Röbäcksdalen meddelar

10:e regionala lantbrukskonferensen för norra Sverige den 14-15 mars 2000, Umeå

Föredragen i sammandrag

SLU
Institutionen för norrländsk jordbruksvetenskap

Rapport 1:2000
Välkommen!

Konferensen har de senaste gångerna fått ett ökande nordiskt inslag, både vad gäller föredragshållare och deltagare. Samarbetet och kontakternas i öst/västlig riktning får en allt större vikt, när regionernas betydelse ökar. När det gäller våra ämnedområden är det speciellt tydligt eftersom klimat, jordar och övriga förutsättningar för produktion på åker, har många likheter i de nordliga områdena i våra grannländer.

Syftet med en konferens som denna är naturligtvis att informera om de resultat som forskningen vid institutionen för norrländsk jordbruksvetenskap presterat. Lika viktig är dock diskussionen med andra aktörer inom lantbruket i vid mening, forskare, rådgivare, lantbrukare med flera.

En effektiv och utåthållig användning av resurserna är nödvändig om vi ska kunna utveckla det norrländska jordbruks konkurrenskraft. Utnyttjande av vallen är centrat i produktionen. För att vi ska kunna optimera grovfoderanvändningen krävs att vi kan karakterisera materialet, så att vi kan förutsäga konsumtionen hos djuren och dessutom komplettera med lämpliga fodermedel.

Produktkvalitet är ett annat mycket viktigt område, som i hög grad påverkar förutsättningarna för jordbruket. En ökad differentiering av produkterna ställer krav på styrning av produktionen, så att råvaran blir bättre anpassad till sitt användningsområde. Kvalitetsäkring i hela produktionskedjan gör att vi måste bli bättre på att karakterisera råvaror och produkter.

Vi hoppas att konferensen ska vara en inspirationkälla för utvecklingen av lantbruket mot bättre konkurrenskraft och utåthållighet. Tack till LRF och NNP som ekonomiskt stöder konferensen.

Umeå i mars 2000

Lars Ericson Kjell Martinsson Bo Nilsson
INNEHÅLL

GEMENSAMMA SESSIONEN

NORRLANDS LANDSBYGD EN VÄRLD I FÖRVANDLING

Janken Myrdal, SLU

Bondens roll i landsbygdsutvecklingen - Hans Halvarsson, Länsstyrelsen i Jämtlands län

Herbert Nyman, Norrmejerier

Kjell Harnevik, SLU

TRÄDGÅRDSODLING

Myten om ett idealiskt pH – Margareta Magnusson 11-14

Ekologisk jordgubbsodling i norra Sverige – odlingsteknik – Elisabeth Öberg 15-18

Tilgang på klimatilpassat plantemateriale, en betingelse för vellykkt vegetasjonstablening på Nordkalotten – Leif Molberg 19-23

Ekologisk grönsöksodling – kvävetillgång och behov under odlingssäsongen – Göran Ekblad 24-25

Växtnäringstillsörjning i småskalig ekologisk grönsaksodling – Margareta Magnusson 28-29

Biotyper av vinbärsbladgallmygga – Sven Hellqvist 30-32
VALLFODER – NORRLANDS GRÖNA GULD FRÅN JORD TILL BORD

Kostnad för hemmaproducerat foder – en sammanställning av material från sextio mjölkföretag i Västernorrland – Ann-Sofi Stark

Övervintring av vallar – Oiva Nissinen

Vallfoderkvalitet – Anne-Maj Gustavsson

Fiberkvaliteten i vallfoder och dess betydelse för lönsam mjölkproduktion – Mårten Hetta

Utfodring av vallfoder – Kjell Martinsson

Utfodring och djurhälsa – Harry Eriksson

Utfodring och mjölkkvalitet – Eva Björk

LAMMKÖTTSPRODUKTION

Kan kärringtand hindra parasiter hos lamm? – Gun Bernes, Dan Christensson och Peter Waller

Olika uppfödningsstrategier för vinterlamm – Gun Bernes

Energibehov och konsumtionsförmåga hos vinterlamm – Titti Måntelius

Ovina subarctica, fårprojekt i Norrbotten – Alec Lundström

Fåravelsföreningarnas samarbete i Västerbotten och Österbotten – ett Interreg-projekt – Monica Stark-Krooks

Produktion av finfibrig ull för industriändamål – en möjlighet för Jämtlands län? – Margaretha Lund

VÄXTNÄRING

Stallgödsel till vall – spridningstider på hösten – Lars Ericson och Gunnar Alskog

Spridning av flytgödsel till vall – Erkki Joki-Tokola

Ny syn på kväve i mark och växter: växter kan nytta organiskt kväve i marken som kvävekälla – Kerstin Huss-Danell, Peter Högberg och Torgny Näsholm
MILJÖ

Miljöcertifiering – Gunnar Brundin 87
Miljöanpassade hydrauloljor – Louise Johansson 88
Effekter på rörflen av angrepp av rörflesgallmyggen – Sven Hellqvist 89-92
Rörflen som fiberråvara – Michael Finell 93-96

SPANNMÅL

Sätider i rågvet – Lars Ericson 97-101
Våt spannmål på nätet – Hans Arvidsson 102
Våtutfodring av våtlagrad spannmål – Hans Arvidsson 103
Passar våt spannmål in i ekologisk odling? – Ingvar Persson 104

POSTERS

Symbios – Bill Hultman 105
Klöverrötta, en allvarlig skadegörare – Helena Öhberg 106
Dofter hämmar Phoma-röta – Karin Forsberg 107
Sortprovning i norra Sverige – Lars Ericson 111-112
Lokalt och ekologiskt producerad mat – Maria Norgren 113-115
Hampa – gammal växt i ny form – Staffan Landström 116
Skifteplan – Sundblads lantbrukskonsult AB 117
NORRLANDS LANDSBYGD EN VÄRLD I FÖRVANDLING.
Bondens roll i landsbygdsutvecklingen
Hans Halvarsson Länsstyrelsen Jämtlands län

Landsbygden blöder
Med utgångspunkt och exempel från Jämtlands län redovisas några tankar kring landsbygdens och jordbruks utveckling och de problem vi står inför. Denna utveckling kan nog sägas vara generell för hela Norrlands landsbygd.

För närvarande är flyttströmmen från landsbygd till storstadsområden väldigt påtaglig. I Jämtlands län har befolkningen minskat kraftigt under 1990-talet från nästan 136,000 till strax över 130,000 personer. Det är framför allt glesbygdkommunerna som minskat, några ända upp runt 10%, och de sista åren har även Östersund kommuns befolkning minskat. Inom kommunerna är det landsbygden som avfolkas snabbast. Stor nettoflyttning av kvinnor och ungdomar under lång tid utmyndar i en ogynnsam älders- och könsstruktur, vilket i sin tur påverkar födelsealåten och kan medföra att befolkningsminskningen blir självgenererande. Befolkningsminskningen är mycket allvarlig eftersom befolkningen närmar sig en nivå där det uppstår problem att upprätthålla väsentliga samhällsfunktioner i hela lännet.

När befolkningen minskar sjunker också den regionala köpkraften vilket påverkar lokala/regionala företags möjligheter att få avsättning för sina produkter. Konsekvenserna blir naturligtvis störst för företag som har sin huvudsakliga marknad på lokal eller regional nivå.

Jordbruks utveckling
Jordbruket i Jämtlands län omfattar idag ca 47,000 ha odlad mark. De ur produktionssynpunkt mest betydelsefulla jordbruksområdena är belägna runt Storsjön och längs älvdalarna.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>44.421</td>
<td>44.728</td>
<td>45.228</td>
<td>45.270</td>
<td>44.904</td>
<td>47.311</td>
<td>46.836</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antal företag fördelade efter storlek:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storlek (ha åker)</td>
</tr>
<tr>
<td>Antal företag</td>
</tr>
<tr>
<td>Antal företag med > 20 ha åker</td>
</tr>
</tbody>
</table>
| Medelareal/gård är 18,3 ha. För de gårdar som har mer än 20 ha är medelarealen ca. 42 ha.

Sysselsättning i primärproduktionen.
Lantbruket i regionen genomgår en mycket snabb omvandling. Under perioden 1987 - 97 har sysselsättningen inom jord- och skogsbruk minskat med 53,5%. Uppgiften avser sysselsättningen i primärproduktionen. Takten i sysselsättningsminskningen är större inom skogsbruket än inom jordbruket beroende på den mycket snabba tekniska utvecklingen inom skogsbruket. I dag är storskogsbruket helt mekaniserat bortsett från visst manuellt arbete vid
återbeskogningen (plantering och röjning). Även det skogsbruk som bedrivs i kombination med jordbruk sker i stor utsträckning med samma metoder som inom storskogsbruket.

Enligt Nuteks statistik och prognos samband med arbetet med tillväxtavtalet, kommer primärproduktionen att minska från 2800 till 1800 sysselsatta i länet fram till år 2010.

Livsmedelsindustrin sysselsätter idag runt 900 personer, varav 320 inom mejerisektorn, 150 inom slakt och chark, 300 inom bageriindustrin och 130 inom övriga områden. Enligt Nuteks prognos kommer motsvarande antal sysselsatta år 2010 att vara 650-700.

Bondens roller för landsbygdens utveckling

Producent av mat

Traditionellt har lantbrukets roll som matproducent varit motorn i en levande landsbygd. Allt större gårdar och rationellare produktion både inom jord- och skogsbruket gör att annat boende och annat företagande är väl så viktigt för att upprätthålla en levande bygd.

Bibehållande av ett öppet odlingslandskap

Odlingsskapet har emellertid stor betydelse för att attrahera boende och annat företagande i våra bygder. Odlingsystem som bibehåller det öppna landskapet blir allt värdefullare och premiers också av samhället.

Bevarande av kulturmiljöer

Vårt kulturella ärv bygger mycket på de areella näringarna och på de brukningsmetoder man använt i jord- och skogsbruket. Mycket av detta ärv har stort bevarandevärde och kan användas för att skapa attraktiva besöksmål.

Upprätthållande av en biologisk mångfald

Det alt rationellare jordbruket bidrar till en utarmning av den biologiska mångfalden. Att bevara denna mångfald både inom djur- och växtområdet är av värde för framtida biologisk utveckling och förnyelse.
Bidrar till en social infrastruktur på landsbygden

Skapar miljöer för ett diversifierat företagande på landsbygden.

De jordbruk som "rationaliseras bort" kan utvecklas till annat företagande, gårdsturism, hantverk, träförädling, småverkstäder mm.mm. Även andra företagare finner ofta lantbruksmiljön attraktiv för att etablera sin företag på landsbygden och kanske parallellt driva ett hobbyjordbruk. Bland dessa kan finnas alla sorts företag till exempel inom konsult- och databranschen.

Ett boende till rimlig kostnad och en bra boendemiljö är faktorer som har betydelse för regioners aktivitet. Konkurrensen om den välutbildade arbetskraften kommer öka i framtiden. Var dessa människor välja att bo blir i hög grad avgörande för regioners utvecklingsförmåga.

Bevarar odlingsberedskapen för framtida behov

För närvarande producerar "västvärlden" mer mat än vi konsumerar. Prisprensen är stark vilket bidrar till en kraftig strukturrationalisering. En ökande världsbefolkning och en minskning av odlingsbara arealer på många ställen i världen samtidigt som vattnet kan bli den verliga bristvaran gör att odlingsmarkerna i Norrland kan komma att behövas förr än vi anar. All odlingsbar mark behöver bevaras.

Mjölkbondens utvecklingsvägar

Mjölkproduktion i Jämtlands län

 För de heltidsstyrselsatta i jordbruket är mjölkproduktionen den avgjort viktigaste produktionsgrenen. Idag finns det runt 11.800 kor för mjölkproduktion i Jämtlands län.
Utvecklingen har varit denna:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant kor 1000 st</td>
<td>19,0</td>
<td>17,6</td>
<td>14,2</td>
<td>13,7</td>
<td>13,9</td>
<td>13,1</td>
<td>12,9</td>
<td>12,3</td>
<td>11,8</td>
<td>11,8</td>
</tr>
</tbody>
</table>

Mjölkproduktion bedrivs på "små" företag. Medelkoantalet är 22,4 kor/gård med följande struktur:

<table>
<thead>
<tr>
<th>Antal kor/gård</th>
<th>1-9</th>
<th>10-24</th>
<th>25-49</th>
<th>50-74</th>
<th>74-</th>
<th>Summa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antal företag</td>
<td>85</td>
<td>252</td>
<td>158</td>
<td>27</td>
<td>5</td>
<td>529</td>
</tr>
<tr>
<td>S:a kor</td>
<td>457</td>
<td>4139</td>
<td>5088</td>
<td>1586</td>
<td>572</td>
<td>11.842</td>
</tr>
</tbody>
</table>

Medelavkastningen i länet är:
<table>
<thead>
<tr>
<th>1993</th>
<th>7.430 kg ECM</th>
<th>1994</th>
<th>7.641 kg ECM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>7.765 kg ECM</td>
<td>1996</td>
<td>7.876 kg ECM</td>
</tr>
</tbody>
</table>
Rationell produktion

Miljöprofilerad produktion
I Norrland finns goda förutsättningar att driva ekologisk mjölkproduktion. För närvarande höjs betalningsförmågan hos bonden till ca 3,50 kronor per kilo inkl det statliga stödet.

Även för förädlingsindustrin ligger här en utmaning att utveckla speciella produkter med Norrlandsprofil, miljöprofil, hälsoprofil etc.

Gårdsförädling
Av tradition har många spännande produkter förädlats på gårder och fäbodar i norra Sverige. Att ta tillvara denna tradition med nya produktionsmetoder, framtagning av nya nischprodukter kan göra gårdsförädling till en lönande produktion. Förädlingsvärdet kan här ligga på 6 - 9 kronor per kilo mjölk. Dessa produkter kompletterar industrins utbud och kan ofta hitta en lokal marknad, speciellt i turisttäta områden.

Landsbygdens utvecklingsvägar

Stark företagens utveckling
Skapa förutsättningar för en ekologisk och ekonomisk hållbar produktion. Ökad diversifiering i primärproduktionen för bibehållet antal lantbruks-/landsbygdsföretag. Det är viktigt att koppla ihop landsbygdsutvecklingsåtgärder med jordbruksproduktionen för dem som vill diversifiera sitt lantbruksföretag.

Ökad samverkan på många olika plan; mellan stor och liten, ekologisk och konventionell, mellan producenter av nischprodukter och olika produktsortiment. Samverkan krävs mellan alla företagare på landsbygden.

Ökad satsning på Forskning och Utveckling inom såväl primärproduktionen som livsmedelsförädlingen för tillverkning av kvalitetsprodukter. Rådgivning, utbildning och annan förmedling av kompetens är viktiga länkar för att nå ända ut till producenterna med nyvunna rön.

Miljöprofillering som ett led i att skapa en stark bild av "ren norrländsk mat". Detta för att erövra det mesta av hemmamarknaden och riktade delar av "exportmarknaden".

Främja en god livsmiljö och utveckla den nya avståndsoberoende tekniken för att attrahera till ökad befolkning, ökad bosättning på landsbygden, ökad landsbygdsturism och ökat övrigt företagande.
Myten om ett idealiskt pH

Kalk och handelsgödsel förutsätter varandra. Vid odling med organiska gödselmedel är kalkning oftast onödigt eller skadligt och det finns sällan skäl att aftersträva pH-värden över 5.0–5.5.

Före 1800-talet

Kalkningsbevåg skapat av handelsgödsel

Sammanblandning av begreppen sur = vattensjuk och sur = lågt pH

Innan försurande handelsgödselmedel kom i bilden var jordar med naturligt mycket lågt pH främst myrjordar i vattensjuka områden (Hall, 1909; Ames & Schollenberger, 1916). Det är förmodligen bakgrunden till förvirringen kring det engelska begreppet "sour soils" som kan betyda både "acid" = lågt pH och "waterlogged = vattensjuk (Russell, 1919a; White m fl., 1953). Eftersom de här jordarna ofta var improdukta innan de uppodlades, vilket ofast innefattade kalkning, skapades en negativ association till båda begreppen "sour" och "acid". Den här negativa kopplingen förstärktes när skadorna av försurande handelsgödselmedel uppträdde och man drog slutsatsen att ett högt kalkinnehåll och neutralt pH var nödvändigt för en säker odling.
Kalkningspropaganda

Tillgängligheten för fosfor

Baljväxternas och markorganismernas pH krav

tillgången till färskt organiskt material är mycket viktigare än pH värdet inom ganska vida gränser (Baker m.fl., 1995; Lavelle m.fl., 1995).

Tungmetaller

Referenser

Burgess P.S (1920) The reaction of soils in the field as influenced by the long continued use of fertilizer chemicals. *R I Agr Exp Sta Bul* 189, 1-35.

Lyon T.L & Bizzell J.A (1921) Lysimeter experiments, II. Cornell University Agr Exp Sta Memoir 41, 45-93.
Wheeler H.J (1912) Co-operative experiments for the purpose of studying the soil deficiencies of various sections of the state. R.I Agr Exp Sta Bul 149, 47-77.
Åslander A (1948) Den svenska åkerjordens kalkbehov. Stockholm: LT.
Ekologisk jordgubbsodling i norra Sverige
- odlingsteknik
Elisabeth Öberg

I de försök som redovisas här har vi studerat olika platttyper och marktäckningar i ekologisk jordgubbsodling

Odlingen i norr

Finansiär: Statens Jordbruksverk, ekologiskt lanbuk.	FAKTA
Försöket planerat 7 juli 1996	
Sort: Honeoye	
Plantyper:	
• Konventionell täckrotsplanta (växthusodlad, kyllagrad, prod. hösten innan plantering)	
• Sommarplanta (3 v. gammal växthusodlad täckrotsplanta, prod. samma år som plantering)	
Marktäckning:	
• Plast	
• Bark	
• Burmark	
Undersökningsens syfte och upplägg
Försöket har gått ut på att förkorta etableringstiden genom att använda olika planttyper och att begränsa ogrä i odlningen med olika slag av marktäckning (se faktaruta). Parametrar för utvärdering har varit skördens storlek, bärstorlek och andel skadegörare i de olika försöksleden. Första året mättes även antal kronor (tillväxtpunkter) och blomstänglar för uppskattning av produktionskapaciteten. Målet med försöket har varit att utveckla ett odlingsystem för odlare i norra Sverige som i nuläget vill gå över till en ekologisk eller mer miljövänlig produktionsform.
Det var tänkt att A+planter skulle planteras under våren 1997 för att se om kulturtiden kunde förkortas ytterligare, tyvärr fick vi inte tag i några planter av denna kvalitet förrän 1998 och då var det för sent. Därför redovisas bara leden med de två första planttyperna.
För att snabbt komma igång med en odlning är det mycket viktigt att man har ett bra utgångs-material vid planteringen, oavsett vilken planttyp man använder. Här har enbart växthusproducerade täckrotsplanter av mycket jämna kvalitet använts. Alla våra planter etablerade sig bra och kom snabbt igång med tillväxten. Inte en enda av de 1080 planterna har dött under de tre år försöket har pågått.

![Diagram](https://example.com/diagram.png)

Figur 1. Total avkastning från de två planttyperna.

Resultat och slutsatser
Av planttyperna gav sommarplantan snabbast en bra skörd. Den har genomgående gett den högsta skördens, både totalt och av prima kvalitet (fig. 1). Den har kunnat satsa helt på tillväxt under planteringsåret eftersom den inte blommar. Skillnaden mellan planttyperna var störst det första skördeåret 1997 och har sedan minskat. Inga skillnader är statistiskt säkra på grund av för få upprepningar.
Första året räknades också antal kronor/planta och antal blomstänglar/planta (tabell 1). Där hade sommarplantan bäst avkastningskapacitet med flest kronor och blomstänglar/planta, något som också visade sig vid skörden samma år (fig. 1) då sommarplantan också fick flest bär/planta (tabell 1). Skillnaderna var statistiskt säkra.

<table>
<thead>
<tr>
<th>Antal/planta</th>
<th>Konv. planta</th>
<th>Sommarplanta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kronor</td>
<td>2,5</td>
<td>3,0</td>
</tr>
<tr>
<td>Blomstänglar</td>
<td>2,3</td>
<td>3,1</td>
</tr>
<tr>
<td>Bär</td>
<td>14,2</td>
<td>17,6</td>
</tr>
</tbody>
</table>

Marktäckning mot ogräs med både plast och bark har fungerat bra. Avkastningen i de båda leden har varit ungefär lika (fig. 2). Skörden i barmarksledet har dock i medeltal legat högre än i de led som haft marktäckning.

I de täckta leden har vi, i stort sett, inte haft några kostnader för ogrässrensning, vilket däremot har varit fallet i barmarksleden, där en hel del tid har gått åt för att hålla ogräsen i schack.

Vid en jämförelse mellan barmark och barktäckning kan man tänka sig att marktemperaturen har stigit snabbare på våren i det icke täckta ledet och att plantorna därför har kommit igång med tillväxten snabbare. Barken har däremot isolerat och har gjort att uppvärmningen gått långsammare.

1998 var skillnaderna mycket små mellan leden (fig. 2) troligen p.g.a. den låga temperaturen och de osedvanligt stora nederbördsmängderna. Under månaderna juni, juli och augusti fick vi mer än hela den normala årsnederbörd. Plastledet gav detta år något bättre än både bark och barmark, möjligen p.g.a. högre marktemperatur.

Jag har inte noterat någon ökning av gräsmögelangrepp i de täckta leden. Tvärtom har dessa led gett mindre andel angripna bär än barmark (fig. 2). Denna skillnad är statistiskt säkerställd. Bark har gett något mindre gräsmögelangrepp än plast. Gräsmögel låg också bakom den låga skörden 1998, då andelen prima bär var mellan 56 och 70%.

Angreppen av stinkfly har varit i stort sett lika i alla led genom åren eftersom fiberduken täckt hela försöket fram till första skörd. Täckningen har fyllt sitt syfte. Väken har dock avlägsnats efter första skörd för att man skall slippa den arbetsamma hanteringen. Detta har gjort att 5-10 % av skörden ändå fått skador. Skall man helt undvika angrepp i tidiga sorter måste väven ligga på under hela skördeperioden.

![Diagram](image.png)

Figur 3. Bärvikt vid olika mark täckningar. Öjebyn 1997-1999

Fortsatta studier

Försöket har inte innehållit något kontrollerat med konventionell odlingsteknik, varför det kan vara vanligt att säga något om resultaten i förhållande till det gångse sättet att odla jordgubbar i norra Sverige.

Litteratur

Elisabeth Öberg är forskningsassistent på Avdelningen för trädgårdsodling vid Institutionen för norrländsk jordbruksvetenskap och stationerad i Öjebyn. Hon kan nås på telefon 0911-607 50 eller e-post: Elisabeth.Oberg@njv.slu.se.
" Tilgang på klimatilpasset plantemateriale, en betingelse for vellykket vegetasjonsetablering på Nordkalotten "

Av driftsleder Leif Molberg, Gartnerhallens stamplantestasjon Ervik "Nordnorsk Plantemateriale", Harstad.

Et lite historisk tilbakeblikk.
Tanken om et mer systematisk arbeid for å bedre tilgangen på klimatilpasset plantemateriale for Nord-Norge er ikke av ny dato.

Frantsyne "grønne" banebrytere, som m.a. Severin Ytreberg i Tromsø, påpekte viktigheten av dette allerede for 80 år siden.

Men åren for å ha fått dette arbeidet i gang må nok tilskrives fylkeshagelagsstyrene i Nordland, Troms og Finnmark. Fra et fellesmøte som de hadde i 1972 gikk det en henstilling til sentrale myndigheter om et prosjekt for registrering, innsamling, oppformering, prøving og senere spredning av klimatilpasset plantemateriale av grøntanleggsplanter og bærvekster for landsdelen.

Seksjon Planteavl i Gartnerhallen forestår framavslaget i Norge på oppdrag fra Landbruksdepartementet ved Landbrukstilsynet, og stasjonen i Ervik er en av i alt 4 stasjoner beliggende rundt i landet.

Etter 13 års drift (pluss 10 forutgående år som prosjekt) har nå stasjonen funnet sin arbeidsform, tilpasset de mest presserende behov som landsdelen har med hensyn til:
- å dekke landsdelen som behov for sykdomskontrollert plantemateriale av anerkjente sorter av rips, solbær, bringebær, jordbær og molte
- å koordinere produksjon, markedsføring og salg av bruksplanter av bær i Nord-Norge
- å være kompetansesenter for den kommersielle bærdyrkinga i Nord-Norge
- å skaffe fortrinnsvis planteskolene i nordområdet ungpplantemateriale (urota og rota stiklinger, fra og frøplanter) av anerkjente slekt arter herkomster/sorter
- å medvirke til at dette plantematerialet kommer ut i praktisk bruk. Det skjer ved utstrakt informasjonsvirksomhet rettet mot så vel planteskoler/hagesentre som planleggere og forvaltere av offentlige grøntmiljøer, (park- og landskapsplanting/leplanting/revegetering), samt hagelag og småhageeiere.

Bemanningen på stasjonen ligger jevnt på vel 3 årsverk.
Regnskapet for 1998 viser driftskostnader på 2,1 mill. kroner, inntekter på ca. 1,2 mill. og bevilgninger over Jordbruksavtalen på 0,9 mill.

Seksjon Planteavl s virksomhet med grøntanleggsplanter i Nord-Norge.

- Medvirkning i registrering og innsamling av lovende plantemateriale i inn- og utland
- Tilplanting og drift av grovprovingsfelter av innsamla materiale, både på stasjonen og i eksterne prøvefelter, og da gjerne i ekstremt klima
- Oppformering av lovende materiale for verdipróvning (Gjennomføringen av den vitenskapelige verdipróvingen tilligger Planteforsk, Holt forskningssenter)
- Produksjon og levering av morplanter og bruksplanter av utvalgt og tilrådd plantemateriale ved etablering og drift av stiklingsbank for vedstiklinger av landskaps-, lê- og prydplantemateriale, som leveres som urota stiklinger til planteskolene
- Etablering og drift av morfelter for grønnsklingsformert plantemateriale av samme, herfra leveres rota stiklinger/ungplanter for videre kultur til planteskolene

19
- Etablering og drift av demonstrasjonsfelt for nytt, viktig plantemateriale som bør bli bedre kjent og mer brukt
- Informasjon om betydningen av å bruke klimatipasset plantemateriale, gjennom utstrakt foredrags- og foreleservirksomhet, fagdager, medvirkning til demonstrasjonsplantinger, innslag i media
- Tilstreber jevnlig kontakt med fagmiljøene på Nordkalotten, for oppdatering, utveksling av erfaringer, vurdering av muligheter for utveksling/ekspert av plantemateriale m.v.

Som ledd i virksomhet som beskrevet ovenfor har stasjenen vært, og er delvis fortsatt, involvert i en rekke miljøplantingsprosjekter rundt i landsdelen.

Oppnås det resultater?
Det er ikke uten en viss stolthet at jeg her vil hevde at framavlsarbeidet har satt tydelige spor etter seg i landsdelen:
- omfanget og kvaliteten i bærdyrkinga i landsdelen øker i takt med tilgangen på sykdomskontrollert plantemateriale av høvelige sorter samt informasjon om landsdelstilpassa dyrkingsteknikk
- så vel offentlige miljøplantingar (parker, leplantingar, revegeteret sidterreng til veier, jernbane etc.) som småhager får et stadig mer "voksterlig" preg etter hvert som godt, klimatipasset plantemateriale taes i bruk istedenfor til dels uegna plantemateriale av ukjent, til dels importert, opphav
- det viser seg at mye av det plantematerialet som primært er utvalgt for bruk i nordnorsk, barksom klima også har sin store berettigelse lenger sør i landet, så som i Trøndelag, Gudbrandsdalen, Østerdalen og i andre, høyereleggende strøk på Sør- og Vestlandet
- vi har også eksempler på at sortsmateriale utvalgt og oppformert i Nord-Norge er friskere, og dermed lettere å formere, enn genetisk identisk sortsmateriale fra sørligere egne. Det har nok noe med innsmitte av sopper og virus med importert materiale å gjøre.

Hvorfor er det så viktig med eget framavlsarbeid og egen planteskolproduksjon for Nordkalott-området?
Utvalg av gode planter som er tilpasset dyrkingsforholdene på stedet de dyrkes har vel mer eller mindre bevisst vært gjort så lenge mennesket har formert planter. Etter hvert som kunnskapen om plantenes genetiske forhold har økt, har dette utvalgsarbeidet blitt gjort mer og mer bevisst, og har etter hvert blitt supplert med foredling på ulike måter.

Funn av tilfeldig selektiert plantemateriale:
En viktig kilde for funn av "plussvarianter" av ikke viltvoksende busker og trær som nærmest har utvalgt seg sjøl her nord har vært gamle herskaps- og embetsmannshager. Her ble det i sin tid planta fraformerte planter av ukjent opphav, inkjøpt sorfra. Det barske nordnorske klima gjorde at bare de tøffeste overlevde og utvikla seg som forventa. Så i slike tilfeller kunne vi gå til "dekket bord", og det beste av dette ble utgangsmateriale for nye nordnorske utvalg/ sorter. For ved å formere disse vegetativt (stiklinger/deling/poding/vevskultur) får man som kjent nye individer med de samme gode egenskapene.

