>
<td>Threshold liquid water storage of snow, controlling soil surface temperature</td>
<td>kg m^{-2}</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_a</td>
<td>Density of air (at 15 °C)</td>
<td>kg m^{-3}</td>
<td>Natural constant</td>
<td>(75,93,94)</td>
<td>1.220</td>
</tr>
<tr>
<td>ρ_{water}</td>
<td>Density of liquid water</td>
<td>kg m^{-3}</td>
<td>Natural constant</td>
<td>(21)</td>
<td>1000</td>
</tr>
<tr>
<td>ρ_{prec}</td>
<td>Density of precipitation (mixture snow + rain)</td>
<td>kg m^{-3}</td>
<td>Auxiliary, internal</td>
<td>(127)</td>
<td></td>
</tr>
<tr>
<td>ρ_{old}</td>
<td>Density of snow from preceding day</td>
<td>kg m^{-3}</td>
<td>Auxiliary, internal</td>
<td>(129,130)</td>
<td></td>
</tr>
<tr>
<td>ρ_s</td>
<td>Dry bulk density</td>
<td>kg m^{-3}</td>
<td>Auxiliary, internal</td>
<td>(5,28)</td>
<td></td>
</tr>
<tr>
<td>s_{dl}</td>
<td>Liquid water coefficient in snow density function</td>
<td>kg m^{-3}</td>
<td>Parameter</td>
<td>(129)</td>
<td></td>
</tr>
<tr>
<td>ρ_{snow}</td>
<td>Snow density</td>
<td>kg m^{-3}</td>
<td>Auxiliary, internal</td>
<td>(125,126)</td>
<td></td>
</tr>
<tr>
<td>ρ_{min}</td>
<td>Snow density of newly formed snow</td>
<td>kg m^{-3}</td>
<td>Parameter</td>
<td>(127)</td>
<td></td>
</tr>
<tr>
<td>k_{rn}</td>
<td>Extinction coefficient for net radiation</td>
<td>LAI^{-1}</td>
<td>Parameter</td>
<td>(91)</td>
<td></td>
</tr>
<tr>
<td>d_p</td>
<td>Characteristic distance when calculating q_{wp}</td>
<td></td>
<td>Parameter</td>
<td>(64)</td>
<td></td>
</tr>
<tr>
<td>d_a</td>
<td>Damping depths of soil</td>
<td>m</td>
<td>Auxiliary, internal</td>
<td>(15,17)</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>Depth</td>
<td>m</td>
<td>Internal</td>
<td>(1,2...)</td>
<td></td>
</tr>
<tr>
<td>z_{sat}</td>
<td>Depth of ground water table</td>
<td>m</td>
<td>Internal</td>
<td>(63,64)</td>
<td></td>
</tr>
<tr>
<td>z_2</td>
<td>Depth where the base flow of q_{gr} ceases</td>
<td>m</td>
<td>Parameter</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>z_1</td>
<td>Depth where the peak flow of q_{gr} ceases</td>
<td>m</td>
<td>Parameter</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Displacement height</td>
<td>m</td>
<td>Auxiliary, Parameter</td>
<td>(76)</td>
<td></td>
</tr>
<tr>
<td>z_p</td>
<td>Level of drainage pipes</td>
<td>m</td>
<td>Parameter</td>
<td>(64-67)</td>
<td></td>
</tr>
<tr>
<td>z_{ref}</td>
<td>Reference height for climatic data</td>
<td>m</td>
<td>Parameter</td>
<td>(76)</td>
<td></td>
</tr>
<tr>
<td>m_f</td>
<td>Refreezing efficiency coefficient in snow melt function</td>
<td>m</td>
<td>Parameter</td>
<td>(119)</td>
<td></td>
</tr>
<tr>
<td>z_r</td>
<td>Root depth</td>
<td>m</td>
<td>Parameter</td>
<td>(90)</td>
<td></td>
</tr>
<tr>
<td>z_0</td>
<td>Roughness length</td>
<td>m</td>
<td>Parameter</td>
<td>(76)</td>
<td></td>
</tr>
<tr>
<td>Δ</td>
<td>Thickness</td>
<td>m</td>
<td>Parameter</td>
<td>(12,13,98)</td>
<td></td>
</tr>
<tr>
<td>Δ_h</td>
<td>Thickness of humus layer</td>
<td>m</td>
<td>Parameter</td>
<td>(126,128)</td>
<td></td>
</tr>
<tr>
<td>Δ_{prec}</td>
<td>Thickness of precipitation (snow + rain)</td>
<td>m</td>
<td>Parameter</td>
<td>(9)</td>
<td></td>
</tr>
<tr>
<td>Δ_{snow}</td>
<td>Thickness of snow</td>
<td>m</td>
<td>State, output</td>
<td>(8,9,119)</td>
<td></td>
</tr>
<tr>
<td>Δ_{snow}</td>
<td>Thickness of snow when covering the total area</td>
<td>m</td>
<td>Parameter</td>
<td>(10,14)</td>
<td></td>
</tr>
<tr>
<td>z_{l}</td>
<td>Thickness of uppermost soil layer</td>
<td>m</td>
<td>Parameter</td>
<td>(126,130)</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category (eq)/ section</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>s_{dw}</td>
<td>Water equivalent coefficient in snow density function</td>
<td>m^{-1}</td>
<td>Parameter</td>
<td>(129)</td>
<td></td>
</tr>
<tr>
<td>D_0</td>
<td>Diffusion coefficient for vapour in free air</td>
<td>$m^2 s^{-1}$</td>
<td>Natural constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Thermal diffusivity of soil</td>
<td>$m^2 s^{-1}$</td>
<td>Auxiliary, internal</td>
