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Microbial Communities in Paddy Fields in the Mekong Delta of 
Vietnam. Functional and Molecular Diversity 

Abstract 
Rice paddy fields are considered to be unique ecosystems. Intensive rice cultivation 
was developed to increase yield and to meet the need of food security. This practice has 
many negative effects on the soil ecosystem, such as reduction of soil nutrients, soil 
and water pollution and increase in soil-borne plant pathogens and a possible reduction 
of soil microorganism diversity. Alternative management strategies are required to 
counteract these negative effects to maintain soil fertility. The aims of this thesis are to 
investigate the microbial community in the rice paddy field to assess the influence of 
microorganisms on the degree of crop residue degradation and in protecting the next 
crop against soil-borne plant pathogens, including Rhizoctonia solani, and to 
understand the relationship between microbial diversity and functional groups involved 
in straw degradation and the inhibition of R. solani growth. Furthermore, the effect of 
intensive rice cultivation on the yield, abundance and diversity of the total bacterial 
community and on the diazotrophic bacterial community compared with the rice crop 
rotation system is investigated.  

Bacteria isolated from rice stubble with both cellulolytic and combined cellulolytic 
and chitinolytic activity were phylogenetically linked to distinct microbial groups. 
Selected bacterial isolates with these functions inhibited R. solani growth on agar 
plates; most of these isolates seemed to be neutral with respect to their effect on rice 
seed germination and radicle length. There was a positive relationship between straw 
weight loss and the number of isolates and functional groups. Fungal isolates were 
more important for straw degradation than the bacteria. The growth of R. solani was 
inhibited when it was inoculated on degraded straw. There was a negative relationship 
between straw weight loss and the growth of R. solani. Finally, crop management 
practices had a significant effect on both rice production and bacterial community 
structure. Rice yield from all the rice crop rotations that included maize and/or 
mungbean was significantly higher than that from the rice monoculture. Besides the 
yield effect, the structure and diversity of the total bacterial community and of the 
potential nitrogen-fixing bacterial community were significantly influenced by crop 
rotation when compared with that detected in the rice monoculture soil. 

This thesis highlights that crop rotation systems had a positive impact on rice 
production and on soil microbial diversity in the rice field ecosystem. Results from this 
study can be applied in the future development of a sustainable rice management. 
Keywords: rice, crop rotation, N2-fixing bacteria, bacterial community, diversity, 
cellulolytic, chitinolytic, decomposition, Rhizoctonia solani, antagonistic effect. 
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1 Rice cultivation in Vietnam 
Vietnam is located between the latitudes 8° and 24°N and the longitudes 102° 
and 111°E. It covers a total area of approximately 331,210 km2. The 
population in 2012 is estimated to be 91.5 million inhabitants. The northern 
regions have a humid subtropical climate, with humidity averaging 84% 
throughout the year, whereas the southern regions have a tropical climate with 
high humidity and a distinct wet and dry season. Vietnam is the second biggest 
exporter of rice in the world. Rice is mainly produced in the Mekong delta, 
southern Vietnam. The Mekong delta has 1.7 million hectares of rice fields, 
which produce about 20 million tonnes of rice per annum (Vietnam Statistics 
2009). 

 Due to the favourable environmental conditions for rice cropping, people in 
this region cultivate two or three rice crops a year. Growing the same crop 
repeatedly causes a reduction in yield and a build-up of soil-borne pathogens. 
In addition, intensive chemical inputs (fertilizers and pesticides) may influence 
soil microbial diversity. The negative side effects of intensive rice cultivation 
may be reduced with the use of alternative agricultural practices. For this 
strategy to be successful, the role of microorganisms in these processes must be 
taken into account. Here, soil microbial diversity, including the functional 
characteristics of the microorganisms was studied in order to understand the 
role of communities as well as selected microbes in sustainable rice 
production. 

This study has addressed questions relating to the microbial community that 
inhabits the rice stubble that is left in the field. The effect of crop rotation on 
the general soil microbial community as well as on the diazotrophic 
community is another area that was studied within the scope of this thesis. 
Enhanced management of microbial communities and crop rotation in rice 
fields have the potential to protect the soil environment from the negative 
impact of intensive rice cultivation and maintain long-term soil fertility. 
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2 Ecology of rice cultivation 
Rice (Oryza sativa L.) is one of the world's oldest and most important crop 
species, having been domesticated about 8,000–9,000 years ago. Rice is the 
main staple food for more than a third of the world's population, about 3 billion 
people and provides 20% of the human calorie intake (Zeigler and Barclay 
2008). Different rice cultivars are adapted to a wide range of environments: 
such as tropical and temperate climates, lowland and highland regions and a  

Figure 1. Rice cultivation in the Mekong delta, Vietnam 

wide range of soil types. About 50% of rice is grown under intensively 
irrigated systems, which accounts for 75% of the global rice production 
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(Zeigler and Barclay 2008). Recently, the continuous use of chemical 
fertilizers to enhance crop productivity has been recognized in terms of the 
negative effect on the complex system of biogeochemical cycles. 

The paddy field is a unique agro-ecosystem, where the field is flooded for 
most of the period of rice cultivation and is left under drained conditions 
during the off-crop season. The paddy field ecosystem, therefore, consists of 
diverse habitats for microorganisms in time and space, such as 
aerobic/anaerobic soil conditions, floodwater, rice roots, rice straw stubble and 
composted materials. In addition, gradients from stagnant to percolating water 
provide environments with different oxygen levels. These habitats are 
abiotically different microenvironments that could exhibit biologically distinct 
properties. Such heterogeneity of the habitats should influence the structure 
and diversity of microbial communities in the paddy field ecosystem as a 
whole and may support various microbiological processes occurring in paddy 
fields, most of which are agronomically and biogeochemically important 
(Kimura 2000; Kirk 2004). 

Rice production in the Mekong delta is divided into two agro-ecosystems: 
irrigated and rainfed areas. In the irrigated area there are 4 major rice 
cultivation systems, i.e. 3 rice crops per year, 2 rice crops + 1 upland crop and 
2 rice crops, 2 rice crops + fish/shrimp cultivation. In the rainfed areas four 
different systems of rice production have been practiced: single traditional rice 
(transplanting rice crop), single medium rice crop of high yield varieties with 
110- 140 days of growing crop, 2 rice crops (1 traditional crop + 1 medium 
rice) and 1 rice + fish/shrimp (Sanh et al. 1998). The introduced, modern, high-
yield rice varieties can produce up to 10 tonnes ha–1; however, the amount of 
fertilizer required for reliable yield is very high. Urea is the most common N 
source for rice with a recommended application rate of about 100 kg urea-N 
ha–1. However, farmers normally apply an overdose of fertilizer, using up to 
180 kg N ha–1 in some regions to maintain yields. However, the efficiency of 
urea in rice paddy fields is often very low, generally around 30%–40%, and in 
some cases even lower (Choudhury and Kennedy 2005). The low N-use 
efficiency partly contributes to the emission of greenhouse gases such as 
nitrous oxide, nitrite oxide and ammonia (Choudhury and Kennedy 2005). 

2.1 Crop management 

Intensive cultivation of the same susceptible host plant stimulates specific plant 
pathogenic organisms (Janvier et al. 2007). To reduce the disadvantages of 
intensive cultivation, crop rotation and the application of beneficial biological 
control agents to the field are examples of alternative routes for a sustainable 



 15 

agriculture. The Romans developed the crop-rotation system over 2000 years 
ago to maintain and improve soil fertility, with nitrogen-fixing legumes as an 
integral component (Palacious and Newton 2005). Rotating crops with non-
host or less susceptible plants may cause a decline in the specific pathogenic 
population due to their natural mortality and the antagonistic activities of other 
organisms (Kurle et al. 2001). Larkin and Honeycutt (2006) studied the effects 
of crop rotations on Rhizoctonia diseases of potato and found that these were 
reduced for most rotations compared with that in potato monoculture. Mendes 
et al. (2011) recently found that Actinobacteria, Alpha- and Beta-
Proteobacteria increased in their abundance in soil suppressive to R. solani. 
Dodor and Tabatabai (2003) showed that multicropping systems, including 
maize–soybean–maize–soybean, maize–maize–oat–meadow, maize–maize–
oat–meadow and maize–oat–meadow–meadow rotations, enhanced the 
activities of the amidohydrolases (amidase, L-asparaginase, L-aspartase and L-
glutaminase) in the soil compared with that found in soil undergoing 
continuous monocropping of maize and soybean. Acosta-Martinez et al. (2004; 
2010) found higher levels of soil enzyme activity (arylsulfatase, β-glucosidase 
and β-glucosaminidase) in soils undergoing crop rotation involving growth of 
cotton compared with soil under continuous cotton cultivation. In addition, 
Dung (2011) studied the diversity of the actinomycetous community colonizing 
rice straw residues in cultured soil undergoing various crop rotation systems in 
the Mekong delta, Vietnam. He found that crop rotation systems affected the 
actinomycetes and that a rice monoculture system decreased actinomycetous 
diversity. 