Vi anser det som svært viktig at det plantemateriale som skal brukes her oppe i størst mulig grad er produsert her. For ekstremt daglengdestyrte slag som formeres med frå er det en absolutt betingelse! For produserer vi slike under sørlige forhold så skriver vi ut det materialet vi helst skulle hatt!

Ved å få produsert plantene lokalt
- unngår vi introduksjon av nye skadelegjere med "innført" materiale
- korte transportavstander = bedre planter, mindre forurensning
- muligheter for lokal avtaleproduksjon ved store behov
- arbeidsplasser i planteskolenæringa her nord
Hvorfor kan vi ikke her nord ukritisk bruke hardføre sørnorske utvalg?
(Kapitlet nedenfor er utdrag fra et kompendium til en Nordkalottsamling i Bjerkvik i 1982, og er skrevet av min kollega i Seksjon Planteavl, driftslederen på vår eliteplantestasjon på Sauherad i Telemark, Egil Bjerkestrand).

Hva er det som gjør at det er så galt å benytte seg av plantermaterielle sørfra, når individer av samme art finnes i god trivsel rundt på Nordkalotten?
En intensivert forskning på dette området de år har gitt mye av forklaringen på dette spørsmålet. Det var sannsynligvis daglengdeforskningen i blomster som førte oss på rett spor. At vi har langdags- og kortdagsplanter blant vetuskulakulturene er i dag almenkunnskap. Tilsvarande forsker med med busker og trær fra ulike breddegrader viste at de hadde en tilsvarende daglengde-efekt. Dermed var en av hovedfaktorene til lignesenes klimaareaksjoner funnet.
Forsøk med Hippophae rhamnoides først i 60-årene på NLH på Ås viste at planter med opphav i Houtala i Finland avslutta veksten og danna endeknopp på Ås tidlig på sommeren. Planter fra Trondelag i Midt-Norge avslutta veksten noen dager senere. Betydelig senere avslutta planter fra Nord-Jylland, og planter fra Holland rkakk ikke å avslutte veksten før frosten. Sistnevnte ble vinterkassert hvert år på Ås. I 500-600 meters høyde over havet, i Hallingdal, ble også plantene fra Nord-Jylland sterkt vinterskadd.
Forsøk av bl. a. professor Atle Håbjørg viste at disse reaksjonene var sterkt daglengdeavhenget. Disse forskøkene viste også at ulike plantslag fra samme sted hadde tilnærmet samme kritiske daglengde.

Ergo: Flere tre- og buskslag med opphav nordafor polarsirkelen krever over 20 timer dag for å vokse, mens tilsvarande planter i Sør-Norge kan vokse ved 16 timer dag.

I Alta er det 16 timer dag ca. 1. september.

Hvis da en "sørnorsk" plante, planta i t.ex. Torndalen, får beskjed om å avslutte veksten så seint som 1. september, og det gjerne tar ca. 1 måned å danne endeknopp, da er det for seint!
Nå er det naturlig å tro at også temperaturen påvirker vekstavslutning og vinterhardighet. Det gjør den da også, både direkte og indirekte. Indirekte ved at en lav nattetemperaturen påvirker den kritiske daglengden ved at denne øker. Dette er vist i forsøk som på vel professor Atle Håbjørg som professor Ola Heide ved NLH på Ås. Og det ser ut til at vekstavslutning og danning av endeknopp skjer på kortere tid i planter av nordlig opphav.

Nå vet vi at flere plantslag med opphav i Mellom-Europa trives godt i Finnmark.
Syringa josikaeaa er et godt eksempel på det.
Plantenes kritiske daglengde øker med økende høyde over havet. Hardføre planter sørfa stammer oftest fra fjellstrøk eller steder med typisk kontinentalt klima. Der har de tilpassa seg et hardt vinterklima som gjør de skikket for bruk i nordområdene.
Planter som er tilpassa stabile vintertemperaturen bryter ofte tidlig om våren. Det kan gjøre at de er mindre godt skikket til bruk i kyststrøk med variabelt klima. Eksempel på det er Cornus alba 'Sibirica', som er en typisk kontinentalklima
Syringa josikaeaa ser derimot ut til å være en busk med stor overlevelsesevne i varierende klima. Vi sier at den har stor plasticitet.
For eksempel så kan jo Syringa josikaeaa brukes over hele Norge.

Eksempel på det motsatte kan være nordlige provenienser av bjørk: De kan dårlig nok brukes lenger sør, for bladfall inntre for tidlig.

Maritime kontra kontinentale plantslag er nevnt. Et særtrekk ved kontinentale plantslag er at de krever en varm og relativt tørr Sommer. Maritime plantslag kan utvikle seg godt ved lave sommertemperaturen, men er lite frosttolerant. Vi finner for eksempel Hedera i Vesterålen, langt nord for polarsirkelen, mens den går bare i de aller beste strøk av Sør-Norge.

Mekanismen bak slike forhold er nok ikke fullt klarlagt enda.

Vindtoleranse er også en egenskap med store artsforskjeller. Ørlandet i Trondelag er meget utsatt for vindslit. Arter som vokser godt der likevel er m.a. Sambucus, Sorbus, Ulmus glabra, Acer pseudoplatanus.

Kuldetoleranse utvikla av vind: Senere års prøvinger har vist at planter som normalt vokser i ekstremt kystklima kan utvikle seg bra i kalde innlandsstrøk.
Som kjent så bevirker sterk vind en forsterkning av kuldeopplevelse.
Det gjør at planter fra slike ekstreme vindeksponeerte kystmiljøer har måttet "lære seg" å tåle mange minusgrader.
De fleste ikke viltvoksende planteslag av ukjent opphav som tilbys i salg her nord har vært utvalgt og dyrka under helt andre klimaforhold enn de vi har på Nordkalotten. Derfor sitter vi igjen med et relativt beskjedent "sikkert" sortiment for dette området. Men som før omtalt så kan man finne fine enkeltindivider av samme art i eldre anlegg her oppe.
Det har lurt mange til å trekke den konklusjonen at da er vedkommende art hardfør her oppe. Men det kan bare sies med sikkerhet hvis det er tale om vegetativt formert avkom fra slike trivelige genotyper som man kan finne i gamle anleggsopphav.

Sortimentet for Nordkalotten utvides stadig.
Ved å
- gjøre utvalg i stedegent materiale
- oppformere naturlig selekterte genotyper av ikke viltvoksende planter som omtalt ovafor
- oppformere det beste fra verdipróvingene av innsamla, utenlandsk materiale
utvides sortimentet stadig.

Nedenfor listes opp noen eksempler på gode utvalgte sorter og herkomster for Nordkalottområdet som nå er vel introdusert og i utstrakt bruk i Nord-Norge:

<table>
<thead>
<tr>
<th>Botanisk navn</th>
<th>Sortsnavn el. Herkomst</th>
<th>Opphav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betula pubescens</td>
<td>Tysfjord</td>
<td>Tysfjord, Nordland</td>
</tr>
<tr>
<td>Cornus sericea</td>
<td>'Farba</td>
<td>Fairbanks, Alaska</td>
</tr>
<tr>
<td>Lonicera coerulea</td>
<td>'Kirke</td>
<td>Kirkenes</td>
</tr>
<tr>
<td>Lonicera deflexicalyx</td>
<td>'Kiti</td>
<td>Kina</td>
</tr>
<tr>
<td>Lonicera x notha</td>
<td>'Siger</td>
<td>Sigerfjord, Nordland</td>
</tr>
<tr>
<td>Lonicera peryclysenum</td>
<td>'Thon</td>
<td>Kvaløya, Tromsø</td>
</tr>
<tr>
<td>Lonicera tatarica</td>
<td>'Rå</td>
<td>Kvaløya, Tromsø</td>
</tr>
<tr>
<td>Populus trichocarpa</td>
<td>'Yukon</td>
<td>Canada</td>
</tr>
<tr>
<td>Populus trichocarpa</td>
<td>'Ervik</td>
<td>Alaska</td>
</tr>
<tr>
<td>Rosa holodonta</td>
<td>'Brynhold</td>
<td>Tromsø</td>
</tr>
<tr>
<td>Rosa moyesii</td>
<td>'Kristine</td>
<td>Harstad</td>
</tr>
<tr>
<td>Rosa pendulina</td>
<td>'Lina</td>
<td>Harstad</td>
</tr>
<tr>
<td>Salix alaxensis</td>
<td>'Kenai</td>
<td>Alaska</td>
</tr>
<tr>
<td>Salix lapponum</td>
<td>'Svanvik</td>
<td>Sør-Varanger</td>
</tr>
<tr>
<td>Salix phylicifolia</td>
<td>'Andey</td>
<td>Andey, Nordland</td>
</tr>
<tr>
<td>Sambucus callicarpa</td>
<td>'Vannes</td>
<td>Vadsø/Alaska</td>
</tr>
<tr>
<td>Sambucus pubens</td>
<td>'Isla</td>
<td>Island/N.-Amerika</td>
</tr>
<tr>
<td>Sorbaria grandiflora</td>
<td>'Maia</td>
<td>Tromsø/Kirowsk</td>
</tr>
<tr>
<td>Sorbaria sorbifolia</td>
<td>'Pia</td>
<td>Vadsø</td>
</tr>
<tr>
<td>Sorbus hybrida</td>
<td>Harstad</td>
<td>Lundenes, Harstad</td>
</tr>
<tr>
<td>Spiraea betulifolia</td>
<td>'Tor</td>
<td>Alnarp, Sverige</td>
</tr>
<tr>
<td>Spiraea japonica</td>
<td>'Norrbotten</td>
<td>N.-Sverige</td>
</tr>
<tr>
<td>Syringa josikae</td>
<td>'Rå</td>
<td>Kvaløya, Tromsø</td>
</tr>
<tr>
<td>Viburnum opulus fl. pl.</td>
<td>'Pohjan Neito</td>
<td>N.-Finland</td>
</tr>
<tr>
<td>Viburnum opulus</td>
<td>'Rana</td>
<td>Rana, Nordland</td>
</tr>
</tbody>
</table>
Mulighet for samordning av verdiprøving, oppformering, navning, demonstrasjon, produksjon og markedsføring av klimatilpasset plantemateriale på Nordkalotten.

Det er dessverre et faktum at det fortsatt omsettes og plantes materiale av ukjent og til dels uegnet opphav her nord, kanskje særlig i større offentlige planteprosjekter. Dels skyldes det mangel på kunnskap(spesielt hos planleggere og anleggsledere), dels vanskelig tilgang på plantemateriale av anerkjent opphav.

Videre så kan vi konstatere at plantemateriale av opprinnelig samme anerkjente opphav omsettes under flere ulike herkomst- og sortsnavn her i nordområdene. Det skyldes hovedsakelig at hvert land har hatt egne planteinnsamlingssekspedisjoner i de samme geografiske områdene rundt om i verden. Vi kan også slå fast at den lokale produksjonen av ideelt plantemateriale til bruk i nordområdene er for liten, og mangler totalt samordning.

Dette siste er tenkt retta på ved et ambisiøst, nordskandinavisk samordningsprosjekt (Interreg-prosjekt), i mangemillionkronersklasse, over 10 år. Her skal forskningsstasjoner, elite- og stamplantetilpasninger samt private planteskoler fra nordområdene i Finland, Sverige og Norge gå sammen om tidenes største satsing på klimatilpasset plantemateriale for Nordkalott-området.

Vi har håp om at prosjektet skal kunne komme i gang i løpet av år 2000, og det er vårt ønske og håp at vi også etter hvert skal kunne få Nordvest-Russland med oss i dette arbeidet.

Målsettingen er å kunne få til

- et samordnet felles innsamlings- og verdiprovningsarbeid
- felles navn og markedsføring i alle impliserte land
- en profesjonell og moderne info- og demonstrasjonsvirksomhet, tilpasset alle, forhold og språk, retta mot alle kategorier medaktører og forbrukere
- en samordnet, behovstilpasset og stor nok produksjon av klimatilpasset plantemateriale for hele Nordkalott-området.

La oss håpe at dette ”går i boks”. Det vil kunne gi nordområdene et kjempeløft, og det trengs. Utfordringene er enorme, stikkord som Nikel og Finnmarksvidda sier noe om det.
Ekologisk grönsaksodling - kvävetillgång och behov under odlingssäsongen

Göran Ekbładh, SLU, Institutionen för norrländsk jordbruksvetenskap, Torslunda, 386 93 Färjestaden

I ekologisk odling tillgodoses kvävebehovet framförallt genom nedbrukning av baljväxter i gröngödslingsgrödor och vallar samt genom tillförsel av husdjursgödsel. Kvävet är bundet i organiska material och ska frigöras så att grödan utnyttjar kvävet så effektivt som möjligt. Ideelet vore att den största delen av grödans kvävebehov frigörs i nära anslutning till grödans mest intensiva tillväxtfas och att frigörelsen i övrigt är låg i perioder med litet eller inget upptag. Mineraliserat kväve, som inte tas upp i någon gröda, ackumuleras i marken och kan då lätta förloras genom utlakning eller denitrifikation.

Hur nära eller långt från ideelet är då dagens ekologiska odlingssystem?

Av praktiska skäl tillförs all gödsel i början av säsongen i samband med vårbruket. Det mesta av mineralkvävet (ammoniumkväve) i gödseln är direkt tillgängligt. En del av ammoniumkvävet förloras i samband med eller strax efter spridning. Det kan också fastläggas, mer eller mindre temporärt, om det finns lättomsättbara kolföreningar i gödseln. Under grödans etableringsfas är kväveupptaget litet och det mineralkväve, som tillfördes med gödseln, och kväve som kontinuerligt mineraliseras ackumuleras i marken. Just före den mest intensiva tillväxtfasen börjar blir förrådet som störst. När grödans upptagstakt blir högre än den takt som ackumuleringen sker i, börjar det ackumulerade förrådet att minska.

också ett tekniskt problem eftersom det inte finns redskap för att kompleteringsgödsla med organiska gödselmedel i växande gröda. Nu finns dock ett redskap på marknaden som har utvecklats i Danmark för att sprida hönggödsel i växande gröda.

Förutom det ackumulerade förrådet i marken frigörs kontinuerligt kväve genom mineraliseringen. Den dagliga mineraliseringsstakten var en tredjedel eller mindre av det kväve som grödorna kunde ta upp när kvävetillgången inte var begränsad. Den dagliga ackumuleringsstakten var relativt lika för komposterad gödsel och för höngödsel. Skillnaden bestod främst i innehållet av mineralkväve (ammoniumkväve) vid tillförsel av gödseln, som naturligtvis var mycket större för höngödseln.

Det är alltså önskvärt att hitta metoder som kan ge bättre fördelning av tillgången på växtnäringsämnen under säsongen, i synnerhet för grödor med stort kvävebehov. Tekniska lösningar behövs för att fördela nedbrukning av organismiskt material under odlingssäsongen i stället för att tillföra allt i en giva. Den ovan nämnda spridaren av hönggödsel visar att en sådan utveckling är på gång. Integrisering med olika former av fänggrödor och insåningsgrödor är andra tänkbara möjligheter. Växtnäringsöverskott lagras säkrare i växter än i marken. Visserligen frigörs inte 100% av växtnäringen vid nedbrukning av en fänggröda men växtnäringsen behålls i odlingssystemet i stället för att förlovas.

Övriga nämnda resultat är inskickade till tidskrifter för publicering.

Fyra år i rad har en kombinerad test och demonstration av plantuppdragning i KRAV-godkända jordar genomförts på Röbäcksdalen. Totalt har 19 olika jordar testats varav tre har varit med alla år. Demonstrationsdelen av testerna har finansierats med UID medel från Jordbruksverket 3 år av 4.

En djungel

Pålitliga jordar?
Tyvärr är det inte bara nya jordfabrikat som kan medföra obehagliga överraskningar. Även en jord som varit bra tidigare år kan plötsligt hålla mycket sämre kvalitet. Ojämna inblandning av gödsel och varierande kvalitet på ingående råvaror är troliga orsaker. För att kunna ge förhandstips till odlare inför årets inköp av jord till plantuppdragningen har vi genomfört våra test innan den egentliga säsongen börjat. I mitten på mars brukar vi så purjolök, salladskål, broccoli, vitkål och isbergssallat i ett totalt olika jord. Sen har vi några veckor på oss att göra bedömningar och att bjuda in odlare att göra sina egna iakttagelser.

Fortsätt test av purjol i fält

Näringsbevattning
Näringsbevattning under plantuppdragningen med Bycobact och Biorika har provats i alla växtslag, men givit liten effekt i de plantor som bara stått 3 veckor i småkrukorna. I kålplantor som stått en vecka längre har näringsbevattningen givit positiv effekt i mer än hälften av jordarna. För isbergssallat har de negativa effekterna av näringssättning varit större än de positiva. I purjolöken däremot, som står ca 3 månader i krukor, har näringsbevattningen genomgående medfört betydligt kraftigare planter vid utplantering. Bycobact har givit bättre effekt än Biorika för de flesta jordarna, men en kombination av de båda preparaten har också fungerat bra.

Jordanalysen
Jordarna har analyserats före användning och sedan efter användning samtidigt som planterna har vägts, 22 dagar efter sådd. Jordarnas pH värde före användning har varierat mellan 5.0 och 7.3. Efter 3
veckors odling har pH-värdet oftast stigit några tiondelar. Ledningstalet före användning har varierat mellan 0.9 och 5.9. Efter 3 veckors odling har det sjunkit till mellan 0.3 och 3.5. Det har oftast varit kväve och svavel som först tagit slut. För låga näringsnivåer och ett obalanserat växtnäringsinnehåll har legat bakom dåliga resultat i testerna. För högt innehåll av kalcium har förmodligen hämmat näringsupptagningen i många jordar och man kan se en tendens till att de jordar som varit allra bäst har ett pH-värde under 6 och ett ganska högt ledningstal, över 3. Ibland kan det vara jordens struktur som är avgörande. Rötterna måste andas för att fungera effektivt och en jord som är kompakt och alltför vattenhållande ger dåliga planter även om näringsinnehållet är bra.

Bäst och sämst

Tabell 1. De olika jordar som ingått i testerna samt pH och ledningstal vid starten

<table>
<thead>
<tr>
<th>Nr</th>
<th>Jord</th>
<th>Tillverkare/återförs</th>
<th>1996 pH Lt</th>
<th>1997 pH Lt</th>
<th>1998 pH Lt</th>
<th>1999 pH Lt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alternativjord m Lera o Kisel</td>
<td>SW Hammensköld</td>
<td>6.3 2.3</td>
<td>7.1 1.2</td>
<td>6.0 0.9</td>
<td>7.0 1.3</td>
</tr>
<tr>
<td>2</td>
<td>E-jord</td>
<td>Hasselfors</td>
<td>7.0 2.3</td>
<td>6.6 2.1</td>
<td>5.8 3.3</td>
<td>5.8 5.1</td>
</tr>
<tr>
<td>3</td>
<td>Solmull</td>
<td>Hasselfors</td>
<td>6.3 1.2</td>
<td>7.0 1.3</td>
<td>6.7 2.4</td>
<td>7.1 2.1</td>
</tr>
<tr>
<td>4</td>
<td>Komposterad plantjord</td>
<td>Hasselfors</td>
<td>6.5 1.7</td>
<td>6.3 2.4</td>
<td>5.2 3.8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Haga Planteringsjord</td>
<td>Hasselfors</td>
<td>7.3 1.6</td>
<td>6.4 0.9</td>
<td>6.7 1.2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Blomjord,</td>
<td>Sinontorp</td>
<td>5.1 2.8</td>
<td></td>
<td>5.1 4.7</td>
<td>5.1 2.9</td>
</tr>
<tr>
<td>7</td>
<td>Såljug</td>
<td>Angla mark KF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Blomjord</td>
<td>Angla mark KF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Såljug-kaktusjord.</td>
<td>Hasselfors</td>
<td>5.9 2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Komposterad blomjord</td>
<td>Hasselfors</td>
<td>6.7 2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Såljug med pergelt</td>
<td>Hasselfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Moder Jord</td>
<td>Jordförbättring AB, Täcksfors</td>
<td>5.5 1.2</td>
<td></td>
<td>6.0 1.5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Biolan</td>
<td>Finsk tillv.</td>
<td></td>
<td>6.7 1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Petrusjorden</td>
<td>Lokal produkt. Jämstland</td>
<td></td>
<td>7.3 5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Plantjord, Naturlövslad</td>
<td>Hammensköld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Biojord, Plantjord</td>
<td>Skånegylla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Jord från Norr</td>
<td>Kallax Betong</td>
<td></td>
<td>5.0 5.7</td>
<td>6.9 2.2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Blomjord, Natur</td>
<td>Hasselfors</td>
<td></td>
<td>6.3 2.0</td>
<td>6.4 2.8</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Plantjord, Ekologisk</td>
<td>Hasselfors</td>
<td></td>
<td></td>
<td></td>
<td>6.4 3.2</td>
</tr>
</tbody>
</table>

Referenser

Växtnäringsförsörjning
i småskalig ekologisk grönsaksodling

Måste den ekologiska odlingen bli beroende av "organiska handelsgödselmedel" t.ex. pelletterad höngödsel eller koncentrerade kaliumgödselmedel som transporteras lång väg?

Organiska gödselmedel

Gröngödslingsgrödor
Fårske organiskt material med relativt hög kolväte kvot (C/N) har i många studier visat sig stå för den främsta positiva inverkan på markorganismer och markstruktur. Jämförelserna i tabell 1 visar att det KRAV-godkända Binadan som tillverkas i Danmark och är baserat på kycklingsgödsel berikad med kalium har mycket lägre kol/väte kvot än gröngödslingsgrödorna och är ungefär 10 gånger mera koncentrerad på växtnäring. Det norrländsproducerade Bycocat som är baserat på avfall från pappersindustrin har betydligt högre kol/väte kvot än Binadan, och mycket lägre kaliuminnehåll. Jämförelserna i tabell 1 visar också att olika gröngödslingsgrödor kan skilja sig ganska mycket när det gäller upptag av växtnäringsämnen från samma jord. Ökade kunskaper om det här skulle ge bättre möjligheter att välja lämpliga gröngödslingsgrödor för olika jordar och olika växtföljder. Eftersom baljväxter oftast har en stor förmåga att sänka pH-värdet kring rötterna har de också en överlägsen förmåga att ta upp fosfor och mikronäringssämen jämfört med de flesta grönsaker. Oftast tittar man mest på kväveinnehållet, men förmodligen är balansen mellan kvävet och andra ämnen viktigare. I tabellen visas bara innehållet i grönorna ovanjordiska delar. Växtnäringsinnehållet i rötterna och rötternas inverkan i marken kan vara minst lika viktiga.

Tillbaka till åker och äng?
växter kan också ha en överlägsen förmåga att ta upp svårtilgänglig växtbäring. En mindre men välskött areal med bra markstruktur och växtbäringstillstånd kan ge högre och säkrare skördar och därmed bli både lönsammare och roligare än en mera extensiv odling.

Lokala alternativ?

Tabell 1. Jämförelse mellan innehållet av växtbäringssämnen i Binadan och Bycobact (kg eller g/1 ton friskvikt) med innehållet i 6 ettråiga grönängslingsgrödor (kg eller g/10 t friskvikt). Proverna på grönängslingsgrödorna togs i samband med nedbrytning den 1 oktober 1998. Grödorna har växt i samma jord med ett pH värde på 6.7. Siffrorna inom parentes anger den totala grönmasseskördens avv. jord i friskvikt.

<table>
<thead>
<tr>
<th>Binadan</th>
<th>Bycobact</th>
<th>Blodköver (24 t/ha)</th>
<th>Subköver (15 t/ha)</th>
<th>Blå lupin (50 t/ha)</th>
<th>Vit lupin (34 t/ha)</th>
<th>Foderväxter (22 t/ha)</th>
<th>Bovete (10 t/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS%</td>
<td>90.0</td>
<td>92.0</td>
<td>13.1</td>
<td>12.1</td>
<td>12.8</td>
<td>13.7</td>
<td>15.4</td>
</tr>
<tr>
<td>C/N</td>
<td>4.8</td>
<td>7.2</td>
<td>18.7</td>
<td>13.4</td>
<td>13.5</td>
<td>17.7</td>
<td>11.7</td>
</tr>
<tr>
<td>Kval kg</td>
<td>250</td>
<td>382</td>
<td>599</td>
<td>550</td>
<td>594</td>
<td>636</td>
<td>711</td>
</tr>
<tr>
<td>Kalium</td>
<td>52</td>
<td>53</td>
<td>32</td>
<td>41</td>
<td>44</td>
<td>36</td>
<td>61</td>
</tr>
<tr>
<td>Kalium</td>
<td>94</td>
<td>31</td>
<td>38</td>
<td>34</td>
<td>25</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Kalcium</td>
<td>23</td>
<td>44</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>8.0</td>
<td>20</td>
</tr>
<tr>
<td>Klor</td>
<td>23</td>
<td>15</td>
<td>6.3</td>
<td>5.7</td>
<td>5.5</td>
<td>5.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Svel</td>
<td>41</td>
<td>15</td>
<td>3.6</td>
<td>3.8</td>
<td>4.4</td>
<td>3.4</td>
<td>6.9</td>
</tr>
<tr>
<td>Magnesium</td>
<td>5.5</td>
<td>3.9</td>
<td>2.2</td>
<td>2.1</td>
<td>3.0</td>
<td>1.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Järn g</td>
<td>508</td>
<td>804</td>
<td>157</td>
<td>103</td>
<td>148</td>
<td>174</td>
<td>150</td>
</tr>
<tr>
<td>Mangan</td>
<td>269</td>
<td>139</td>
<td>17</td>
<td>26</td>
<td>77</td>
<td>354</td>
<td>36</td>
</tr>
<tr>
<td>Zink</td>
<td>227</td>
<td>120</td>
<td>31</td>
<td>44</td>
<td>45</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>Bor</td>
<td>37</td>
<td>22</td>
<td>36</td>
<td>26</td>
<td>23</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>Molybdén</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>24</td>
<td>11</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Koppar</td>
<td>78</td>
<td>35</td>
<td>12.7</td>
<td>14.7</td>
<td>7.4</td>
<td>8.1</td>
<td>8.9</td>
</tr>
<tr>
<td>Nickel</td>
<td>9.1</td>
<td>6.2</td>
<td>1.3</td>
<td>2.3</td>
<td>1.4</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Kobolt</td>
<td>1.26</td>
<td>1.20</td>
<td>0.14</td>
<td>0.37</td>
<td>0.15</td>
<td>0.09</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Referenser

Biotyper av vinbärsbladgallmyggen

Sven Hellqvist
SLU, inst. f. norrländsk jordbruksvetenskap
avd. f. växtskydd

Vinbärsbladgallmyggen

Vinbärsbladgallmyggen har först i senare tid uppmärksammats som skadedjur i norra Sverige. Den är nu vitt spridd och förekommer i många områden. I vissa områden förekommer den i höga populationstätheter och praktiskt taget samtliga kraftigväxande skott kan då vara angripna.

Resistenta sorter ...
Det finns en stor variation mellan olika vinbärssorter i mottaglighet för gallmyggen. Vissa vinbärssorter med skandinaviskt eller ryskt ursprung har rapporterats som mycket resistenta (Keep, 1985). Det gäller bl. a. sorterna Korpinkylä och Sunderbyn II som båda ursprungligen är utvalda bland vildväxande svarta vinbär i Norrbotten. Resistent är även Storklas, som ärvit sin resistens från fördärrern Sunderbyn II. På dessa resistenta sorter sker ingen gallbildning och larverna utvecklas inte vidare; de förblir i första larvstadiet tills de dör.

... och virulentaa myggor
Undersökningar av vinbärsbladgallmyggen vid Röbäcksdalens under de senaste åren har visat att det finns variation, inte bara mellan vinbärssorter i mottaglighet för gallmyggen, utan även mellan olika gallmyggor på hur virulenta de är på resistenta vinbärssorter. Särskilt har sorten Storklas undersökt. Relativt omfattande gallmyggeangrepp har förekommit på den sorten i ett fält på Röbäcksdalen, medan sorten var nästan helt symptomfri i ett annat fält. På båda fälten har angreppen på mottagliga sorter varit mycket kraftiga (Hellqvist & Larsson, 1998). Vidare undersökningar har visat att det finns en genetiskt betingad variation i virulens mellan olika myggor. Från en blandad gallmyggepopulation har det varit möjligt att selektera för både avirulens och virulens på Storklas och nästan ”rena” stämmar av virulenta och avirulenta myggor har erhållits efter flera generationers selektion (Hellqvist, in prep.).
Biotyper

För att särskilja olika typer av en insektsart, som huvudsakligen skiljer sig åt i förmågan att utvecklas på någon speciell värdväxt, används ofta beteckningen biotyp. Begreppet används framför allt för olika genotyper av skadedjur som skiljer sig åt i förmågan att angripa olika "resistenta" sorter av den odlade växten. Bland gallmyggor finns olika biotyper beskrivna av kornmyggen (även känd som "hessiska flugan"), *Mayetiola destructor*, på vete och *Orseolia oryzae* på ris. I vete har flera olika gener för resistens mot kornmyggen utnyttjats vid växtföraldlingen och många biotyper (fler än 10) av kornmyggen har karaktäriserats, var och en med förmåga att utvecklas på vete med en speciell uppsättning av resistensgener. Biotypernas genetik är särskilt studerad hos kornmyggen; virulensegenskapen är recessiv och virulenta individer har sålunda dubbel uppsättning av virulensalleler (Gallun, 1978).