<td>(17)</td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Fraction of soil material</td>
<td>m^3 /m^3</td>
<td>Auxiliary, internal</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>i_{am}</td>
<td>Amount of automatic irrigation</td>
<td>mm</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_{pool}</td>
<td>Amount of water corresponding to complete areal cover</td>
<td>mm</td>
<td>State, output</td>
<td>(61,62)</td>
<td></td>
</tr>
<tr>
<td>s_{smin}</td>
<td>Critical soil water storage used for irrigation control</td>
<td>mm</td>
<td>Auxiliary</td>
<td>(110,114)</td>
<td></td>
</tr>
<tr>
<td>S_i</td>
<td>Interception storage</td>
<td>mm</td>
<td>Auxiliary</td>
<td>(110)</td>
<td></td>
</tr>
<tr>
<td>S_{imax}</td>
<td>Interception storage capacity</td>
<td>mm</td>
<td>Auxiliary</td>
<td>(110)</td>
<td></td>
</tr>
<tr>
<td>S_{wres}</td>
<td>Residual amount of liquid water in snow at the end of a day</td>
<td>mm</td>
<td>Auxiliary</td>
<td>(121,123)</td>
<td></td>
</tr>
<tr>
<td>W_{pmax}</td>
<td>Residual water storage on soil surface</td>
<td>mm</td>
<td>Parameter</td>
<td>(61)</td>
<td></td>
</tr>
<tr>
<td>S_{def}</td>
<td>Surface moisture deficit</td>
<td>mm</td>
<td>Parameter</td>
<td>(104)</td>
<td></td>
</tr>
<tr>
<td>S_{excess}</td>
<td>Surface moisture excess</td>
<td>mm</td>
<td>Parameter</td>
<td>(104)</td>
<td></td>
</tr>
<tr>
<td>S_{wlmax}</td>
<td>The total water retention capacity of snow</td>
<td>mm</td>
<td>Auxiliary, internal</td>
<td>(122,124)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Water equivalent of snow</td>
<td>mm</td>
<td>State</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>E_{ia}</td>
<td>Actual evaporation rate from intercepted water</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary</td>
<td>(114)</td>
<td></td>
</tr>
<tr>
<td>TR_a</td>
<td>Actual transpiration rate (excluding compensatory uptake)</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary, internal</td>
<td>(84,85)</td>
<td></td>
</tr>
<tr>
<td>TR_a</td>
<td>Actual transpiration rate (including compensatory uptake)</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary</td>
<td>(85)</td>
<td></td>
</tr>
<tr>
<td>S_{wl}</td>
<td>Daily accumulation of liquid water in snow</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary, internal</td>
<td>(121)</td>
<td></td>
</tr>
<tr>
<td>E_s</td>
<td>Evaporation from soil surface</td>
<td>mm day$^{-1}$</td>
<td>Flow</td>
<td>(94,105, 108, 117)</td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration, $E_i + E_s + TR_a$</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary</td>
<td>(117)</td>
<td></td>
</tr>
<tr>
<td>q_{sof}</td>
<td>Ground water source flow</td>
<td>mm day$^{-1}$</td>
<td>Parameter</td>
<td>2.3.8</td>
<td></td>
</tr>
<tr>
<td>q_{gr}</td>
<td>Groundwater sink flow</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>i_{ar}</td>
<td>Intensity of automatic irrigation</td>
<td>mm day$^{-1}$</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{int}</td>
<td>Interception rate</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary</td>
<td>(110,112, 114)</td>
<td></td>
</tr>
<tr>
<td>P_{smin}</td>
<td>Limit for snow age updating</td>
<td>mm day$^{-1}$</td>
<td>Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td>Maximum flow rate for base flow in q gr</td>
<td>mm day$^{-1}$</td>
<td>Parameter</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td>Maximum flow rate for peak flow in q gr</td>
<td>gr mm day$^{-1}$</td>
<td>Parameter</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>Tr_{pmax}</td>
<td>Maximum potential transpiration rate</td>
<td>mm day$^{-1}$</td>
<td>Constant</td>
<td>(131)</td>
<td></td>
</tr>
<tr>
<td>P_m</td>
<td>Measured precipitation</td>
<td>mm day$^{-1}$</td>
<td>Driving</td>
<td>(135)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Melting rate of snow</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary, internal</td>
<td>(118)</td>
<td></td>
</tr>
<tr>
<td>E_i</td>
<td>Potential evaporation rate from intercepted water</td>
<td>mm day$^{-1}$</td>
<td>Auxiliary</td>
<td>(113,114)</td>
<td></td>
</tr>
</tbody>
</table>