2.2 Soil-borne pathogens in rice and biocontrol 

The rice disease profile has changed over the years in response to changing rice 
cultivation practices, such as the increasing use of direct seedling and the 
planting of new high-yield cultivars. These changes are due to a reduction in 
arable land area, rapid population growth and the need for greater efficiency 
and productivity in agriculture. As yields increase, greater amounts of nitrogen 
fertilizer are applied in intensive rice production systems. The excess nitrogen 
leads to a luxuriant vegetative growth and a dense crop canopy that favours 
disease development (Mew et al. 2004). 

Sheath blight, caused by an aerial form of Rhizoctonia solani, is one of the 
newly emerged rice diseases that are threatening the stability of rice 
production. Sclerotia and mycelium are two forms in which R. solani can 
survive and infect the plant host (Kobayashi et al. 1997). Sclerotia can survive 
in soil and crop residues for a long period due to the protection derived from 
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the heavy melanized outer cell layer, whereas the mycelium survives in plant 
debris. R. solani can infect a rice plant at any growth stage, including the 
seedling (Gangopadhyay and Chakrabarti 1982), panicle and booting or 
flowering stage (Sharma and Teng 1990; Cu et al. 1996). According to Mendes 
et al. (2011), sheath blight caused by R. solani is an economically important 
fungal pathogen because of its ability to cause both pre- and post-damping off 
in many crops, including rice. Groth (2008) studied the effects of cultivar 
resistance on rice sheath blight, yield and quality and found that rice yield loss 
ranged from 8% in the moderately resistant cv. Jupiter to 40% in the very 
susceptible cv. Trenasse.  

Mycelia of this fungus contain chitin in the cell wall. The application of 
antagonistic chitinolytic bacteria and/or fungi offers an alternative strategy to 
the use of synthetic chemical pesticides. Chitin consists of unbranched chains 
of beta-1,4-linked N-acetyl-D-glucosamine (GlcNAc) and is widely distributed 
in nature (Li 2006). The presence of chitinolytic activity in bacteria and fungi 
has been shown to be an unexploited potential application in biological control 
against soil-borne plant pathogens (Nielsen and Sørensen 1999). A wide range 
of organisms, e.g. virus, bacteria, fungi, insects, plant and animals, produce 
chitinases (Li 2006). In this study, we focused on bacteria and fungi capable of 
hydrolysing chitin. In bacteria, this trait is activated to digest chitin for 
utilization as a carbon and energy source whereas chitinolytic activity in fungi 
is thought to have autolytic, nutritional and morphogenetic roles, as well as 
roles in competitive interactions among fungi (Li 2006). 

Biological control of soil-borne pathogens is often attributed to improving 
the nutrition that boosts host defences or directly inhibits pathogen activity and 
growth. Antagonistic microorganisms, e.g. Pseudomonas spp., Bacillus spp. 
(Wiwattanapatapee et al. 2007), Burkholderia sp. (Cuong et al. 2011) and 
Trichoderma spp. (Khan and Sinha 2006) have been used to control disease 
caused by R. solani. The potential of microorganisms for biological control can 
result from one or more mechanisms. For example: 1) the inhibition of 
microbial growth by diffusible antibiotics and volatile organic compounds 
(VOCs) and toxins (Berg 2009), including the production of 
diacetylphloroglucinol (DAPG) and of hydrogen cyanide, a common antifungal 
agent produced by Pseudomonas (Ahmad et al. 2008); 2) competition for 
colonization sites, nutrients and minerals with pathogenic agents, for example, 
bacteria with the ability to solubilize and sequester iron and phosphorus from 
the soil such as Pseudomonas spp., Enterobacter, Erwinia (Babalola 2010); 
and 3) parasitism, which may involve the production of extracellular cell-wall-
degrading enzymes, such as cellulase, chitinase, β-1,3-glucanase, protease and 
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lipase, which can lyse cell walls (Muleta et al. 2007) and suppress deleterious 
rhizobacteria, as reviewed by Babalola (2010). 

2.3 Molecular methodology to assess microbial community 

The meaningfulness of studies about the diversity and structural composition 
of microbial communities relies on the methodological tools used. 
Traditionally, the methods used to analyse soil microorganisms have been 
based on cultivation and isolation (van Elsas et al. 1998). A wide variety of 
culture media has therefore been designed to maximize the recovery of diverse 
microbial groups. Culture-based methods are limited because only a small 
proportion of the microbes in soil are accessible to study. 

Advances in molecular technology have accelerated the development of 
cutting-edge techniques to study soil microbial communities. These techniques 
are generally DNA-based methods, which have provided deeper insights into 
the composition and structure of microbial communities compared with the 
culture-based methods. For the successful use of these new methods, the 
development of primer pairs that target the conserved region of the 16S 
ribosomal RNA (rRNA) or their genes (rDNA) from the environment are 
considered to represent useful ecological markers for prokaryotes, for cloning 
and for microbial community fingerprinting techniques, such as denaturing 
gradient gel electrophoresis (DGGE) (Muyzer 1999) and terminal restriction 
fragment length polymorphism (T-RFLP) (Liu et al. 1997; Marsh 1999). 
Complex molecular fingerprints of microbial communities can be obtained 
using these methods by direct extraction of the soil DNA and polymerase chain 
reaction (PCR) amplification of the DNA markers of the community of 
interest. Not only can these techniques be used to analyse both cultured and 
uncultured microorganisms but they are also rapid and, therefore, can be used 
to determine changes in community structures in response to different 
environmental factors. Besides the total community, the structure of specific 
subgroups can also be assessed (Garbeva et al. 2006). In recent years, the rapid 
development of next-generation sequencing technologies such as 454 
pyrosequencing has allowed vast numbers of partial 16S rRNA genes from 
uncultured bacteria to be sequenced. In addition to bypassing previously 
needed cloning and/or cultivation procedures, with their associated biases, 
community structures can now be investigated at a much higher resolution by 
revealing taxa that are much less abundant. The 454 pyrosequencing approach 
has been used to investigate a wide range of bacterial communities by targeting 
different variable regions of the 16S rRNA genes. Examples of variable 
regions are the V4 region, which is used to detect bacterial communities in 



 18 

rhizosphere soil of biofuel crops, corn, canola, soybean, sunflower and 
switchgrass (da C. Jesus et al. 2010), the V6 region in deep-marine biospheres 
(Huber et al. 2007) and the nifH region in global marine surface waters 
(Farnelid et al. 2011). In this study, the total 16S rRNA bacterial communities 
and the N2-fixing bacterial communities were explored using 454 
pyrosequencing to target the V4 and nifH regions, respectively. The 454 
pyrosequencing datasets were processed according to the flow chart illustrated 
in Fig. 2. 

Figure 2. Flow chart showing how the 16S rRNA and nifH pyrosequencing data was processed in 
the RDP pipeline. 

2.4 The microbial community in paddy field soils 

The bacterial communities in paddy soils have been investigated using both 
cultivation-independent and cultivation-dependent molecular techniques (Chin 
et al. 1999; Groβkopf et al. 1998; Henckel et al. 1999; Janssen et al. 1997). 
Kimura et al. (2001) reported Gram-positive bacteria as major decomposers of 
rice straw that was incorporated into paddy soil microcosms under submerged 
conditions. By contrast, both Gram-negative bacteria and fungi were found to 
be responsible for the decomposition of leaf sheaths and blades under oxic 
conditions in upland soils (Nakamura et al. 2003). RNA stable isotope probing 
revealed that the bacteria actively assimilating C from pulse-labelled rice 
plants were Azospirillum spp. (Alphaproteobacteria) and members of the 
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family Burkholderiaceae (Betaproteobacteria). These organisms were present 
in high abundance in the rice root environment (Lu et al. 2006). Asakawa and 
Kimura (2008) compared bacterial community structures in different habitats 
in a Japanese paddy field ecosystem by comparing the DGGE profiling data 
and they found that dominant bacterial communities were different in diversity 
and stability, and phylogenetically distinct from each other in their respective 
habitats. Matsuyama et al. (2007) and Sungano et al. (2005) studied the 
bacterial community in plant residues in a Japanese paddy field using DGGE 
and T-RFLP. They found that members of Firmicutes (clostridia), Alpha-, 
Gamma-, Delta-proteobacteria, Nitrospira, Acidobacteria, Bacteroidetes, 
Verrucomicrobia and Spirochaetes were the predominant microorganisms in 
the rice residues. In addition, Tanahashi et al. (2005) reported the presence of 
members of these groups during the decomposition of rice straw compost when 
incorporated into flooded paddy field soil. 