De två biotyper av vinbärsgallmyggen som förekommer i norra Sverige kan karaktäriseras på följande sätt (Hellqvist, in prep.):

Biotyp A. Larver av biotyp A kan inte utvecklas på sorter av Storklas eller Korpikylä. Larverna tillväxer inte i storlek och orsakar ingen gallbildning av bladen. Larverna kan överleva relativt lång tid på bladen, men flyttar då successivt till yngre blad efterhand som bladen utvecklas. Larver av biotyp A kan dock utvecklas på de resistenta sorterorna om det blad de angriper samtidigt angränsar av larver av biotyp B.

Biotyp B. Larverna kan utvecklas på Storklas och Korpikylä. Gallbildning av bladen sker som på mottagliga sorter på Korpikylä, men på Storklas är både gallbildning och larv tillväxt något förråkat.

Hur ser det ut i odlingarna?

Sommaren 1999 samlades gallmyggelarver in från sex vinbärsodlingar i norra Sverige (Hellqvist, in prep.). Myggor från respektive population fick lägga ägg på Storklas och utvecklingen av larverna undersöktes i klimatkammare. I en av odlingarna (Norasström, Ångermanland) var samtliga undersökta gallmyggor avirulenta på Storklas medan samtliga undersökta myggor från fyra odlingar i Norrbotten (Sikfors, S:a Bredåker, Ålvsbyn och Unbyn) var virulenta. Båda biotypernas fanns representerade bland myggor insamlade vid Trågårdsförsöksstationen i Öjebyn men avirulenta myggor dominerade där. Tidigare undersökningar har visat att båda biotyperna även förekommer vid Röbäcksdal. Det är ännu okänt huruvida båda gallmyggebiotyperna även förekommer i södra Sverige eller på andra håll.

de tagit språnget ut i odlingarna. Det är möjligt att detsamma även gäller virulenta vinbärsbladgallmyggor, anpassade till de "resistenta" svarta vinbär som också finns vildväxande i norra Sverige. De avirulenta myggor som förekommer kan möjliha en ett sydligt ursprung.

Praktiska konsekvenser
Förekomsten av olika biotyper av gallmyggan illustrerar tydligt att resistensförädling kan vara vanskligt. I odlingar där den resistensbrytande biotyp B av vinbärsbladgallmyggen förekommer, kan man förvänta sig att sorten Korpikylä kommer att angripas i lika stor omfattning som mottagliga sorten. Om resistensförädling ska bedrivas mot vinbärsbladgallmyggen bör därför inte Korpikylä användas som resistenskälla. Storklas kan fortfarande ha ett visst skydd eftersom gallbildningen av bladen sker långsamt. Det kan i fält medföra ökad dödlighet hos de unga larverna. En bättre resistenskälla bör dock eftersökas.

Litteratur
Hellqvist, in prep. Biotypes of Dasyneura tetensi (Cecidomyiidae), differing in ability to gall and develop on black currant genotypes
Hellqvist, S. & Larsson, S. 1998. Host acceptance and larval development of the gall midge *Dasyneura tetensi* (Diptera, Cecidomyiidae) on resistant and susceptible black currant. -- Entomol. Fennica 9, 95-102
Keep, E. 1985: The black currant leaf curling midge, Dasyneura tetensi Rübs.; its host range, and the inheritance of host resistance. -- Euphytica 34:801--809
Vappula, N.A. 1962: Pests of cultivated plants in Finland. -- Annales Agriculturae Fenniae 1:1-239 (Suppl. 1)
Kostnad för hemmaproducerat foder – en sammanställning av material från sextio mjölkföretag i Västernorrland. Ann-Sofie Stark, Hushållningssällskapet i Västernorrlands län. Telefon: 0611-22120, E-post: fia.stark@swipnet.se

I det som följer kommer jag att redovisa delar av foderkostnadsberäkningarna från de 60 deltagande gårdarna som vi räknat på efter 1998 års skördesäsong.

Vad är det som gömmer sig bakom begreppet foderproduktionskostnad?

Hur har vi plockat fram dessa siffror?
Beräkningarna är gjord i en kalkylmodell som kallas "Bonnkalk". I beräkningarna finns gårdens egna maskinpark värderad till nuvärde. Vi har på varje enskild gård beräknat arbetsbehovet i växtodlingen, gröda för gröda. Vidare har vi fördelat de kostnader som är att harröra till de olika grödorna så som till exempel gödning, plast och tillsatsmedel. Arbetet är värderat till 120 kr per timme. Beräkningarna är gjorda fram till lager, förutom vad gäller rundbalsensilage, där plasten finns med bland kostnaderna. Kostnaderna är sedan fördelade på utfodrad och eventuellt såld mängd. (För mer information se manual till Bonnkalk Mjölk)

Stora skillnader mellan de enskilda gårdarna.

Med erfarenhet från de gångna åren, har vi kunnat konstatera att kostnaden för att producera foder på olika gårdar kan variera högst väsentligt. Tänk dig en mjölkko som åter 2 500 kg ts ensilage per år. Om fodret kostar 0,70 kr eller 2,50 kr, vilket är spredningen 1998, så skiller det (6 250 kr – 1 750 kr) 4 500 kr per ko och år. Om vi översätter det till levererad mjölk, så skulle den ko som åter det dyrare ensilaget behöva mjölka ca 1 500 kg mer för att betala merkostnaden för det dyrare ensilaget.

Behöver skillnaden verkligen vara så här stor?
Som vi kan se i diagrammet här intill, är spredningen för samtliga hemmaproducerade foder, anmärkningsvärt stor.

Vi bör poängtera att detta är ett positivt urval av länetts mjölkproducerer. De landbygde som är med i 25-öringen är de som är förändringsbenägna och aktivt försöker minska sina produktionskostnader. Hur ser det ut om vi räknar på samtliga landbygde?
Hur påverkar EU:s Jordbrukarstöd produktionskostnadernas?

Vi har valt att minska medelkostnaden för den enskilda grödan med de arealbundna stöd som inte är djurkostnader i stödområde 2b. Som framgår av bilden till höger, är det framförallt spannmål och grönfoder som påverkas. Vi skall dock komma ihåg att systemet är komplexet och många av de stöd som tillgodoseröknas djuren förutsätter att vi har vallareal i viss omfattning.

För vallen har endast Miljöstöd för flerårig vallodling, 550 kr, tagits med. Miljöstöd för Öppet odlingslandskap samt kompensationsbidrag för djur, har vi valt att föra till djuren.

För spannmålen och grönfoder är arealersättningen för området medtagen samt kompensationsbidraget för spannmål.

I en framtidig beräkning kanske vi skall dela upp vallfodret i två grupper, 1 det som tas från vallareal som behövs för fulla djurstöd och 2 det som kommer från vall som inte behövs ur stödsynpunkt för att få djurbundna stöd. Vid analys på den enskilda gården där olika foderslag skall jämföras prämisigt, känns det som en tilltalande modell.

Vem är det som ska betala fodret?

Låt oss fundera på vad det är som skall bära kostnaderna för fodret, och hur mycket de olika "kostnadsbärarna" tåll.

Mjölkkon: Vi får betalt någonstans mellan 2.80 kr - 3.40 kr per kg levererad mjölk. Därtill kommer intäkter från olika stöd och utslagsko. Kalvens värde får idag betecknas som försvarbar eller till och med en minuspost. Vi tänker oss att en mjölkko åter ca 3 300 kg ts grovfoder på ett år. Om hon producerar 8 000 kg mjölk till leverans, blir det ca 0,4 kg ts grovfoder per kg levererad mjölk. Med andra ord kan kon kon betala ett ganska högt pris för grovfodret och det finns ändå utrymme att betala även övriga kostnader för att producera mjöllken.

Dikon: Om vi tittar på samma sätt på dikon, kan vi konstatera att hennes produktion (förutom stödintäkter och utslagsko) består av en kalv på ca 6 månader. Värdet på kalven kan variera mellan 2 500 kr och 4 000 kr. Dikon behöver åta någonstans mellan 3 500 kg och 4 000 kg ts grovfoder beroende på inbyggnings och ras. Här finns inte på långa vägar samma betalningsförmåga som hos mjölkkon. Ett grovfoder producerat till medelkostnad för ensilage skulle utgöra en kostnad på 4 725 kr per diko och år! Här klarar alltså inte produkten ens av att bära kostnaden för grovfodret.

Köttdjuret: Här finns det naturligtvis olika uppfostringsformer, men vi tittar på en tjur som går på en grovfoderbaserad foderstat. Låt säga att den åter 3 000 kg ts grovfoder under sin 18 månader långa uppfostringstid. Vid slakt väger den 290 kg. Per kg slaktad vikt skulle det alltså gå åt ca 10 kg ts grovfoder. 10 kg grovfoder till medelkostnad för enslage motsvarar 13,50 kr/kg slaktad vikt...vad får vi betalt för köttet?

Efter att ha tittat på dessa storheter kan vi konstatera följande:

- Stöden är viktiga i alla produktionsgrenar, men föga förvånande är köttproducenten den som först skulle få problem om stödnivån skulle sjunka, även om sänkningen är aldrig så liten.
- Kostnaden för det hemmaproducerade fodret är av stor betydelse för det slutliga resultatet framförallt i köttproduktionen, men även för mjölkproducenten.
Vad är det som gör att skillnaden mellan högsta och lägsta produktionskostnad blir så stor?

Förutom maskinkostnaden utgör arbetskostnaden en väsentlig del av den totala produktionskostnaden. I beräkningarna har varje arbetad timme tagits med till en kostnad av 120 kr. Maskin och arbetskostnaderna hänger ofta intimt ihop. Här handlar det om väl genomtänkta maskinkedjor vad gäller kapacitet och anpassning till de så kallade förutsättningarna såsom transportavstånd, skifte- och storlek m.m. Även här är skördningen som helhet avgörande för kostnaden. Att skördövermängd 500-1 000 kg ts grönmassa per hektar innebär sällan motsvarande ökning av arbetstiden för skörd.

Som framgår av tidigare skriven, har avkastningen per ha betydelse för den slutliga produktionskostnaden. Tyvärr verkar EU:s jordbrukssöder i motsatt riktning med sikte på extensifiering. I det här läget måste vi på varje enskilt företag göra praktiska och ekonomiska avvägningar för att hitta det som är totalekonomiskt bäst. Övriga insatsmedel såsom gödningsmedel, tillsatsmedel etc, varierar avsevärt mellan gården. Vi hade vántat oss att se ett samband mellan gödselkostnad och skördens storlek, men som framgår av diagrammet till höger så har vi svårt att påvisa att mer gödningsmedel ger högre skördar.

Ytterligare en faktor som har betydelse för kostnaden för valfodret är anläggningskostnaden. Även här skiljer sig de olika gårdarna åt. Generellt kan vi säga att etablering i renbestånd oftast blir betydligt dyrligare än etablering i skyddsskog.

Är kostnad per kg torrsubstans ett bra mått?

Både ja och nej. Vi har konstaterat att det är ett bra mått att börja med när vi vill analysera den enskilda gårdens produktion, men samtidigt har vi funnit att ett nog så viktigt mått är kostnaden per MJ. Fram till nu har vi behandlat allt foder på samma sätt oavsett om det innebärlar 9 eller 11,5 MJ per kg ts. Här måste vi ta hänsyn till vad fodret skall användas till. Den högkritererade mjölkön och köttjuren som förväntas ha en viss tillväxt per dag ställer betydligt större krav på grovfodrets kvalitet än dikon, och här är det minst lika viktigt att titta på produktionskostnaden per MJ. För dikon däremot kan kostnaden per kg ts oftast räcka.

En av frågorna vi ville få svar på var, kostar en MJ i ett foder med högt näringsvärde mer än en MJ i ett foder med lägre näringsinnehåll? Det sista diagrammet får ge ett svar på den frågan. Medelkostnaden i gruppen som hade en analys på sitt ensilage, låg på 13 öre/MJ, och energihalten låg snitt på 10,3 MJ/kg ts. Vad kostar energin i spannmålen eller i inköpt kraftfoder?

Framtida ambitioner och önskelista från våra foderproducerande lantbruksföretagare.

- Optimering av teknik och brukningsmetoder, utifrån var gård förutsättningar, för att uppnå hög avkastning, god miljöhänsyn och uthålliga vallar.

- Hitta arter och sorters medger en hög avkastning och lång liggtid med så lite "övriga insatsmedel" som möjligt.

- Finna bättre arter och sorters avseende näringsinnehåll, utbyte och "konsumtionsbarhet" för nöt.

- Hitta så billiga och effektiva lagringsmetoder som möjligt, men hänsyn tagen till ekonomi, arbetsinsats och kvalitet få fodret.

- Finna former för att snabbt och effektivt föra ut forskningsresultat och erfarenheter till den enskilde lantbruksföretagaren.
ÖVERVINTRING AV VALLAR

Oiva Nissinen
LFC, Lapplands forskningsstation
Tutikiantie 28, Apukka
FIN-96900 Saarenkylä, Finland

Orsaken till utvintring

Skadorna på vallväxterna försakas både av abiotiska och biotiska orsaker. Abiotiska skador såsom ytvatten och isserkopa är allmänna i det flacka kustlandet där vådret är ostadigt på förvintern och snön kan smälta flera gånger innan permanent snötäcke. Vid kusten där snötäcket är tunnt förekommer troligen även köldskador. Också vattenskador och isbränna har blivit allmännare på täckdikade kärjordar i inlandet.

I inlandets snörika trakter är angrepp av utvintringssvampar en vanlig orsak till dålig övervintring av vallarna. Bland dessa biotiska skador är gräsrotan (Sclerotinia borealis) huvudursaken till dålig övervintring, särskilt på första års timotejvallar. Skadornas frekvens ökar mot norr. Trädklubba (Typhula spp.) förekommer också ganska regelbundet och mer i södra och mellersta delarna av området. Även vanlig snömögel (Fusarium arter) är allmän men har liten betydelse för vallens övervintring. Klöverrötan (Sclerotinia trifoliorum) är inte beroende av en lång vinter, utan sprids under fuktiga höstar. Svampen kan dock växa vidare under snön.

Timotejen är känslig för gräsrota men motståndskraftig mot ytvatten och isserkopa. Ängssvingel är resistent mot Sclerotinia borealis och därför övervintrar den bättre än timotej i inlandet. Ängssvingel och rödklöver är dock mycket ömtäliga för isbränna. Skadorna beror också på vallens ålder och särskilt i ängssvingel ökar utvintring av isbränna med stigande vallälder.

Bekämpning av skador

Utvintringsproblemen skulle kunna angripas på i princip två sätt. Dels kan man försöka undanröja orsakerna till skadorna dels försöka åstadkomma ett växtmaterialet som har bättre förmåga att klara påfrestningarna.

Undersökningar med kemisk bekämpning har visat skördeöknings på minst 15-20 % i första års vallar i norra Finland. På Lappland forskningsstation var under 1971-1998 den genomsnittliga utvintringen i första års vallar av nordliga timotjsorter 24 %. För närvarande saknas lämpliga kemiska medel för bekämpning av utvintringssvampar. Man måste odla vinterhärdiga sorter och
använda sådana odlingstekniska åtgärder som hjälper vallväxterna att hålla emot påfrestningar under vinter.
För att minska risken för isbräna bör stor omsorg läggas vid ytplanering och förbättrad ytvattenavledning.

Odlingsteknik

Växtarter och sorter

exempel av vallväxternas anpassning till varierande förhållanden är det flertalet lokalsorter som också används i gräsförrad. Det finns sådana lokalsorter både i kustområdena och i snörik inlandet. Särskilt ekotyper av kustområden har genomgått mycket omväxlande vinterklimat. Det är ju viktigt att göra växtförädlingsarbete i norr därför att sorternas ursprung och anpassning till norrligas växtförhållanden avgör deras framgång.

Tabell 1. Sortprovning i timotej och ångssvingel. Utvintring och torrsubstansskörd i 1.-3. års vallar. LFC, Läplands forskningsstation, Rovaniemi.

<table>
<thead>
<tr>
<th>Växtarter och sorter</th>
<th>Antal förö</th>
<th>Utvintring %</th>
<th>Skörd kg ts/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timotej 1991-98:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iki</td>
<td>10</td>
<td>24.4</td>
<td>4817</td>
</tr>
<tr>
<td>Tuukka</td>
<td>10</td>
<td>27.8</td>
<td>4869</td>
</tr>
<tr>
<td>Jonatan</td>
<td>6</td>
<td>25.1</td>
<td>4686</td>
</tr>
<tr>
<td>Grindstad</td>
<td>3</td>
<td>30.7</td>
<td>5903</td>
</tr>
<tr>
<td>Tammisto II</td>
<td>3</td>
<td>28.1*</td>
<td>4707</td>
</tr>
<tr>
<td>Vega</td>
<td>3</td>
<td>19.7*</td>
<td>5150</td>
</tr>
<tr>
<td>Ångssvingel 1991-98:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boris</td>
<td>13</td>
<td>21.4</td>
<td>5377</td>
</tr>
<tr>
<td>Antti</td>
<td>13</td>
<td>25.6</td>
<td>4924**</td>
</tr>
<tr>
<td>Salten</td>
<td>13</td>
<td>17.9*</td>
<td>5651*</td>
</tr>
<tr>
<td>Kasper</td>
<td>10</td>
<td>25.2*</td>
<td>5268</td>
</tr>
<tr>
<td>Retu (rörsvingel)</td>
<td>12</td>
<td>15.9</td>
<td>6397*</td>
</tr>
</tbody>
</table>

Förekomsten av utvintringssvampar

Våt och varm väderleksperiod under oktober-november har man oftast märkt under år utan egentliga svampskador. Sannolikt finns under de där året lätt isbildning i växtbeståndet som inte skadar planterna men försvårar växten av utvintringssvampar och förebygger utveckling av svampskador.

Klimatförändring

Litteratur

Nissinen, O. & Hakkola, H. 1995. Effects of plant species and harvesting system on grassland production in northern Finland. Agricultural Science in Finland 4: 479-494. ISSN 0789-600X.
Vallfoderkvalitet

Anne-Maj Gustavsson, Institutionen för norrländsk jordbruksvetenskap, Växtodling, SLU
Anne-Maj.Gustavsson@niv.slu.se

Inledning

Tidigare har vi betraktat ett vallfoder som en växt som har en viss proteinhalt och energihalt när vi har gjort foderstater. Vi har inte tagit hänsyn till växtens kemiska beståndsdeler eller vilka egenskaper respektive beståndsdel som haft. Detta kan vara en förklaring till att vi inte alltid har kunnat utnyttja foder med hög energihalt fullt ut, eftersom det har funnits en risk att korna har blivit lösa i magen utan att vi har kunnat förutsäga varför.

En växt består av växtceller som är mycket specialiserade och fördelningen mellan olika typer av celler är beroende av bland annat art, utvecklingsstadium och årsnivå. Målsättningen med denna uppsats är att beskriva kemisk sammansättning, smältbarhet och energihalt hos timotej (Phleum pratense L.) respektive rödklöver (Trifolium pratensis L.). Jämförelsen är gjort vid den tidpunkt när timotej har nått 11.0 MJ (kg ts)⁻¹ i första skörd och i återväxten.

Material och metoder

Led:

A. Rödklöver Betty och timotej Jonatan gödslad med 60 kg N ha⁻¹ till första skörd och 30 kg ha⁻¹ till återväxten
B. Timotej Jonatan gödslad med 90 kg N ha⁻¹ till första skörd och 90 kg ha⁻¹ till återväxten

Proverna har sorterats i rödklöver respektive timotej och fraktionerna har torkats i 60°C. Smältbarheten in vitro har analyserats enligt VOS-metoden (vomvätskelösling organisk substans) (Lindgren, 1979), och energihalten har beräknats med hjälp av regressions-ekvationer av Lindgren (1979) (Tabell 1). De kemiska fraktionerna har analyserats enligt CNCPS-metoden (Cornell Net Carbohydrate and Protein System) (Sniffen, 1992) (Tabell 2-4).

Resultat

Energihalten i ren timotej var högre än i ren rödklöver under hela tillväxtperioden från 25 cm beståndshöjd fram till tidpunkten för timotejens avgång, både före första skörd och i återväxten. Energihalten i timotej passerade 11.0 MJ (kg ts)⁻¹ den 30 juni i första skörd och den 5 augusti i återväxten. Vid dessa tidpunkter var motsvarande energihalt hos rödklöver 10.8 MJ (kg ts)⁻¹ och 10.3 MJ (kg ts)⁻¹ för första respektive andra skörd (Tabell 5).

Kurvorna för VOS-värde hade ett annat utseende än energihaltsskurvorna, dels på grund av att askhalten var högre hos klöver än hos timotej, dels på grund av att regressionsekvationerna för omräkningen från VOS till energi inte är identiska för klöver respektive timotej (Lindgren, 1979). VOS-halten för rödklöver i första skörd var lägre än för timotej, fram till den 25 juni.
Därefter var VOS-värdet något högre för klöver. Den 30 juni var smältbarheten 86 % för timotej och 87.5 % för rödklöver.

I återväxten var VOS-värdet betydligt högre för timotej under hela tillväxtperioden. Den 5 augusti var smältbarheten 88.5 % för timotej repaktive 83 % för rödklöver (Tabell 5), en differens på 5.5 %-enheter.

Uppbyggnaden av olika kolhydrat- och proteinfractioner skiljer sig åt för klöver och timotej (Figur 1). Andelen cellulosa och hemicellulosa är betydligt högre för timotej än för rödklöver (Figur 1), liksom andelen cellvägg som NDF-värdet ger ett mått på (Tabell 5). Proteinhalten är högre för klöver än för timotej, men fördelningen mellan olika proteinfractioner verkar inte skilja sig så mycket mellan de två arterna. Halten icke-stukturella kolhydrater (NSC) är högre hos klöver än hos gräs, vilket till stor del beror på högre pektinhalt hos klöver. Askhalten är högre hos klöver än hos gräs. Ligninhalten är ungefär lika för de båda arterna.

Diskussion

I första skörden var VOS-värdet högre för rödklöver än för timotej, samtidigt som mängden cellvägg var lägre hos rödklöver. Energihalten var något lägre beroende på en högre askhalt och en annan regressionsekvation. Allt detta sammanlagt gör att klöver är intressant att blandas in i vallen, speciellt om man lär sig utnyttja klövern på ett bättre sätt än idag.

Referenser

Tabell 1. Analys av smålbarhet samt beräkning av energihalten

<table>
<thead>
<tr>
<th>Namn</th>
<th>Engelskt namn</th>
<th>Analysmetod</th>
<th>Anmärkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOS</td>
<td>in vitro digestible organic matter (IVDOM)</td>
<td>Ett prov skakas i en blandning av buffertlösning och vommvätska i 96 h vid 39 °C. Askhalten analyseras före och efter. Beräknas ur VOS-värdet och askhalten med hjälp av regressionsekvationer. Ekvationerna är framstagna med hjälp av utfodringsförsök.</td>
<td>in vitro smålbarheten, halten vomm-vätskelöslig organisk substans. Omsättbar energi (MJ kg ts)^-1</td>
</tr>
<tr>
<td>Energhalt</td>
<td>Metabolisable energy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2. Analyser enligt CNCPS-metoden

<table>
<thead>
<tr>
<th>Namn</th>
<th>Engelskt namn</th>
<th>Analysmetod</th>
<th>Anmärkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDF</td>
<td>Neutral detergent fibre</td>
<td>Kokar provet i en neutral lösning. Det som blir kvar är NDF-fibrer.</td>
<td>Andelen cellvägg (cellulosa, hemicellulosa, lignin, cellväggsprotein)</td>
</tr>
<tr>
<td>ADF</td>
<td>Acid detergent fibre</td>
<td>Kokar provet i sur lösning. Det som blir kvar är ADF-fibrer.</td>
<td>Andelen cellulosa och lignin Andelen lignin</td>
</tr>
<tr>
<td>Lignin</td>
<td>Lignin</td>
<td>Gör först en ADF-kokning och sedan en ligninbestämning av den icke ADF-lösliga delen</td>
<td>Andelen råfett Halten råprotein</td>
</tr>
<tr>
<td>Råfett</td>
<td>Crude fat</td>
<td>Extraherar med eter</td>
<td></td>
</tr>
<tr>
<td>Råprotein</td>
<td>Crude protein</td>
<td>Analyserar Kjeldahl-kväve. Räknar fram råproteinhalten genom att multiplicera med 6.25</td>
<td>Råproteinhalten</td>
</tr>
<tr>
<td>Askan</td>
<td>Ash</td>
<td>Förskavar provet</td>
<td>Ashhalten</td>
</tr>
<tr>
<td>NDIP</td>
<td>Neutral detergent indigestible protein</td>
<td>Gör först en NDF-kokning. Analyserar sedan Kjeldahl-kvävehalten på den icke NDF-lösliga delen</td>
<td>Andelen NDF-bundet protein, cellväggsprotein</td>
</tr>
<tr>
<td>ADIP</td>
<td>Acid detergent indigestible protein</td>
<td>Gör först en ADF-kokning. Analyserar sedan Kjeldahl-kvävehalten på den icke ADF-lösliga delen</td>
<td>Andelen ADF-bundet protein</td>
</tr>
</tbody>
</table>

Tabell 3. Kolhydratfraktioner och lignin enligt CNCPS-metoden

<table>
<thead>
<tr>
<th>Kolhydratfraktionen:</th>
<th>Löslig vid NDF-analysen</th>
<th>Fibrer</th>
<th>Löslig vid ADF-analysen</th>
<th>Plats i cellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organiska syror</td>
<td>ja</td>
<td>nej</td>
<td>ja</td>
<td>Cellinnehålet</td>
</tr>
<tr>
<td>Socker b</td>
<td>ja</td>
<td>nej</td>
<td>ja</td>
<td>Cellinnehålet</td>
</tr>
<tr>
<td>Stärkelse c</td>
<td>ja</td>
<td>nej</td>
<td>ja</td>
<td>Cellinnehålet</td>
</tr>
<tr>
<td>Fruktaner</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>Cellinnehålet</td>
</tr>
<tr>
<td>Pektinämnen</td>
<td>ja</td>
<td>ja</td>
<td>kan förorena analysen</td>
<td>Cellväggen</td>
</tr>
<tr>
<td>β-glukomer</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>Cellväggen</td>
</tr>
<tr>
<td>Hemicellulosa</td>
<td>nej</td>
<td>ja</td>
<td>ja</td>
<td>Cellväggen</td>
</tr>
<tr>
<td>Cellulosa</td>
<td>nej</td>
<td>ja</td>
<td>nej</td>
<td>Cellväggen</td>
</tr>
<tr>
<td>Lignin:</td>
<td>nej</td>
<td>-</td>
<td>nej</td>
<td>Cellväggen</td>
</tr>
</tbody>
</table>

^a Fibrer definieras som de kolhydratfraktioner som inte är smålbbara av daggödsels egna enzymer

^b Mono- och disaccarider

c Tas bort med hjälp av värmetältig amylas
Tabell 4. Olika proteinfraktioner enligt CNCPS-systemet

<table>
<thead>
<tr>
<th>Proteinfraktioner:</th>
<th>Buffertlöslig</th>
<th>Löslig vid NDF-analysen</th>
<th>Löslig vid ADF-analysen</th>
<th>Plats i cellen</th>
<th>Beteckning</th>
<th>Ungefärlig nedbrytnings-tid i vämmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lättlösliga proteiner (SP)</td>
<td>ja</td>
<td>ja</td>
<td>ja</td>
<td>Cellinnehållet</td>
<td>A+B1</td>
<td>0-30 min</td>
</tr>
<tr>
<td>Intermediär proteinfraktion (CP-SP-NDIP)</td>
<td>nej</td>
<td>ja</td>
<td>ja</td>
<td>Cellinnehållet</td>
<td>B2</td>
<td>4-20 h</td>
</tr>
<tr>
<td>NDIP-ADIP</td>
<td>nej</td>
<td>nej</td>
<td>ja</td>
<td>Cellväggen</td>
<td>B3</td>
<td>67-1000 h</td>
</tr>
<tr>
<td>ADIP</td>
<td>nej</td>
<td>nej</td>
<td>nej</td>
<td>Cellväggen</td>
<td>C</td>
<td>Olöslig</td>
</tr>
</tbody>
</table>

Tabell 5. Energhalt, smältbarhet, NDF och råproteinhalt vid skörd den 16 juni och den 5 augusti i första respektive andra skörd

<table>
<thead>
<tr>
<th></th>
<th>Smältbarhet (% VOS)</th>
<th>Energhalt (MJ (kg ts)^{-1})</th>
<th>NDF (g kg^{-1})</th>
<th>Råproteinhalt (g kg^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rödkläver skörd 1 1996</td>
<td>87.5</td>
<td>10.8</td>
<td>310</td>
<td>210</td>
</tr>
<tr>
<td>Timotej skörd 1 1996</td>
<td>86</td>
<td>11.0</td>
<td>600</td>
<td>130</td>
</tr>
<tr>
<td>Rödkläver skörd 2 1996</td>
<td>83</td>
<td>10.3</td>
<td>353</td>
<td>191</td>
</tr>
<tr>
<td>Timotej skörd 2 1996</td>
<td>88.5</td>
<td>11.0</td>
<td>356</td>
<td>156</td>
</tr>
</tbody>
</table>

Figur 1. Kemiska beståndsdelar hos rödkläver (rk) respektive timotej (tim) i första skörd (sk1) och återväxtskörd (sk2).

