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Abstract: More than 50 methods have been developed to draw unequal
probability samples with fixed sample size. All these methods require the
sum of the inclusion probabilities to be an integer number. There are cases,
however, where the sum of desired inclusion probabilities is not an integer.
Then, classical algorithms for drawing samples cannot be directly applied.
We present two methods to overcome the problem of sample selection with
unequal inclusion probabilities when their sum is not an integer and the
sample size cannot be fixed. The first one consists in splitting the inclusion
probability vector. The second method is based on extending the population
with a phantom unit. For both methods the sample size is almost fixed, and
equal to the integer part of the sum of the inclusion probabilities or this
integer plus one.
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1. Introduction

Unequal probability sampling with fixed sample size is an intricate problem. At
least 50 methods are described in Brewer and Hanif (1983) and Tillé (2006) to
draw an unequal probability sample with fixed sample size. All these methods
assume the sum of the inclusion probabilities to be an integer number. There are
cases, however, where this sum is not an integer. Two main examples where the
sum of inclusion probabilities is not an integer are given below. A first example
is that of sampling with probabilities proportional to size from a population
divided into domains. Inclusion probabilities within domains often do not sum
to integer numbers. Consequently, when one wants to control the sample size
within domains, one usually uses rounding algorithms to obtain integer sample
sizes for all domains, maintain the requested total sample size, and then use a
stratified sampling algorithm to select the sample. However, this can become
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problematic when there is a large number of domains with small expected sam-
ple sizes, as is commonly the case in business surveys. In this kind of survey, the
population is usually divided into size classes and activity sectors. Results are
published by economic sectors of activity, according to a classification defined
within each country. Size classes, in terms of revenue or of number of employees,
is a secondary domain of interest for publications. More importantly, business
sizes have to be taken into account in order to build an efficient sampling de-
sign. Sample sizes are then controlled for cells that are the intersection of these
attributes. This is done in order to ensure that fixed sample sizes are respected
both at the size class level and at the activity sector level, and also that fur-
ther aggregations will not be hindered by accidentally empty sample cells. The
proportionality relation between inclusion probabilities and business sizes is de-
graded by the large number of roundings and the resulting relative deviation
from the original inclusion probabilities, that can be important for small do-
mains. Another example is that of bootstrap procedures. Antal and Tillé (2011)
have proposed a bootstrap method where units are re-sampled from the ini-
tial sample using the original inclusion probabilities. However, the sum of these
probabilities within the bootstrap sample is usually not integer.

The case where the sum of inclusion probabilities is not an integer number
was recently discussed by Bondesson and Grafström (2011). They proposed a
generalization of the Sampford (1967) method to the case where the sum of the
inclusion probabilities is not an integer. In their solution, the selection of one unit
of the population is dealt with in a special way, and the final sample size is equal
to the integer directly below the sum of inclusion probabilities, or to the integer
directly above it. In this paper, we describe general solutions to overcome the
problem when the sum of the inclusion probabilities is not an integer. All fixed
size sampling designs can be, through these solutions, generalized to inclusion
probabilities that do not sum to an integer. We give practical procedures to do
so, and in particular to implement a maximum entropy design (see Hájek, 1981).

The paper is organized as follows. In Section 2 we present the first method
based on splitting the inclusion probability vector into two new inclusion prob-
ability vectors. For this method we present two different algorithms for the
splitting. One is based on the πps procedure for calculating inclusion proba-
bilities and the other one allows sampling with maximum entropy. Differences
between these two splitting algorithms are illustrated with a small example. The
second method, based on an augmented population, is presented in Section 3.
Estimation, with a small example, is shortly treated in Section 4. We comment
on some applications in Section 5. Finally, in Section 6 we discuss the interest
of the different methods.

2. First general solution by splitting the inclusion probability vector

2.1. Splitting into two fixed size designs

Assign a number πk ∈ [0, 1] to all units k of a finite population U , and suppose
that one wants to randomly select a subset s of U with inclusion probabilities
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contained in the vector π = (πk)k∈U . The value η =
∑

k∈U πk gives the expected
size of the selected sample. When η is an integer, there exist many methods (see
Brewer and Hanif, 1983; Tillé, 2006) of selection whereby only samples of size
η can be selected.