Besides degrader communities contributing to the C pool in rice paddy 
fields, free-living nitrogen-fixing bacteria substantially contribute to the N pool 
in natural ecosystems. Biological dinitrogen fixation is considered to be the 
second most important biological process on earth after photosynthesis 
(Zuberer 2005). Microorganisms that can utilize inert atmospheric N as their 
own nitrogen source are called diazotrophs (Zuberer 2005). This process 
provides a suitable alternative for the development of sustainable agriculture, 
satisfying human needs and conserving natural resources at the same time 
(Giller and Cadisch 1995; Vance 1997). Previously, very few bacterial species 
were considered to be nitrogen fixers (Postgate 1982). Young (1992) has 
documented that nitrogen fixation is a property that can be found in 
representatives of most of the bacterial phyla and also among methanogenic 
Archaea. Rodrigues et al. (2004) found a strain of Verrucomicrobium isolated 
from termite guts that revealed nitrogen fixation genes. Two years later, 
Romero (2006)  further documented 6 major lineages or phyla within the 
domain bacteria having nitrogen-fixing members: Proteobacteria, 
Cyanobacteria, Chlorobi (green non-sulfur), Spirochetes, Gram-positive 
bacteria (Firmicutes and Actinobacteria). The application of next-generation 
sequencing has enabled a greater number of taxa with a potential N2-fixing 
gene to be detected. Wartiainen et al. (2008) reported the genetic diversity of 
free-living N2-fixing bacteria in paddy soil based on nifH gene sequences, and 
assessed their contribution to the N input in the rice paddy ecosystem. 

N2-fixing microbes can exist in symbiotic association with a host or without 
hosts, free living in soil (Zuberer 2005). A paddy field is a habitat for 
numerous groups of diazotrophs (Ariosa et al. 2005; Kennedy et al. 2004; 
Ladha and Reddy 2003). Some studies have investigated microorganisms from 
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the rice rhizosphere that can increase rice yield, such as plant growth 
promoting rhizobacteria, which act as bio-fertilizers (Cong et al. 2009; Mirza et 
al. 2001). Many of these microorganisms are beneficial not only as biological 
control agents against rice fungal pathogens but also in terms of improved seed 
germination and seedling vigour (Mew et al. 2004). Mew and Rosales (1986) 
performed in vitro tests with non-fluorescent and fluorescent Pseudomonas 
bacteria isolated from rice fields, rhizosphere soils, diseased and healthy plants. 
They found that 91% of fluorescent Pseudomonas isolates inhibited the 
mycelial growth of the fungal pathogen. In addition, several N2-fixing 
microorganisms have been isolated from rice fields (Elbeltagy et al. 2001; Park 
et al. 2005; Vaishampayan et al. 2001; Xie et al. 2003). Strains of Azotobacter, 
Clostridium, Azospirillum, Herbaspirillum, Burkholderia and Azoarcus, as 
well as cyanobacteria, have been shown to fix nitrogen, and are suitable for use 
as bio-fertilizers (Choudhury and Kennedy 2004). Yasmin et al. (2004) 
reported that Bacillus sp. Z3-4 and Azospirillum sp. Z3-1 isolated from rice 
fields in Tanzania could improve rice crop productivity. 

2.5 Microbial diversity  

The most unique feature about Earth is the existence of life, and the most 
extraordinary aspect of life is its diversity (Cardinale et al. 2012). Biodiversity 
is the variety of life, including variation among genes, species and functional 
traits in an ecosystem, and has an impact on the functioning of that ecosystem 
and, in turn, on the services that the ecosystem provides humanity. It is often 
measured as: richness, which is a measure of the number of unique life forms; 
evenness, which is a measure of the equitability among life forms; and 
heterogeneity, which is the dissimilarity among life forms. It is well known 
that the species richness and the abundance of each species can influence 
ecosystem functioning (Cornwell et al. 2008; Niklaus et al. 2006; Reed et al. 
2008). Understanding the former relies on accurate species identification, 
which increasingly is dependent on molecular approaches, especially for 
microorganisms. Understanding the latter requires a knowledge of the 
functional role that each species plays in ecosystem processes (such as nutrient 
cycling) and a way to measure the abundance of each species (Johnson et al. 
2009). 

In rice cultivation, less than half of the total rice biomass is edible and the 
remaining parts consist of straw, stubble and rice root. It has been shown in the 
laboratory that the decomposition rate of the straw residues above ground is 
faster than that of the roots below ground (Lu et al. 2003). The different 
decomposition rates are due to both the chemical composition of the residues 
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and the microbial community involved in degrading these residues. Focusing 
on biological processes, changes in different residue sources can alter the 
decomposition process, indicating that understanding the significance of 
biodiversity on decomposition is essential to assess the consequences of 
biodiversity change for carbon and nutrient cycles (Hattenschwiler et al. 
2005b). Cellulose degradation is one of the most important biological 
processes because of the large amount of cellulose in plant dry weight (30–
50%). This process can occur under aerobic and anaerobic conditions. Both 
bacteria and fungi are actively involved in this process (Boer et al. 2005). It 
may be considered unimportant which group of organisms is responsible for 
the decomposition of the residues in soil; however, bacterial or fungal 
decomposition can result in different amounts and composition of decomposed 
products (Fischer et al. 2006). Aerobic cellulolytic fungi are remarkably 
effective degraders in cellulolytic systems compared with aerobic bacteria 
(Boer et al. 2005). These two degrader groups can either facilitate, partition or 
inhibit interactions depending on the substrates they inhabit. Facilitative 
interactions result in benefits received by one species in the presence of others 
and niche complementarity is the differential use of resources by different 
species (Loreau and Hector 2001; Tiunov and Scheu 2005). The partitioning 
interaction occurs when one group is benefitted while another group has a 
neutral effect on the interaction. Finally, the inhibition interaction happens 
when one group gets a benefit and the other is negatively affected as a result of 
the interaction. 

There is now unequivocal evidence that biodiversity loss reduces the 
efficiency by which ecological communities capture biologically essential 
resources, produce biomass, decompose and recycle biologically essential 
nutrients (Cardinale et al. 2012). Biodiversity is declining worldwide, primarily 
because of human-induced global changes (Lawton and May 1995), and at 
least some soil species are known to be vulnerable to these changes (Bardgett 
et al. 2005; Briones et al. 2007; Eggleton et al. 2002; Parrent et al. 2006; Scheu 
and Schulz 1996). Several studies in agro-ecosystems have reported reductions 
in soil faunal biodiversity associated with increased management intensity (Adl 
et al. 2006; Bloemers et al. 1997; Decaëns and Jiménez 2002; Eggleton et al. 
2002). 