Material och metoder
\[G(\text{ml g}^{-1}) = \frac{1}{1+(b_1/t)^{c_1}} + \frac{a_2}{1+(b_2/t)^{c_2}} \]

\(G \) = mängden gas i ml per g inkuberad organisk substans
\(a_1 \) = maximal gasproduktion från cell innehållet i växterna
\(b_1 \) = tiden i timmar när hälften av mängden gas från fraktionen är producerad
\(c_1 \) = bestämer formen på nedbrytningskurvan för fraktion 1
\(a_2 \) = maximal gasproduktion från cell väggarna i växterna
\(b_2 \) = tiden i timmar när hälften av mängden gas från fraktionen är producerad
\(c_2 \) = bestämer formen på nedbrytningskurvan på fraktion 2

Mängden gas är beroende av växtens kemiska sammansättning. Mikrobiell nedbrytning av ett gram kolhydrater i en buffert lösning resulterar i 400 ml gas och nedbrytning av ett gram protein resulterar i 130 ml gas.

Med hjälp av datorprogrammet Tablecurve 2D 4® SPSS Inc beräknades nedbrytningskaraktäristiken för de olika grovfodren med utgångspunkt från den kemiska sammansättningen hos växterna och den registrerade gasproduktionen.

Resultat

Tabell 1. Smältbarhet, fiberinnehåll (NDF) och fiberegenskaper hos timotej och rödklöver

<table>
<thead>
<tr>
<th>Art</th>
<th>Datum</th>
<th>Skörd</th>
<th>IVD (g kg ts (^{-1}))</th>
<th>NDF (g kg ts (^{-1}))</th>
<th>D-NDF (g kg ts (^{-1}))</th>
<th>R max NDF (% h (^{-1}))</th>
<th>Tmax (h)</th>
<th>a (ml)</th>
<th>b (h)</th>
<th>c (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rödklöver</td>
<td>27-jun</td>
<td>1</td>
<td>905</td>
<td>286</td>
<td>698</td>
<td>3.9</td>
<td>18</td>
<td>79</td>
<td>22</td>
<td>1.7</td>
</tr>
<tr>
<td>Rödklöver</td>
<td>22-aug</td>
<td>2</td>
<td>792</td>
<td>426</td>
<td>510</td>
<td>3.9</td>
<td>17</td>
<td>75</td>
<td>22</td>
<td>1.6</td>
</tr>
<tr>
<td>Timotej</td>
<td>27-jun</td>
<td>1</td>
<td>882</td>
<td>584</td>
<td>866</td>
<td>4.8</td>
<td>13</td>
<td>209</td>
<td>17</td>
<td>1.6</td>
</tr>
<tr>
<td>Timotej</td>
<td>22-aug</td>
<td>2</td>
<td>892</td>
<td>596</td>
<td>825</td>
<td>5.2</td>
<td>10</td>
<td>192</td>
<td>16</td>
<td>1.5</td>
</tr>
</tbody>
</table>

\(^a\) dimensionslös

IVD (in vitro digestibility) smältbarheten för hela växter och D-NDF representerar in vitro smältbarheten för NDF fraktionen efter inkubation i 96 timmar med våmmvätska. R max NDF är den beräknade maximal nedbrytningshastigheten hos fibern. Tmax anger tidpunkten för maximal nedbrytning i timmar. Parameter a anger maximal gasproduktion för fibern, b anger tiden då hälften av fibern är nedbruten och c beskriver formen på nedbrytnings förloppet.
Figur 1. Beräknade nedbrytningskurvor i våmmen för fiber (NDF) hos rödkläver och timotej skördade 1996 på Rödbäcksdalen, Umeå. NDF 1 Rödkläver skördat 27 juni, NDF 2 Timotej skördat 27 juni, NDF 3 Rödkläver skördat 22 augusti och NDF 4 Timotej skördat 22 augusti.

Diskussion

grovfoderintag som möjligt är ett kvalitetsmått på fibern av stor hjälp vid optimering av skördetidspunkt och sortval i vall-fröblandningar.

Referenser

UTFODRING AV VALLFODER

av
Kjell Martinsson
Institutionen för Norrländsk Jordbruksvetenskap

Världens bästa vallfoder

Det fodervärderingssystem vi har idag har dessutom dålig upplösning. Energivärdets maximala variationen i vallfoder uppgår i praktiken till ca 2 MJ/kg torrsubstans vilket i förstaskörd motsvarar en skillnad i skördetid på ca 2 veckor. Ur utfodringssynpunkt krävs vid den senare skördcn ca 2 kg torrsubstans mer för att täcka samma energibehov hos korna. Exemplet pekar på att måttliga skillnader i energikoncentration borde kunna kompenseras av ett högre foder-intag och att foderintaget snarare än energihalten borde vara utgångspunkt vid bestämning av en vallväxts optimala skördestadium.

I den forskning som vi hittills och även fortsättningsvis avser att bedriva är en av grund-tankarna att kornas konsumtion av vallfoder skall vara så hög som möjligt. Ur såväl miljösynpunkt som ur godslingsekonomisk synpunkt är det vidare önskvärt att öka klöverns andel i vallen.

Hur mycket en ko konsumerar bestäms av signaler som får henne att börja eller sluta äta. Det är bl.a. sensoriska signaler från fodret, som lukt och smak, samt känslor av mättnad som styr. Mättnadskänsla skapas dels av den rent fysiska utvidgningen av matsmältningsskanalen (fysisk reglering) dels av nedbrytningsprodukter från fodret (metabolisk reglering).

Ett positivt samband mellan fodrets smålbarhet och konsumtionen har länge ansetts råda. Ketelaars & Tolkamp (1991) fann dock att den organiska substansens smålbarhet i vallfoder bara förklarade 60% av variationen i konsumtion. Smålbarheten av den organiska substansen och därmed halten omsättbar energi är därför otillräcklig som enda kriterium vid fodervärdering av vallfoder.

För närvarande bestäms smålbarheten för olika fodermedel antingen in vivo med får som utfodras på underhållsnivå eller in vitro med vommvätska. Dessa båda metoder är lämpliga för uppskattning av den potentiella smålbarheten hos fodermedlet, men kan inte beskriva hur snabbt
fodermedlet bryts ned i vommen. För den verkliga smålbartheten i vommen av cellväggskolhydrater (NDF) har dock nedbrytningshastigheten stor betydelse. Detta gäller i synnerhet när passagehastigheten genom vommen är hög, vilket är fallet hos högt avkastande mjölkkor.

För att optimera energi- och proteinutnyttjandet under den tidsberoende nedbrytnings-processen i vommen krävs synkronisering av vormikrobernas tillgång på tillgängliga kolhydrater och kväve. En obalans i tillförseln av olika näringskomponenter under den tidsberoende nedbrytningsprocessen i vommen kan lätt medföra lågt utnyttjande av kväve och energi. För att optimera näringsutnyttjandet hos djuren måste därför vallfodret kompletteras med lämpliga kraftfodermedel samtidigt som en väl genomtänkt utfödringsrutin tillämpas.

Vad styr konsumtionen av vallfoder?

Under det senaste decenniet har flera teorier presenterats avseende hur konsumtionsförmågan regleras, indikerande både komplexitet och bristen på samsyn. De styrfaktorer som är inblandade är lukt och smak samt fysikaliskt eller metaboliskt orsakad mättnadskänsla.

Teorin om fysikalisk begränsning baseras på hypotesen att djuret åter till dess vommen är full medan antalet åttasfullen bestäms av genomströmningen i vommen. Hos mjölkkor uppnås vomfyllnad vid 13 till 18% av levande vikten.

Kons konsumtionsförmåga antas styras främst av nedbrytningshastigheten av fibern, dvs den tid det tar att genom idissling och jäsnings minskas partikelstorleken till den nivå där de tillåts passera ut ur vomen. Denna hastighet antas bero av fiberkvaliteten vilket resulterar i ett positivt, men indirekt samband mellan fodrets smålbart och mängden konsumerat foder. Foderintaget, och därmed den effektiva fibernnedbrytningen i vomen, kan därför antas vara en bättre utgångspunkt än energi/proteinhalten för bestämning av optimal skörde-tidpunkt. Nedbrytningshastigheten och den effektiva nedbrytningen kan beräknas med hjälp av en matematisk beskrivning av nedbrytningsförloppet av NDF (Stensig et al., 1994).
Vallens artsammansättning

Klöver passar också mycket bra in i ett resursbevarande, uthålligt odlingssystem eftersom den kan fixera luftkävere med hjälp av rhizobiumbakterier. Rödklöver har, med rätt sortval, visat sig ha god uthållighet.

Växternas utvecklingsstadium

Växternas utvecklingsstadium har stor betydelse för energi- och proteinhalten i växten. Även halten av NDF påverkas av utvecklingsstadiet. Hur fibrernas nedbrytningshastighet förändras med utvecklingsstadiet har undersökins i mindre skala i vitklöver (Søegaard, pers. medd). Väderfaktorerna har stor betydelse för förändringar i energi- och proteinhalt (Gustavsson et al., 1995) Foderintaget påverkas av ljuusintensiteten. Detta beror på att andelen lösiga kolhydrater minskar och att ligninkoncentrationen ökar.

Ensileringsprocessen

Kompleteringsfoder

Ökande mängder av stärkelse i foderstaten minskar nedbrytningshastigheten av NDF, samtidigt minskade passagehastigheten. Konsekvenserna av en förändring av nedbrytningshastigheten måste därför även innefatta ändringar av passage-hastigheten. Flera undersökningar har visat att när fibersmältbarheten har minskat, ofta pga foderstatens sammansättning är det småttbarheten av hemicellulosa fraktionen som har minskat. En förbättring av hemicellulosans småttbarhet antingen genom sortval eller sammansättning av foderstaten skulle troligen leda till en ökad konsumtion av vallfoder.
REFERENSER
Utfodring och djurhälso
Harry Eriksson, Länsstyrelsen husdjur, Ac-län

Obalanserat mineralinnehåll i grovfodret tycks kunna försämrar djurhälserna

Under åren 1984-86 erhöll vi från Lantbruksstyrelsen meddel till bestämning av mineralinnehållet i prover från första och andra skördens ensilage, samt hÖ från 35 gårdar som skickats till Röbäcksalen för analysering av energi och protein. Första året fann vi en stor variation av kalium och fosfor mellan olika gårdar. I 1985 års vallfoder, då även magnesium analyserades, fann vi också stora skillnader i innehåll inom gårdarna och jämfört med året innan. Året därpå small det i Tjernobyl och lantbrukarna erhöll då bidrag till extra kaliumgådslag för att motverka växternas upptag av radioaktivt cesiumnedfallet. Men hur var det med "normala" innehållet av kalium i växterna och vilka negativa effekter kunde det bli av för höga halter? Det var frågor ingen kunde besvara och därför fick vi ett ökat penninganslag till analys av även kalium i 1986 års grovfoder och kompletterande analyser på sparade prover från tidigare åren. Även beträffande kalium och magnesium fann vi en stor variation mellan gårdar och år.

Utifrån dagens insikter skulle jag motsatt mig bidrag till den extra kaliumgådslingen på flertalet mjölkproducerande gårdar. Men det var inte förrän jag under en studieresa till USA 1988 träffade en forskare, som sysslade med sambanden mellan djurhälser och mineraler, jag kom att tänka på nästa pusselbit. – Rapporteringen av olika sjukdomsbehandlingar distriktstveterinarerna är ålagda att göra till ett register, som bl.a. sammanställs i kokontrollens årsredovisningar till lantbrukarna.

Vid en genomgång av årsredovisningarna för de gårdar vi analyserat grovfoder från, framkom det en tendens till en sämre djurhålsa på gårdar med mer än 3,5 ggr så mycket kalium som mängden kalium + magnesium i grovfodret. Främst gällde detta antal behandlingar per ko för mastit, men i viss mån även för övriga sjukdomar. Utslagningen för mastiter var också högre på dessa gårdar, men även andelen utslagningar på grund av ben och klövlidanden. Samtidigt höga halter av både kalium och råprotein i grovfodret verkade också i många fall leda till ökade problem.

Efter denna studie har analyseringen av mineraler ökat i omfattning. Men fortfarande tycks många förknippa mineraler med enbart kalium och fosfor och utelämnar det ur hälsosynpunkt viktiga kaliumet och magnesiomet. I de fall magnesium och kalium analyserats kan man också undra över i vilken mån hänsyn till dessa vården tagits vid utfodringen – eller om obalanser inte helt gå till kompensera. För vid flera mindre uppföljningar har jag kunnat notera liknande tendenser till försämrad djurhälso med ökande halter kalium i förhållande till calcium och
magnesium i grovfodret.

Inför några utfodringsskurser sökte jag jämföra produktions- och djurhälodata från kontrollåret 95/96 för gårdar som analyserat såväl kalcium, fosfor, kalkium och magnesium i 1995 års vallfoder. Fördelade på AC och BD län fann jag sådana uppgifter från 164 gårdar med drygt 30 kor i genomsnitt. Detta datamaterial indelades i olika grupper med ledning av analysernas kalkiuminnehåll, med en spännvidd på 5 gram inom varje. Även om det var en stor variation inom de olika grupperna kunde jag också denna gång konstatera tendenser till försämrad djurhälsa med ökande halter kalkium. Framför allt gäller detta mastiter, men man kan även se tendenser till ökad förekomst av parieser, kvarbliven efterbörd, cystor samt problem med ben och klövar. Spenskador verkar också ha svårare att läkas och resulterar oftare i mastiter vid ökande kalkiumhalter i grovfodret. Med samtidigt höga halter av kalkium och råprotein i vallfodret verkar man förutom ovanstående störningar riskera ökad frekvens av livmodersinflammationer och behov av att stimulera ny brunst. Se även diagrammen i slutet av denna artikel.

Även om jag funnit likartade tendenser i ett flertal gånger har mitt material varit för begränsat för att ge någon statistisk säkerhet. Någon information om djurmiljö, utfodring och skötsel har jag inte haft och därför kan jag orsaken mycket väl vara en. Därför har jag nu fått möjlighet att jämföra produktions och hälodata för alla gårdar, som analyserat minst fyra mineraler i vallfodret de senaste åren, inom hela Norrmejeriers och NNP:s område. Totalt innebär det resultat från mer än 600 gårdar och om detta material pekar i samma riktning ökar sannolikheten för att djurhälser mer verkligen kan påverkas av vallfodrets innehåll av olika mineralämnen.

Några mer ingående svenska studier över mineraler och djurhälsa finns inte, men enligt artiklar i internationell lantbrukspress verkar det främst vara höga kalkiumhalter i fodderstagen som kan spöka. Utfordring med sådant foder under dräktighetens sista tre veckor anses medföra de största riskerna för störningar i djurhälser. Även om frågetecknade om orsak och verkan ännu är många vill jag i det följande söka sammanfatta en del av de senaste årens rön.

Samspelet mellan olika mineraler av stor betydelse för djurhälsa

Skelettet är till 98% uppbyggt av kalcium och totala kalkiuminnehållet motsvarar ca 2procent av levande vikten. Kalcium är involverat vid bl.a. nervimpulser, hjärtstyrning, blodets koagulation och olika enzymaktiviteter. Normalt varierar kalcium mellan 9-11 mg/dl i blodplasman och fosfor mellan 4-8 mg/dl. Dessa halter, som är mycket kritiska för många processer, regleras av bl.a. parathyroidhormon och kalcitonin samt D-vitamin. Upptaget från tarmen och mobiliseringen av kalcium från skelettet regleras inom vissa gränser. I regel minskar det procentuella upptaget med ökande halter i tarmen och ökar med minskande halter. I klöverväxter, som i regel håller mer kalcium än gräs, kan bindningar till oxalsyror minska utnyttjandegraden något.

Konzentrationen av magnesium i blodet får heller inte variera för mycket för att inte olika livsviktiga kroppsprocesser och immunförsvar ska störas. För att kunna hålla halten stabil har korna av naturen utrustats med ett flertal aktiva mekanismer som reglerar upptaget av magnesium från tarmen och utbytet med minerallagret i skelettet.

För kalcium finns ingen aktiv begränsningsmekanism, utan merparten av det som finns i födret suges upp genom tarmen. I kroppen är kalkium, kalkium magnesium och fosfor antagonistiska till sin natur. Något som kan leda till att de senare trägs undan vid ökande halter kalkium. Bl.a. störs ombyggnaden av D-vitamin till en variant som är reglerar transporten av kalcium genom tarmvägg och frigörandet av kalcium från skelettet. Något som kan leda till att upptaget inte

Sinkornas kalkiumbehov täcks av ca 8-10 gram per kg torrsubstans, men anses i regel möjligt att balansera foderstaten inom de gränser som motsvarar mjölkan kors behov, ca 10-20 gram per kg torrsubstans. Halter över 15 gram börjar dock bli tveksamma då en tillförsel över 100 gram kalcium och 50 gram fosfor per dag under de sista 3 veckorna av dräktigheten anses öka risken för en sänkt halt kalcium i blodet i samband med kalvningen. Med ensilage kan det vara något gynnsammare än med hö då upptagningen av kalcium underlättas av en kemiskt sur miljö. Kalkium och natrium verkar åta samma håll. Därför går det kanske att minska riskerna med höga kalkiumvärden ifall man har möjlighet att ta bort salt ur foderstaten under sista dräktighetsveckorna. Fri tillgång till saltsten är därför olämpligt under dräktighetens senare del. Mineralfoder med extra tillsats av magnesium kan också vara tillräckligt under sinperioden. En kontroll av pH i urinen, som är en spegel av blodets surhet, kan ge en viss fingervisning om bl.a. risken för pares. Gynnsam pH-nivå för upptag av kalcium anses vara mellan 5,5-6,5 i urinen. Vid högre pH-värden skulle ett tillskott av motverkande anionsalt i form av t.ex. magnesium-, eller ammoniumsulfat, magnesium- eller ammoniumklorid kunna sänka pH till önskvärd nivå. Tyvärr är dessa ämnen ofta osmakliga och svåra att ge om man inte har fullfoder. Dessutom bör man känna till svavelhalten i olika födermedel då den, liksom magnesium, inte bör överstiga 4-5 gram per kilo torrsubstans i totala foderstaten. Tillskott av ammonium kan också vara klart negativt om en mindre lyckosam ensilering resulterat i högt ammoniatotalt i utfördrat ensilage.

Lämpliga anpassningar av utfodringen utifrån grovfodrets kalkiuminnehåll

Om grovfodret håller under 15 gram kalcium är det ett ypperligt foder till sinkor. Däremot kan kanske så låga halter leda till lägre vallskörd och försämra vallens vinterhärdighet. Med kalkiumhalter mellan 15-20 gram per kg torrsubstans kan det också vara ett passande foder till sinkorn. Lämpligt mineralfoder bör då väljas och ges så att det vid täckning av sinkornas fosförbehov ger ca 2,5-3 gram magnesium per kg torrsubstans i totalfodret. Extra tillskott av ADE-vitaminer kan också vara klart positivt.

Om grovfodret håller mellan 20-25 gram kalcium per kg torrsubstans är det ett mycket passande foder till mjölkan kor, men kan vara riskablare till sinkor. Om möjligt bör man därför söka späda det med annat foder, så att halten kalcium hamnar under 20 gram per kg torrsubstans i totala foderstaten. Vid täckning av sinkons fosförbehov bör man söka nå minst 2,5 gram och kanske högst 4 gram magnesium per kg torrsubstans samt en kvot K/(Ca+Mg) under 2, men kanske helst 1,5 eller lägre.
Grofvåder med 25-30 gram kalium ligger utanför de nivåer som överhuvud taget kan rekommenderas till sinkor med mindre än 3 veckor kvar till kalvningen. Det bör därför spädas eller helt ersättas med kaliumfattigare grofvåder så att man kan komma inom ovan nämnda ramar i totalfoderstaten. Utifrån dagens kunskaper verkar sådant grofvåder okay till mjölkande kor genom den utsättning man kan få via kaliumfattigare kraftfoder. Riktmärkt bör dock alltid vara att kaliumhalten inte överstiger 20 gram per kg torrsubstans i totalfodret även till mjölkande kor. Om inte den gränsen klaras bör man söka späda med kaliumfattigare grofvåder. Vidare bör man genom lämpligt mineraltillskott se till att hamna mellan 2-3 gram magnesium per kg torrsubstans och att kvoten K/(Ca+Mg) kommer under 2,2. Se därför upp med stora givor melass, som håller 45 gram kalium per kg torrsubstans!

Med mer än 30 gram kalium per kg torrsubstans i grovfodret kan det vara svårt att nå inom ovanstående riktlinjer för utfodringen av mjölkande kor utan spädning med kaliumfattigare grofvåder. Visar grovfoderaanalysen på sådana värden är det därför klart befogad med en markkartering, som underlag för en förändrad gödsling.

Eftersom samtidigt höga halter av kalium och råprotein verkar leda till en större störningsgrad av djurhälsan bör man se till att proteinhalten i totala foderstatens torrsubstans inte överstiger 19%. Något som avsteg från AAT-systemets ursprungliga rekommendationer och utan direkt kontroll av proteininnvån kan resultera i. Kan också vara så att det är mest kritiskt med höga halter kalium och protein i ensilage. Vilka proteinhalter man inte bör överstiga i vallfodrar är svårt att avgöra då det inte tycks finnas några större samband mellan proteinhalt och kaliumhalt i vallfodret. Men har proteinhalten hamnat över 18-19% i grovfodret bör man nog se över kvävegödslingen och ta prover för en gårdSANpassad skörödetsprognos. Produkten av procent råprotein multiplicerad med procent kalium bör kanske heller inte överstiga 40-45. Dvs helst inte mer än 16-18% råprotein vid en kaliumhalt om 2,5% i grovfodret.

Mineralanalyser viktig grund för såväl utfodrings- som växtodlingsplan.

Harry Eriksson
Husdjurkskonsulent
Tel. 090-128964
E-post: harry.eriksson@ac.lst.se
Utödning och mjölkkvalitet.
Eva Björk.
Inst. För Norrländsk jordbruksvetenskap.

Ett av de viktigaste kvalitetskraeven på mjölk är att den ska lukta och smaka som konsumenten förväntar sig.
Vidare är det av största vikt för mejeriernas förädlingsindustri att mjölen som råvara luktar och smakar som den ska.
Detta är bakgrunden till att vi i Sverige har lukt och smak som en betalningsgrundande kvalitetsegenskap på leverentörsmjölen.
Analysen är en sensorisk analys där två mjölkbedömare oberoende av varandra bedömer hur väl mjölkprovets utseende, lukt och smak överensstämmer mot en norm. Grad och art av avvikelse anges. De vanligaste avvikelseerna är: oxidationssmak, fodersmak, härsken smak och syrlig smak.
Det är samma företag, MSAB, som ansvarar för denna analysverksamhet i hela Sverige.
Respektive mejeriförening bestämmer gränser när det blir avdrag på avräkningspriset.

Problemet uppmärksamrades i Sverige i början på 1990 då flera mejeriföreningar oroades över att man fått en höjning av antalet anmärkningar på mjölkens lukt och smak.
Lukt och smakfrågan blev ett inom forskningen prioriterat område.
Mjölkproduktionens utveckling i början av 90-talet visar att förändringar som skett i produktionen kan ha resulterat i en mjölk känsligare för smakförändringar genom:
- Ökad mjölkavkastning.
- Minskad grovfoderandel i foderstaterna.
- Högre andel fett i kraftfodren.
- Större andel unga kor i besättningarna.

I dag har frekvensen anmärkningar för avvikande lukt och smak stabiliserats på en relativt läg nivå. I vissa delar av norra Sverige har dock problemet upplevts som fortsatt stort.
I projektet ”Hur botar vi lukt och smakfel på mjölk” ska vi försöka hitta en förklaring till den höga frekvensen för att kunna ge förslag på åtgärder för att minska problemet. Detta projektet sker i samarbete med SLU, institutionen för norrländsk jordbruksvetenskap och bl.a. norrmejeriet och NNP och är finansierat av regional jordbruksforskning i norra Sverige.

Mjölkens sammansättning.
Under 95-96 genomfördes en undersökning på mejerimjölkens sammansättning i Sverige.
Silomjölksprov från 9 olika mejerier, varav Umeå var ett, samlades in vid 7 tillfällen och analyserades på 140 olika parametrar.
Undersökningsvisar att mjölen från Umeå, främst vid två tillfällen, hade anmärkningsvärt hög andel fria aminosyror. Totalinnehåll aminosyror visade ingen avvikelse (Lindmark-Månsson, 1999). Resultatet tyder på att proteolys skett Statistikens över frekvens avvikkande lukt och smak på leverentörsmjölk vid umeåmejeriet visar ingen förhöjning vid nämnda två tillfällen. För att undersöka eventuella samband mellan fri aminosyror i mjölen och avvikande lukt och smak analyserade vi kompletterande prover. Prover som analyserades var tankmjölk från gårdar med och utan smakfelproblem, silomjölk från 4 mejerier inom norrmejeriets område samt mjölk från två kor med kraftiga smakfel på sin mjölk. Resultatet visade att andelen fria
aminoxyror låg betydligt lägre i dessa prover jämfört den tidigare provtagningen. Avvikande i sin sammansättning av fria aminoxyror var de två smakfelskorna. Samband mellan ökad proteolysgrad i mjölk och och låg energitillsel till korna är konstaterad liksom samband mellan proteolys och lipolys. Betydelse för mjölkens proteolysgrad har även utfodring och hulstaus vid kalvning (Osterson, 1997).
Inga andra av de publicerade mätvärdena på umeåmjölkens sammansättning kan förklara den högre frekvensen lukt och smakfel.

Gårdsbesök.

Resultat.
Totalt analyserades mjölkprover från 248 kor. Av dessa prover bedömdes 37 stycken (15%) ha starkt avvikande lukt och smak.
De lukt och smakfel som förekom var:

<table>
<thead>
<tr>
<th></th>
<th>antal</th>
<th>% av alla prover</th>
<th>% av smakfelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxidation</td>
<td>17</td>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>härskn</td>
<td>9</td>
<td>3,6</td>
<td>24,3</td>
</tr>
<tr>
<td>foder</td>
<td>4</td>
<td>1,6</td>
<td>10,8</td>
</tr>
<tr>
<td>salt</td>
<td>4</td>
<td>1,6</td>
<td>10,8</td>
</tr>
<tr>
<td>"lukt och smak"</td>
<td>2</td>
<td>0,8</td>
<td>5,4</td>
</tr>
<tr>
<td>oren</td>
<td>1</td>
<td>0,4</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Kor med avvikande lukt och smak fanns i alla besättningar utom en. Andelen kor med avvikande lukt och smak varierade från 0% till 38% av besättningen.
Inga klara samband mellan mjölen sammansättning, enligt analyserna ovan, och avvikande lukt och smak upptäcktes. Betydelse hade laktationsnummer och laktationsstadium. Ungra kor (laktationsnummer 1 och 2) dominerar bland kor med oxidationssmak.
Av de 17 korna som hade oxidationssmak var 13 i laktationsmånad 1-3. De kor som var mitt i sin laktation (3 st) och hade oxidationssmak fanns alla i samma besättning. I denna besättning hade alla kor i laktationsmånad 1-3 oxidationssmak. Av de 9 kor som hade härskn smak var 3 i tidig laktation (laktationsmånad 1-3) och 4 i sen laktation (laktationsmånad 9 och därutöver).
Kor med salt smak var alla utom en i sen laktation. I denna grupp låg medelcellhalten högre jämfört de andra "smakfelsgrupperna".

59
Samband laktationsstadium och avvikande lukt och smak är känt och går att förklara mot bakgrund av de olika smakfelens uppkomst.
Det som skiljer besättningar med problem mot besättningar utan problem i denna undersökning är andelen kor i "riskzon", unga kor i tidig laktation, som producerar mjölk med avvikande lukt och smak.
Avgörande betydelse är hur man lyckas näringsförsöka dessa kor i början av laktation, hög konsumtion är nödvändig. I detta sammanhang har grovfodrets näringsmässiga och hygieniska kvalitet stor betydelse.
Variation i hygienisk kvalitet på utfordrat ensilage visade sig vara stor inte bara mellan gårdfona utan även på en och samma gård. Hygieniska kvalitén påverkar konsumtionen och förklarar man sig på fri tillgång kan konsumtionen vara så låg att näringsförsörjningen liksom tillräcklig strukturalandel äventyras vilket kan leda till avvikande lukt och smak på mjölken.
"Fri tillgång" var den dominerade grovfodergivaren på de besökta gårdarna och variationen på verklig giva visade sig vid kontrollvägning vara stor.
En uppföljning i form av endags-utfodringskontroll skulle vara ett bra hjälpmedel för att se hur väl föreslagen foderstat stämmer med verklig utfodrad mängd.