When η is not an integer, we may want to use a method that enables us
to select a sample with a size that is close to η while respecting the inclusion
probabilities πk. More precisely, the size of the selected sample should be either
equal to n or n + 1, where n is the integer such that n ≤ η < n + 1. We are
looking for implementations of probability distributions P on the subsets s of
U such that

P (s) > 0 ⇒ |s| ∈ {n, n+ 1}, s ⊂ U, (2.1)

and
∑

s⊂U

Ik(s)P (s) = πk, k ∈ U, (2.2)

where |s| is the cardinal of s, and Ik(s) = 1 if k ∈ s and 0 otherwise is the
sample membership indicator function. These constraints imply that P ({|s| =
n+ 1}) = η − n.

A first possible solution is to describe all probability distributions that satisfy
conditions (2.1) and (2.2) through the splitting method developed by Deville
and Tillé (1998). These distributions are obtained by constructing two vectors
denoted by π− = (π−

k )k∈U and π+ = (π+

k )k∈U , such that

0 ≤ π−
k ≤ 1, 0 ≤ π+

k ≤ 1, k ∈ U, (2.3)

πk = (1− q)π−

k + qπ+

k , k ∈ U, (2.4)
∑

k∈U

π−
k = n, and

∑

k∈U

π+

k = n+ 1, (2.5)

where q = η−n. Once these vectors are computed, a realization r of a Bernoulli
variable with parameter q is generated. If r = 1, a sample s of size n + 1 is
drawn from U using any fixed-size method with inclusion probabilities (π+

k )k∈U .
Similarly, if r = 0, a sample s of size n is drawn from U using any fixed-size
method with inclusion probabilities (π−

k )k∈U . It is easy to see that this procedure
gives a solution to our problem, and that all probability distributions that are
solutions can be found through this procedure. We give in Subsections 2.2 and
2.3 two different methods to compute vectors π+ and π−. The first one mimics
the usual probability proportional to size computation of inclusion probabilities
(πps procedure); the second one allows implementation of the maximum entropy
sampling design.

2.2. Computation based on the πps procedure

Suppose that η is not integer and that n is the integer such that n < η <
n + 1. Vectors π+ = (n + 1)π/η and π− = nπ/η satisfy Conditions (2.4)
and (2.5) but π+ does not necessarily satisfy the second relationship in (2.3).
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However, suitable vectors (π−

k )k∈U and (π+

k )k∈U can be found through the usual
procedure for probability proportional to size sampling (see Särndal et al., 1992,
p. 89). Here the size measure is the original inclusion probability vector π. For
some units with large inclusion probabilities πk, the quantities (n + 1)πk/η
may be larger than one. The standard procedure is then to assign to these
units an inclusion probability equal to one, and to compute proportional to size
inclusion probabilities for the remaining units, repeating the operation several
times if necessary. The solution can also be found directly in a few steps given
in Algorithm 2.1.

Algorithm 2.1 (Direct computation of a πps-inclusion probability vector).
Here, the size measure is the value of πk, the desired sample size is n + 1 and
the obtained inclusion probabilities are π+

k , k ∈ U . One gives the general solution
to the computation of a πps inclusion probability vector substituting n+ 1 with
a suitable size.

1. Order the population units so that π1 ≥ π2 ≥ · · · ≥ πN ,
2. Compute

ui = (n+ 2− i)
πi

∑N
k=i πk

, i = 1, . . . , N.

3. Define A = {i such that uℓ ≥ 1 for all 1 ≤ ℓ ≤ i}.
4. Define π+

k = 1 if k ∈ A and,

π+

k = (n+ 1− |A|)
πk

∑

i/∈A πi
otherwise, if |A| < n+ 1.

If |A| = n+ 1 then π+

k = 0 for all k /∈ A.

We then define π−
k = (πk − qπ+

k )/(1− q), for all k ∈ U . As stated in Propo-
sition 2.2, vectors π+

k and π−

k enjoy the required properties and can be used to
implement a size constrained sampling design with average size η.

Proposition 2.2. Vectors π+ and π− computed through Algorithm 2.1 satisfy
Conditions (2.3), (2.4) and (2.5). Furthermore, we have that

0 ≤ π−
k ≤ πk ≤ π+

k ≤ 1, for all k ∈ U.

A proof of Proposition 2.2 is given in Appendix.