69
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Category (eq)/ section</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>Potential transpiration after adjusting for evaporation of intercepted water</td>
<td>mm day⁻¹</td>
<td>Driving, internal</td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>Potential transpiration rate</td>
<td>mm day⁻¹</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Precipitation</td>
<td>mm day⁻¹</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Rain precipitation</td>
<td>mm day⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>kₕₙₐₜ</td>
<td>Saturated conductivity of soil matrix, excluding effects of macropores</td>
<td>mm day⁻¹</td>
<td>Property, input</td>
<td></td>
</tr>
<tr>
<td>qₐₚₓₚₜ</td>
<td>Soil water flow in macropores</td>
<td>mm day⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>qₐₘₐₜ</td>
<td>Soil water flow in matrix</td>
<td>mm day⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>qₐₙₜ</td>
<td>Soil water flow to a soil layer in macropores or as infiltration rate.</td>
<td>mm day⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>qₐₚₜ (I)</td>
<td>Soil water flow to drainage pipe</td>
<td>mm day⁻¹</td>
<td>Flow, output</td>
<td></td>
</tr>
<tr>
<td>qₜ</td>
<td>Soil water flow, between layers</td>
<td>mm day⁻¹</td>
<td>Flow, output</td>
<td></td>
</tr>
<tr>
<td>Sₐₘₜ</td>
<td>Sorptivity capacity of aggregates</td>
<td>mm day⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>qₘ</td>
<td>Surface runoff from surface pool</td>
<td>mm day⁻¹</td>
<td>Flow, output</td>
<td></td>
</tr>
<tr>
<td>qₜₚ</td>
<td>Total water flow to drainage pipe</td>
<td>mm day⁻¹</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>kₜ</td>
<td>Unsaturated conductivity of partially frozen soil</td>
<td>mm day⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>Unsaturated conductivity of soil</td>
<td>mm day⁻¹</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Temperature coefficient in snow melt function</td>
<td>mm day⁻¹ °C⁻¹</td>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Temperature influence function on snow melting</td>
<td>mm day⁻¹ °C⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>mₐₙₜₚₜ</td>
<td>Minimum value of Global radiation influence in snow melt function</td>
<td>mm J⁻¹</td>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>Mₐ</td>
<td>Radiation influence function on snow melting</td>
<td>mm J⁻¹ m²</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>iₘ</td>
<td>Specific interception storage capacity of canopy</td>
<td>mm LAI⁻¹</td>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>δₘ</td>
<td>Surface water balance</td>
<td>mm water</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>sₘ</td>
<td>Net water source flow in soil</td>
<td>mm² day⁻¹</td>
<td>Flow, output</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>Wind speed</td>
<td>m s⁻¹</td>
<td>Driving, input</td>
<td></td>
</tr>
<tr>
<td>gₚₘₜ</td>
<td>Maximal stomatal conductance</td>
<td>m s⁻¹</td>
<td>Parameter</td>
<td></td>
</tr>
<tr>
<td>gₗ</td>
<td>Stomatal conductance</td>
<td>m s⁻¹</td>
<td>Auxiliary, internal</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gravitational constant</td>