Diverse communities are more productive because they contain key species 
that have a large influence on productivity, and differences in functional traits 
among organisms increase total resource capture. Heemsbergen et al. (2004) 
showed that eight soil macrofauna species (earthworms, isopods and 
millipedes) stimulated rates of litter decomposition and litter fragmentation by 
different amounts. Dang et al. (2005) studied litter decomposition by fungal 
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communities of one to eight species in microcosms. They found that mean 
mass loss from litter did not differ across the species richness treatments, but 
communities with greater richness exhibited less variability in litter 
decomposition, suggesting that this process had greater stability. 
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3 Objectives of this study 
Ø To investigate the prevalence of microorganisms exhibiting both 

cellulolytic and/or chitinolytic activities in rice stubbles with respect to their 
biodegradation ability. To examine if these functional traits contribute to 
the antagonism of a soil-borne plant pathogen as well as early rice growth 
stimulation. In addition, specific functions of microorganisms inhabiting 
rice stubble were linked to microbial phylogeny. Paper I 

 
Ø To understand the relationship between microbial diversity and the 

ecosystem function of decomposition and the antagonistic process, as well 
as the relationship between these two functions. Paper II 

 
Ø To study the effects of different crop rotation treatments on the diversity of 

the soil bacterial community structure and rice yield. Paper III 
 
Ø To explore the impact of different crop rotations on the diversity of the N2- 

fixing bacterial community. To investigate the N2-fixing bacterial 
community in relation to the total bacterial community. To compare the 
diversity of the N2-fixing bacterial community found in a rice paddy field 
with that found in marine surface waters. Paper IV 
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4 Introduction to papers 
Paper I - In rice cultivation, more than half the biomass is inedible. Straw 
residues, including root, straw and stubble residues, serve as the major carbon 
source in paddy fields. Straw residues are also considered to be suitable 
sources of inoculum for soil-borne plant pathogens such as Rhizoctonia solani 
after rice seed harvest (Kobayashi et al. 1997). Incorporating straw residues 
into the soil helps to sustain soil organic matter levels, improve physical and  

Figure 3. A map of the Mekong delta with locations of three rice fields (a) in the study; Vinh 
Nguon (b), Hoa An (c) and Cai Lay (d) field (papers I, III and IV). 
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chemical properties and increase nutrient availability in paddy field soils 
(Hadas et al. 2004; Smith et al. 1992). However, the direct incorporation of 
residues into the paddy field under anaerobic conditions enhances methane 
production and emission, which contributes to greenhouse gas and global 
climate change (Denier  van  der  Gon and Neue 1995; Watanabe et al. 1998; 
Watanabe et al. 1999). Decomposing straw residues before returning them to 
the soil might be a means of reducing methane emissions and maintaining soil 
fertility in rice cultivation. The hypothesis in this study is that rice stubble left 
over in paddy soil may serve as a substrate for beneficial microorganisms. 
Some microorganisms may enhance the next rice crop by stimulating nutrient 
cycling through effective decomposition and by suppressing soil-borne 
pathogens such as R. solani that have survived from the previous crop. 
Paper II - Diversity is the range of significantly different kinds of organisms 
and their relative abundance in natural habitats. Changes in microbial diversity 
can alter the decomposition process (Hattenschwiler et al. 2005a).  

Figure 4.  Microbial diversity experiment using 16 microorganism isolates inoculated on rice 
straw in single or in mixtures of isolates. (a) Microcosm study and degraded straw inoculated with 
R. solani; (b) the control with only R. solani growth, (c) R. solani growth on the fungus-degraded 
straw and (d) R.solani growth on the bacterium-degraded straw (paper II). 

Decomposition and the sequestration of organic carbon from straw residues are 
considered to be important components in ecosystem functioning. Biodiversity 
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and carbon (C) cycling have been the foci of much research in recent decades, 
partly because of changes induced by anthropogenic activities, which are likely 
to continue (Nielsen et al. 2011). However, little is known regarding to what 
extent the number and function of species play a role in the decomposition 
process. Therefore, understanding the significance of different basic 
mechanisms, e.g. the synergistic and antagonistic effects of diversity on 
decomposition, is essential to assess the consequence of biodiversity change 
for carbon and nutrient cycling. The hypotheses investigated in this study are 
that: 1) an increase in the number of isolates would increase the degree of 
straw weight loss; 2) cellulolytic microorganisms showing more functions, 
such as chitinolytic or nitrogen-fixing ability, are effective as straw 
decomposer(s) with a possibility to protect crops from damage caused by the 
soil-borne plant pathogen R. solani; 3) there is a positive relationship between 
straw weight loss and antagonism. 
Paper III - Crop rotation practices have been implemented to increase yield. 
The positive effect of crop rotation on the abundance of beneficial 
microorganisms and disease suppression has recently been revealed in several 
studies (Larkin and Honeycutt 2006; Wardle et al. 2003; Warembourg et al. 
2003). Larkin and Honeycutt (2006) found that rotation of the main crop 
together with other crops increased yield and microbial diversity and also 
reduced the incidence of R. solani. In a sugar beet–Rhizoctonia solani 
pathosystem, disease suppression has been linked to the increased abundance 
of specific bacterial groups, including Proteobacteria, Firmicutes and 
Actinobacteria (Mendes et al. 2011). The hypothesis is that different specific 
rotational crops grown with rice have an effect on bacterial community 
structure and diversity as well as rice yield in a paddy field. 
Paper IV - In paper III, specific rotational cropping with different crops 
affected changes in the structure and diversity of bacterial community. Dung 
(2011) found that rotation of a specific crop together with rice effected the 
composition of Actinomycetes colonizing rice straw left over in the rice field. 
In addition, Orr et al. (2011) found significant effects of organic and 
conventional crop rotation on the diversity of total bacterial community and 
nitrogen-fixing activity. However, to date, the effect of rice crop rotation on the 
soil N2-fixing bacterial community in rice fields has not been studied. This 
study was set up with the aim to better understand the N2-fixing bacterial 
community in a rice field rotated with mungbean and maize because this group 
of crops contribute to the available N source for the coming crop. Our 
hypotheses are that the abundance of different N2-fixing phyla changes in 
different crop rotations in paddy soil, and that a change in the composition of 
the total bacterial community would reflect the different composition of the N2-
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fixing bacterial community. Furthermore, the N2-fixing bacterial community in 
this study is also compared with that in marine environments. 

Figure 5. A randomized block design with four treatments and four replicates of each treatment at 
Cai Lay field, Vietnam (papers III and IV). Illustration by Le Tan Trien 
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5 Materials and Methods 

5.1 Field sites and experimental design 

Three paddy fields were selected in the Mekong delta, Vietnam, to study the 
effects of soil types and crop management systems on both cultured 
microorganisms and uncultured bacterial diversity. The Hoa An (HA) paddy 
field (9°45'54" N, 105°35'59" E) had an acid sulfate soil and the Vinh Nguon 
(VN) paddy field (10°72'54" N, 105°10' E ) had an alluvial soil (paper I). 
These paddy fields were cultivated with two rice crops per year. The Cai Lay 
paddy field (10°34' N, 106°00' E) had an alluvial soil and was the site of a 
long-term field experiment set up with the aim of studying the impact of 
specific rotational crops on rice yield and bacterial diversity (paper III). In the 
Cai Lay field, the main crop of rice (O. sativa) was rotated with maize (Zea 
mays) and mungbean (Phaseolus aureus) crops in different combinations in a 
cultivation system of three crops per year. This field experiment was set up as a 
randomized block design with four treatments: (1) Rice–Rice–Rice (RRR), 
which acted as the control; (2) Rice–Maize–Rice (RMR); (3) Rice–Mungbean–
Rice (RMgR); (4) Rice–Mungbean–Maize (RMgM) (papers III and IV). 

Table 1. Summary of soil chemical parameters for the field sites selected in the study 

Field Ktotal (%K) SOM 
(%C) 

Ntotal (%N) Ptotal (%P) Pavail. 

(mgPkg-1) 

pH (H2O) 

Hoa An (HA) 1.68 8.15 0.45 0.04 5.2 3.64 
Vinh Nguon (VN) 1.94 2.99 0.25 0.03 1.3 5.02 
Cai Lay - 4.04 0.24 0.03 4.04 5.5 
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5.2 Sampling procedures and microorganisms 

Stubble and straw residue samples were collected from the first two paddy 
fields (described above) for papers I and II. Rice seed was bought from a local 
agricultural consultant (paper I). To study the effect of diversity on straw 
degradation and antagonism in vitro (paper II), ten specific bacterial and 6 
fungal isolates were selected on the basis of functional characterization of the 
isolated microorganisms from paper I 

In the long-term crop rotation experiment (papers III and IV), soil samples 
were taken at two different cropping periods: (1) in May 2007 in the middle of 
the growing season when rice, mungbean and maize crops were grown, and in 
February 2008 after the rice seed was harvested in all treatments. These soil 
samples were analysed in terms of the effects of crop rotation on abundance 
and diversity in the total bacterial community and with special reference to the 
N2-fixing community. In all cases, the soils and rice stubbles collected were 
stored at 4°C until further processing in the laboratory. 

5.3 Investigations on microbial communities 

Rice stubble samples collected from the VN and HA rice fields were studied 
with respect to phenotypic and genotypic characterization. They were isolated 
and multiplied using standard nutrient media appropriate for bacteria and fungi 
(papers I and II). These isolated microorganisms were screened for the 
functional cellulolytic trait. The cellulolytic isolates were further characterized 
for their chitinolytic activity but only bacterial isolates were screened for the 
presence of fluorescence and N2-fixing genes. Paper I reports results from 
bacterial isolates only. Selected bacteria with either cellulolytic or combined 
cellulolytic and chitinolytic activity or cellulolytic activity and a potential N2-
fixing gene were selected for further testing to determine their impact on early 
rice seedling development and on their in vitro inhibition of R. solani growth 
(paper I). 