2.3. Computation for maximum entropy sampling design

Consider that each sample s of U is represented by a vector s in R
N , N = |U |,

whose components are equal to the sample membership indicators, so that sk =
Ik(s), for all k ∈ U . Let S denote the set of all possible samples of any size
1 ≤ n ≤ N of U , and Q be a subset of S. A maximum entropy sampling design
p(.) on Q is a probability distribution whose support is equal to Q and that
maximizes the entropy function, given by

H(p) = −
∑

s∈Q

p(s) log p(s).
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Some of the most frequently used sampling designs, such as simple random sam-
pling, stratified sampling and Poisson sampling, are maximum entropy designs.
The use of maximum entropy or high entropy sampling designs is commonly
deemed to be desirable on the grounds that these designs retain a high level
of randomness, even when they are subject to size and inclusion probabilities
constraints. Properties of high entropy sampling designs are discussed amongst
others in Hájek (1964); Berger (1998); Brewer and Donadio (2003) and Qualité
(2008). If the sampling design is constrained to a vector of given inclusion prob-
abilities π, then (see Darroch and Ratcliff, 1972)

p(s,Q,λ) =
exp(λ′s)I(s ∈ Q)

α(Q,λ)
,

where α(Q,λ) =
∑

s∈Q
exp(λ′s), I(s ∈ Q) is equal to 1 if s ∈ Q and to 0 other-

wise, and the vector-parameter λ ∈ R
N is such that the inclusion probabilities

πk, k ∈ U are obtained, i.e.

∑

s∈Q

s · p(s,Q,λ) = π. (2.6)

Such a vector always exists when π lies in the interior of the convex hull of Q
(see Brown, 1986, p.74). Degenerate cases where π is on the boundary of this set
can be accounted for by cautiously allowing some coordinates λk to take infinite
values. A fast algorithm that allows to compute π from λ and reciprocally is
described amongst others in Tillé (2006, pp. 82-83) in the case of the maximum
entropy sampling designs with fixed sample size, also called conditional Poisson
sampling.

In the present case, the support Q is the set of all samples of size n, denoted
by Sn added to the set of all samples of size n+ 1, denoted by Sn+1. Hence we
have that

α(Q,λ) = α(Sn,λ) + α(Sn+1,λ).

We also have that

q = η − n = p ({|s| = n+ 1}) =
∑

s∈Sn+1

p(s,Q,λ) =
α(Sn+1,λ)

α(Q,λ)
. (2.7)

We can thus write the natural decomposition:

p(s,Q,λ) =
exp(λ′s)

α(Q,λ)
I(s ∈ Q)

= (1− q)
exp(λ′s)

α(Sn,λ)
I(s ∈ Sn) + q

exp(λ′s)

α(Sn+1,λ)
I(s ∈ Sn+1)

= (1− q) p(s,Sn,λ) + q p(s,Sn+1,λ).

It follows that maximum entropy sampling with given inclusion probabilities π
and support Q is a mixture of maximum entropy sampling on support Sn and of
maximum entropy sampling on support Sn+1 with the same vector-parameter λ.
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Usual numerical approximation procedures to obtain a suitable vector λ from
π (see for example Chen et al., 1994; Aires, 2000; Deville, 2000; Tillé, 2006, p.83)
can easily be adapted to the case where Q = Sn∪Sn+1. Indeed, these procedures
are based on a simplified Newton algorithm to find a solution λ of

π − π(n,λ) = 0,

where π(n,λ) =
∑

s∈Sn
s · p(s,Sn,λ), and the fact that we can explicitly com-

pute conditional inclusion probabilities π(n,λ) for any integer n and parameter
λ. In order to derive a suitable λ from π, we can use the same idea to find a
solution of

π − qπ(n+ 1,λ)− (1 − q)π(n,λ) = 0. (2.8)

Once λ is obtained, we compute inclusion probability vectors π− = π(n,λ)
and π+ = π(n+1,λ). These vectors automatically satisfy Conditions (2.3), (2.4)
and (2.5). Moreover, with this method, inequalities π−

k ≤ πk ≤ π+

k hold for all k
in U as the inclusion probabilities of conditional Poisson sampling with a given
parameter λ increase with the size of the samples (see for example Hájek, 1981).
Any fixed-size design can then be used with these vectors, or, having already
computed λ, we can very rapidly draw a sample from the maximum entropy
sampling distribution.