<td>m s⁻²</td>
<td>Natural constant</td>
<td>9.81</td>
</tr>
<tr>
<td>eₚ (T)</td>
<td>Saturation vapour pressure function</td>
<td>Pa</td>
<td>Natural constant</td>
<td></td>
</tr>
<tr>
<td>eₐ</td>
<td>Vapour pressure air at reference height</td>
<td>Pa</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>eₘ</td>
<td>Vapour pressure at soil surface</td>
<td>Pa</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>δₘₑ</td>
<td>Vapour pressure deficit</td>
<td>Pa</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category</td>
<td>(eq)/ section</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>g_{vpd}</td>
<td>Vapour pressure deficit response on stomatal conductance</td>
<td>Pa</td>
<td>Parameter</td>
<td>(81)</td>
</tr>
<tr>
<td>e_v</td>
<td>Vapour pressure in soil</td>
<td>Pa</td>
<td>Auxiliary</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>Psychrometric constant</td>
<td>Pa °C⁻¹</td>
<td>Natural constant</td>
<td>(75,94)</td>
</tr>
<tr>
<td>Δ</td>
<td>Slope of saturated vapour pressure versus temperature curve</td>
<td>Pa °C⁻¹</td>
<td>Natural property</td>
<td>(75)</td>
</tr>
<tr>
<td>r_{as}</td>
<td>Aerodynamic resistance between reference height and soil surface</td>
<td>s m⁻¹</td>
<td>Auxiliary</td>
<td>(93,105)</td>
</tr>
<tr>
<td>r_a</td>
<td>Aerodynamic resistance between reference height and vegetation</td>
<td>s m⁻¹</td>
<td>Auxiliary</td>
<td>(75,76)</td>
</tr>
<tr>
<td>r_{ab}</td>
<td>Aerodynamic resistance between vegetation and soil surface</td>
<td>s m⁻¹</td>
<td>Auxiliary</td>
<td>(99,101)</td>
</tr>
<tr>
<td>r_{alai}</td>
<td>Increase of aerodynamic resistance below canopy per LAI of canopy</td>
<td>s m⁻¹</td>
<td>Parameter</td>
<td>(101)</td>
</tr>
<tr>
<td>r_s</td>
<td>Surface resistance</td>
<td>s m⁻¹</td>
<td>Auxiliary</td>
<td>(75)</td>
</tr>
<tr>
<td>r_y</td>
<td>Surface resistance coefficient</td>
<td>s m⁻¹</td>
<td>Parameter</td>
<td>(106)</td>
</tr>
<tr>
<td>r_{sint}</td>
<td>Surface resistance for intercepted water</td>
<td>s m⁻¹</td>
<td>Parameter</td>
<td>2.8</td>
</tr>
<tr>
<td>r_{ss}</td>
<td>Surface resistance, soil surface</td>
<td>s m⁻¹</td>
<td>Auxiliary</td>
<td>(105-107)</td>
</tr>
<tr>
<td>ω</td>
<td>Angle frequency</td>
<td>s⁻¹</td>
<td>Auxiliary, internal</td>
<td>(15-17)</td>
</tr>
<tr>
<td>θ_{ice}</td>
<td>Ice content</td>
<td>vol %</td>
<td>Auxiliary, internal</td>
<td>(2,19)</td>
</tr>
<tr>
<td>θ_i</td>
<td>Liquid water content</td>
<td>vol %</td>
<td>Auxiliary</td>
<td>(3,4,5..)</td>
</tr>
<tr>
<td>θ_{l}</td>
<td>Liquid water content at the temperature T_l</td>
<td>vol %</td>
<td>Auxiliary, internal</td>
<td>(18,19,21)</td>
</tr>
<tr>
<td>a_{PF1}</td>
<td>Lower threshold in hysteresis function</td>
<td>vol %</td>
<td>Parameter</td>
<td>(54)</td>
</tr>
<tr>
<td>θ_m</td>
<td>Macro pore volume</td>
<td>vol %</td>
<td>Parameter</td>
<td>(45,49)</td>
</tr>
<tr>
<td>a_{chem}</td>
<td>Rate at which maximal hysteresis has developed</td>
<td>vol %</td>
<td>Parameter</td>
<td>(55)</td>
</tr>
<tr>
<td>θ_r</td>
<td>Residual soil water content</td>
<td>vol %</td>
<td>Parameter</td>
<td>(42)</td>
</tr>
<tr>
<td>a_{PF2}</td>
<td>Upper limit in hysteresis function</td>
<td>vol %</td>
<td>Parameter</td>