Genotypic characterization of both cultured and cloned bacteria inhabiting 
rice stubble was performed by cloning and sequencing of the 16S rRNA 
region. The primer pairs used to target the 16S rRNA region were 27F (5′-
AGA GTT TGA TCC TGG CTC AG-3′) and 907R (5′-CCG TCA ATT CCT 
TTR AGT TT-3′). Concomitantly, only cellulolytic bacteria carrying a 
potential nitrogen-fixing gene were identified using nested PCR reactions with 
primer pairs nifH3 and 4 in the first round and primer pairs nifH1 and 2 in the 
second round. For fungi, the ribosomal RNA gene internal transcribed spacer 
(ITS) region was targeted by using primer pairs ITS1F (5′CTT GGT CAT TTA 
GAG GAA GTA A-3′) and ITS4 (5′TCC TCC GCT TAT TGA TAT GC-3′) 
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(paper II). All sequences obtained using culture-dependent and culture-
independent approaches were arranged into operational taxonomic units 
(OTUs) based on 98% sequence similarity for further investigation of the 
phylogeny and taxonomic identity. 

Ten bacteria and 6 fungi were selected from paper I for further study. They 
were categorized into 6 different functional groups (Table 1, paper II). Isolates 
with more than 2 functional traits were defined as generalist and those with 
only a cellulolytic trait were defined as specialist. A microcosm was designed 
to study their effect on rice straw decomposition. The microorganisms were 
inoculated singly or in different mixtures with the purpose of studying the 
relationships between microbial diversity and the ecosystem function of 
decomposition. There were 40 different treatment sets and the non-inoculated 
control treatment with 3 replicates of each. Microcosms were placed in a 
growth room and spaced well apart from each other and incubated at 30oC for 
6 weeks (with a light/dark regime of 12/12 hours). The degree of 
decomposition was calculated in terms of the dry straw weight loss (SWL) of 
the decomposed straw compared with the weight of fresh straw before 
inoculation. Decomposed straw from the microcosms inoculated with all 16 
single isolates and with a mixture of all these isolates were inoculated with R. 
solani to explore the antagonistic potential of straw degraders against a soil-
borne plant pathogen. Furthermore, the relationship between straw weight loss 
and antagonism was assessed (paper II). 

The primer pairs used for 454 pyrosequencing were the V4 FLX forward 
primer 5′-AYTGGGYDTAAAGNG-3′ (E. coli position 563–577) and the 
reverse primers were 5′-TACNVGGGTATCTAATCC-3′, 5′-
TACCRGGGTHTCTAATCC-3′, 5′-TACCAGAGTATCTAATTC-3′ and 5′-
CTACDSRGGTMTCTAATC-3′ (E. coli position 785–802). The forward 
primer V4 FLX was added with 72 different tags (8 bp each). Rice yield was 
calculated based on dry weight per hectare when the rice crop was harvested 
for all four treatments in 2008 (paper III). 

The 454 pyrosequencing approach was not only used for the total 16S 
rRNA bacterial community but was also used to study the N2-fixing bacterial 
composition by targeting the nifH gene using nested PCR of nifH3 and nifH4 
for the first PCR and PyrBnifH1 amended with 71 different tags and 
PyrAnifH2 for the second PCR (paper IV). The N2-fixing bacterial community 
was studied in four treatments, RRR, RMR, RMgR and RMgM, and at the two 
sampling occasions in 2007 and 2008 as described in paper III. Due to the 
failure of short reads during the initial sequencing process in the Fungene 
pipeline, the nifH sequences of the nitrogen-fixing bacterial community in soil 
samples from the RRR, RMR and RMgR treatments collected in 2007 and 
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from the RMgM treatment collected in 2008 were excluded from the analyses 
of both nifH and 16S rRNA in this study. The sequences from the remaining 
replicates for each treatment were pooled together for further analyses. 

5.4 Data analyses  

In this study, the basic data were analysed by analysis of variance (ANOVA) 
(papers I, II and III) to compare soil types and/or treatments affecting 
bacterial community and diversity. In addition, multiple regression analysis 
(paper II) was also used to establish relationships between decomposition rate 
and other variables that contribute to the decomposition rate.  

With the community structure analyses from the pyrosequencing dataset 
(paper III), multivariate analysis methods were used to fully exploit the data, 
including non-metric multi-dimensional scaling (NMDS). NMDS is an 
ordination technique that differs in several ways from nearly all other 
ordination methods. The advantage of this method is that NMDS does not 
make any assumptions about sample distribution so it is well suited for a wide 
variety of data. NMDS also allows the use of any distance measure of the 
samples, unlike other methods that specify particular measures, such as 
covariance or correlation in PCA (principal component analysis) or the implied 
chi-squared measure in detrended correspondence analysis (Holland 2008). 
However, multivariate analysis alone does not give a statistical measure of the 
differences between samples. Multi-response permutation procedure (MRPP) 
and indicator species analysis (ISA) can give a meaningful framework for the 
findings.  

UniFrac is a program suite for computing differences between microbial 
communities based on phylogenetic information. This method measures the 
phylogenetic distance between sets of taxa in a phylogenetic tree as a fraction 
of the branch length of the tree that leads to descendants from either one 
environment or the other, but not both. The UniFrac analysis can be used to 
assess overall differences in community structure based on phylogenetic 
distance and is very sensitive to the changes in richness, evenness and genetic 
diversity and the composition of communities in the environments (Lozupone 
and Knight 2005). This is essential to move beyond pairwise significance tests. 
Although sequences are often used to catalogue the types of microorganisms 
present in a single environment, comparisons between sequences from multiple 
environments are increasingly important because they can test whether 
microbial community composition changes in response to specific 
environmental variables. 
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6 Results 

6.1 Functional activities of microorganisms inhabiting rice 
stubble based on culture-dependent analysis (paper I) 

 The cultivation approaches used in this study resulted in the isolation of a total 
of 259 bacteria from rice stubbles, 110 of which exhibited cellulolytic activity. 
Among the cellulolytic isolates, 19% showed combined cellulolytic and 
chitinolytic activity and less than 6% carried nifH genes. Fluorescent activity 
was found to be absent among the tested bacteria. The proportion of bacteria 
that exhibited combined cellulolytic and chitinolytic activity at the HA site was 
significantly higher than that at the VN site (p<0.05). 

Among the isolates with cellulolytic, combined cellulolytic and either 
chitinolytic or N2-fixing potential activity, 30 bacteria were selected and used 
to inoculate rice seed to evaluate their impact on germination and radicle 
length. Out of these 30 isolates, 13% were deleterious whereas the remaining 
isolates were apparently neutral in their effect on both seed germination and 
radicle length (Fig 3, paper I). Parallel to the rice seed germination tests, the 
results from an in vitro antagonism assay against R. solani showed that 31 out 
of 32 tested isolates with cellulolytic or combined cellulolytic and either 
chitinolytic or N2-fixing potential activity significantly inhibited the mycelial 
growth of R. solani (Fig 2, paper I). However, we did not find any relationship 
between the tested functional characteristics and the two processes. 

6.2 Diversity effect on rice straw decomposition and 
antagonistic processes (paper II) 

In the study to determine the effect of microorganisms on rice straw 
decomposition in microcosms, the effect of their inoculation on degrees of 
SWL was evident. SWL was nil or insignificant in non-inoculated microcosms. 
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Both diversity and isolate-dependent effects were observed. Results from the 
multiple regression analyses showed that five fungi; Stachybotrys bisbyi (Sta), 
Fusarium sp. (Gib), Sarocladium oryzae (Sar), Dendryphiella sp. BR354 (Den) 
and Rhizomucor variabilis (Rhi), one bacterium Burkholderia gladioli (Bur) 
and increasing the number of isolates in mixtures contributed significantly to 
rates of SWL (Table 3, Paper II). The fungi played a dominant role in straw 
degradation compared with that of bacteria (Fig 2, paper II). Among the 
effective degraders, the four generalists, Sta, Rhi, Den and Bur, exhibited 
combined cellulolytic and chitinolytic activity and the two specialists exhibited 
only cellulolytic activity. There was a positive relationship between SWL and 
the number of isolates.  