2.4. An example

The two proposed algorithms for the splitting are illustrated in Table 1. This
table contains the vectors π− and π+ computed for a population of N = 10
units with strongly dispersed inclusion probabilities π whose sum is equal to
η = 5.5.

On this example, with very heterogeneous inclusion probabilities, the algo-
rithms give relatively different results. For more homogeneous inclusion proba-
bilities, it is expected that the results would have been closer. Indeed, output

Table 1

Computation of π−

k
and π

+

k
from πk by means of the πps-method and the maximum entropy

method

πps-method maximum entropy

k πk π
−

k
π
+

k
π
−

k
π
+

k

1 0.01 0.0088 0.0112 0.0071 0.0129
2 0.10 0.0876 0.1124 0.0726 0.1274
3 0.40 0.3506 0.4494 0.3167 0.4833
4 0.40 0.3506 0.4494 0.3167 0.4833
5 0.50 0.4382 0.5618 0.4112 0.5888
6 0.60 0.5258 0.6742 0.5156 0.6844
7 0.70 0.6135 0.7865 0.6284 0.7716
8 0.85 0.7449 0.9551 0.8091 0.8909
9 0.95 0.90 1 0.9354 0.9646
10 0.99 0.98 1 0.9870 0.9930

5.5 5 6 5 6
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vectors π− and π+ are, with both methods, continuous functions of π, and for
equal inclusion probabilities, both algorithms give exactly the same results.

Each method has its advantages. On one hand, the πps method is easy to
implement, requires very few computations, and provides vectors π− and π+

that remain proportional to π (and thus to the auxiliary information used ini-
tially to compute π) except for some units for which π+

k is equal to 1. On the
other hand, when all πk are in (0, 1), the maximum entropy method does not
assign values equal to 1 to elements of the vector π+ and allows to implement
a maximum entropy design. It is, however, computationally intensive, and can
comfortably be used on populations of up to only a few thousand units.

3. Second general solution through an augmented population

Instead of splitting the probability vector in two and calculating π− and π+,
another method to solve the problem consists of extending the population by
adding a supplementary phantom unit labeled N + 1. This unit receives the
inclusion probability

πN+1 = n+ 1− η.

So, with the added phantom unit, the sum of all inclusion probabilities has the
integer value n+ 1.

Now, a sampling design is obtained by selecting a sample of size n+1 from the
augmented population, and considering the induced marginal sampling design
on the true population U . Thus the real sample size is n if the phantom unit is
selected and n+1 if the phantom unit is not selected. Ignoring the phantom unit
does not affect the inclusion probabilities for units 1, 2, . . . , N . Thus the inclusion
probabilities πk are satisfied. Sampling designs obtained through this method
are usually different from those obtained through the methods of Section 2. One
exception is given in Proposition 3.1.

Proposition 3.1. If the method of augmented population is applied with a max-
imum entropy design, then the sampling design is the same as in Section 2.3.

A proof is given in Appendix. The method of augmented population is thus
a simple way to implement the maximum entropy design when the sum of the
inclusion probabilities is not integer, with available implementations of fixed
size maximum entropy sampling.

4. Estimation

Usually we are interested in estimating the total of a study variable y, which
takes a fixed value yk for unit k. The population total Y =

∑

k∈U yk can be
estimated without bias by the well known Horvitz-Thompson estimator

ŶHT =
∑

k∈s

yk
πk

. (4.1)
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Table 2

Population of size N = 5 used to exemplify the differences between ŶC and ŶHT

k yk πk π
−

k
π
+

k

1 3 0.250 0.1723284 0.3794526
2 3 0.250 0.1723284 0.3794526
3 5 0.375 0.2726017 0.5456639
4 8 0.625 0.5402228 0.7662954
5 17 0.875 0.8425187 0.9291355

36 2.375 2 3

If the πk’s do not sum to an integer, and the sample size cannot be fixed, then
it may be more efficient to condition on the realized sample size. For the first
method (Section 2), this corresponds to conditioning on the outcome of the
random choice between π−

k and π+

k . If the conditional inclusion probabilities
π−

k = Pr(k ∈ s |s ∈ Sn ) and π+

k = Pr(k ∈ s |s ∈ Sn+1 ) have been calculated,
then we may use the conditional estimator