<td>(54)</td>
</tr>
<tr>
<td>θ_s</td>
<td>Water content at saturation</td>
<td>vol %</td>
<td>Parameter</td>
<td>(42,44)</td>
</tr>
<tr>
<td>θ_x</td>
<td>Water content at the upper boundary of the Brooks & Corey’s expression</td>
<td>vol %</td>
<td>Auxiliary, internal</td>
<td>(44)</td>
</tr>
<tr>
<td>θ_w</td>
<td>Water content at wilting point (15 atm)</td>
<td>vol %</td>
<td>Parameter</td>
<td>(18,44)</td>
</tr>
<tr>
<td>k_h</td>
<td>Thermal conductivity</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, internal</td>
<td>(1,8,29)</td>
</tr>
<tr>
<td>b_1</td>
<td>Thermal conductivity coefficient for mineral soil, frozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(28)</td>
</tr>
<tr>
<td>b_2</td>
<td>Thermal conductivity coefficient for mineral soil, frozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(28)</td>
</tr>
<tr>
<td>b_3</td>
<td>Thermal conductivity coefficient for mineral soil, frozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(28)</td>
</tr>
<tr>
<td>b_4</td>
<td>Thermal conductivity coefficient for mineral soil, frozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(28)</td>
</tr>
<tr>
<td>a_1</td>
<td>Thermal conductivity coefficient for mineral soil, unfrozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(5)</td>
</tr>
<tr>
<td>a_2</td>
<td>Thermal conductivity coefficient for mineral soil, unfrozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(5)</td>
</tr>
<tr>
<td>a_3</td>
<td>Thermal conductivity coefficient for mineral soil, unfrozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(5)</td>
</tr>
<tr>
<td>h_1</td>
<td>Thermal conductivity coefficient for organic soil, unfrozen</td>
<td>W m⁻¹ °C⁻¹</td>
<td>Property, input</td>
<td>(4)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
<td>Category</td>
<td>(eq)/ Value</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>k_{hi}</td>
<td>Thermal conductivity of frozen soil</td>
<td>W m(^{-1}) °C(^{-1})</td>
<td>Property, internal</td>
<td>(28,29)</td>
</tr>
<tr>
<td>k_{hm}</td>
<td>Thermal conductivity of mineral soil, unfrozen</td>
<td>W m(^{-1}) °C(^{-1})</td>
<td>Property, internal</td>
<td>(5,10, 12,29)</td>
</tr>
<tr>
<td>k_{Ho}</td>
<td>Thermal conductivity of organic soil</td>
<td>W m(^{-1}) °C(^{-1})</td>
<td>Property, internal</td>
<td>(4,12,13, 14,27)</td>
</tr>
<tr>
<td>k_{snow}</td>
<td>Thermal conductivity of snow</td>
<td>W m(^{-1}) °C(^{-1})</td>
<td>Property, internal</td>
<td>(8)</td>
</tr>
<tr>
<td>k_{hw}</td>
<td>Thermal conductivity of unfrozen soil</td>
<td>W m(^{-1}) °C(^{-1})</td>
<td>Property, internal</td>
<td>(29)</td>
</tr>
<tr>
<td>h_2</td>
<td>Thermal conductivity coefficient for organic soil, unfrozen</td>
<td>W m(^{-1}) °C(^{-1}) vol %(^{-1})</td>
<td>Property, input</td>
<td>(4)</td>
</tr>
<tr>
<td>α_h</td>
<td>Heat transfer coefficient</td>
<td>W m(^{-1}) °C(^{-1})</td>
<td>Parameter</td>
<td>(33)</td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann's constant</td>
<td>Wm(^{-2}) K (^{-1})</td>
<td>Natural constant</td>
<td>(143,144) 5.67 x 10(^{-8})</td>
</tr>
<tr>
<td>s_k</td>
<td>Thermal conductivity coefficient for snow.</td>
<td>Wm(^{4}) kg(^{-2})</td>
<td>Parameter</td>
<td>(125)</td>
</tr>
</tbody>
</table>