The degraded straw from all 16 individual treatments and the treatment with 
the mixture of all 16 isolates showed different levels of inhibition of R. solani 
growth. However, growth was only significantly inhibited by straw degraded 
by the generalists: Sta, Rhi, Den, Bur and Bacillus pumilus (Ba3); the 
specialists: Sar, Pantoea sp. (Pan) and the mixture of 16 isolates (Fig 3b, 
paper II). We also found a negative correlation between SWL and the growth 
of R. solani. 

6.3 Bacterial communities in rice stubble and in rice fields with 
different crops (papers, I, III, IV) 

The sequences of the 259 bacterial isolates in paper I were classified into 17 
families. The bacterial community inhabiting stubble in the HA field (16 
families, H´= 2.14) were at least twice as high compared with that in the VN 
field (7 families, H´= 1.68). The sequences from the isolates with no activity, 
only cellulolytic and combined cellulolytic and chitinolytic traits were found in 
specific lineages (UniFrac, p<0.001; Fig 4, paper I). The number of sequences 
associated with each of these traits present in the specific lineages were 
significantly different in their abundance between the two fields (UniFrac, 
p<0.001). Furthermore, results from the Jackknife environment cluster analysis 
supported the functional lineages with 99.9% after 1000 re-samplings (paper 
I). 

Among the cultured bacterial communities, Bacillaceae, Burkholderiaceae 
and Enterobacteriaceae were the most common families present in the two 
fields, together ranging up to 62% of the total number of sequences. With 
regard to the cloned bacterial community, bacterial clones were classified into 
47 groups at family or higher taxonomic rank. Bacillaceace was the most 
common family in the two fields. There were 26 families that were only 
detected by the cloning approach (Table 2, paper I). 
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The presence of specific rotation crops caused changes in bacterial 
community structures compared with that found in the rice monoculture based 
on NMDS analysis (Fig 3, Paper III) and Jackknife cluster environment 
analysis (Fig 2, paper IV). Although crop rotation was found to be important 
as a determinant of shifts in soil bacterial communities, the combination and 
sequence of rotation crops also resulted in significant dissimilarity in the 
bacterial community structure. Rice yield from the rotation crop treatments was 
significantly higher than that from the rice monoculture. It increased by 46% 
depending on the rotation crop (Fig 1, paper III). 

We detected up to 18 bacterial phyla in the four crop rotation treatments: 
RRR, RMR, RMgR and RMgM. Among these bacterial phyla, Proteobacteria, 
Acidobacteria, Chloroflexi and Verrucomicrobia were the most abundant phyla 
in all four treatments on the two sampling occasions. The relative abundance of 
different phyla was significantly different among the treatments on each 
occasion (Table 3, paper III). 

The number of unique protein sequences of the four treatments is shown in 
Table 2 (paper IV). At the level of 96% protein identity, the N2-fixing 
bacterial community in the four treatments was classified into 12 phyla. The 
relative abundance of these phyla differed significantly among the four 
treatments. Proteobacteria and Firmicutes were the most abundant phyla 
carrying the nifH gene (Table 3, paper IV). When comparing the relative 
abundance of the nifH community with that of the total 16S rRNA community, 
the Deltaproteobacteria belonging to the Proteobacteria was the most common 
group present in both. Although Verrucomicrobia, Chloroflexi and 
Alphaproteobacteria were major groups of the 16S rRNA community, they 
represented less than 1% of the nifH bacterial community. By contrast, the 
Firmicutes, Betaproteobacteria and Nitrospira were less abundant (<4%) in the 
16S rRNA but members of each of these groups represented between 6% and 
35% of the N2-fixing bacterial community. The relative abundance of 
Spirochaetes and Archaea phyla compared with that of the total bacterial 
community was very low or undetectable; however, high proportions (2–7%) 
of these phyla carried the N2-fixing gene (Table 3, paper IV). 
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7 General discussions 
The findings in this study showed that both soil type (paper I) and crop 
management practices (papers III and IV) have an impact on the bacterial 
community structure in paddy soils. According to Veldkamp (1955) and 
Mitchell and Alexander (1962), actinomycetes appear to be the most important 
chitin-degraders in relatively dry, neutral and alkaline soils, whereas 
unicellular bacteria can become important chitin degraders in neutral or 
alkaline soil at high moisture levels. Our study investigated stubble samples 
from two fields with different moisture regimes. The results from paper I 
show that the abundance of bacteria exhibiting combined cellulolytic and 
chitinolytic activity was more dominant in the HA field than in the VN field. 
This is indicative of moisture being a determining factor for stubble-inhabiting 
bacteria with combined functional traits to degrade straw as well as inhibit R. 
solani. The importance of actinomycetes in straw degradation and pathogen 
inhibition in this study has yet to be elucidated. 

7.1 Functional activity of microorganisms 

Microorganisms exhibiting functional traits relating to straw decomposition 
and competition were common in the dead stubble material. In this 
environment, decomposer microorganisms compete with each other for C 
sources and it may not be a primary environment to find direct plant growth 
promoting microorganisms. Most of the selected isolates inhibited the growth 
of R. solani in vitro although we did not see a clear correlation with determined 
functional characteristics. This may be explained by the PDA medium used for 
the dual assay test: unlike straw the PDA medium may have provided 
sufficient nutrients for R. solani and bacterial growth and, hence, the bacteria 
may have used other mechanisms to antagonize R. solani. Examples of such 
mechanisms are cyanide production, siderophore production and antimicrobial 
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metabolite production (Ahmad et al. 2008). In the Mekong delta, especially in 
regions where rice is cultivated very intensively, farmers often burn crop 
residues after the rice seed harvest. This is a way to sanitize the fields before 
preparing for the coming crop. The alternative practice of adding degraded 
stubble to the field rather than incorporating fresh materials may reduce 
methane emissions. The results of this study suggest that the return of degraded 
stubble by controlled composting instead of burning could be a way to 
maintain fertility. If the stubble left over in the field is utilized in this way, 
some of the microorganisms inhabiting rice stubble may not only degrade 
stubble but also potentially stimulate rice seedling growth by means of nutrient 
release and disease suppression.  

7.2 Diversity effect on straw decomposition and antagonism 
against R. solani 

Results from this study showed that not only an increasing number of isolates 
but also specific isolates influence straw weight loss. Previous studies have 
focused mainly on cellulose decomposition by inoculation of single fungal or 
bacterial isolates (Bärlocher and Corkum 2003; Pascoal et al. 2010; Wohl and 
McArthur 2001; Heemsbergen et al. 2004). The number of cultures used in 
those studies was fewer than 10 species and showed a positive diversity effect 
on litter decomposition. The level of diversity was also smaller than that 
normally encountered in the field, and the communities were created by mixing 
species from a small pool in different combinations. As a result, those studies 
do not reflect the way natural communities are assembled (Lepš et al. 2001). In 
the field environment, species richness is high, which is not only important for 
the C cycling process but also for other processes that take place 
concomitantly. Our study is the first to combine different functional 
characteristics relating to degradation, nitrogen fixation and competition with 
different species in the diversity experiment (paper II). There were 16 isolates 
used in this study. The different species and functional traits created a gradient 
in diversity with a different combination of functional traits and number of 
isolates. It has been shown that specific components of the fungal community 
in soils take part in the decomposition of particular C sources such as glycine, 
sucrose, lignin and cellulose (Cox et al. 2001; Hanson et al. 2008). It has also 
been shown in a laboratory study that the addition of different C sources to soil 
has a strong effect on microbial community composition (Orwin et al. 2006), 
suggesting that only certain groups of microbes are associated with the 
breakdown of specific C compounds. Moreover, cellulose decomposition is 
one of the processes involved in C cycling and, therefore, any functional trait 
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related to cellulolytic activity probably directly affects this process. 
Hemsbergen et al. (2004) studied eight soil macro-fauna species (earthworms, 
isopods and millipedes) and found that functional dissimilarity among these 
species drove community compositional effects on leaf litter loss. 