ŶC =















∑

k∈s

yk

π−
k

if s ∈ Sn

∑

k∈s

yk

π+

k

if s ∈ Sn+1

(4.2)

depending on the realized sample size n or n+1. Estimator ŶC is unbiased and
also unbiased conditional on the actual sample size. The Horvitz-Thompson
estimator ŶHT is not unbiased conditional on the sample size. In this situation
we should also use a conditional variance estimator adapted to ŶC . Indeed, we
then have that

var
(

ŶC

)

= E
(

var
(

ŶC

∣

∣

∣
|s|

))

+ var
(

E
(

ŶC

∣

∣

∣
|s|

))

, (4.3)

However, ŶC is unbiased conditional on the size of s. It follows that the last
term in Equation 4.3 is null and that any unbiased estimator of the variance of
ŶC conditional on size is also an unbiased estimator of the variance of ŶC .

The gain in efficiency by using ŶC instead of ŶHT can be rather substantial.
We illustrate this by an example. The population details are given in Table 2.

In Table 2 we have used the maximum entropy design for calculation of π−
k

and π+

k and also for sample selection. The full list of samples, their probabilities

and the value of the estimators ŶHT and ŶC are given in Table 3. For this
example we get that V (ŶHT ) = 46.14 and V (ŶC) = 5.01. For samples of size
n = 2, ŶHT is negatively biased and for samples of size n = 3, ŶHT is positively
biased.

5. Applications

As a variance reduction technique, we may want to divide the population into
rather small non-overlapping strata and make sure that the sample size varies
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Table 3

The list of all possible samples, their probabilities and the value of the estimators ŶHT and

ŶC for the population given in Table 2

s p(s) ŶHT ŶC

(1,2) 0.0056 24.00 34.82
(1,3) 0.0092 25.33 35.75
(1,4) 0.0205 24.80 32.22
(1,5) 0.0724 31.43 37.59
(2,3) 0.0092 25.33 35.75
(2,4) 0.0205 24.80 32.22
(2,5) 0.0724 31.43 37.59
(3,4) 0.0335 26.13 33.15
(3,5) 0.1185 32.76 38.52
(4,5) 0.2633 32.23 34.99
(1,2,3) 0.0025 37.33 24.98
(1,2,4) 0.0056 36.80 26.25
(1,2,5) 0.0199 43.43 34.11
(1,3,4) 0.0092 38.13 27.51
(1,3,5) 0.0326 44.76 35.37
(1,4,5) 0.0724 44.23 36.64
(2,3,4) 0.0092 38.13 27.51
(2,3,5) 0.0326 44.76 35.37
(2,4,5) 0.0724 44.23 36.64
(3,4,5) 0.1185 45.56 37.90

as little as possible within the strata. With the proposed methods, this can
easily be achieved. If the inclusion probabilities sum to an integer for the entire
population, then it is also possible to coordinate the strata sample sizes to have
a fixed overall sample size. The procedure is as follows.

Let there be H strata and let ηh =
∑

k∈Uh
πk, nh < ηh < nh + 1, where

∑H
h=1

ηh = n and n is an integer. Some strata should get sample size nh and
some nh + 1. Stratum h should get sample size nh + 1 with probability qh =
ηh−nh. As

∑H
h=1

qh = n−
∑H

h=1
nh is an integer (saym), any fixed size sampling

design on {1, . . . , H}, with inclusion probabilities q1, q2, . . . , qH , can be used to
select m strata that will get sample sizes nh + 1. For each selected stratum we
calculate π+

h and for the non-selected strata we calculate π−

h . Now we can apply
a fixed-size unequal probability design within each domain, with these inclusion
probability vectors, to select our sample. By this procedure we respect the initial
inclusion probabilities, have a minimum variance in the domain sample sizes,
and a fixed overall sample size.

Another important application is that of bootstrap methods for a finite pop-
ulation. Antal and Tillé (2011) have shown that if the sample is selected without
replacement with unequal inclusion probabilities, the bootstrap method must
take the sampling design into account. They propose a two-phase bootstrap
procedure. In the first phase, a set of units is selected once in the bootstrap
sample with the same unequal probabilities as the original sample. In the sec-
ond phase, the units that are not selected in the first phase are resampled with
equal probabilities with replacement. However, during the first phase, the sum
of the inclusion probabilities in the sample is not integer. For this first phase,
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the authors needed to have sampling procedures that can be used when inclu-
sion probabilities do not sum to an integer. The authors used a size-constrained
sampling design as described in Section 2.