Individprovtagning för sensorisk analys på Röbäcksdalenlens färsöskor
I besättningen på Röbäcksdalen registreras kontinuerligt, i samband med olika utfodringsstudier, förtom förändrningar i avkastning och mjölkens sammansättning även den enskilda kons foderkonsumtion och vitkosträfforhållning. Genom att följa individer under en del av deras laktation och vägna nämnda registreringar mot lukt och smakanlyser på individnivå försökte vi hitta förklaring till varför vissa kor i samma laktationsstadium och med samma utfodring producerar mjölk med avvikande lukt och smak medan andra inte gör det.
Under vintern 98-99 pågick försöket ”Betydelsen av typ av grovfoder och foderstatens stärlseinnehåll för koronas konsumtionsförmåga, mjölkproduktion och foderutnyttjande”.
Grovfoder som utfodrades i tre olika grupper var vallensilage, baljväxtnormfoder och en blandning av vallensilage och baljväxtnormfoder. I varje grupp utfodrades hälften av korna med ett kraftfoder med hög stärlsehalt (44 % av ts) och den andra hälften med ett kraftfoder med låg stärlsehalt (23 % av ts).

Resultat.
Individprover för analys av lukt och smak togs med två veckors mellanrum vid åtta tillfällen.
Totalt analyserades 350 prover.
Av dessa bedömdes 34 stycken (9,7%) ha starkt avvikande lukt och smak. 19 kor stod för de 34 smakfelen.
De lukt och smakfeln som förekom var:

<table>
<thead>
<tr>
<th></th>
<th>antal</th>
<th>% av alla prover</th>
<th>% av smakfelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxidation</td>
<td>19</td>
<td>5,4</td>
<td>56</td>
</tr>
<tr>
<td>foder</td>
<td>10</td>
<td>2,9</td>
<td>29</td>
</tr>
<tr>
<td>"lukt och smak"</td>
<td>3</td>
<td>0,9</td>
<td>9</td>
</tr>
<tr>
<td>härsken</td>
<td>1</td>
<td>0,3</td>
<td>3</td>
</tr>
<tr>
<td>salt</td>
<td>1</td>
<td>0,3</td>
<td>3</td>
</tr>
</tbody>
</table>

Oxidationssmak var den avvikande smaken som dominerade vilket till viss del förklaras av en övervikt av kor i första halvan av laktationen. Detta förklarar också det låga antalet kor med härsken och salt smak som är vanligare smakfel mot slutet av laktation.
Alla anmärkningar för fodersmak kom vid två tillfällen. Små förändringar i ensilagets hygieniska kvalitet, ökning av etanolhalt och smörsyrhalt, vid dessa två provningar kan förklara dessa smakfel.

Bland kor med avvikande lukt och smakfel dominerar unga kor i början av laktation. Bearbetningen av försöksresultatet tyder på att skillnaden mellan kor i riskzon som klarar sig utan anmärkning jämfört de kor som får anmärkning ligger i konsumtion och möjlighet att näringsförsörja sig. Näringsbristen leder till mobilisering av kroppsväpnad vilket resulterar i en mjölk känsligare för förändringar, som kan resultera i avvikande lukt och smak.

Smakfelen fördelade sig jämt mellan de tre olika grovfodergrupperna.

Kor som fick kraftfoder med hög stärkelsehalt var något överrepreseerade bland kor med lukt och smakfel.

Sammanfattning.

Alla faktorer som påverkar konsumtion negativt hos nykalvade kor och kvigor och leder fram till energi och/eller fiberbrist kan resultera i mjölk med avvikande lukt och smak.

Faktorer att uppmärksamma:
- Kvig och sintidsutfodring.
- Hull vid kalvning.
- Strukturandelen i foderstaten-konsumerad!
- Grovfodrets näringsinnehåll.
- Grovfodrets hygieniska kvalitet.
- Kvigans introduktion i kogruppen.
- Råvaror i kraftfodret som sätter ner smakligheten på fodret.

Fortfarande kvarstår frågan varför problemet med avvikande lukt och smak är större i norra Sverige jämfört resten av Sverige.

Grovfoder av den höga kvalitet som är möjlig att producera i norra Sverige kräver noggrannhet vid utfodringen. Förlitar men sig på fri till gång. Kan strukturandelen och näringsstilförseln bli för låg i början av laktation om konsumtion är låg p.g.a. av dålig hygienisk kvalitet. Fri tillgång mot slutet av laktation och under sintendent, då konsumtionsförmågan i förhållande till behovet är stor, kan resultera i feta kor vid kalvning.

Referenser:

Kan käringtand hindra parasiter hos lamm?
Gun Bernes, inst. för norrländsk jordbruksvetenskap, SLU, Umeå
Dan Christensson och Peter Waller, avd. för parasitologi, SVA, Uppsala.

Bakgrund

Syftet med det försök som presenteras här var att undersöka effekten av kondenserade tanniner under svenska förhållanden och vi valde att använda växten käringtand (Lotus corniculatus L.). Innehållet av tanniner i käringtand är visserligen inte lika högt som i de växter som gett bäst resultat i de utländska försöken, men det är en växt som kan odlas i Sverige och som åtminstone söderut kan ge rimligt goda skördar (Norgren & Ericson 1999).

I studien ville vi se om käringtand
1) kan ha en avmaskande effekt i mag-tarmkanalen på etablerade parasiter
2) kan stoppa etableringen av nya parasitlarver.

I studien jämfördes käringtand med vitklöver, som inte innehåller tanniner.
Projektet är en del av ett samarbetsprojekt kallat "Studier av käringtand med avseende på populationsekologi, proteinutnyttjande samt parasitpåverkan hos betesdjur" och har finansierats av Jordbruksverket och SJFR.

Material och metoder

Studien gjordes med korsningsfår i SLU:s försöksbesättning på Röbäcksdalen.
Året före utfodringsstudien såddes knappt 1 ha käringtand (Norcen) och lika mycket vitklöver (Undrom), båda i blandning med timotej (Mottim). Utsådesmängd var 10 kg baljväxt och 5 kg timotej. För att minska problem med ogräss såddes vallen in i korn, vilket skördades som ensilage i slutet av juli. Timotejen på käringtandfältet toppades i början av juni året därpå. I början av försöksperioden slogs hälften av vallarna av.

Lammen föddes i mars/april. När det var dags för betessläppning fick de 36 försökslammens vara kvar på stall. Detta för att ha full kontroll på foderkonsumtionen.

Försöksled

De försöksled (=utfodringsgrupper) som ingick var:
1-Utfodring med käringtand. Infektering med parasiter före utfodringsförsöket början (för att undersöka om vi får någon effekt på en etablerad infektion, dvs vuxna parasiter).
Infektering gjordes med speciell ingivare i munnen och bestod av en blandning av larver av vanliga mag-tarmparasiter.

Resultat

Gröda

Andelen baljväxter i käringtandvallen var under föröksperioden betydligt lägre än i klövervallen (se tabell 1). Givan av vitklövervall kompletterades därför med gräs, för att baljväxtandelen skulle bli densamma till alla förökslamm.

Från föröksveckan 4 användes andraskörd och i slutet av vecka 6 kunde vi även ta en del tredje-skörd. Detta foder var betydeligt mindre förvuxet än det tidigare och baljväxtandelen var högre, vilket gav en ökad konsumtion. Näringsinnehållet i de båda vallblandningarna var relativt lika (tabell 1).

I tabell 2 ses den genomsnittliga konsumtionen under föröket.

Tabell 1. Baljväxtandel i vallen på rot samt näringsinnehåll per kg ts i utfodrat vallfoder (dvs vitklövergivan kompletterad med extra gräs)

<table>
<thead>
<tr>
<th>Baljv.andel i vallen, % av ts</th>
<th>Ts, %</th>
<th>Rp, g</th>
<th>Oms. en., MJ</th>
<th>AAT, g</th>
<th>PBV, g</th>
<th>NDF, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Käringtandvall v. 1-3 (1:a skörd)</td>
<td>14</td>
<td>21,5</td>
<td>96</td>
<td>10,0</td>
<td>70</td>
<td>-25</td>
</tr>
<tr>
<td>Käringtandvall v. 4-6 (2:a skörd)</td>
<td>16</td>
<td>19,6</td>
<td>106</td>
<td>* 10,9</td>
<td>76</td>
<td>-24</td>
</tr>
<tr>
<td>Vitklövervall v. 1-3 (1:a skörd)</td>
<td>49</td>
<td>21,2</td>
<td>87</td>
<td>10,3</td>
<td>72</td>
<td>-37</td>
</tr>
<tr>
<td>Vitklövervall v. 4-6 (2:a skörd)</td>
<td>77</td>
<td>16,1</td>
<td>126</td>
<td>10,6</td>
<td>74</td>
<td>-24</td>
</tr>
</tbody>
</table>

Tabell 2. Foderkonsumtion per lamm och dag (grönt + hö), medeltal vecka 1-6

<table>
<thead>
<tr>
<th></th>
<th>Ts, kg</th>
<th>Rp, g</th>
<th>Oms. en., MJ</th>
<th>AAT, g</th>
<th>PBV, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Käringtand-lamm</td>
<td>0,75</td>
<td>80</td>
<td>7,9</td>
<td>55</td>
<td>-15</td>
</tr>
<tr>
<td>Vitklöver-lamm</td>
<td>0,76</td>
<td>67</td>
<td>8,0</td>
<td>56</td>
<td>-21</td>
</tr>
</tbody>
</table>

Käringtandens innehåll av kondenserade tanniner analyserades vid Kungsängens foderlaboratorium. Analyserna gjordes dels med s k radial diffusion, dels enligt saltsyre/butanol-
metoden (Hedqvist, 1999). Halten var ca 0,7%, vilket innebär att lammen fått i sig knappt 1 gram tanniner per dag.

Tillväxt och hälsa
Vid försöksstarten vägde lammen knappt 30 kg och vikten var i stort sett densamma vid slakt. Att lammen inte växte berodde förmodligen på det alltför grova gräset som gjorde att de inte fick i sig tillräckligt med näring. Det berodde inte på parasitsmitan, eftersom inte heller de lam som bara infekterades i slutet av försöket växte något. Hälsotillståndet var till synes gott hela tiden och syftet med försöket var ju inte att optimera tillväxten.

Före utfodringens början togs träckprov för att kontrollera att endast de infekterade grupperna hade parasiter. Så var också fallet. Träckprov togs sedan varannan vecka under försöksperioden och analyserades på SVA. Det var ingen skillnad i antal utskilda parasitägg mellan lammen i kärningtandgrupperna jämfört med de som fick vitkläver.

När de sex utfodringsveckorna var slut skickades alla lammen till slakteriet i Skellefteå. Varken slaktvikt, klassificering eller fettansättning skilde mellan olika grupper.

Parasitresultat

Tabell 3. Antal parasiter i prover av mag-tarminnehållet, medeltal per lamm.

<table>
<thead>
<tr>
<th></th>
<th>Kärningtand</th>
<th></th>
<th>Vitkläver</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lamm</td>
<td></td>
<td>Lamm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infekterade</td>
<td>under</td>
<td>infekterade</td>
<td>under</td>
</tr>
<tr>
<td>före försöket</td>
<td>183</td>
<td></td>
<td>750</td>
<td>133</td>
</tr>
<tr>
<td>Ostertagia,</td>
<td>683</td>
<td></td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>vuxna</td>
<td></td>
<td></td>
<td>675</td>
<td>133</td>
</tr>
<tr>
<td>Ostertagia i</td>
<td>42</td>
<td>292</td>
<td>33</td>
<td>441</td>
</tr>
<tr>
<td>larvstadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemonchus,</td>
<td>825</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vuxna</td>
<td></td>
<td></td>
<td>750</td>
<td>100</td>
</tr>
<tr>
<td>Haemonchus</td>
<td>11</td>
<td>50</td>
<td>0</td>
<td>133</td>
</tr>
<tr>
<td>i larvstadium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasiter, tot.</td>
<td>2161</td>
<td>1339</td>
<td></td>
<td>1567</td>
</tr>
<tr>
<td>i löpmage och</td>
<td></td>
<td></td>
<td>2142</td>
<td></td>
</tr>
<tr>
<td>tunntarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ostertagia circumcincta = mellanstora magmasken, Haemonchus contortus = stora magmasken

Slutsatsen

Att vi inte fick några positiva effekter av kärningtand i vår studie kan bero på att den mängd kondenserade tanniner som lammen fick i sig var för låg för att ge någon märkbar inverkan. I det delprojekt som studerar ungnöt blev tillväxten högre i kärningtandsgruppen. Parasitanalyserna
därifrån är dock inte klara än. Kondenserade tanniner har även en positiv påverkan på proteinutnyttjandet, vilket kan förklara en del av tillväxteffekten. Ungnötsstudien genomförs på Rådde i Älvsborgs län och andelen käringtand i vallen var högre där än hos oss.

Arbetet kommer att fortsätta med käringtand till ungnöt. På lammområdet går vi vidare med att försöka finna andra verksamma växter i kampen mot parasiterna.

Referenser
Hedqvist H. 1999, Kondenserade tanniner i käringtand (Lotus corniculatus L.) - kvantifiering, karaktärisering samt in vitro studier av deras effekt på proteinbrytning i vommen. Examensarbete 116, inst. för husdjurens utfodring och vård, SLU.
Olika uppfödningsstrategier för vinterlamm
Gun Bernes, inst. för norrländsk jordbruksvetenskap, SLU Umeå

Material och metoder

Foderstaten bestod av ensilage (22% ts; 10,4 MJ, 112 g rp och 70 g AAT per kg ts) och en mindre mängd hö. Som kraftfoder användes Fårfor.

Lammen vägdes varannan vecka under vintern. Utfödringen justerades efter varje djur-vägning till att ge önskad tillväxt. Justeringen gjordes för varje försöksled (kön + foderstat) för sig. Givna av ensilage varierade mellan 2,2 och 3,7 kg per dag. Kraftfodergiven var som högst 0,5 kg per dag. Allt utfodrat och kvarlämnat foder vägdes dagligen per box och prover för analys togs ut.

För att följa kroppsväxthållningen under uppfödningen mättes lamm med ultraljud vid åtta tillfällen. Vi mätte underhudsfett och ryggsmedsjuk i höjd med sista revbenet.

Slakter gjordes enligt ordinarie rutiner. Vägning gjordes av styckningsdetaljер.

FÖRSÖKSLAG
- Baggar, jämn tillväxt under hela försöket (Jämn).
- Baggar, låg tillväxt från början och en slutgödning från mitten av januari (Låg-hög).
- Tackor, jämn tillväxt.
- Tackor låg tillväxt från början, hög på slutet.

Start- och slutvikt för de bågge utfödringsmodellerna skulle vara lika inom kön. Det var två boxar per försöksled, med 3-4 lamm i varje.

Resultat Foder
I tabell 1 ses genomsnittlig konsumtion per dag i de olika grupperna. Tabell 2 visar den totala åtgången av foder under vintern. Det gick åt något mindre foder i låg-hög-systemet.

Tabell 1. Foderkonsumtion per dag, medeltal under olika perioder av försöket

<table>
<thead>
<tr>
<th></th>
<th>Baggar Jämn</th>
<th>Baggar Låg-hög</th>
<th>Tackor Jämn</th>
<th>Tackor Låg-hög</th>
</tr>
</thead>
<tbody>
<tr>
<td>vecka 42-51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ts, kg</td>
<td>0,95</td>
<td>0,85</td>
<td>0,83</td>
<td>0,73</td>
</tr>
<tr>
<td>Oms. energi, MJ</td>
<td>10,2</td>
<td>9,0</td>
<td>9,0</td>
<td>7,8</td>
</tr>
<tr>
<td>Vecka 52-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ts, kg</td>
<td>1,04</td>
<td>1,06</td>
<td>0,90</td>
<td>0,91</td>
</tr>
<tr>
<td>Oms. energi, MJ</td>
<td>11,4</td>
<td>11,6</td>
<td>10,0</td>
<td>10,2</td>
</tr>
</tbody>
</table>
Tabell 2. Foderåtgång under försöket

<table>
<thead>
<tr>
<th></th>
<th>Baggar Jämn</th>
<th>Baggar Låg-hög</th>
<th>Tackor Jämn</th>
<th>Tackor Låg-hög</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensilage, kg ts</td>
<td>89</td>
<td>83</td>
<td>77</td>
<td>71</td>
</tr>
<tr>
<td>Hö, kg</td>
<td>23</td>
<td>26</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Fårfor, kg</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>33</td>
</tr>
</tbody>
</table>

Tillväxt och hälsa

En del lamm, framförallt baggar, fick trumsmjukliknande symptomer i början av vintern, troligen beroende på födrets kvalitet (regnig sommar). Symptomen försvann så småningom då ensilagegivna minskades något.

I tabell 3 ses medeltal av vikter och tillväxt. Skillnaden mellan de fodersystem vi ville jämföra blev mindre än planerat, trots ständiga justeringar av foderstaten. Det understryker hur svårt det är att exakt styra upptäckningen av vinterlammer. Skillnaden i tillväxt mellan grupperna under olika perioder är dock signifikant.

Tabell 3. Vikter och tillväxt, medeltal per grupp

<table>
<thead>
<tr>
<th></th>
<th>Baggar Jämn</th>
<th>Baggar Låg-hög</th>
<th>Tackor Jämn</th>
<th>Tackor Låg-hög</th>
<th>skilln. mellan utf.modeller</th>
<th>skillnad mellan kön</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vikt vid försöksstart, kg</td>
<td>36,7</td>
<td>37,9</td>
<td>34,3</td>
<td>34,5</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Vikt vid försökslut, kg</td>
<td>49,9</td>
<td>50,1</td>
<td>43,7</td>
<td>43,3</td>
<td>n.s.</td>
<td>**</td>
</tr>
<tr>
<td>illväxt inst. - nyår, g/dag</td>
<td>66</td>
<td>16</td>
<td>41</td>
<td>6</td>
<td>***</td>
<td>n.s.</td>
</tr>
<tr>
<td>Tillväxt nyår - slakt, g/dag</td>
<td>148</td>
<td>193</td>
<td>108</td>
<td>138</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>illväxt under försöket, g/dag</td>
<td>94</td>
<td>87</td>
<td>67</td>
<td>63</td>
<td>n.s.</td>
<td>***</td>
</tr>
</tbody>
</table>

n.s. = skillnaden mellan utfodringssystemen eller kön är inte statistiskt säker
** = det är till 99% säkert att det finns en skillnad
*** = det är till 99,9% säkert att det finns en skillnad

Effektiviteten i lammens foderomvandling kan mätas som den mängd energi som gått åt per kg tillväxt. Det skilde inte nämnvärt mellan utfodringssystemen, men baggarna var mer effektiva än tackorna (122 MJ/ kg tillväxt jämfört med tackornas 150 MJ).

Om man i stället räknar per kg kött (från en tänt slaktkropp vid inställningen) var det ingen större skillnad varken beroende på utfodringssystem eller kön.

Kroppsutveckling och slaktdata

Resultaten av ultraljudsmätningarna visar inte på några säkra skillnader mellan systemen. Ryggradsmuskeln minskade hos alla lamm under första delen av vintern. Efter årsskiftet vände det och det slutliga muskelväxten var ca 2 mm större än på hösten.

Tackorna var hela tiden fetare än bagglammen. Låg-hög-tackorna hade mest underhudsfett redan från början och var de som lade på sig mest fett även under vinterns gång, vilket också visade sig vid slaktsklassificeringen. Den höga slitintensiteten kan vara en nackdel ur den aspekten.

Slaktdata visas i tabell 4. Baggarna hade vid slakt 6,5 kg högre levande vikt än tackorna, med av de vägda styckningsdetaljerna var det bara bogen och halsen som var signifikant tyngre hos
bagglammen. Tackorna hade bättre slaktutbyte än baggarna. Inga signifikanta skillnader kan ses mellan fodersystemen.

Tabell 4. Slaktdata och styckningsdetaljer, medeltal per grupp

<table>
<thead>
<tr>
<th></th>
<th>Baggar Jämn</th>
<th>Baggar Låg-hög</th>
<th>Tackor Jämn</th>
<th>Tackor Låg-hög</th>
<th>skilln. mellan utf.modeller</th>
<th>skillnad mellan kön</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slaktvikt, kg</td>
<td>19,6</td>
<td>19,1</td>
<td>17,4</td>
<td>18,2</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Slaktutbyte, %</td>
<td>39,0</td>
<td>38,1</td>
<td>39,8</td>
<td>42,0</td>
<td>n.s.</td>
<td>**</td>
</tr>
<tr>
<td>Fettgrupp</td>
<td>5,7</td>
<td>5,2</td>
<td>7,0</td>
<td>8,7</td>
<td>n.s.</td>
<td>**</td>
</tr>
<tr>
<td>Stek, kg</td>
<td>3,1</td>
<td>3,0</td>
<td>2,8</td>
<td>3,0</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Bog, kg</td>
<td>1,8</td>
<td>1,8</td>
<td>1,6</td>
<td>1,5</td>
<td>n.s.</td>
<td>*</td>
</tr>
</tbody>
</table>

n.s. = skillnaden mellan utfodringsmodellerna eller könen är inte statistiskt säker
* = det är till 95% säkert att det finns en skillnad
** = det är till 99% säkert att det är finns en skillnad

Ekonomi

Det ekonomiska värden skilde mycket mellan enskilda lamm, redan om man ser till deras tänkta värde vid installningen, men även vid slaktet. Det beror till stor del på vilken sida av slakteriets viktgränser de hamnar.

Lammen i låg-högsystemet var något mer värda vid slakt. Detta, tillsammans med den något lägre foderkostnaden, gör att ekonomin är lite bättre i detta system, se tabell 5. Bruttovinsten är värde vid slakt minus värden vid installningen minus foderkostnaden. Återstoden ska räcka för att bekosta arbete, byggnader och ränta.

Tabell 5. Ekonomiskt resultat

<table>
<thead>
<tr>
<th></th>
<th>Baggar Jämn</th>
<th>Baggar Låg-hög</th>
<th>Tackor Jämn</th>
<th>Tackor Låg-hög</th>
</tr>
</thead>
<tbody>
<tr>
<td>Värde vid inst.</td>
<td>90,31</td>
<td>80,30</td>
<td>45,00</td>
<td>33,30</td>
</tr>
<tr>
<td>Foderkostnad, kr</td>
<td>335,22</td>
<td>325,38</td>
<td>293,66</td>
<td>279,35</td>
</tr>
<tr>
<td>Värde vid slakt, kr</td>
<td>585,42</td>
<td>584,71</td>
<td>526,38</td>
<td>554,77</td>
</tr>
<tr>
<td>Bruttovinst, kr</td>
<td>159,89</td>
<td>179,03</td>
<td>187,72</td>
<td>242,12</td>
</tr>
</tbody>
</table>

Slutsats

Vi fann inga signifikanta skillnader mellan de båda utfodringsmodellerna i denna studie. En vinterlammssuppfödning med sparsam utfodring under november och december och ökad utfodring från januari följer dock, enligt tidigare studier, lammens naturliga tillväxtförlopp. Det kan dessutom enligt denna studie ge ett något bättre ekonomiskt utbyte än en jämn uppfödning.
Energibehov och konsumtionsförmåga hos vinterlamm

Titti Måntelius
Examensarbete vid avdelningen för husdjursskötsel, Institutionen för norrländsk jordbruksvetenskap.
Handledare: Gun Bernes och Elisabeth Andréasson (Skanek)

Inledning

Idag kan det vara lönsamt att spara lamm som är för små på hösten för fortsatt uppfödning på stall. De s.k. vinterlammen slaktas vid uppnådd slaktmognad (vanligtvis från december till april), vilken till stor del kan styras med utfodringen. Det krävs en balansgång i utfodringen av energi, där ett underskott hindrar tillväxten och ett överskott kan orsaka feta djur.

Idag finns inga svenska energirekommendationer till växande lamm. Detta mycket beroende på att uppfödningen av lamm på stall tidigare endast haft en mindre omfattning. Syftet med examensarbetet är att ta fram och sammanfatta siffror över energikonsumtion från svenska försök med vinterlamm. Arbetet tar även upp vad som påverkar lammens konsumtionsförmåga och storleken av denna.

Material och metoder

Beräkningar gjordes på data från fem försök med vinterlamm som genomförts vid Sveriges lantbruksuniversitet i Röbäcksdalen under 90-talet (Bernes, 1994; Bernes, 1997; Bernes 1999). Ur materialet gjordes beräkningar över hur mycket energi bagg- respektive tacklamm konsumerat dagligen och vilken tillväxtökning de haft av den konsumerade energin.

Resultat och diskussion

Av de tio tillfrågade producenterna är det endast fyra som räknar foderstater till sina lamm. Två producenter utgår från normera för tackor, medan de andra två anlitar lammarådgivaren på sin slakteriförening. De lamm som inte klarade kraven för butikskvalitet var vanligtvis för feta.

Nyttan av energirekommendationer till lamm skulle vara:
- Möjlighet att styrta tillväxthastigheten och därmed uppfödningstiden.
- Öka lönsamheten genom att minska risken för överutfodring vilken kan leda till feta lamm med lägre avräkningspris.
- Möjlighet att beräkna total foderåtgång, vilket medför effektivt utnyttjande av lagringsutrymmen.

I skrivande stund är inte allt material färdigbearbetat. Dock presenteras nedan värdena som beräknats fram över daglig konsumerad energi vid olika levandevikt och tillväxthastighet (tabell 1 och 2). Ytterligare bearbetningar av materialet krävs för att få en uppskattning av lammens intag. Intaget kommer att relateras till kroppsvikt och % NDF i foderstaten.

Tabell 1. Bagglammens konsumerade energi (MJ) per dag, vid olika levande vikt och tillväxthastighet

<table>
<thead>
<tr>
<th>Viktökn./dag (g)</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levandevikt (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-39,9</td>
<td>8,7 (7,0,57)*</td>
<td>10,4 (6,2,71)</td>
<td>10,5 (8,1,49)</td>
<td>12,2 (6,2,81)</td>
<td>8,8 (4,0,94)</td>
<td>12,5 (2,2,19)</td>
</tr>
<tr>
<td>40-44,9</td>
<td>10,4 (9,0,79)</td>
<td>10,7 (15,0,90)</td>
<td>12,6 (16,1,93)</td>
<td>12,8 (14,2,32)</td>
<td>13,2 (9,2,62)</td>
<td>14,4 (10,2,88)</td>
</tr>
<tr>
<td>45-49,9</td>
<td>11,1 (1; -)</td>
<td>12,2 (5,1,14)</td>
<td>13,8 (4,2,32)</td>
<td>13,5 (12,2,28)</td>
<td>14,7 (10,2,27)</td>
<td>15,2 (6,2,36)</td>
</tr>
</tbody>
</table>

* Värdena inom parantes anger antal registreringar samt standardavvikelser.

Tabell 2. Tacklamms konsumerade energi (MJ) per dag, vid olika levande vikt och tillväxthastighet

Viktökn./dag (g)	0	50	100	150	200	
Levandevikt (kg)						
30-34,9	7,6 (6,0,37)*	8,1 (4,0,70)	9,3 (10,1,99)	12,0 (3,2,08)	9,6 (3;1,95)	
35-39,9	9,4 (19;1,69)	10,2 (17;1,60)	11,5 (21;2,31)	11,3 (17;1,82)	13,2 (7;2,13)	
40-44,9	10,2 (5;1,76)	11,1 (8;2,05)	11,7 (14;1,72)	12,8 (14;2,09)	12,0 (8;2,08)	

* Värdena inom parantes anger antal registreringar samt standardavvikelser.

Litteratur

Ovina Subarctica, fårprojekt i Norrbotten

Alec Lundström, Hushållningssällskapet i Norrbottens län, Luleå
Fåravelsföreningarnas samarbete i Västerbotten och Österbotten
- ett Interreg-projekt
projektledare Monika Stark-Krooks, HS Västerbotten

Fårfarmarna i Västerbotten och Österbotten kämpar med lönsamhetsproblem – de har svårt att få verksamheten att gå ihop. En utveckling av färskkötseln är därför nödvändig på båda sidor om Kvarken.
Problemen är inte identiska i de två länen, vilket betyder att det finns mycket att vinna på ett samarbete. Fårfarmarna i Österbotten kan dela med sig av sina lösningar på områden där fårfarmarna i Västerbotten inte nått lika långt, och vice versa.

Produktutveckling och förädling
Med en gemensam utbildningsinsats och i förlägningsamordnad produktutveckling, förädling och marknadsföring skulle vi åter kunna få en ekonomiskt bärkraftig färskkötsel i både Västerbotten och Österbotten.

Målet är mer lamm på bordet
Det övergripande målet är att öka efterfrågan på lammkött. Idag är det relativt få konsumenter som köper och tillagar lammkött, vilket delvis beror på att det finns för lite lätttagade styckningsdetaljer och charkprodukter i handeln.