6. Acknowledgement

The development of the SOIL model is the result of many years of work with many different people involved. Only the most important will be mentioned below but I fully appreciate all contributors to the model development. In the initial phase of the work Sven Halldin made substantial contributions which is reflected in the early reports (e.g. Jansson & Halldin, 1979). During later years many users of the model have contributed with ideas and suggestions that have resulted in model improvements. For instance: Lars-Christer Lundin and Manfred Stähli concerning frost in the soil; Bo Thunholm and Gunnel Alvenäs concerning soil surface temperature; Peter Boterweg, Bengt Espeby, Annemieke Gärdenäs, Holger Johnsson, Nicholas Jarvis, Gunn Persson, Christina Thoms-Hjarpe, Lisbet Lewan, Anders Lindroth and Malcolm McGechan concerning various parts of the model.

Comments and constructive criticism of this report was given by Nicholas Jarvis, Henrik Eckersten and Annemieke Gärdenäs.

Special thanks are given to Kerstin Berglund, the editor of the series of Reports from the Division of Agricultural Hydrotechnics, who showed a lot of patience during the final crucial stage of word-processing.

7. Summary in Swedish (Sammanfattning)

7.1 Modellens Struktur

7.2 Markfysikaliska egenskaper

Modellen utgår från de partiella differentialekvationer som beskriver vatten- och värmeflöden i en markprofil. Ekvationen löses med en numerisk teknik där derivator med avseende på djupet och på tiden approximeras med små differenser.

Två markfysikaliska samband måste vara kända för att ekvationen skall kunna lösas, nämligen pF-kurvan (\(\Phi = f (\theta) \)) och den mättade och ommäntade konduktiviteten (\(K_w = f (\Phi) \)) eller \(\kappa = f (\Phi) \)).

7.3 Vegetationen och markytan

Begränsningar i flödet som uppkommer genom motstånd i marken, i roten, i växten eller vid vattnets övergång från växt till atmosfär är sammanfattade i olika empiriska reduktionsfaktorer.

För att efterlikna olika typer av vegetationstäcken kan man ände de olika egenskaperna som finns medtagna i modellen, genom olika parametervärdet. De viktigaste parametrarna för att förklara skillnader mellan olika vegetationstäcken är de som ger bladytans storlek och ytersistansens värde. Även rotfördelningen är viktig, men den inverkar främst genom att det totala förrådet av växttillgängligt vatten påverkas.

I figur 20 visas hur olika flöden och resistanser är representerade i modellen.

7.3.1 Potentiell avdunstning

Kombinationsformeln för potentiell avdunstning används på olika sätt för att beräkna tre bidrag till den totala avdunstningen.

1) Evaporation av på växten intercepterat vatten.
2) Evaporation av vatten från markytan.
3) Transpiration genom växten.

Det som beskriver skillnaden i potentiell avdunstning från de olika källorna av vatten är dels den tillgängliga strålningsenergin, \(R_n \), och de båda resistanserna som anger transportmotstånden i gränsytan mellan vegetation och luft (\(r_s \)) och luft ovan beståndet (\(r_a \)).

Först fördelas strålningsenergin, \(R_n \), mellan bestånd och markytan enligt en exponentiell funktion (se ekvation 60). Den del av energin som absorberas av beståndet är tillgänglig för evaporation av intercepterat vatten eller transpiration av vatten via växten. Evaporation av intercepterat vatten sker utan eller med ett mycket litet transportmotstånd vid gränsytan mot luften. Därför förbrukas en del av tillgänglig energi om vatten förekommer på växtytan. Mängden av tillgänglig energi (givet av ställningsbalansen) som förbrukas motsvarar dock bara en del av den energi som åtgärd vid fasomvandlingen. Detta beror av möjligheten att ta energi direkt ur luften vid hög turbulens och vid god tillgång på vatten (Luften kyls genom avdunstningen; jfr uppgift ur radet på plåsig strand).

Den aerodynamiska resistansen, \(r_a \), för transpiration och evaporation från bladytan beräknas från vindhastigheten och ytans skrovighet (se ekvation 49).
7.3.2 Markyteavdunstning

Avdunstningen från markytan är en komplex process där markens egenskaper i hög grad kommer att bestämma förutsättningarna. För att utföra den beräkningen finns två olika valmöjligheter i modellen, en mer empirisk som grundar sig på samma kombinationsformel som används för potentiell avdunstning och en som i högre grad grundar sig direkt på de fysikaliska ekvationerna för transport av värme och vatten i atmosfär och mark. Båda grundar sig på en lösning av energibilansekvationen för markytan men den empiriska utgår från en analytisk lösning med hjälp av kombinationsformeln medan den mer mekanistiska utgår från en numerisk lösning av i grunden samma ekvationer. I båge dessa fall måste hänsyn tas till energiutbyten i marken och upptorkningen närmast markytan. Detta görs på lite olika sätt i de båge ansatserna som beskrivs nedan.

Gemensamt för båda ansatserna är att om ett vegetationställe finns så måste den aerodynamiska resistansen mellan markytan och referensnivån ta hänsyn till detta. Resistansen, \(r_{as} \), är beroende av den totala bladytan, LAI, och luftens skiktning (se ekvationerna 67 och 68).

7.3.2.1 Ansats byggd på kombinationsformel

Avdunstningen från markytan beräknas med kombinationsformeln (ekvation 73) utgående från den tillgängliga strålningsenergin, \(R_{ns} \) och värmeinloppet från marken, \(q_h \). Värmeinloppet från marken är delvis ett resultat av avdunstningen från markytan och för att kunna hantera detta så utnyttjas modellen beräknade värmeinloppen från föregående tidsspec (t-1) vid beräkningen av avdunstningen vid tidpunkten (t). Genom att modellen normalt har ett betydligt mindre tidsspeg \(t \) vad som motsvaras av upplösningen i de meteorologiska variablerna som oftast är medelvärden av en timme eller ett dygn föranleder detta normalt ingen större onoggrannhet i den beräknade avdunstningen.

