Skip to main content
SLU publication database (SLUpub)

Research article2010Peer reviewedOpen access

Inhibition of Predator Attraction to Kairomones by Non-Host Plant Volatiles for Herbivores: A Bypass-Trophic Signal

Zhang, Qing-He; Schlyter, Fredrik

Abstract

Background: Insect predators and parasitoids exploit attractive chemical signals from lower trophic levels as kairomones to locate their herbivore prey and hosts. We hypothesized that specific chemical cues from prey non-hosts and non-habitats, which are not part of the trophic chain, are also recognized by predators and would inhibit attraction to the host/prey kairomone signals. To test our hypothesis, we studied the olfactory physiology and behavior of a predaceous beetle, Thanasimus formicarius (L.) (Coleoptera: Cleridae), in relation to specific angiosperm plant volatiles, which are non-host volatiles (NHV) for its conifer-feeding bark beetle prey.Methodology/Principal Findings: Olfactory detection in the clerid was confirmed by gas chromatography coupled to electroantennographic detection (GC-EAD) for a subset of NHV components. Among NHV, we identified two strongly antennally active molecules, 3-octanol and 1-octen-3-ol. We tested the potential inhibition of the combination of these two NHV on the walking and flight responses of the clerid to known kairomonal attractants such as synthetic mixtures of bark beetle (Ips spp.) aggregation pheromone components (cis-verbenol, ipsdienol, and E-myrcenol) combined with conifer (Picea and Pinus spp.) monoterpenes (alpha-pinene, terpinolene, and Delta(3)-carene). There was a strong inhibitory effect, both in the laboratory (effect sized = -3.2, walking bioassay) and in the field (d = -1.0, flight trapping). This is the first report of combining antennal detection (GC-EAD) and behavioral responses to identify semiochemical molecules that bypass the trophic system, signaling habitat information rather than food related information.Conclusions/Significance: Our results, along with recent reports on hymenopteran parasitoids and coleopteran predators, suggest that some NHV chemicals for herbivores are part of specific behavioral signals for the higher trophic level and not part of a background noise. Such bypass-trophic signals could be of general importance for third trophic level players in avoiding unsuitable habitats with non-host plants of their prey.

Published in

PLoS ONE
2010, Volume: 5, number: 6
Publisher: PUBLIC LIBRARY SCIENCE

    UKÄ Subject classification

    Forest Science

    Publication identifier

    DOI: https://doi.org/10.1371/journal.pone.0011063

    Permanent link to this page (URI)

    https://res.slu.se/id/publ/60323