Aktivitetsplan
Utbildning och seminarier
- Ullseminarium i Vasa
- Ullseminarium i Umeå
- Färklippning
- Styckningskurs
- Seminarium: Lammköttproduktion, SLU
- Matlagningskurser för konsumenter – tema färkött
- Studieresa till Gotland

Produktutveckling
- Utveckling av ett gemensamt varumärke för hela Interreg-området
- Utveckling av två befintliga produkter – kebab och korv – samt den nya produkten picnick-stek
- Tävlingsbidrag i tillagning av färkött bedöms av kockjury på Vasabåtarna

Marknadsföring
- Marknadsföring av nya kött- och ullprodukter på Nolia, Lantbruksutställning i Seinäjoki och i butiker
- Samordnad marknadsföring av ull och kött
Produktion av finfibrig ull för industriändmål
- en möjlighet för Jämtlands län?
Margaretha Lund

Bakgrund
I vissa höglänta områden på Nya Zeeland är klimatet rätt likt det svenska, varför tanken väckts om inte merinofår skulle kunna hållas här. Dessutom är den importerade ullen inte ekologisk, vilket lämnar utrymme för en svensk produktion.
I augusti 1997 träffades en grupp intresserade på Länstsyrelsen i Östersund. Åsbygdens Naturbruksgymnasium beslutade då att i samarbete med Länstsyrelsen ansvara för att frågan bearbetas vidare. En arbetsgrupp med färnäringen, industrin (Triconor) och länsintressena bildades. Följande personer deltar:

Jan Nilsson
Jämtlands läns Fåravelsförening
Gunnar Lindberg
Svenska Fåravelsförbundet
Monica Ottoesson
Triconor (nu Ullfrotté AB)
Gudni Agustsson
Länstsyrelsens lantbruksenhet
Margaretha Lund
Åsbygdens Naturbruksgymnasium

Vid mötet diskuterades vilka möjligheter för lännet som detta projekt skulle kunna tänkas ge:
Areal tillgänglig för ökad färproduktion finns idag, och ytterligare areal kan tänkas friställas om mjölkproduktionen minskar i länets ytterområden.
Ett öppet odlingslandskap är en förutsättning för satsningar på turism. Fårskötsel är en möjlighet att hålla landskapet öppet.
Ur miljösynpunkt måste vi på sikt räkna med att hämta råvaror i nära anslutning till förädlingsindustrin. Transporter från andra sidan jorden är oacceptabelt ur miljösynpunkt.
Dessutom är också själva färproduktionen i många länder kraftigt miljöbelastande där kemikalier och överbeteckning kan nämnas som exempel.
Det är en unik chans när industrin direkt efterfrågar lokal råvara. Ullspininerier och tvätterier saknas i lännet idag, och finns mycket sparsamt i landet som helhet. Här finns en stor potential för ytterligare arbetstillfällen.

Målsättning
Projektets mål är att undersöka hur man kan producera finfibrig ull för industriändamål i Jämtlands län och i Sverige som helhet. Produktionen ska ske på ett miljömässigt riktigt sätt, samtidigt som ekonomiska och geografiska aspekter beaktas.

Metod
2. En förstudie med bl a provtagning av svensk ull genomfördes hösten 1998. Resultatet kan sammanfattas så här:

- Det är möjligt att producera finfibrig ull för industriändamål i länet
- De ekonomiska jämförelser som gjorts pekar på att en kombinerad ull- och köttproduktion ger ett täckningsbidrag(TB1) som betydligt övertager TB1 i färskötsel med specialiserad köttproduktion
- En lokal produktion av ull ger miljövinster
- Det finns ett gemensamt intresse för ull i Europa.

I förstudien ingick bl a provtagning av ull från svenska korsningsfår, se nedan.

Provtagning av ull
Vi har samlat in prover från i huvudsak Sveafår. Ett fåtal prover från svenska Finullsfår har också analyserats. Provtagningen har till största delen skett på vuxna tackor och baggar, men några grupper av lamm har också provtagits.

Tillvägagångssättet har varit följande:

Ett ullprov har tagits på fårens sida. När prover tagits från en hel grupp (t ex en besättning) sorteras de och den bästa fjärdedelen skickas till analys på ett laboratorium i Aberdeen.

Stallgödsel till vall – spridningstider på hösten.

Bakgrund och syfte.

Genomförande.

Försöksled.

Spridningstider

<table>
<thead>
<tr>
<th>Å</th>
<th>Ång med NPK på våren motsvarande tillförseln i led B</th>
<th>Gödselslag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa</td>
<td>Ingen gödsling</td>
<td>1. Flytgödsel, 20 ton / ha</td>
</tr>
<tr>
<td>Ab</td>
<td>NPK på våren motsvarande tillförseln i led B</td>
<td>2. Fastgödsel, 25 ton</td>
</tr>
<tr>
<td>B</td>
<td>Spridning direkt efter 2:a skörd</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Spridning 1 vecka efter 2:a skörd</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Spridning 3 veckor efter 2:a skörd</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Spridning 5 veckor efter 2:a skörd</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Spridning 7 veckor efter 2:a skörd</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Spridning 9 veckor efter 2:a skörd</td>
<td></td>
</tr>
</tbody>
</table>

Försöksdesign och försöksplatser.

Försöket har har utförts som ett split-plot försök med gödselslag på storutor och spridningstider på smårutor. Med fyra samrutor omfattar det totalt 64 rutor. Försöken har varit ettåriga, de har alltså utförts på separata fält under de olika försöksåren. En andraårs vall har använts på de tre försöksplatserna; gräsav på Röbäcksdalen och klövergräsvall på Ås och Offer. I tabeller och diagram betecknas Röbäcksdalen med AC, Ås med Z och Offer med Y.

Spridnings och skördetider.

Före spridning av stallgödseln skördades vallen i ensilagestadium i mitten av augusti. Två skördar per år har tagits, vid skördetider motsvarade ensilagestadium. Skördetider och spridningstider anges i tabell 1.
Tabell 1. Spridnings- och skördetidpunkter

<table>
<thead>
<tr>
<th>Åtgärd</th>
<th>Försöklats</th>
<th>Skördeår 1</th>
<th>Skördeår 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Led G Spridning 9 veckor efter 2:a skörd</td>
<td>AC</td>
<td>22.10.97</td>
<td>23.10.98</td>
</tr>
<tr>
<td>Första skörd</td>
<td>AC</td>
<td>30.6.98</td>
<td>1.7.99</td>
</tr>
<tr>
<td>Andra skörd</td>
<td>AC</td>
<td>31.8.98</td>
<td>18.8.99</td>
</tr>
<tr>
<td>Led B. Spridning direkt efter 2:a skörd</td>
<td>Y</td>
<td>22.8.97</td>
<td>19.8.98</td>
</tr>
<tr>
<td>Led G Spridning 9 veckor efter 2:a skörd</td>
<td>Y</td>
<td>23.10.97</td>
<td>21.10.98</td>
</tr>
<tr>
<td>Första skörd</td>
<td>Y</td>
<td>25.6.98</td>
<td>29.6.99</td>
</tr>
<tr>
<td>Andra skörd</td>
<td>Y</td>
<td>24.8.98</td>
<td>24.8.99</td>
</tr>
<tr>
<td>Led B. Spridning direkt efter 2:a skörd</td>
<td>Z</td>
<td>15.8.97</td>
<td>12.8.98</td>
</tr>
<tr>
<td>Första skörd</td>
<td>Z</td>
<td>22.6.98</td>
<td>21.6.99</td>
</tr>
<tr>
<td>Andra skörd</td>
<td>Z</td>
<td>10.8.98</td>
<td>24.8.99</td>
</tr>
</tbody>
</table>

Gradering och provtagning

Analyser.

Resultat och diskussion.

Temperatur och nederbörd i samband med spridning

Stallgödselanalyser
Stallgödsels kväveinnehåll och ts – halt varierade mellan de olika försöklatserna eftersom man använde sig av lokalt tillgänglig stallgödsel. Halterna varierade också mellan de olika spridningstiderna, då stallgödseln inte är homogen och dessutom förändras under lagring. I flytgödseln varierade N – NH₄ - given mellan 16 –36 kg N / ha och total – N - given mellan 30 – 80 kg N / ha. I fastgödseln varierade
N – NH₄ - givan mellan 5 - 50 kg N / ha och total – N - givan mellan 80 – 150 kg N / ha. Ts halten varierade i flytgödseln mellan 3,1 och 14,7 % och i fastgödseln mellan 13,4 och 32,5 %. Vid de tidig spridningstiderna var kvävegiven något mindre än vid de sena spridningstiderna. Ts- halten i flytgödseln var lägre vid de tidiga spridningstiderna. Låg ts-halt ger snabbare infiltration i marken och kan minska ammoniakförlusterna (Svensson 1994).

Klöverandel och vallens täthet.
I Röbäcksdalen (gräsdominerad vall) varierade klöverandelen under år1 mellan 2 – 8 % på hösten och i samband med första skörd. Den ökade till drygt 20 % i andra skörd. År 2 fanns ingen klöver i vallen. I Offer (klövergräsval) låg klöverandelen är 1 mellan 25 – 60 %, högst andel vid första skörd. År 2 varierade klöverandelen mellan 20 – 80 %. Högst vid andra skörd. Ås (klövergräsval) varierade klöverandelen mellan 20 och 40 % under det första året. Under vintern är 2 utvintrades en del del klöver. Andelen sjönk från ca 20 % på hösten till bara 2 % på våren och vid första skörd, för att åter stiga till ca 20 % vid andra skörd.
I gräsvallen graderades tätheten på våren år 1 till mellan 85 –100 %. På hösten var tätheten mellan 75 och 90 %. I Offer graderades vallens täthet på våren till mellan 75 och 80 % är 1 och ca 98 % är 2. I Ås skedde även år 1 en utvintring som drabbade klövern och gräsen lika hårt, tätheten sjönk från ca 95 % före spridning till mellan 40 och 80 % följande vår. Under år 2 sjönk tätheten under vintern från ca 95 % till ca 70 – 80 %. Inget samband mellan tidpunkten för stallgödselspridning och vallens klöverandel eller täthet kan konstateras.

Ts skörd
När försöksleden jämförs statistiskt utan hänsyn till gödselslag och försöksplats (se diagram 1) gav stallgödsel-leden B och C ca 200 kg ts mer per ha i första skörd än leden E, F och G. Stallgödsledet D skiljde sig från F men ej G. Det handelsgödslede ledet (AB) gav den högsta skörden. Enbart stallgödsleden B och C gav högre skörd än det ogödslede leden. I gräsvallen i Röbäcksdalen (AC 98 &99 i diagrammet) gav föröksleden B och och D högre skörd än föröksled F. Alla stallgödsledel utom led F gav en signifikant högre skörd än det ogödslede leden (AA). Handelsgödsledet (AB) gav ca 300 kg ts mer per ha än det bästa stallgödsledet (B).
I klövergräsvalen i Offer (Y 98&99), med ca 50 – 60 % (år 1) respektive ca 20 % (år 2) klöver i första skörd, gav de tidiga spridningstidpunkterna, förösksleden B, C och D, högre skörd än den senaste spridningstidpunkten föröksled G. Föröksledet B gav högre skörd än både led G och F. I klövergräsvalen i Ås (Z 98&99), med ca 20 – 30 % klöver i första skörd år 1 respektive ca 2 % år 2, gav de två tidigaste spridningstidpunkterna, led B och C, högre skörd än leden D, E, F och G. Även i klövergräsvalarna gav det handelsgödslede ledet den högsta skörden. Det ogödslede leden (AA) gav en skörd jämförbar med det bästa stallgödsledet (B).

I återväxtskördan gav de sena spridningstiderna en högre skörd än de tidiga spridningstiderna. Stallgödsellet G gav den högsta återväxtskörden, signifikant större än i led E och C. Alla stallgödselldet gav en högre skörd än det ogödsade ledet. Handelsgödselldet gav en skörd i nivå med de stallgödslandet. De tidiga spridningstiderna, försöksleden B, C och D, gav en högre totalskörd än de sena spridningstiderna, försöksleden E, F och G. Skillnaden i totalskörd mellan det bästa och det sämsta stallgödslandet var ca 300 kg ts. Oavsett stallgödselslag gav tidig spridning högre skörd än sen spridning. Skillnaden var något större vid spridning av fastgödsel.

Kvävehalt
Den positiva effekten av tidig stallgödselspridning kan vara en effekt av att växterna får tillgång till mer kväve för inlagring i rotsystemet inför vintern. Detta inlagrade kväve används för tillväxt på våren året därpå (Volene et al. 1996). Kvävehalten i grödman 5 veckor efter andra skörd i försöksleden B, C och D var högre än i alla andra försöksleder. Skillnaden var inte lika stor 9 veckor efter andra skörd, men den var statistiskt signifikant jämfört med försöksleden F, G, AA och AB.

Markkväve
I Offer och Ås (klövergräsvall) var markkväveinnehållet i matjordsskikten generellt något högre än i Röbäcksdalen (gräsval). I alven var markvävenivåerna i Offer och Ås något lägre än i Röbäcksdalen. Markvävenivåernas variation under året var större i Röbäcksdalen än i Offer och Ås. Kväveinnehållet i matjordsskiktet varierade mellan – 8 kg per ha och +11 kg per ha jämfört med mångden i ogödsat led, med undantag av Röbäcksdalen där man i försöksleden E1 och F1, 9 veckor efter andra skörd är 2, uppmätte 20,4 respektive 16,6 kg mer kväve per ha än i det ogödsade ledet. Kväveinnehållet i alven (30 – 60 cm) varierade mellan – 4 kg per ha och + 4 kg per ha jämfört med ogödsat led. I Röbäcksdalen uppmättes dock i försöksledet G2 på våren är 1, 6,5 kg mer kväve än i det ogödsade ledet. Avvikelsen med signifikant högre markkvävehalter än andra försöksled förekom oftare i försöksleden D, E, F och G.

Avslutande synpunkter
Resultaten från dessa inledande studier tyder på att det till fleraårig vall är en fördel sprida stallgödseln relativt tidigt på hösten när växterna fortfarande är i god tillväxt, eftersom de då kan kan ta upp kväve och lagra det över vintern. Detta står i motsats till erfarenheterna från ettåriga system där tidig spridning kan leda till stora utlagningsförluster. Ånu har vi för lite data för att säkert kunna göra rekommendationer i denna riktning. Försöken pågår dock fortsatta och årets försök kan ge ytterligare värdefull kunskap om detta.

Referenser
97: 185 –193
SPRIDNING AV FLYTGÖDSEL TILL VALL
Erkki Joki-Tokola
Lantbruks forskningscentral, Norra Österbottens försöksstation
FIN 92400 RUUKKI, FINLAND
Tel +358 8 2708 4500
Email: erkki.joki-tokola@mtt.fi

INLEDNING OCH BAKGRUND

Finlands anslutning som medlemsland till EU från början av 1995 förändrade kännbart lantbruks tidigare nationellt finansierade stödpolitik. Förändringen av produktionsstödets karaktär från prisstöd till direkt produktionsstöd sänkte bland annat födersådens marknadspris till under hälften av den före EU-inträdet rådande prisnivån. För lantbruksproduktionen uppgjordes dessutom ett miljöprogram, till vilket odlarna frivilligt kunde binda sig. Till de odlare som anslöt sig till miljöprogrammet utlovades ersättning för de tilläggskostnader som åtgärder för minskande av näringsutsläpp försorakade samt för möjliga inkomsttortfall. Dessutom förbjuds spridning av kreaturgödsel på tjädal och snötäckt mark. För kväve och fosfor som härstammade från kreaturgödsel och handelsgödsel fastställdes maxima användningsmängder för olika växtslag.

De nämnda faktorerna förutsågs inverka försvårande på användningen av gödseln på kreaturgårdarna.

Antagandet var befogat därför att av de kreaturgödsels kväve som sprids på ytan avdunstar alltid en del som ammoniak till luften (Frost et al. 1990). Myllinningsaggregat för flytgödsel funne i användning bara på några gårdar. Avståndet mellan mylliningsbillarna på flytgödselvagnarna var i allmänhet 500 mm, vilket hade till följd att en flytgödslad vall blev ojämn på grund av ojämna spridning av näringsämnen. Då man vid flytgödsling av vall sätter en rätt stor mängd gödsel genom ett fåtal billar måste billarna gå ganska djupt i marken för att hela gödseln mängden skulle rymmas i billfläran.

Då de här beskrivna negativa faktorerna sammanfaller kunde det i värsta fall betyda en minskad avkastning av vallen tillsammans med en sämre kvalitet av ensilage. Då man trots allt ville basera utfodring av kreatur på ensilage, fanns det ett väl motiverad behov att utreda om det finns sådana behandlings- eller spridningsmetoder för flytgödsel, som kunde motverka de negativa verknings som användningen av kreaturgödsel kunde orsaka vid gödsling av ensilagevall. De spridningsmetoder som togs med i undersökningen var bredspredning som är allmäntast, slagspridning som en ny metod och inmyllning med billar som en känd men inte speciellt omtöcket metod. Som flytgödselns förbehandlingsmetoder valdes luftning och separering, i ekologisk odling har ju krävts luftning av flytgödsel. Luftning minskar mängden av de skadliga mikrober i flytgödseln som försämrar kvaliteten på ensilage (Heinonen–Tanski 1993). Separering av flytgödsel minskar å andra sidan behovet av de dyra lager som flytande gödsel kräver. Användning av den separerade flytande fraktionen kan dessutom minska ammoniakförlusterna (Frost et al. 1990).

MATERIAL OCH METODER

för flyt och handelsgödsel var 80 kg N/ha. I flytgödseln räknades mängden lösligt kväve. De flytgösledade rutorna gödslades inte mera med handelsgödsel i samband med gödslingen för andra skörden, men hela försöksområdet gödslades på våren enbart med handelsgödsel. I undersökningsen inrättade man sig enbart på vallens andra skörd därför att markens bårformåga är på våren vid gödslingen för första skörd generellt otillräcklig.

Skördens från försöksrutorna börjades med rundbalare i ensilagestadium. Vid balningen tillsattes ensileringsmedel (AIV 2, 5 l/t). Balarna lagrades utomhus. Fodrens kemiska sammansättning och ensileringskvalitet analyserades ur representativa prov, vilka togs efter tre månaders lagringstid. Till sist utförades fodren åt slaktntöt för att konstatera eventuella skillnader i smaklighet.

RESULTAT OCH DISKUSSION

Vallens torrsubstansskörd och kvävegödslingens nyttjande grad

Separering av flytgödseln delade gödseln i torr- och vätskefraktioner. Den mängd av den flytande fraktionen som spreds i försöket var 85 % av den ursprungliga flytgödselmängden. Vätskefraktionens torrsubstanshalt var 40 % och fosforhalten 23 % mindre men kalihalten däremot 8 % högre än i den obehandlade flytgödseln. Vätskefraktionens innehåll av lösligt kväve avvek däremot inte från den obehandlade flytgödseln. Luftning av gödseln minskade liksom separeringen något torrsubstanshalten, men luftningen minskade dessutom också gödselns kvävehalt (-11%). Detta berodde uppenbart på att kväve avdunstade i form av ammoniak under luftningen.

Vallens avkastning var under alla skördeår god. Avkastningen av vallarna varierade under de olika försöksåren beroende på väderleksfaktorerna och skillnaderna i skördemängd mellan de olika gödslingsmetoderna var inte statistiskt signifikativa (TABELL 1).

Utnyttjandet av det kväve som använts i gödslingen klarlades genom att mätta ammoniakförlusten under spridningen av flytgödseln och också genom att mätta kvävets skenbara nyttjande grad. Den senare mätningen utfördes så att från de flyt- och handelsgödsledes rutornas kväveskörd minskades de egödslade rutornas kväveskörd och skillnaden man fick delades med kvävebägrad som används i gödslingen. Kvävets synliga utnyttjande grad var bättre (P = 0,01) med handelsgödsel än med flytgödsel (TABELL 1). Kvävets utnyttjande grad i flytgödslingen förbättrades genom inmällning och försämrades genom luftning före spridning. Både dessa effekter berodde på att en del av flytgödselns kväve avdunstade relativt snabbt i form av ammoniak. Luftning ökade och myrning minskade klart avdunstningen av kväve från flytgödseln. Det fanns likaväl inte något klart samband mellan gödselns ammoniakförkortande och vallens avkastning vilket tolkades så att den kvävebärad som växterna hade tillgång till inte i första hand begränsade vallens skördnivå. Eftersom försöken utfördes på torvmark, är det sannolikt att kväve som mineraliserats ur marken kompenserade kväveförlusterna.

Fodrets sammansättning och kvalitet

Flytgödseln ökade klart vallens askhalt. Det berodde på att de flytgösledade rutorna fick rikligare med andra näringsämnen än kväve. T ex innehöll flytgödseln kali in medeltal cirka 170 kg/ha medan handelsgödseln innehöll endast 36 kg/ha. Den större mängd kali som de flytgösledade rutorna fick ökade som väntat vallens kaliuminhåll, men denna steg inte så högt att den skulle ha varit skadlig för djuren i utfodringen.

Flytgödslingen sänkte i medeltal något vallens råproteinhalt. Vallens råproteinhalt såg ut att stiga när flytgödseln myllrades ner. Det berodde antagligen på att avdunstningen av kväve från den nermyllade gödseln var mindre än med de övriga spridningarna.
Vallens olika gödsling och dess inverkan på fodrets sammansättning hade ganska liten betydelse. Det syntes bl a i att foder från de olika gödslingsleden hade en smålbart som inte nämnvärt avvek från varandra.

TABELL 1. Flytgodöjselns olika spridningssätt och behandlingsmetoder samt handelsgodöjselns inverkan på ensilagevalens torrsubstanskord, sammansättning samt ensilagekvalitet. Forsök gjordes i Ruukki åren 1995-97. Skillnader i medeltalen för de olika gödslingsleden är statistiskt signifikant (P<0,05) endast om medeltalet är utmärkt med skild hänvisning. (a, b, c)

<table>
<thead>
<tr>
<th>Spridningsmetod</th>
<th>Behandlingsmetod</th>
<th>NPK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breds. Slangs. Myllning</td>
<td>Luftad</td>
</tr>
<tr>
<td>1. Gödsling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flytgodöisel, t/ha</td>
<td>50 47 49</td>
<td>50 49</td>
</tr>
<tr>
<td>Kväve, kg/ha</td>
<td>102 96 102</td>
<td>89 99</td>
</tr>
<tr>
<td>Fosfor, kg/ha</td>
<td>36 34 36</td>
<td>37 28</td>
</tr>
<tr>
<td>Kalium, kg/ha</td>
<td>171 162 171</td>
<td>158 183</td>
</tr>
</tbody>
</table>

2. Skörd, kg/ha	4095 4601 4157	4033 4246	4370
Torr substans			
Kväve	23\(^{b}\) 29\(^{b}\) 36\(^{a}\)	19\(^{b}\) 24\(^{b}\)	33\(^{a}\)
Ammoniak avdunning, % av (löslig)kväve	46 32 0,7	60 43	icke måttad
Kväveffektivitet, %	22 31 35	20 25	41

3. Grödans kemiska sammansättning	244 250 237	254 250	264
Torr substans, g/kg			
I torr substans, g/kg			
Aska	72\(^{a}\) 74\(^{a}\) 81\(^{b}\)	73\(^{a}\) 69\(^{a}\)	60\(^{c}\)
Fosfor	2,99 2,94 2,82	2,87 2,82	2,75
Kalium	28,53\(^{a}\) 29,35\(^{a}\) 29,64\(^{a}\)	27,80\(^{a}\) 27,57\(^{a}\)	20,18\(^{b}\)
Råprotein	128\(^{b}\) 126\(^{c}\) 151\(^{b}\)	124\(^{b}\) 129\(^{c}\)	139\(^{b}\)
Råfiber	284 291 286	291 282	293
D-värde	662 658 662	661 664	662

4. Vallfodrets kemisk sammansättning och kvalitet			
pH	4,12 4,24 4,27	4,13 4,31	4,25
Mjölksyra	44 41 47	44 41	38
Ättsyra	7 8 7	6 8	5
Klostrid sporor			
LOG CFU/g	3,36 2,99 3,17	3,28 2,69	1,46

Fodrens pH-värden från flytgodöslade och handelsgodöslade rutor avvek inte statistiskt säkert från varandra. Flytgodöslingen verkade dock något ha ökat ensilagens jäsning därför att de flytgodöslade fodrens mjölk- och ättsyrahalter var något högre än de handelsgodöslade. Användningen av flytgodösel ökade klart mängden av smörsyrasporer i fodret, men den stora variationen i mängden smörsyrasporer mellan de olika foder gjorde att skillnaden inte var statistisk säker. På basen av resultaten verkar det som om flytgodöslens slangspridning och användning av separerad godsel skulle minska de från godseln härtammande smörsyrasporernas transport till fodret. Ökningen av smörsyrasporerna försämrar i första hand ensilagens hygieniska kvalitet men sporernas omvandling till förökningdugliga smörsyrbakterier kan kännbart öka ensileringsförlusterna och försämra fodrets smaklighet. Mellan de olika foder kunde i
alla fall inte konstateras nämndes skillnader i smaklighet när foden i slutet av försöket utförades till växande tjurar. Ensileringen av foden lyckades synbarligen så bra att smörssyrjäsningen blev betydelselös även om halten av smörssyrasporer var förhöjd i foden.

SLUTSATSER

1. Separering av flytgödseln var en angenämare behandlingsmetod än luftning då den kraftigare minskade gödselns torrsubstanshalt vilket i sin tur förbättrade vätskefraktionens konsistens och minskade gödselns fosforhalt. Luftning av gödseln förbättrade något dess hygieniska kvalitet men förbättrade inte ensilages kvalitet. Luftningen ökade gödselns kväveförluster både vid luftningen och i samband med spridningen.

2. Avkastningen av ensilagevallens andra skörd sjönk inte även om vallen gödslades enbart med flytgödsel. För att minska på kväveförlusterna lönar det sig att sprida gödseln antingen med slangspridare eller mylla den i stället för den traditionella bredspridningen. En förbättring av kvävets beräknade ytntjandegrad höjde i alla fall inte vallens avkastning.

3. Flytgödslingen ökade otvivelaktigt ensilages smörssyrerhalt. En flytgödslad ensilagevall bör ensileras speciellt omsorgsfullt för att inte smörssyrasporerna ska föröka sig i fodret under lagringen.

REFERENSER

Ny syn på kväve i mark och växter: växter kan nyttja organiskt kväve i marken som kvävekälla

Kerstin Huss-Danell¹, Peter Högberg² och Torgny Näsholm³

¹Institutionen för norrländsk jordbruksvetenskap, Avd. för växtodling, SLU, 904 03 Umeå
²Institutionen för skogsekologi, Avd. för markklära, SLU, 901 83 Umeå
³Institutionen för skoglig genetik och växtfysiologi, SLU, 901 83 Umeå

Växter kan nyttja oorganiskt kväve

Det är allmänt känt att växter tar upp oorganiskt kväve i form av ammoniumjoner (NH₄⁺) och (NO₃⁻) från markvätskan (Tabell 1). Möjligheten att nyttja luftens kvävgas (N₂) som kvävekälla är begränsad till de fåtal bakterier som har kvävefixeringsenzymet nitrogenas och därmed kan reducera kvävgas till ammonium. Genom att leva i symbios med kvävefixerande bakterier kan växter indirekt nyttja N₂ som kvävekälla. Så gör balväxter som bildar rotknölar när rötterna infekterats av Rhizobium och aktinorhizaväxter (t ex al, havtorn) som bildar rotknölar då Frankia infekterar rötterna (Huss-Danell 1997).

Markens kväve domineras av organiskt kväve

Om man bortser från markluftens N₂ så finns det allra mesta av markens kväve i organisk form. Av detta finns en mindre del i levande växttrötter, markmikroorganismer och markdjur. Den största delen organiskt markkväve är rester av växter, mikroorganismer och djur. Resterna är i många olika stadier av nerbrytning och kvävet finns i en skala från komplicerade kemiska ämnen, som bryts ner mycket sakta, till enkla och lätt nerbrytbara ämnen såsom proteiner och aminosyror. I många jordar har markvätskan ungefär lika hög koncentration av aminosyror som av ammonium och nitrat.

Kan växter ta upp organiskt kväve från marken?

Växter kan ta upp organiskt kväve från marken!

Med hjälp av dubbel isotopmärkning av en aminosyra (glycin, innehållande 15N och 13C), väl avvägda försöksstarter samt isotopanalyser (masspektrometri) med hög känslighet var det möjligt att påvisa att aminosyraupttag kan ske i skogsmark (Näsholm et al. 1998). De studerade arterna representerar de olika mykorrhizatyperna: barrträd med ektomykorrhiza, blåbär med ericoid mykorrhiza samt krustätel med arbuskulär mykorizza. Med liknande teknik har vi nu visat att jordbruksväxter kan ta upp organiskt kväve ur markvätskan (Näsholm, Huss-Danell & Högborg 2000). Timotej, rödklöver och alsikeklöver samt smörblomma ingick i försöket. Alla fyra arterna tog upp 15N tillfört som endera 15NH$_4$Cl, Na15NO$_3$ eller U$^{-13}$C$_2$-15N-glycin. Eftersom glycinen även var märkt med 13C kunde vi beräkna att minst 19-23 % av det 15N som togs upp från tillfört glycine hade tagits upp i form av intakt glycine, d v s hade inte mineraliserats till ammonium eller nitrat innan det togs upp av växten.