För beräkning av markyteavdunstningen, \(LE_{e} \), med kombinationsformeln definieras en resistans för vatteninloppet vid markytan. Markytans ytresistans, \(r_{ss} \), beror i allmänhet om markytans temperatur på energibalanseekvationen (se ekvation 76).

Värmeinloppet, \(q_h \), kan därefter beräknas på två sätt. Det enklaste möjloken är koppling till avdunstningen utan att markytans temperatur är medelvärden utom markytans temperatur. Denna ansats kan ge stora fel både för beräkningen av markens temperatur och för beräkningen av markyteavdunstningen. Den fysikaliskt rimligare lösningen är att utgå från den beräknade avdunstningen utnyttja den därvid implicit antagna önsvarmedelen för beräkningen av värmeinloppet till marken. Detta görs genom att det sensibla flödet, \(H_s \), erhålls från energibilansen (se ekvation 76).

7.3.2.2 Ansats byggd på numerisk lösning

Den numeriska ansatsen bygger på att energibilansekvationen för markytan löses genom ett iterativt förarande.

För att lösa denna ekvation så varieras markytans temperatur, \(T_s \), enligt ett givet schema. Först ansättes \(T_s \), som lika med \(T_s \) och därefter beräknas alla ingående termor enligt deras respektive ekvationer. Den erhållna summan av \(H_s \), \(LE_{e} \), och \(q_h \) jämförs med \(R_{ns} \) och beroende på avvikelsen så skattar ett nytt värde för \(T_s \). Denna procedur upprepas ända tills dess att avvikelsen mellan \(R_{ns} \) och summan av de tre energiflodena är mycket liten. Normalt erhålls ett fel på mindre än 0.1 °C efter cirka 15 iterationer.

Vattenangloket vid markytan beräknas av markytans ömhet, \(T_s \), och markvattnets taktion i den översta skiktet och en empirisk korrektionsfaktor, \(e_{corr} \), som tar hänsyn till stora gradierenter i fuktighet nära markytan (se ekvationerna 70 - 72).

7.3.3 Avdunstning av intercepterat vatten

Ytresistansen för intercepterat vatten är mycket låg och bestäms av parameter \(r_{int} \). För transpirationen från en växt med god vattentillgång är ytresistansen i allmänhet betydligt högre.

7.3.4 Aktuell transpiration

För att kunna beskriva hur vattnet tas upp från marken anges rötternas fördelning i olika skikt och dessutom hur begränsningen av vattenupptaget sker då växten inte längre förmår att ta upp vatten till den potentiella nivån som beräknats med Penman-Monteith’s formel. Aktuell (verklig) vattenuptagning från
ett markssikt, : W_{app} (i)] beräknas utgående från responsfunktioner som tar hänsyn till marktemperaturen, markvattenpotentialen, skiktets andel av det totala rotsystemet (se ekvation 53)

7.4 Avrinning och behandling av grundvatten

Flödet från ett vattenmättat skikt i med tjockleken Δz och med mättad hydraulisk konduktivitet : k_s (i)] till en dräneringsledning eller dike på nivån : z_p beräknas med en ekvation som bygger på Darcys lag (se ekvation 46).

Darcys lag som också används för att beräkna det vertikala flödet i den omättade zonen. Avståndet l kan skattas på olika sätt allt efter vilken typ av flöde som skall beräknas. Ibland kan l väljas för att motsvara markytans lutning och därmed den gradient som styr ett naturligt dränerande grundvattenflöde. I andra fall, då vi exempelvis har dräneringsledning eller diken med fasta avstand kan l skattas utgående från den form som grundvattenytan antar mellan två dräneringsledningar.

För att få det totala flödet till dräneringsledningarna sumeras bidragen från alla mättade nivåer. Vertikala flöden mellan mättade skikt beräknas så att endast det skikt som gränsar till den omättade zonen kommer att få en förändrad vattenhalt.