Generally, the greater the diversity, the more stable the ecosystem is. 
Within an ecosystem, reduction of some species may have little or no effect on 
its entire environment. Regarding specific processes in the ecosystem, loss or 
reduction of one or more functional species directly influences the ecosystem. 
In a review, Nielsen et al. (2011) concluded that there was little evidence for a 
predictive relationship between species richness and C cycling in soil, although 
they pointed out that the presence/abundance of particularly influential species 
or functional groups can have an impact on C dynamics, often in a substantial 
way. In our study, it was seen that both specific isolates and a mixture of all 
isolates increased SWL. The effective isolates belonged to different functional 
groups, from high cellulolytic to low cellulolytic activity in the case of fungi, 
and both cellulolytic and chitinolytic activity for bacterial species. Facilitative 
interactions may occur among the functions rather than among the isolates. In 
the microcosms, it was shown that the addition of specific isolates resulted in 
effective degradation. In the in vitro study, we did detect specific species 
involvement in specific processes; however, this was not tested under field 
conditions. However, the culture-independent approach could help to 
understand the abundance of taxa present in the field. Therefore it is important 
to link microcosm studies to field studies to understand how specific functional 
traits are involved in C cycling and their distribution in the environment. 
Therefore, the effective degraders should be tested in the rice field to 
understand more about their role in straw decomposition and the outcome of 
their interaction with other indigenous microorganisms, especially plant 
pathogens, in terms of sustainable rice crop production. 

With regard to fungal and bacterial isolates involved in cellulose 
degradation in our study, it was shown that SWL caused by fungal degradation 
was significantly greater than that caused by bacterial degradation. These 
results are in agreement with those reported by Boer et al. (2005) who showed 
that aerobic cellulolytic fungi are remarkably effective degraders in a 
cellulolytic system compared with aerobic bacteria. Furthermore, Mille-
Lindblom et al. (2006) and Romani et al. (2006) have studied the ability of a 
bacterial community and 6 fungal species to degrade litter in aquatic 
microcosm systems. They also found that fungi played a more important role in 
litter degradation than that played by the bacteria. Several studies that have 
investigated fungal and bacterial activities in terrestrial ecosystems have shown 
a general picture of a major niche differentiation between fungi and bacteria: 
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“Bacteria are mostly involved in the degradation of simple, soluble substrates 
whereas fungi are the main decomposers of solid, recalcitrant substrates” 
(Buée et al. 2009). We inoculated both bacteria and fungi together but we did 
not analyse the chemical composition or the microbial community of the 
degraded straw. It is not known whether these isolates helped or inhibited each 
other. However, based on the results from SWL caused by single inoculations 
and by the mixture of fungal and bacterial isolates, we observed that SWL in 
the mixture treatments seemed to be caused by fungal isolates only. 
Nevertheless, since the paddy field is submerged most of time during 
cultivation, the role of fungi may be essential for degrading straw left over in 
the field for about 7–14 days after rice seed harvest when the field is dry. 
During the next crop cultivation, when the field is submerged again, bacteria 
may take over the role of straw degradation from fungi. Future studies that 
investigate the temporal gradients of the micro-flora that inhabit the crop 
residues after the grain has been harvested until the next rice crop is planted 
would shed light on the role of bacteria and fungi in straw decomposition in 
rice fields.  

Our study is also the first to report the inhibition of R. solani growth by 
straw decomposed by single isolates and a mixture of all isolates. Interestingly, 
among the effective degraders, 3 fungi generalists and 1 bacterium generalist 
were also strong antagonists of R. solani. In addition, the inhibition of R. solani 
growth by the treatment involving the mixture of isolates seemed to be mainly 
due to the effective degraders in the mixture; however, we do not know how 
many isolates survived to the end of the antagonistic experiment. Another 
reason for the negative correlation between SWL and R. solani growth may be 
reduced nutrient availability in the most decomposed microcosms. The results 
from generalists are interesting and further studies in rice fields are needed to 
explore their potential as biofertilizers and biocontrol agents in terms of 
stimulating degradation of crop residues and suppressing soil-borne plant 
pathogens.  

7.3 Bacterial communities in rice fields 

Soil microorganisms play an important role in maintaining soil fertility through 
biochemical processes, especially in intensive agricultural systems. Microbial 
diversity and activity are sensitive indicators that reflect the sustainability and 
productivity of terrestrial agro-ecosystems (Cardinale et al. 2012). This study 
showed that specific crop rotations cultivated with rice caused changes in 
bacterial communities and bacterial diversity. These results agree with other 
studies that have reported that soil type and crop management practices mainly 
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determine the structure of bacterial communities (Clegg et al. 2003; Garbeva et 
al. 2008; Larkin and Honeycutt 2006; Orr et al. 2011; Steenwerth et al. 2002). 
In the middle crop rotation, we found that the bacterial community structure 
under the rice monoculture treatment tended to be distinct from that present 
under the other crops. This may be explained by: 1) different crops release 
different root exudates that stimulate different bacterial communities 
(Herschkovitz et al. 2005; Lerner et al. 2006) and 2) mungbean and maize 
plants in the RMR, RMgR and RMgM treatments were grown in aerobic 
conditions whereas the rice plants in the RRR treatment were grown in 
anaerobic conditions. Interestingly, soil samples collected from the RMgR and 
RMgM treatments from the middle crop rotation of mungbean showed that the 
RMgR treatment had a significantly distinct bacterial community structure and 
higher bacterial diversity and richness compared with that in the RMgM 
treatment even though rice had been grown as a pre-crop in both treatments. 
Similarly, analysis of the soil samples collected after rice seed harvest from the 
four treatments revealed that the bacterial communities were also distinctly 
different from each other. These results indicate that not only specific crops but 
also the order of the crop in the crop rotation affects the bacterial community in 
the rice field. In addition, the bacterial community structure in the four 
treatments correlated positively with crop species and rice yield. However, we 
did not find any correlation between bacterial diversity or bacterial richness 
and rice yield. Future studies investigating specific effects of different crops on 
soil chemical and physical properties in relation to the microbial community 
structures and rice yields are needed to understand more about yield increases 
in crop rotation systems. 

Besides the effect of crop rotation on the total bacterial community 
structure in the four treatments, the N2-fixing bacterial community structure 
and composition were also found to be influenced. In this study, the N2-fixing 
bacterial community structures and composition in the four treatments were 
distinct from each other even though soil samples were collected after rice seed 
harvest from the RRR, RMR and RMgR treatments. These results were 
consistent with those reported by Orr et al. (2011) who also found that different 
management systems effected the diversity and activity of free-living N2-fixing 
bacteria and total bacteria. Low diazotrophic diversity was observed in the soil 
samples from the middle crop treatment of mungbean in the RMgM crop 
rotation. This may be because fertilizer had been applied in the middle crop 
treatment. In general, the application of chemical N-fertilizers may be one 
explanation of why biological nitrogen-fixation ability has been lost in many 
bacterial lineages when not needed (Martinez-Romero 2006).  
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The limitation of available N for primary production is widespread, not only 
in agricultural soils and in terrestrial ecosystems but also in marine ecosystems 
(Vitousek and Howarth 1991). Our analyses of unique protein sequences of 
nifH bacterial communities show that the nifH community in our paddy soil 
contained a greater diversity of potential N2-fixing bacteria compared with that 
in global marine water surfaces surveyed by Farnelid et al. (2011) who used 
the same methodology. Our results are consistent with those obtained by Gaby 
and Buckley (2011) who constructed and analysed an aligned dataset from 
different environments and found a higher diversity of nifH sequences in the 
soil than in the marine environment. This finding provides the basis for further 
exploration of specific N2-fixing groups representing different ecosystems that 
are poorly understood. 

Straw residues left in the paddy fields support living microorganisms. 
Matsuyama et al. (2007), Tanahashi et al (2005) and Sungano et al. (2005) 
applied DGGE and T-RFLP to study the bacterial community in rice residues 
and they found members of Firmicutes, Gamma-, Alpha-, Delta-proteobacteria, 
Nitrospira, Acidobacteria, Bacterioidetes, Verrucomicrobia and Spirochaetes in 
rice residues and rice straw compost incorporated into paddy field soil. Their 
results agree in general with our results that Bacillaceae, Enterobacteriaceae, 
Burkholderiaceae and Pseudomonadaceae were the most common families 
inhabiting rice stubbles by using cellulose-amended medium. Some genera 
from these families and from Flexibacteraceae, Microbacteriaceae, 
Oxalobacteraceae, Rhizobiaceae, Rhodospirillaceae and Sphingomonadaceae 
had cellulolytic or combined cellulolytic and chitinolytic activities, suggesting 
that members of these groups may be important for straw degradation in the 
natural environment. We also found members that did not show cellulolytic 
activity. It is plausible to think that for instance: 1) the fast-growing bacteria 
may accidentally appear on stubbles; 2) some bacteria may rest as spores on 
the stubble; and 3) they may be important in utilizing glucose/other nutrient 
sources from cellulose degraders or parasitizing other microorganisms. 