Ny kunskap, nytt perspektiv

Det faktum att växter kan ta upp organiskt kväve ur jordbruksmark (Näsholm, Huss-Danell & Högborg 2000) ger oss ett nytt perspektiv på kvävets omsättning i ett mark-växtsystem! Sätt ur växtnäringssynpunkt innehåller kvävets kretslopp flera förflyttningssystem: ammonium kan läggas fast i mineraler (ammoniumfixerar); ammonium kan förlovas till atmosfären i form av amoniumsäk; överskott av nitrat kan förlovas genom urlakning till vattendrag; nitrat kan genom denitrifikation förlovas i form av gaser (N$_2$O och N$_2$) till atmosfären. Om växter nyttjar mer organiskt kväve, skulle då mineraliseringen minska och därmed risken för överskott av nitrat och ammonium i marken, eller innebär det att nya jämviktsförhållanden uppstår mellan kväveformer i marken, kväveuptag hos växter och hos mikrober? Vilka faktorer i odlingsmiljön är viktiga för upptag av organiskt kväve? Finns det skillnader mellan arter? Finns det skillnader mellan sorter? Finns det skillnader mellan olika utvecklingsstadien hos en art? Frågor av denna typ är relevanta bland annat i samband med begreppet samodling (biodiversitet), nyttjande av stallgodsel, gröngödsling samt ekologisk odling.

Litteratur:

ammonium och nitrat:

"I marken och vattnet finns oorganiskt kväve i form av nitrat- och ammoniumjoner. Alger och gröna växter utnyttjar dem för att bilda proteiner och andra kväverika organiska föreningar." (Karlsson et al. 1994)

"Nitrate and ammonium are the major sources of inorganic nitrogen taken up by the roots of higher plants." (Marschner 1995, p. 231)

"Plant roots take up N from the soil solution principally as nitrate (NO₃⁻) and NH₄⁺ ions."
(Brady & Well 1999)

"Higher plants absorb and use both ammonium and nitrate forms of nitrogen from soils."
(Loomis & Connor 1992)

"Most plants are able to assimilate either NH₄⁺ or NO₃⁻, depending on their relative availability in the soil." (Hopkins 1995)

"The ammonium and nitrate that are released through decomposition of soil organic matter become the object of intense competition among plants and microorganisms." (Taiz & Zeiger 1998)

"Higher plants, except those depending on symbiotic fixation, absorb almost all their N as nitrate and ammonium ions through the roots. Urea and amino acids can also be absorbed by plant roots but, because these compounds are converted rapidly to ammonium by soil microorganisms, their uptake as intact molecules is normally slight." (Whitehead 1995)

ammonium och nitrat, samt (antydan om) organiskt kväve:

"Two major ionic forms of nitrogen are absorbed from soils: nitrate (NO₃⁻) and ammonium (NH₄⁺). Even though soil amino acids can be absorbed and metabolized by plants, these and other more complex nitrogen compounds contribute little to the plant’s nitrogen nutrition in a direct way. They are, however, of great importance as a nitrogen reservoir from which NH₄⁺ and NO₃⁻ arise." (Salisbury & Ross 1992)

"In adaptation to nitrogen limited ecosystems in cold climates …… uptake of amino acids as in the case of nonmycorrhizal arctic sedge (Eriophorum vaginatum)." (Marschner 1995, p. 597)

"N tas upp som NO₃⁻ och NH₄⁺ (samt i viss utsträckning som aminosyror)." (Huss-Danell 2000)

© K Huss-Danell Feb 2000
Miljöcertifiering

Föredrag vid 10:e regionala lantbrukskonferensen onsdagen den 15 mars kl 13.00
av Gunnar Brundin, Svensk Maskinprovning

Det har blivit allt viktigare för företag att kunna visa upp en tydlig miljöprofil och det
ställs allt högre miljökrav från kunder, myndigheter, finansiärer och övriga aktörer i
samhället. Allt ofta måste företag kunna uppvisa ett certifierat ledningssystem enligt ISO
14001 eller EMAS.

Innehåll:
- Kort historik om miljöcertifieringens utveckling i olika länder
- Miljöledningssystemens roll i utvecklingen mot ett uthålligt samhälle.
- Varför ska ett företag miljöcertifiera sig?
- Kort om innehållet i ISO 14001-standarden och EMAS-förordningen –
skillnader och likheter.
- Hur byggs ett miljöledningssystem upp?
 Miljöutredning – Miljöpolicy – Miljömål – Miljöprogram – Revision –
 Ledningens ansvar – Ständig förbättring
- Avslutande diskussion
Miljöanpassade hydrauloljor

SMP Svensk Maskinprovning AB

Det nu pågående projektet styrs av en projektgrupp med 16 deltagande företag. Deltagarna kommer från skogsbolag, oljebolag, maskin- och komponenttillverkare, samt andra användare.

Projektgruppen samlas regelbundet då aktuella problem, nyheter och provningsresultat redovisas och behandlas.

Projekten har omfattat frågeställningar som t.ex.

- Vad är en miljöanpassad olja?
- Har oljan andra egenskaper än mineraloljor?
- Hur fungerar dessa oljor tekniskt jämfört med traditionella mineraloljor?
- Vilka kan ”miljöanpassa” sin maskin och vad bör man ta hänsyn till?

Exempel på erhållna resultat

- De flesta miljöanpassade oljorna är naturliga eller syntetiska estrar och har en växtolja som grundravara.
- Tekniska, fysikaliska och kemiska egenskaper skiller sig i flera avseenden. Oxidations- och hydrolytiska stabiliteten varierar relativt mycket hos de miljöanpassade hydrauloljorna på svenska marknaden.
- Det finns idag bra miljöanpassade oljor, och erfarenheter av maskiner som gått både 5000 och 10000 timmar i skogsmaskiner utan problem eller oljebyte.
- En del problem kvarstår när det gäller högt vatten- och luftinnehåll. De flesta problemen beror dock på egenskaper och fel i hydraulsystemen som gör att vatten och luft sugs in i systemen.

Den som vill veta mer!

Resultaten från projektomgångarna finns publicerade i rapporter
"Passar miljöanpassad olja utan teknikanpassning?", Dnr 30:28-90,
"Miljöanpassade hydrauloljor 1995-1997, PU041/95, juni 1997,

00-02-22, Louise Johansson, SMP Svensk Maskinprovning, Box 4053, 90403 Umeå
Tel 090-778363, Fax 090-136562, e-mail louise.johansson@ SMP.SP.SE
Effekter på rörflen av angrepp av rörlensgallmyggen

Sven Hellqvist
SLU, inst. f. norrländsk jordbruksvetenskap
avd. f. växtskydd

Inledning

Något om biologin

Gallmyggans utbredning
E. phalaridis har i odlad rörflen hittills endast påträffats i Vojakkala. I vilda rörlensbestånd längs havs- och älvsstränder har arten påträffats på flera lokaler från Normjöle S Umeå i söder till Kukkolaforsen i Tornedalen i norr. Utanför detta område är arten inte känt men inte heller närmare eftersökt.

Effekter på rörflen
Larverna orsakar ingen typisk gallbildning men angreppet hämmer cellulosainlagringen i stråets cellväggar. Där larverna suger förblir därför stråets cellväggar tunna och stråten blir mjukt. Vid angrepp av ett fåtal larver blir endast delar av stråets omkrets mjukt och stråten kan då fortfarande ha tillräcklig stadga för att stå upprätt. År angreppet omfattande med många larver blir strået mjukt ”runtom” och viker sig lätt i angreppsstället. Vid mycket kraftiga angrepp kan hela rörlensbeståndet lägga sig i mitten av augusti.

Måttligt angripna stråns fortsätter att växa och kan nå i stort sett normal längd. Vid mycket kraftiga angrepp, med angrepp på flera ledstycken på samma skott, blir dock skottlängden kortare än normalt.
Angrepp och skördeutveckling i Vojakkala
I det försöksfält (R8-533) i Vojakkala där gallmyggen först upptäcktes var angreppen mycket omfattande både 1996, -97 och -98. Under alla dessa tre år var i stort sett samtliga fertila (blommande) skott angripna och i genomsnitt var, under varje år, mer än två internoder per skott angripna. Angrepp av gallmyggen förekom även i ett annat försöksfält (R8-536) i Vojakkala (beläget ca 500 m söder om föregående), men angreppen i det fältet förblev jämförelsevis måttliga (som mest, 1998, i medeltal 0,3 angripna internoder per skott).

Fig. 1. Relativa rörlensskörder (skörd 1995 = 100) åren 1991 - 1998 i försöksserien R8-533. Medelvärden av kvävegivorna 100 och 200 kg/ha. **A. Vårskörd.** **B. Höstskörd.** I A visas även skörd åren 1995 - 1998 för R8-536 i Vojakkala (medelvärde av kvävegivorna 100 och 150 kg/ha). R8-533 i Vojakkala har varit mycket kraftigt angripen av gallmyggen *Epicalamus phalaridis* åren 1996 - 1998. I övriga fält har angreppen varit ofeintliga eller obetydliga.

Att skördarna minskat mer vid vårskörd än vid höstskörd kan bero på att skördeförlusterna blir större vid vårskörd. Gällmygeangripna strån är sköra och bryts lätt av vid angreppssstållena. Detta försvårar skördern och kan medföra att en större andel av materialet blir kvar i fält.

De data som visas i figurerna baseras på den totala torrsubstansskördern. I det kraftigt angripna fältet i Vojakkala har rörlfensbestånden försvagats sedan gallmygeangreppet upptäcktes. Förekomsten av ogrässlaring, smörbränsla och kvickrot har ökat i fältet. I samband med skördern har en bedömning gjorts av hur stor andel av beståndet som utgörs av rörlfen. Dessa bedömningar är svåra att göra och data blir därför osäkra. Enligt bedömningarna har dock andelen rörlfen minskat kraftigt, i vissa rutor till mindre än halften. Innan angreppen upptäcktes bedömdes bestånden bestäms nästan 100% av rörlfen. Den verkliga rörlfensskördern i fältet har således minskat ännu mer än vad som visas i figurerna.

Gallmyggeangreppets inverkan på fiberkvalitet

En fiberanalyser gjordes för att undersöka om angrepp av gallmyggor påverkar fiberkvaliteten i rörlfen. Prover för analyser togs i maj 1997 i Vojakkala, både i det kraftigt angripna fältet och i ett fält med ringa gallmyggeangrepp. Samma rörlfensort odelades i båda fält. Proverna delades först upp i en strådel (med endast internoder) och en rejektdel (med bladslidor, vippor och ledknutar). Ingen ytterligare fraktionering gjordes av strådeln från det icke angripna fältet (I) medan strådelen från det angripna fältet delades upp i fyra delar: ej angripna internoder (II); ej angripna delar av angripna internoder (III); gränszon mellan angripna och icke angripna delar (IV) samt kraftigt angripna delar av angripna internoder (V). Proverna analyserades var för sig med avseende på kokutbyte och fiberlängdsförhållning.

Analysen visade att provslag I, II och III hade nästan identiska egenskaper och ingen skillnad mellan dem kunde påvisas. Provslag V däremot gav en massa med dåligt utbyte och hög andel finmaterial samt korta fiber. Egenskaperna hos provslag IV var intermediära.
Vid massatillverkning bör en fraktionering av råvaran göras innan den går in i processen. Fraktioneringen innebär att icke önskvärda delar av materialet (främst blad och bladslidor) avlägsnas. Då det gallmyggeangripna rörlens materialet är skört är det troligt att de angripna delarna kan avlägsnas redan vid fraktioneringen. Eftersom de icke angripna delarna av gallmyggeangripna rörlen har samma fiberegenskaper som helt angripen rörlen bör därför även rörlen från gallmyggeangripna fält kunna användas som fiberråvara. År angreppen stora försvarer dock en större andel än normalt vid den inledande fraktioneringen. Ett större problem är att kraftiga gallmyggeangrepp kan öka ogräsförekomsten. Andra växtarter kommer då att finnas med i skördens och i vilken omfattning sådana påverkar kvaliteten eller kan avlägsnas vid fraktioneringen är inte undersökt.

Ska vi vara oroade?
Utvecklingen i Vojakkala visar att kraftiga angrepp av *E. phalaridis* kan ha en tydligt negativ inverkan på rörlensskördarna. Det är dock hittills bara i ett enda fält som angrepp av gallmyggen nått så höga nivåer att skördens påverkas och gallmyggen har överhuvudtaget inte påträffats i andra odlade rörlensfält än de i Vojakkala. Åtminstone i norra Norrlands kustland är dock gallmyggen vitt spridd och en vidare spridning till fler odlade fält är trolig om rörlensodlingen ökar i omfattning.

En möjlig orsak till att angreppet nått sådan omfattning som det gjort i Vojakkala är att rörlensskördens har en selektivt negativ inverkan på gallmyggans naturliga fiender. En parasitstekelart som parasiterar gallmyggelarver har påträffats på samtliga lokaler med vildväxande rörlen där gallmyggen påträffats och på vissa av dessa lokaler har andelen parasiterade larver varit hög, >50%. Denna parasitstekel övervivnar dock innanför bladslidorna på rörlen och kommer att bortföras från fältet i samband med skördens. Man kan alltså inte räkna med att denna art ska kunna reglera gallmyggepopulationerna i odlade fält.

Något försök med kemisk bekämpning av gallmyggen har ännu inte genomförts. Antagligen är dock gallmyggen relativt lätt att bekämpa under den tid äggläggningen pågår. Äggsamlingarna är väl synliga och det bör vara möjligt att bedöma bekämpningsbehovet genom att räkna antalet äggsamlingar. Troligen kan tröskeln för bekämpning sättas relativt högt eftersom det sannolikt först är vid mycket kraftiga angrepp som skördens påverkas negativt. Av olika skäl vill man dock helst undvika kemisk bekämpning i energigrödor. Ett alternativt sätt att bekämpa gallmyggen är att odla resistenta rörlenssorter. Det finns en påtaglig variation mellan olika rörlensgenotyper i mottaglighet för gallmyggen vilket skulle kunna utnyttjas i växtförädlingen.

Tack
Studier av gallmyggen på rörlen har skett med stöd från Stiftelsen Lantbruksforskning, NUTEK och Vattenfall inom Ramprogram Stråbränslen. Staffan Landström (NJV) har bidragit med skördedata och Michael Finell (NJV) har utfört fiberanalysen.

Referenser
Rörflen som fiberråvara
Föredrag vid den 10:e regionala lantbrukskonferensen för norra Sverige

Michael Finell
SLU Röbäcksdalen, Umeå

Bakgrund

Förutsättningar
- Rörflenmassa har egenskaper som gör den lämplig i produkter som kräver goda tryckbarhetsegenskaper som t.ex. finpapper och white-top liner. Rörflenmassa kan ersätta björkmassa i denna typ av produkter.
- En nyligen gjord inventering av nedlagd åkermark, överskottss- och trädessarealer samt utbrutna tvåtäcker i Norrbottens län visar att det finns 25-30 000 ha potentiell areal för rörflen sodling (figur 1).

Figur 1. Fördelning av den potentiella areaalen för rörflen sodling i Norrbottens län, i form av nedlagd åkermark i lättarbetat skick, trädess- och överskottssarealer. Totalt c. 25 000 ha. (Källa, Sjöström 1999).
Industriförsök
I juni 1999 tillverkades rörlensmassa i industriell skala för första gången i världen. Industriprovet utfördes vid AssiDomäns fabrik i Karlsborg, Kalix.

Figur 2. Schema över fraktioneringsanläggning UMS A/S.

Fraktionering
Vid fraktioneringen (figur 2) avskiljs blad och andra icke önskvärda delar från gräset. Endast den rena internodfraktionen (rörlensflis) används som råvara för massatillverkning. Fraktioneringen kan jämföras med barkning och flisning av ved. 30-40% av materialet avlägsnas vid fraktioneringen. Den del som inte används för massatillverkning kan användas som biobränsle.

Brickettering
Om fraktioneringsanläggningen inte är integrerad med massafabriken bör den fraktionerade fiberråvaran komprimeras för att underlätta hantering, transport och lagring. Brickettering kan vara ett alternativ. I tabell 1 visas en jämförelse mellan transport av färsk björkved och bricketterad rörlen. Intressant är att man kan transporterar två gånger mer (räknat som sulfatmassa) till fabriken per bil med bricketterad rörlen jämfört med björkved.

Tabell 1. Transportkapacitet för rörlen vid olika komprimeringsgrader jämförda med björk
Kokförsök i full skala
Fraktionerad och bricketterad rörflen kokades i sågspånskokaren vid AssiDomäns Karlsborgsfabrik. Totalt producerades omkring 10 ton rörflensmassa. Kokningen i sågspånskokaren gick bra och målet på kappa 8 nåddes snabbt. De höga kappatalen (figur 3) i början av kokförsöket berodde på att en del sågspån fortfarande fanns kvar i kokaren. Kokförsöket varade i omkring 8 timmar varefter föröket avbröts på grund av problem med en matningskruv mellan spånsilikon och kokaren.

Figur 3. Kappatalsvariation vid kokning av rörflen i sågspånskokaren vid AssiDomän Karlsborg

Den producerade rörflensmassan transporterades med tankbil till AssiDomän Kraftliner i Piteå för analys och tester i laboratorieskala. Tabell 2 visar rörflensmassans egenskaper jämförd med björkmassa.

Tabell 2. Egenskaper för oblekt rörflensmassa tillverkad i industriell skala jämförd med syrgasblekt björkmassa

<table>
<thead>
<tr>
<th>Massaegenskaper</th>
<th>Rörflen</th>
<th>Björk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiberlängd, mm</td>
<td>0.76</td>
<td>0.90</td>
</tr>
<tr>
<td>Avvattning, °SR</td>
<td>20.7</td>
<td>21.5</td>
</tr>
<tr>
<td>Ljushet, ISO%</td>
<td>45.8</td>
<td>52.1</td>
</tr>
<tr>
<td>Ljusspridningskoefficient, m²/kg</td>
<td>39.5</td>
<td>28.7</td>
</tr>
<tr>
<td>Opacitet (60 g/m²), %</td>
<td>97.5</td>
<td>85.7</td>
</tr>
<tr>
<td>Densitet, kg/m³</td>
<td>588</td>
<td>697</td>
</tr>
<tr>
<td>Dragindex, Nm/g</td>
<td>49.1</td>
<td>62.7</td>
</tr>
<tr>
<td>Rivindex, Nm/g</td>
<td>7.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Ekonomi
Det mest realistiska sättet att starta upp produktion av rörfensmassa är att bygga om en sågspånskokare. Konsultbolaget Jaakko Pöyry Oy har räknat att en ombyggnad skulle innebära en kostnad på omkring 30 M SEK enligt tabell 3. En sågspånskokare med en kapacitet på 10 000-15 000 ton rörfensmassa per år kräver en rörfensodling på 3 000-5 000 ha.

Tabell 3. Uppskattade kostnader för ombyggnad av en sågspånslinje till en rörfenslinje

<table>
<thead>
<tr>
<th>Kostnad</th>
<th>M SEK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lager för balar</td>
<td>0,9</td>
</tr>
<tr>
<td>Fraktionering</td>
<td>8,6</td>
</tr>
<tr>
<td>Ombyggnad av inmatning till kokare</td>
<td>2,6</td>
</tr>
<tr>
<td>Kiselutfällningsanläggning</td>
<td>9,4</td>
</tr>
<tr>
<td>Indirekta kostnader</td>
<td>3,4</td>
</tr>
<tr>
<td>Oförrutsedda kostnader</td>
<td>3,4</td>
</tr>
<tr>
<td>Totala kostnader</td>
<td>28,3</td>
</tr>
</tbody>
</table>

Sammanfattning
Vårskörda och fraktionerad rörflen är en fiberråvara som kan konkurrera både ekonomiskt och kvalitetsmässigt med björk. För produkter som finpapper och ytstift på liner har rörfensmassa en del egenskaper som är mycket bättre än för björkmassa. Den areal i form av trädes- och överkottssarealer som finns i Norrbottens län torde mycket väl räcka till för att förse en eventuell rörfenslinje med rävara.

Referenser
- Paavilainen, L., Tulppala, J., Finell, M. and Rehnberg, O. Reed canary grass pulp produced on mill scale. 1999 TAPPI Pulping Conference, Orlando, FL, USA
Sätider i rågvetes

Lars Ericson
SLU, Institutionen för norrländsk jordbruksvetenskap
Norra försöksdistriktet
Box 4097
904 03 Umeå
Lars.Ericson@njv.slu.se

Bakgrund

En annan intressant tillämpning är att så höstsäden på våren, eventuellt i blandning med baljväxter, så att man kan unyttja grönmassan till foder under insåningsåret och sedan få en spannmålsskord år 2.

Material och metoder

Ett fältförsök placerades på vardera av SLUs forskningsstationer i norra Sverige; Ås i Jämtlands län, Örje i Västernorrlands län, Rödbäcksdalen i Västerbottens län, samt Öjebyn i Norrbottens län. Försöken genomfördes enligt nedanstående plan.
Försöksled

1 Normal utsädesmängd (4,5 milj grobara kärnor/ha)
2 Låg utsädesmängd (3,0 milj grobara kärnor/ha)

led Såtid
A Våren
B Våren
C Våren i blandning med ärt
D 1 juli
E 15 juli
F 1 augusti
G 10 augusti
H 20 augusti
I 1 september

Avslagning/skörd på hösten
Skörd som grönfoder

Försöksdesign

Planen har genomförts som ett split-plot försök där utsädesmängden utgör storruta och de olika såtiderna smårutor, med fyra samrutor.

Resultat och diskussion

Grönmassa år 1

Skördens av grönmassa i led B och C blev under insäsningsåret 1998 relativt liten, då vi på grund av förseningar med leveransen av utsäde inte kunde påbörja såddens förrän i slutet av juni. Skördarna redovisas i tabell 1. Årtandelen var relativt stor och som ses av resultatet har årtorna också bidragit till att i stort sett förbättra avkastningen på samtliga platser.

Tabell 1. Skörd av grönmassa (kg ts/ha) 1998 i Offer, Ås, Röbäcksdalen och Öjebyn.

<table>
<thead>
<tr>
<th>Plats</th>
<th>Led</th>
<th>Skörd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Röbäcksdalen</td>
<td>Rågveté</td>
<td>1321</td>
</tr>
<tr>
<td></td>
<td>Rågveté+ärt</td>
<td>3212</td>
</tr>
<tr>
<td>Offer</td>
<td>Rågveté</td>
<td>2346</td>
</tr>
<tr>
<td></td>
<td>Rågveté+ärt</td>
<td>3589</td>
</tr>
<tr>
<td>Öjebyn</td>
<td>Rågveté</td>
<td>2086</td>
</tr>
<tr>
<td></td>
<td>Rågveté+ärt</td>
<td>4134</td>
</tr>
</tbody>
</table>

Kärnskörd är 2

Resultaten från de fyra försöksplatserna finns redovisade i figurerna 1-4. I Ås har skördens minskat med senare skördetid, medan effekten på alla övriga platser harit den motsatta. Särskilt tydligt var effekten i Öjebyn och Röbäcksdalen, där samtliga såtider för mitten av juli givit i stort sett ingen skörd alls. Orsaken till de stora skillnaderna i skörd på Offer, Röbäcksdalen och Öjebyn tycks i första hand vara starka angrepp av fusarium. I Röbäcksdalen skedde också en relativt stor utvintring pga isbränna.
Denna drabbade samtliga led lika på de lägst belägna delarna av parcelerna, varför vi inte räknade med de ytorna i skörden. Skillnaderna i skörd här kan därför också här främst hänföras till svampangrepp. Några skillnader mellan de olika utsädesmängderna kunde inte konstateras, varför resultatet redovisas för de olika sätiderna oberoende av utsädesmängd.

![Kärna kg/ha](image)

Figur 1. Skörd av kärna (15% vh, kg/ha) i Öjebyn 1999. Staplar markerade med samma bokstav är inte signifikant skilda (Fisher's LSD-test p=0,05).
Figur 2. Skörd av kärna (15% vh, kg/ha) i Ås 1999. Staplar markerade med samma bokstav är inte signifikant skilda (Fisher’s LDS-test p=0,05).

Figur 3. Skörd av kärna (15% vh, kg/ha) i Offer1999. Staplar markerade med samma bokstav är inte signifikant skilda (Fisher’s LDS-test p=0,05).
Figur 4. Skörd av kärna (15% vh, kg/ha) i Röbäcksdalen 1999. Staplar markerade med samma bokstav är inte signifikant skilda (Fisher’s LDS-test p=0,05).

Vått spannmål på nätet

Hans Arvidsson
SLU, NJV, Avd. för lantbruksteknik, Box 4097, 904 03 UMEÅ
Tel. 090-786 94 50, Fax 090-13 65 62, E-post Hans.Arvidsson@njv.slu.se

"Vått spannmål" är ett Interregprojekt finansierat av EU, Länsstyrelsen i Västerbotten, Västerbottens läns Landsting och TE-centralen i Finland. Det har genomförts i samarbete mellan Sverige o Finland.

Projektet går ut på att undersöka ett vått system för spannmål. Skörd, lagring och utfodring sker vid 35% vh.

Fördelarna är:
- Tidigare skörd
- Längre skördeperiod över säsong och dygn
- Billigare tröskning
- Billigare lagring
- Mindre dammproblem
- Större möjligheter till annat sortsmaterial
- Större möjligheter till höstsåd

Projektet består av två huvuddelar:
- Sammanställning av den kunskap som finns inom området i en handbok.
- En kalkyl där man kan göra ett överslag på vad det skulle betyda för gården

Allt finns tillgängligt på nätet på adress:

http://www-wetgrain.slu.se

Handboken innehåller korta avsnitt om allt från sådd till produktion. Antingen läser man från början till slut eller går man in på översiktsbild och markerar önskat avsnitt.

Våtutfodring av våtlagrad spannmål

Hans Arvidsson
SLU, NJV, Avd. för lantbruksteknik, Box 4097, 904 03 UMEÅ
Tel. 090-786 94 50, Fax 090-13 65 62, E-post Hans_Arvidsson@njv.slu.se

"Våt spannmål" är ett Interregprojekt finansierat av EU, Länsstyrelsen i Västerbotten, Västerbottens läns Landsting och TE-centralen i Finland. Det har genomförts i samarbete mellan Sverige och Finland.

Projektet går ut på att undersöka ett vått system för spannmål. Skörd, lagring och utfodring skulle ske vid 35% vattenhalt (vh).

Som en del i detta projekt har en studie gjorts av möjligheten att använda våtutfodring för att utfödra spannmål ensilerad vid 35%vh.

Finska erfarenheter har givit att svin kan tillgodogöra sig spannmål som är ensilerat vid höga vattenhalter, däremot har man haft problem vid utfodring med våtutfodringsanläggning.

För att närmare studera detta har en försöksanläggning monterats upp. I denna har olika blandningar testats (olika vattenhalter vid inlagring av spannmålen, hel/krossad kärna och olika vattenhalt på den färdiga blandningen). Två typer av pumpar har använts (centrifugalpump och skruvpump).

Störst problem uppstod när blandningar med kärnor med låg lagringsvattenhalt provades. Den effekt som hade störst betydelse för pumpbarheten var blandningens torrsubstanshalt (ts) halt (hög ts svårare att pumpa). Dock var inte problemen större än att det borde fungera i praktisk drift med krossensilerad spannmål.

För att få bekräftelse på att det fungerar i praktisk drift pågår ett sådant försök ute hos en lantbrukare. De hitintills gjorda erfarenheterna är att det fungerar bra.

Den som vill veta mer om projektet kan gå in på projektets hemsida:

http://www-wetgrain.slu.se

Där finns en "handbok" sammanställd samt en kalkyl som ger en indikation om vad systemet skulle betyda ekonomiskt på den enskilda gården.
Passar våt spannmål in i ekologisk odling?

Ingvar Persson, Länsstyrelsen i Västerbottens län

Vilka fördelar förutom de som tidigare nämnts kan våt spannmål ha i en ekologisk odling?

Sådd
I den ekologiska odlingen borde motiven att skörda och lagra spannmålen våt vara större än i konventionell odling. Genom att unyttja växtsäsongen maximalt kan senare sorter användas än om de ska tröskas och torkas. Senare sorter har i regel en högre avkastning.

En annan anledning är att man i ekologisk odling i högre utsträckning använder blandsåd och i synnerhet ärt/korn, ärt/havre eller korn/ärt/havreblandingar. Spannmål och tröskadesblandingar mognar ojämnt och är mer svårtorkade och därför lämpar sig den våta skördetekniken väl.

Ogräs

Tröskning
En tidigare skörd på hösten kan öka utrymmet för en effektivare bekämpning av rotofrögräs. Normalt hinner man kanske bara en stubbearbetning men genom att tröskningen kommer igång kanske två veckor tidigare kan fältens kanske stubbearbetas en ytterligare gång innan plöjningen.

Utfodring
Tröskadesblandingar ökar möjligheterna att bedriva en animalieproduktion med högre andel av eget producerat foder och minimera inköp av ekologiskt godkända fodermedel samt den tillåtna mängd konventionellt odlad foder som får ingå i foderstaden. Köttgårdar skulle med ett bra grovfoder och spannmål med ärtinslag kunna vara helt självförsörjande på foder förutom tillskott av mineralfoder.
Symbios

Bill Hultman, SLU, Institutionen för norrländsk jordbruksvetenskap, Patrons Allé 10, 943 31 ÖJEBYN
Klöverröta, en allvarlig skadegörare.
En presentation av spridningsvägar och betydelse av klöverröta, *Sclerotinia trifoliorum* Erikss., i svenska vallar.