Det är under naturliga förhållanden vanligt att grundvattenströmmningen kan ske mot olika typer av sänkor i terrängen som är betingade av lokala geologiska förhållanden och inte bara mot ytliga diken och dräneringsledningar som kan finnas. För att hantera detta flöde kan flödet till dräneringsledningarna, : q_{wp} kombineras med ytterligare ett flöde i modellen, : q_{p} vilket beräknas med en ekvation av typen $l:a$ ordningen. Denna ekvationstyp används mycket inom hydrologin för att beskriva flödets variation i bäckar och vattendrag. I ord innebär $l:a$ ordningens ekvation i här aktuellt fall att flödet vid en given tidpunkt är proportionellt mot ett tillstånd som beskriver mängden vatten som kan dräneras (se ekvation 47).

Denna empiriskt funna ekvation kan användas för att efterlikna olika typer av akvifererar utan att vi behöver använda de strikt fysikaliska egenskaperna som definieras genom Darcys lag för vattenflöden i mark. Ekvationen är speciellt lämplig att använda för djupare skikt i marken där vi ofta saknar god information om de faktiska fysikaliska egenskaperna. I modellen används denna formel för flödet under dräneringsledningarnas nivå, vilket har fördelen att vi också kan behandla flöden som dränerar marken på djupare nivåer.
8. References

9. Bibliography

This list includes documents where the SOIL model has been used or where the model is described independent if they are quoted in the text or not.

Jansson, P-E. 1986. The Importance of Soil Properties when Simulating Water Dynamics for an Agricultural Crop-Soil System. Presented at the NHP-seminar on Water in the Unsaturated zone,

Lewan, E. 1993. Evaporation and discharge from arable land with cropped or bare soil during winter. Measurements and simulations. Agricultural and forest meteorology, 64:131-159.

Agricultural Sciences. Department of Soil Sciences. Reports and Dissertations 27, 27p. + 4 papers

Stähli, M. & Jansson, P.-E. 1998. 'Test of two SVAT snow submodels during different winter conditions', accepted for publication Agricultural and Forest Meteorology.

Förteckning över utgivna häften i publikationsserien

SVERIGES LANTBRUKSUNIVERSITET, UPPSALA. INSTITUTIONEN FÖR MARKVETENSKAP. AVDELNINGEN FÖR LANTBRUKETS HYDROTEKNIK. AVDELNINGSMEDDELANDE. Fr o m 1995

95:2 Johansson, W. & Fellin, O. Biogas från vall. Teknik och ekonomi vid odling, skörd, transporter, ensilering samt röning med tvästegeteknik. 38 s.

95:3 Svensson, E., Linner, H. & Carlsson, H. Utvärdering av växtanalys i fabrikspotatis. 53 s.

95:4 Andersson, A. Vattentillgångar för bevattning i Kalmar län. I. Litteraturöversikt. II. Intervjuundersökning rörande vattenmagasin. 48 s.

95:5 Wesström, I. Bestämning av markens salthalt genom mätning med konduktivitetssonde. 18 s.

95:7 Eckersten, H. Simulation of water flow in plant communities. SPAC model description, exercises and user's manual. 49 s.

95:8 Nabieian, F. Simulerings av vattenbalans för energiskog på en torvmark. 25 s.

96:3 Carlsson, H., Larsson, K. & Linner, H. Växtnäringsstyrning i potatis. 69 s.

97:1 Uppenberg, S., Wallgren, O. & Åhman, M. Saturated hydraulic conductivity in an acid sulphate soil. A minor field study in the the Vietnamese Mekong delta. 45 s.

97:2 Djodjic, F. Avrinningsmonster i ett litet åkerområde under 40 år av successiv urbanisering. 38 s.

97:3 Vukovic, M. The effect of soil hydraulic properties on ground water fluctuations in a heavy clay soil. Measurements and simulations. 43 s.

98:1 Lustig, T. Land Evaluation Methodology. Small-Scale Agro-Pastoralist Farming Systems. Agricultural community case study in the IV region of Chile. 91 s.

98:2 Jansson, P-E. Simulating model for soil water and heat conditions. Description of the SOIL model. 81 s.
Denna serie meddelanden utges av Avdelningen för lantbrukets hydroteknik, Sveriges Lantbruksuniversitet, Uppsala. Serien innehåller sådana forsknings- och försöksredogörelser samt andra uppsatser som bedöms vara av i första hand intern intresse. Uppsatser lämpade för en mer allmän spridning publiceras bl.a. i avdelningens rapportserie. Tidigare nummer i meddelandeserien kan i mån av tillgång levereras från avdelningen.

This series of Communications is produced by the Division of Agricultural Hydrotechnics, Swedish University of Agricultural Sciences, Uppsala. The series consists of reports on research and field trials and of other articles considered to be of interest mainly within the department. Articles of more general interest are published in, for example, the department’s Report series. Earlier issues in the Communications series can be obtained from the Division of Agricultural Hydrotechnics (subject to availability).