6. Discussion

Once vectors π+ and π− are computed and randomly chosen, any known fixed-
size sampling method can be applied on the selected vector, which makes these
procedures very general. Both solutions of Section 2 and 3 cover all probability
distributions that satisfy Conditions (2.1) and (2.2). However, only a limited
number of fixed size sampling procedures are actually implemented. Using these
sampling procedures on an augmented population as in Section 3 or after a trial,
with updated inclusion probabilities as in Section 2 usually leads to different
sampling designs. Maximum entropy sampling, is a notable exception where
both methods coincide to the same sampling design.

The advantage of the splitting technique is that π−

k and π+

k are calculated and

we may use the estimator ŶC . The advantage of using the method of augmented
population with a phantom unit is that it does not require calculation of π−

k and
π+

k . Thus it is easier to implement, but if the conditional inclusion probabilities

are not calculated, we may not use the more efficient estimator ŶC . For some
designs it is however possible to calculate the conditional inclusion probabilities
and use the more efficient estimator even if the sample was selected by the
approach with an augmented population.
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Appendix A: Proofs

A.1. Proof of Proposition 2.2

The equation
∑

k∈U π−

k = n is automatically satisfied, along with most other
properties that immediately follow from the definition of π−. It is also easy to
see that, in algorithm 2.1, n+1−|A| ≥

∑

i/∈A πi and 1 ≥ π+

k ≥ πk, for all k ∈ U .
The only part that requires a proof is the assertion that π− is truly an inclusion
probability vector, that is to say that all π−

k lie in [0, 1]. This is proved below:

(i) Since π+

k ≥ πk, for all k, and πk = (1− q)π−
k + qπ+

k , we immediately have
that π−

k ≤ πk ≤ 1.
(ii) For the other inequality, we need to prove that πk ≥ qπ+

k , for all k. Two
cases may occur:
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– if k ∈ A then, by definition, (n+ 2 − k)πk ≥
∑N

i=k πi which is, after
having subtracted πk from both sides of the inequality, equivalent to

πk ≥
η −

∑k
i=1

πi

n+ 1− k
.

Hence, it is sufficient to prove that

η −
∑k

i=1
πi

n+ 1− k
≥ q = η − n. (A.1)

– If k /∈ A and |A| < n+1, π+

k = (n+1−|A|)πk/
∑

i/∈A πi and we need
to prove that

η −
∑

i∈A πi

n+ 1− |A|
≥ q = η − n. (A.2)

In order to prove inequalities (A.1) and (A.2), it is sufficient to prove that

η − p

n+ 1− p
≥

η − n

n+ 1− n
,

if p ≤ n, or:
n+ 1− n

n+ 1− p
≥

η − n

η − p
,

(every term is positive since p ≤ n < η < n+ 1). But the function

fn,p = x →
x− n

x− p

is well defined for all p ≤ n and x > p and is non-decreasing thanks to the
fact that n ≥ p. Using this property and the fact that η < n + 1 proves
the result and even that, if |A| < n or if πk, k ∈ A are not all equal to 1,
then πk > 0 implies that π−

k > 0. �

A.2. Proof of Proposition 3.1

Consider the sampling design p(·) on U , obtained by selecting a sample s̃ with
inclusion probabilities

π = (π1, . . . , πk, . . . , πN , 1− q)′

on the augmented population with the fixed size maximum entropy design p̃(·),
and retaining the sample s given by the first N selection indicators. We have
that

p(s) = p̃(s̃) =
exp(λ̃

′
s̃)

∑

s̃∈S̃n+1
exp(λ̃

′
s̃)
,

where S̃n+1 is the set of all samples of size n+ 1 in the augmented population
and λ̃ is a vector such that the inclusion probabilities are exact (see for example
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Chen et al., 1994). Since p̃(·) has fixed size, such a vector λ̃ is defined up to an
additive constant. We can thus force λ̃N+1 = 0. If λ is the vector that holds the
N first coordinates of λ̃, we then have that

p(s) =
exp(λ′s)

∑

s∈Sn
exp(λ′s) +

∑

s∈Sn+1
exp(λ′s)

.

Hence, p(·) is the maximum entropy design on Sn ∪ Sn+1 with inclusion proba-
bilities π1, . . . , πN . �
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