Helena Öhberg
SLU, Institutionen för norrländsk jordbruksvetenskap, avd. för växtskydd
Röbäcksdalen, Box 4097
90403 UMEÅ

Klöverröta är en svampsjukdom som drabbar rödkläver och andra leguminoser i tempererade områden. I Sverige räknas den som en utvintringssjukdom då den angriper, infekterar och dödar värdens under dess viloperiod. Skadorna förväxlas ofta med utvintringsskador orsakade av is eller vatten. Angreppens omfattning och betydelse är inte klarlagd.

Klöverröta orsakas av svampen *Sclerotinia trifoliorum* Erikss, en ascomycet som kan infektera värdväxten via mycel eller via sexuella ascosporer. Oavsett angreppssätt växer svampen in i värdens och i fallet med rödkläver söker den sig till sist ner i påroten. Där utnyttjar den klöverns näringsreserver, vilket skadar eller slutligen dödar klöverplantan.

På våren har en angriken klövervall rundade fläckar med döda klöverplantor i. I ytan hittar man spår av svampens grävda mycel och i anslutning till döda klöverplantor hittar man små, från början vit-gråa och mjuka till slutligen svarta, hård klumpar av svampens mycel, sklerotier, som utgör svampens vilkroppar. Dessa sklerotier kan överleva upp till åtta år i marken. Vilkropparna aktiveras igen på hösten, aningen genom att det börja växa ut nytt mycel från dem, eller genom att en eller flera, upp till 1 cm stora, brunaktiga, fruktrokappor, apothecier, bildas i markytan. Från dessa sprids ascosporer till intilliggande plantor eller områden med klöver.

I mitt doktorandprojekt ska jag studera variationen i populationerna av klöverröta samt dess spridningssätt i olika klimatområden. I kontrollerade experiment studeras samspellet mellan klöversort, svampisolat och infektionsstrategi. Resultaten ska utnyttjas för utveckling av förbättrade resistantestmetoder. Även skillnader i fältmässig resistens mellan olika klöversorter bestäms genom fältförsök på åtta olika platser i Sverige, i områden där problem med klöverröta tidigare konstaterats. Totalt 20 olika klöversorter ingår i försöken, såväl diploida som teraploida.

Detta doktorandprojekt är ett samarbete mellan SLU och Svalöf Weibull AB och är finansierat av SJFR.
Döfter hämmar Phoma-röta

Karin Forsberg
SLU/NJV, Avd. för växtskydd, Box 4097, S- 904 03 UMEÅ, SWEDEN

Vid institutionen för norrländsk jordbruksvetenskap, NJV, bedrivs sedan 1993 ett forskningsprojekt - finansierat av SLF, SJV och SJFR - vilket har som syfte att hitta nya, växtbaserade och kretsloppsvänliga bekämpningsmedel mot lagringspatogener hos bl a potatis. I huvudsak testar vi eteriska oljor från vanliga kryddörter. I den del av projektet som jag arbetar med ska vi försöka utröna vilka av ämnena i gasfasen hos oljorna som bidrar till bekämpningseffekten.

I den här redovisade undersökningen testades eteriska oljor från 10 olika växter mot *Phoma foveata in vitro*. Dill, kummin och morot från familjen Apiaceae (dockblomstriga och lavendel, basilika, timjan (av två olika kemotyper), grönmynta, pepparmynta och åkermynta från familjen Lamiaceae (kransblommiga).

Patogenen ympades på papper som placerades på odlingsmedium i petriskålar. Oljorna tillsattes på ett litet filterpapper i locket på petriskålen i en koncentrationen motsvarande 500 ppm (volym olja per volym luft ovanför odlingsmediet). Plattorna inkuberades upp och ner vid 10°C i 16 dygn, varefter behandlingen avbröts genom att papperet med patogenen flyttades till nytt odlingsmedium. Därefter räknades antal växande kolonier två gånger per vecka och effekten av oljan beräknades som tillväxt relativt obehandlad kontroll.

Försöket visade att samtliga oljor utom morot hade en fungistatisk effekt, d v s tillväxt av svampen hindrades så länge oljan var närvarande. Ingen av oljorna hade vid den här koncentrationen fungicid (svampdödande) effekt, utan svampen växte till i alla behandlingsled efter att exponeringen för oljan upphört. Tillväxten var dock hämmad av alla oljor, utom morot. Vid avläsning tre veckor efter avslutad behandling visade grönmynta och kummin bäst hämning, med en tillväxt på 15 resp 35% av kontrollens. Dill och de två timjan-arterna kom på andra plats, med tillväxter på mellan 51 och 74%, medan alla andra oljor då gav minimal eller ingen hämning, med tillväxter på mellan 92 och 100% relativt kontrollen.

Forage 2000 – Improving nutrient utilization in ruminant production systems
David Swain¹, Christer Öhlinsson², Jean Louis Peyraud³, Michael Abberton⁴, Ronald Zom⁵, and Kjell Martinsson⁶

¹Scottish Agric. College, Crichton Royal Farm, Dept. Food & Farming Systems, Midpark House, Bankend Road, Dumfries, Scotland, DG1 4SZ, UK.
²Danish Inst. Agric. Sci., Dept. Crop Phys. and Soil Sci., Research Centre Foulum, P.O. Box 50, 8830 Tjele, Denmark.
³Station de Recherches sur le Veau et le Porc, INRA, 35590 Saint Gilles, France
⁴IGER, Plant Breeding Dept., Aberystwyth, SY23 3EB, UK
⁵Dept. Cattle, Sheep and Horses, PR Lelystad, Runderweg 6, 8219 PK Lelystad, the Netherlands
⁶Dept. Agric. Res. for Northern Sweden, Swedish University of Agric. Sci., P.O. Box 4097, 904 03 Umeå, Sweden.

Abstract

This paper outlines a coordinated research project funded as an EU concerted action from 1998 to 2000. The overall objectives are to establish cooperation and integration of research strategies which evaluate the potential of plant breeding and the use of other plant species in ruminant production systems in Northern Europe and to reduce their environmental impact. The project is divided into five sub-groups, consisting of members from Denmark, England, France, Scotland, Sweden the Netherlands and Northern Ireland. The plant-breeding group identifies new selection criteria for forage crops. The plant production and conservation group studies and describes the potential of species for conservation and the management implications. The ruminant-plant interaction group concentrates on the relationship between ruminant intake and measurable forage characteristics. The ruminant supplementation group works on the optimization of supplementation strategies in grass- or silage-based diets. And the systems evaluation group catalogues existing models and sub-models. Expected outputs of the project are integrated and improved cooperation among private and public research institutes, identification and cataloguing of plant and animal data, description and impact of potential changes of plant-animal interactions, a website, progress- and conference reports, and framework for future EU-proposals.

Introduction

In most EU countries, research programmes are already studying the potential of various strategies to improve nutrient utilisation within ruminant production systems. There is a need, however, to improve communication, integrating research programmes to maximise their efficiency.

The objective of this concerted action has been to co-ordinate efforts among the disciplines of plant breeding, plant and animal production, forage conservation, and ruminant utilisation. Through a series of meetings, interested parties have identified current research strategies and strengths, discuss future priorities and formulate a framework to address these issues. Discussions have focussed around five sub-groups (plant-breeding, plant production and conservation, ruminant-plant interaction, ruminant supplementation and systems), however, as the project has developed this has lead to more general discussion between sub-groups fostering multidisciplinary output.

Plant-breeding

Two themes emerged from discussions within the plant breeding sub-group. The first is a need to respond to greater environmental awareness. Extensification and the development of varieties suited to reduced inputs need to be addressed within breeding programmes. Variable stocking rates within and between adjacent farms was noted as a particular challenge. Breeding morphological characters suited to lower inputs, quality factors (e.g. milk composition: altered levels of conjugated linoleic acid) and directly for more benign environmental impacts. A clear need was identified for studies on the cycling of nitrogen (mineralisation, inputs, leaching etc) and it can be affected by different species and varieties of forage grasses and legumes.
The second theme concerned evaluation and testing of new varieties. EU wide co-operation between breeders, testing agencies and the wider industry is required to ensure the methods used address the needs of the end user. This could involve the assembly of databases, the sharing of protocols and the development of agreed methods of evaluating traits relating to animal performance and environmental issues.

Plant production and conservation

Two key objectives were identified within this sub-group. Firstly to study and describe a range of potential conservation species and the management implications of their use, including time of harvest, and both inorganic and organic fertilizer application. Secondly being able to accurately describe the resultant feed.

Five important topics have been identified for further work, these are 1) nutrient use and nutrient budgets of forage at the micro- and macro scale; 2) forage management adapted to low-input conditions; 3) alternative forage use; 4) improved analytical techniques and prognosis tools to optimize the use of forage to ruminants; 5) improved silage techniques under adverse climatic conditions.

In topic 1, we have discussed the effect of reduction of nutrients on growth and quality of individual plants and the consequences on the total farm nutrient budget. Factors such as area and utilization of typical forage have been discussed in topic 2. Improved nutrient use by grasses and a reduced ratio of protein:water soluble carbohydrate have been mentioned as important. In topics 3, particular attention has been given to forage species that have particular forage quality characteristics, mineral composition or growth pattern that differ from that of conventional forage species. In topic 4, there have been expressed needs to improve present analytical techniques and to develop new ones that reflect the on-going changes in agriculture. Dynamics in forage quality, such as the rate of protein and organic matter degradation have been mentioned as important to be able to reduce nutrient losses at feeding and to fine tune feed rations.

Ruminant-plant interaction

The ruminant-plant interaction sub-group has focussed on grazing systems and recognised the economic importance of grazed grass. The grazing process is an integral part of modern farming systems and there are a number of management options to utilise standing forage. Discussion amongst participants identified methodological differences in assessing sward structure and grazing intake. Further integration and co-operation is needed to address these issues. Grazing systems, nutritive values of forages, environmental impact and final product quality were all discussed.

It is believed that grazing will become increasingly important in the future due to falling product prices. However tools are required to define systems so that decisions can be taken to determine the optimum system, stocking rate etc. for a given set of economic and political circumstances. Future grazing research should focus on obtaining a better understanding of the sward and animal factors influencing herbage intake and digestion. These are the key factors influencing animal performance from grazed pasture, irrespective of whether the farming system is classified as intensive or extensive. Emphasis should be placed on 1) modelling herbage intake during grazing and 2) study of rumen processes during fresh herbage digestion.

Ruminant supplementation

The ruminant supplementation sub-group focussed on the interaction of supplementation and the utilisation of conserved forage rations. Under pressure of changing market conditions and consumers demands there is a growing interest in organic farming and low input farming systems. EU farmers are also faced with new legislation to reduce the loss of nitrogen and phosphorus from farm production systems. The result of these changes means farmers will have a reduction of bought in concentrates and
supplements. Therefore, home grown concentrates and forages will become increasingly important in ruminant production systems. Thus, farmers will have to produce more milk and meat from forage which will require new or improved supplementation strategies. In the past, however, research on supplementation has focussed on the effect on intake, production, milk composition, and the substitution of forage by concentrates.

The sub group ruminant supplementation has concluded that future research must be focussed on 1) intake and production by cows fed low concentrate diets; 2) promotion of feed (forage) intake; 3) the description and characterisation of degradation and digestion of cattle feeds 4); development of feeding (supplementation) strategies for more persistent lactation curves; 5) development of databases with information on feed intake, characteristics of feeds and animals, and animal production. The ultimate target of the sub-group ruminant supplementation is to bring the expertise from different European research institutes together and to develop more efficient utilisation of forages in ruminant production systems.

Systems

Systems studies are becoming increasingly important as they provide a mechanism for linking component research. Computer modelling is often used to help understand and quantify the internal processes which control the overall direction of the system. The systems sub-group has provided an important role within Forage 2000, integrating the other sub-groups. Initial meetings identified the current research experience and expertise of the participants. To facilitate greater interaction between modellers members of the sub-group classified their models and systems studies and identified the input and output parameters associated with them. Issues of model validation and associated field data collection were discussed.

As Forage 2000 progressed so meetings focussed on bringing sub-groups together. Specific research priorities from other sub-group participants were incorporated. The areas which systems and modelling could improve understanding within forage production are 1) modelling N mineralisation; 2) matrix system for mixed forage production; 3) grazing intake and associated plant characterisation; 4) high genetic merit cows on low input systems; 5) multi-purpose farms.

Systems modelling provides a tool to understand future resource management. Models can simplify a complex reality therefore assumptions, simplifications and linkages need to be made clear. However, integrating a systems modelling approach at an early stage of a project design can facilitate important insights into the overall project structure.

Conclusions

The project started with a series of discrete sub-groups which identified specific issues relating to their subject areas. As the project has evolved so integration between sub-groups has led to a holistic fusion of research priorities and ideas. Recognition of environmental issues and increasing options for on farm forage have been identified as important considerations. Future research priorities identified within Forage 2000 reflect the importance of multi-disciplinary research and come under three main headings, 1) evaluating the effects of sward structure on intake and production; 2) whole farm forage management systems; multi-purpose options; 3) evaluating the effect of degradation of conserved forage on intake and production.

Acknowledgements

This project is supported by funding from the EU (FAIR CT 97-3968).
Sortprovning i norra Sverige

Lars Ericson
SLU, Institutionen för norrländsk jordbruksvetenskap
Norra försöksdistriktet
Box 4097
904 03 Umeå
Lars.Ericson@njv.slu.se

Inom det samarbetsavtal som finns i norra Sverige mellan lantbrukets ekonomiska föreningsrörelse och SLU har dock den rådgivande provningen kunnat ökas för samtliga växtslag. Vi har också, först med hjälp av finansiering från länsstyrelserna och sedan via forskningsprogrammet för ekologisk odling som administreras av Jordbruksverket, sedan 1994 genomfört en sortprovning av korn och havre för ekologisk odling.

Resultaten från provningen redovisas årligen i serien ”Nytt från institutionen för norrländsk jordbruksvetenskap”.

Slutligen är det viktigt att påpeka att provningen förvisso är ett bra instrument för att opartiskt värdera både inhembas och utländska sorter under de förhållanden som råder i vårt område. Utan en för området specifik växtförädling skulle dock utvecklingen mot nya och bättre sorter upphöra.

<table>
<thead>
<tr>
<th>Sorter höstsäd insådda hösten 1999</th>
<th>Sorter i korn 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Björke</td>
<td>höstvetesorten</td>
</tr>
<tr>
<td>B. Kalle</td>
<td></td>
</tr>
<tr>
<td>C. Esprit</td>
<td>hösträg</td>
</tr>
<tr>
<td>D. Amilo</td>
<td></td>
</tr>
<tr>
<td>E. Rol Moto</td>
<td></td>
</tr>
<tr>
<td>F. Chd Prego</td>
<td>rågvete</td>
</tr>
<tr>
<td>G. SW Pinokio</td>
<td></td>
</tr>
<tr>
<td>H. SW Fidelio</td>
<td></td>
</tr>
<tr>
<td>i. Modus</td>
<td></td>
</tr>
<tr>
<td>A. SW Karin (80113)</td>
<td>6-rads</td>
</tr>
<tr>
<td>B. SW Holger (90229)</td>
<td>6-rads</td>
</tr>
<tr>
<td>C. SW Vanja (86116)</td>
<td>2-rads</td>
</tr>
<tr>
<td>D. Olsok (VOH 10686-4)</td>
<td>6-rads</td>
</tr>
<tr>
<td>E. SW Baronesse</td>
<td>2-rads</td>
</tr>
<tr>
<td>F. SW Ä 96200</td>
<td>2-rads</td>
</tr>
<tr>
<td>G. JO 1632 (Rolli)</td>
<td>6-rads</td>
</tr>
</tbody>
</table>

*)Officiell provning
Sorter i havre 1999

<table>
<thead>
<tr>
<th>Sort</th>
<th>Art</th>
<th>Ursprung</th>
<th>Vall I</th>
<th>Vall II</th>
<th>Vall III</th>
<th>Anm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Vel (1043)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Svala</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. SW 91450*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. SW Å 94569*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Hamel (S.41.60.23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. S.4129.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Officiell provning

Sorter i ekologisk odling 1999

<table>
<thead>
<tr>
<th>Sort</th>
<th>Art</th>
<th>Ursprung</th>
<th>Vall I</th>
<th>Vall II</th>
<th>Vall III</th>
<th>Anm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Karin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sexrads</td>
</tr>
<tr>
<td>B. Majlis (SW N 93147)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-</td>
</tr>
<tr>
<td>C. Ruter (N94247)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-</td>
</tr>
<tr>
<td>D. SW N 95150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-</td>
</tr>
<tr>
<td>E. NK 92697</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-</td>
</tr>
<tr>
<td>F. Vanja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tvårads</td>
</tr>
<tr>
<td>G. Olve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>"-</td>
</tr>
</tbody>
</table>

Sorter i fleråriga balväxter 2000

<table>
<thead>
<tr>
<th>Sort</th>
<th>Art</th>
<th>Ursprung</th>
<th>Vall I</th>
<th>Vall II</th>
<th>Vall III</th>
<th>Anm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordi</td>
<td>rödkläver, diploid</td>
<td>Norge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Officiell provning</td>
</tr>
<tr>
<td>LGRK 8802</td>
<td>rödkläver, tetraploid</td>
<td>Norge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Kolpo</td>
<td>rödkläver, tetraploid</td>
<td>Norge</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Betty</td>
<td>rödkläver, tetraploid</td>
<td>Sverige</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bjursele</td>
<td>rödkläver, diploid</td>
<td>Sverige</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Jesper</td>
<td>rödkläver, diploid</td>
<td>Sverige</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC 23</td>
<td>lucern</td>
<td>USA</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DC 24 – multi</td>
<td>lucern</td>
<td>USA</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Norcen</td>
<td>käringtand</td>
<td>USA</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dawn</td>
<td>käringtand</td>
<td>USA</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Å RK93107</td>
<td>rödkläver</td>
<td>SW</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW Å RK94117</td>
<td>rödkläver</td>
<td>SW</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo</td>
<td>käringtand</td>
<td>USA</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viking</td>
<td>käringtand</td>
<td>USA</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sorter i timotej 2000

<table>
<thead>
<tr>
<th>Sort</th>
<th>Vall I</th>
<th>Vall II</th>
<th>Vall III</th>
<th>Ursprung</th>
<th>Betalas av (gäller vall I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grindstad (Norge)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Norge</td>
<td>Mätare</td>
</tr>
<tr>
<td>Sv Jonatan (Å 78181)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sverige</td>
<td>RJN</td>
</tr>
<tr>
<td>Tammisto II</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>RJN</td>
</tr>
<tr>
<td>Jo Tuukka</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Finland</td>
<td>RJN</td>
</tr>
<tr>
<td>Vega</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Norge</td>
<td>RJN</td>
</tr>
<tr>
<td>SW N TT 9307</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sverige</td>
<td></td>
</tr>
<tr>
<td>SW N TT 92012</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Sverige</td>
<td></td>
</tr>
<tr>
<td>GPTI 8905</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Norge</td>
<td>RJN</td>
</tr>
<tr>
<td>SW N TT9304*</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Officiell provning*</td>
</tr>
<tr>
<td>Kasper</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Mätare</td>
</tr>
<tr>
<td>KVES 921</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Officiell provning*</td>
</tr>
<tr>
<td>SW N ÅS9301*</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Officiell provning*</td>
</tr>
<tr>
<td>Bor 72002</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>RJN</td>
</tr>
<tr>
<td>Retu</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>RJN</td>
</tr>
<tr>
<td>JGTI 8906</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Norge</td>
<td>Officiell provning*</td>
</tr>
</tbody>
</table>
Lokalt och ekologiskt producerad mat

Maria Norgren, Inst. för norrländsk jordbruksvetenskap, SLU, Offer

Att odla mat på så många lämpliga ställen som möjligt i världen är ett viktigt led i att öka matsäkerheten lokalt och globalt. Dessutom är det ett viktigt led i att minska miljöbelastningen. Lokal och ekologisk produktion av livsmedel är ett hållbart alternativ till dagens storskaliga, specialiserade och på många sätt resursslöse livsmedelsproduktion.

Det norrländska jordbruket har i detta perspektiv många fördelar som vi bör lyfta fram. Vi har unika förutsättningar för en kretslöpsinriktad produktion av livsmedel med hög kvalitet. Lokal livsmedelsproduktion innehar många positiva värden. Ursprung/nähet, trygghet, miljö/etik, hembygdskänsla, kulturarv, matglädje, kvalitet och sysselsättning.

På forskningsstationen i Offer pågår sedan våren 1999 ett projekt för att främja såväl produktionen som konsumtionen av livsmedel, i synnerhet grönsaker, rotfrukter och potatis. Projektet löper på två år och finansieras med pengar från kommunerna, länsstyrelsen, Sveriges Lantbruksuniversitet (SLU) och EU. Alltså våra skattepengar. Alla är vi delaktiga utan att veta om det! Men vi som har arbetat fram projektförslaget, Sollefteå Näringslivs AB och projektägaren Offers Forskningsstation (SLU), skäms inte för våra mål och intentioner.

Projektets mål

Vad vi vill åstadkomma är i korthet:
- Att öka nyttjandet av våra lokala resurser, för produktion av livsmedel, på ett sätt som håller på sikt. Konkret handlar det om att öka den lokala ekologiska odlingen av grönsaker och potatis.
- Att skapa goda förutsättningar, praktiska och tekniska såväl som ekonomiska för att odlare/producerer skall komma igång och utveckla sin verksamhet. Idag är tillgången på lokalt och ekologiskt odlat mycket liten medan marknadens efterfrågan bara växer.
- Att arbeta för attitydförändringar på samhällets alla plan, vad gäller vårt förhållningssätt till mat, kvalitet och miljö.

Att formulera tjuvisa målsättningar är dock lätt som en plätt jämfört med att göra konkreta handlingsplaner.

Vad har vi hittills uppnått?
- Stärkt och utvecklat befintliga odlarcirklar (två stycken i övre och nedre Ådalen). I odlarcirklarna finns ett femtontal aktiva odlare och drygt hälften har en deltidsinkomst från verksamheten. Odlarcirklarna har fungerat som ett nätverk mellan odlarna där man haft stöd av varandra i bl.a. prisdiskussioner, försäljning, leveranser. De flesta är medlemmar i Mittodlarna Ekonomiska Förening.
• Kurser har hållits en gång i månaden på teman som Biodynamisk odling, Växtskydd, Jordanalyser och Odlingsplanering och sorter. En del odlare har också gått kurs i mjölksyrajässning av grönsaker.

• Odlare har ”marknadsfört” sig genom att ha torgat på olika marknadsplatser, i butik och på skördefester.

• Vi har dammat av en gammal ”logo” för Mittodlarna (Jämtlands och Västernorrlands län) och gjort gemensam beställning av förpackningsmaterial. Gemensam logo men med varje enskild odlares namn och adress tryckt på påsarna.

• På Offer bedriver vi utvecklingsarbete dels för att värdera olika typer av organiska gödselmedel, dels för att utvärdera olika gröngödslingsgrödors effekt på några olika grönsakskulturer. Vi har också ett antal demonstrationsodlingar som visar redan beprövade metoder.

• Tre skolträdgårdar har dragits igång i kommunen och rullar nu på av egen kraft. Regelbundna träffar mellan skolorna ordnas. Skolträdgårdsverksamheten har fällit i god jord och blivit ett mycket lyckat inslag i projektet.

• Kurser har arrangerats för skolköspersonal på temat Mat, Miljö och Hälsa, i samarbete med Hushållningssällskapet i Jämtland. Kurserna har varit kopplade till skolträdgårdsverksamheten.

• Vi samarbetar med andra projekt i länet som tangerar våra mål, ex. vis Maten i Västernorrland (Agenda-21 projekt), Bjärtråprojektet (Utbildning), Mittodlarnas konsulent för ekologisk mat.

Resultaten av våra ansträngningar är inte alltid så lätt att mäta. Hur mäter man t.ex. ändrade attityder?

Problem på vägen

Om vi har ambitionen att nytta det kapital som finns här, i form av odlingsbar mark och arbetskraft, för att producera ekologisk mat som ska finnas tillgänglig i våra skolmatssalar, sjukhusmatssalar, i våra butiker och på våra restauranger, måste volymen öka. Och eftersom det är småskalighet som gäller, tror vi att ett organiserat samarbete odlarna emellan kan lösa en del av problemet. Samverkan kring t.ex. lager, maskiner, försäljning, distribution höjer effektiviteten och är en förutsättning för att våga satsa på större volymer. För att bl.a. kunna möta större kunder som kommunens storkök där allt upphandlas genom anbud.

Att expandera i volym och areal kan bli tungt, framför allt arbetsmässigt, om man inte hittar samverkansformer enligt ovan.

Framåt
Som en konsekvens av probleminventeringen handlar det nu om att hitta dessa samverkansformer.

• Vi måste också hitta en lösning på faktureringskrånglet. Om vi inte försöker rätta oss lite efter de stora kundernas önskemål/krav är risken stor att de vänder oss ryggen och söker sig till större producenter i syd- och mellan Sverige, ja kanske t.o.m. utrikes.

• En "grundkurs" i företagsekonomi skulle många odlare må väl av.

• Gemensam planering av odlingarna för att sprida risker och för att i någon mån anpassa sig till vad marknaden efterfrågar.

• En del maskiner bör kunna införskaftas för gemensamt bruk. Det är fortfarande alltför mycket "olönsamt" handarbete i de befintliga odlingarna.

• Stötta och hjälpa fram de odlare som i liten skala börjat vidareförstå en del av sina grönsaker. T.ex. mjölsyrjänsningen.

• Utvecklingsarbetet vad gäller ekologisk frilandsodling av grönsaker på våra breddgrader måste få möjlighet att fortsätta. I klartext handlar det om att få tillgång till forsknings- och utvecklingspengar. Här finns mycket att jobba med för att uppnå hållbara och produktiva odlingsystem.

• Den odling av framför allt grönsaker som nu sakteligen växer fram har och kommer att ha ett stort behov av en odlingsrådgivare. Denne ska fungera som länk mellan forskningen och odlaren och vara odlarna behjälpig med att samla kunskap och erfarenheter för att utveckla sina odlingar. En rådgivare har också en viktig samlande funktion. Vi har alltför länge varit utan denna tjänst i Västernorrland. Vi måste snarast försöka hitta finansiering för en sådan tjänst och börja söka efter en lämplig person.

Det är viktigt att vara klar över de begränsningar som ligger i ett projekts natur. Projektet är begränsad och det får vi se som något positivt och utmanande. Det gäller att planera arbetet på ett sådant sätt att projektets funktion blir en katalysator. Om vi genom detta projekt förmå syrasätta en process som efter en tid rullar på av egen kraft kan vi känna oss mycket nöjda.
Hampa – gammal växt i ny form

Staffan Landström, SLU, Inst. f. Norrln. jordbruksvetenskap, Umeå

Bakgrund

Då grödan är ettårig och inte kräver insats av kemikalier och har lågt gödselbehov kan den, dels bli intressant inom ekologisk odling (som mellangröda, kvävegräs effektivt) och dels som komplement till Salix och Rörflan vid energi/fiber-produktion. Hampa går bra att odlas på de relativt sandiga jordar som dominerar i Västerbotten och Norrbotten. Hampa är även lämplig för småskalig odling i glesbygdsområden.

Under senare år har hampadling varit förbjuden p.g.a. sitt narkotikainnehåll. Hampa innehåller främst tetrahidrokannabinol (THC) med narkotisk effekt. En högsta tilläten halt av THC i fiberhampa har av EU satts till 0,3 %. Sorter som i föröver har visat sig klara detta gränsvärde har successivt godkänts på EU:s sortlista och f.n. stimulerar EU uppbyggnaden av odling och förädling av låg-alkaloid-sorter genom ett högt arealstöd. Därför finns det nu ett ökat intresse för utveckling av hampodlingen. Finland, som till skillnad från Sverige godkänt kommersiell odling av låg-alkaloid-sorter av fiberhampa, odlades med relativt höga arealbidrag ca 1200 ha 1998.

Marknad

Marknaden för olika produkter av hampa förväntas expandera kraftigt i framtiden framförallt p.g.a. ersättning av petroleumprodukter med naturliga råmaterial. Hampan innehåller två typer av fiber. Bastfibren är långa (c:a 20 mm) medan stamfibren är korta (0,5 mm). Industriellt används hittills framförallt de starka bastfibren. Dessa kan användas i bl.a. byggnadsmaterial och starka papperskvaliteter.

Oljan från fröet av oljehampa har fått ökat intresse ur födosynpunkt (hållskost-industrin) genom att höga halter av essentiella fettsyror har uppståtts. Pressresten från fröet är också proteinrik. För oljehampa kan man förvänta en ökande marknad som foder och livsmedel istället för soja p.g.a. att det börjar bli bättre på ej genommoderade sojaböner.

Försöksresultat

Den totala skördén varierade mellan 8 – 11 ton / ha beroende på sort och uts.mängd. Den högsta utsådesmängd (60 kg/ha) gav största totalskörd och största andelen stam, i medeltal 70 %. Den totala fiberandelen i stammen var ca 50 %, medan andelen långa bastfibber var ca 25 % (prel. resultat). Det innebär en fiberrost på ca 3.5 ton / ha.

Oljehampan (ny tidig finsk sort) mognade tidigt i september och gav överraskande bra frökör. (De kemiska analyserna är ännu ej klara när detta skrivs.)

Det måste dock till mer än ett års resultat för att kunna bedöma hampans odlingsvärde för norra Sverige.
Skifteplan

Sundblads lantbrukskonsult AB