Implementation of 454-pyrosequencing to analyse samples from the rice 
crop rotation field proved to be a promising way of providing a deeper 
understanding of soil microbial ecology, e.g. which species are present 
(richness), how many there are (abundance) and what they are doing (function) 
(Buée et al. 2009). Earlier studies reported that only some groups were present 
in paddy soils such as Alpha-, Betaproteobacteria (Ludermann et al. (2000), 
actinomycetes and Gram-negative bacteria (Kimura and Asakawa 2006). 
Asakawa and Kimua (2008) found up to 9 phyla: Proteobacteria, Chloroflexi, 
Chlorobi, Verrucomicrobia, Acidobacteria, Nitrospira, OP10, Cyanobacteria 
and Actinobacteria; however, using 454-pyrosequencing was able to 
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differentiate more than 18 bacterial phyla. Besides these phyla, more than 30% 
of the sequencing reads did not match any already identified taxon. Twenty 
bacterial phyla were found in the rice soil rotated with maize and/or mungbean. 
Across the four treatments and two sampling occasions, we found that 
Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia were the most 
abundant phyla. Members of Proteobacteria, Acidobacteria and 
Verrucomicrobia have been reported to be dominant in the rhizosphere of a 
wide range of plant species e.g. Korean rice (Lee et al. 2011) and biofuel crops 
such as soybean, canola, sunflower, corn and switch grass (da C. Jesus et al. 
2010). Our soil samples originate from the bulk soil, which indicates that these 
groups form highly dominant communities in both the rhizosphere and bulk 
soil. However, there is much less information about the role of the Chloroflexi 
in natural environments. Further study is needed to reveal the role of this group 
in agricultural fields and to understand more about their role in the 
microbiology. 

The relative abundance of both total 16S rRNA and nifH bacterial 
communities were shown to be affected by crop rotation systems. The numbers 
of bacteria carrying the nitrogen-fixation gene (nifH) were also genetically 
diverse in the four rotation treatments. Previous studies based on the DGGE 
method (Hsu et al. (2012); Mårtensson et al. (2009) studied N2-fixing bacteria 
in bulk paddy soil and found that Alphaproteobacteria, Betaproteobacteria, 
Gammaproteobacteria and Firmicutes were the most dominant groups carrying 
the nifH gene. Wartiainen et al. (2008) found that the active N2-fixing bacterial 
community belonged to the same groups. Ours is the first study to report the 
occurrence of many more bacterial phyla carrying the N2-fixing gene compared 
with those reported previously. Furthermore, Shu et al. (2012) found that the 
N2-fixing bacteria belonging to Gammaproteobacteria were the most dominant 
followed by Alphaproteobacteria and Betaproteobacteria in decreasing order in 
bulk paddy soil. In terms of dominance in the soil, the order of these groups 
was different in our study: Deltaproteobacteria > Betaproteobacteria > 
Gammaproteobacteria > Alphaproteobacteria. By contrast our finding showed 
that Deltaproteobacteria was the most important group in the four treatments 
carrying nifH genes as well as in the total bacterial community. This indicates 
that soil conditions and management practices may determine the structure of 
these communities. 

In addition the relative abundance of the Firmicutes, Betaproteobacteria, 
Nitrospira, Archaea, Spirochaetes and Gammaproteobacteria phyla was low in 
the four treatments despite the fact that the members of these groups seemed to 
contribute substantially to the N2-fixing bacterial community composition. We 
did not find any bacteria belonging to Actinobacteria carrying the nifH gene 
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although this phylum was detected by 16S rRNA sequence analysis. Archaea 
have previously been documented as a common group of microorganisms in 
paddy soil (Conrad et al. 2008; Ramakrishnan et al. 2001). Archaea were not 
detected by 16S rRNA but the relative abundance of those carrying the nifH 
gene ranged between 3% and 7% in the four treatments. Recently, Archaea 
have been reported to be involved in different processes in paddy fields: they 
are major contributors to ammonia oxidation (Chen et al. 2008) and methane 
emission (Singh et al. 2012). There is very little information regarding their 
importance in the N cycle and methane emission. N2-fixing bacterial 
communities need to be further investigated by screening for the nifH gene 
DNA in combination with their activity by analysing soil RNA to better 
understand which bacterial groups play an active role in the N cycle in paddy 
fields. 
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8 General conclusions 
The results from this study further our understanding of bacterial community 
structures in paddy fields in the Mekong delta, Vietnam, where the major 
agricultural activity is rice cropping, and the results may be applicable to other 
geographic regions as well. The incorporation of potential beneficial 
microorganisms that inhabit the rice field back into the paddy field plays an 
essential role in protecting the soil environment by reducing the chemical 
inputs needed to maintain nutrient levels and increasing microbial diversity, 
which all contribute to increasing the yields and, hence, reducing poverty. 

Our results show that rice stubble is a rich source of microorganisms with 
cellulolytic and chitinolytic activity and that generally these microorganisms 
were antagonistic to R. solani. When combined in different combinations, it 
was shown that specific fungal isolates to a large extent explained diversity 
effects on decomposition. The strong antagonistic effects towards R. solani 
were observed both in single isolates and in the most diverse communities. 
These results have practical implications in intensive rice cultivation because 
increasing the degree of straw degradation and inhibiting pathogenic growth by 
cellulolytic or combined cellulolytic and chitinolytic microorganisms may help 
to reduce the time needed for field preparation and protect the environment 
because incorporating decomposed residues could help to reduce CH4 
production. Thus there are potential applications for microorganisms with 
multifunctional activities that are vey effective in biodegradation and beneficial 
in terms of increased crop health and harvests. However, attention must be 
given to the potentially deleterious taxa, which were found in this study in 
order for this strategy to be successful in rice cropping. 

Moving forward from in-vitro studies to the field studies, it was also found 
that alternating the rice crop with specific rotational crops of maize and 
mungbean in different rotational systems not only increased rice yield but also 
changed the structure of the bacterial communities in the rice field. Changes in 
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the microbial community were shown to enhance some beneficial bacterial 
groups in the rotation treatments, which potentially reduced the inoculum level 
of soil-borne plant pathogens. Moreover, N2-fixing bacteria which are 
considered to be an important group of microorganisms contributing to N 
availability, were also affected by the rotational cropping system and by the 
total N in the soil. Understanding changes in the diversity and composition of 
this group may partly help to reduce the N fertilizer input in the field. When 
these factors are combined, it is clear that crop management plays an important 
role in maintaining yield, soil nutrients and soil diversity. A change in any of 
these factors may directly impact rice productivity and the income of farmers. 

Finally, along with the crop management strategies, advances in the 
biotechnology used in agriculture research is enabling scientists to increase 
their knowledge of the biology of microbial communities to understand the 
environment where rice is grown in paddy fields. 
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9 Future perspectives 
Rice fields harbour a tremendous diversity of soil microorganisms, which 
partly determine yield as well as soil health. Globally, sustainable rice 
cultivation systems are closely connected to soil biotic and abiotic factors. Any 
changes caused by these will impact rice production. According to the 
'Technical Assistance ReportNam: Climate Change Impact and Adaptation 
Study in the Mekong Delta', ADB (2009) and The greater Mekong and climate 
change: biodiversity, ecosystem services and development at risk, WWF 
(2009), Vietnam has been identified as one of the countries that is likely to be 
most vulnerable to global climate change and the Vietnamese Mekong delta, 
the rice bowl of Vietnam, has been identified as susceptible to the influence of 
extreme climate events and climate variability. Possible changes in the 
distribution of floods, cycles of wet and dry season precipitation and increases 
in the salinity intrusion pattern (Quinn et al. 2010) may directly influence 
agriculture, particularly rice production. 

My future studies will thus focus on: 
 further investigation of straw-degrading microorganisms in different 

rice cultivation systems and their role in the health of the next rice 
crop. 

 investigation of saline-tolerant microorganisms and drought-tolerant 
microorganisms, including bacteria, fungi and arbuscular mycorrhiza 
that can stimulate rice growth under stress conditions. 

 understanding the dynamics of microbial community structures in rice 
fields affected by global climate change, e.g. salinity intrusion, 
drought and extended precipitation periods.  

 studying methanotroph, methanogen, nitrogen fixation and denitrifier 
communities in order to estimate greenhouse gas emissions from rice 
cultivation.  
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