Home About Browse Search

Linking vegetation change, carbon sequestration and biodiversity

insights from island ecosystems in a long-term natural experiment

Wardle, David A. and Jonsson, Micael and Bansal, Sheel and Bardgett, Richard and Gundale, Michael and Metcalfe, Daniel (2012). Linking vegetation change, carbon sequestration and biodiversity. Journal of ecology. 100 :1 , 16-30
[Research article]

[img] PDF

Official URL: http://dx.doi.org/10.1111/j.1365-2745.2011.01907.x


1. Despite recent interest in linkages between above- and belowground communities and their consequences for ecosystem processes, much remains unknown about their responses to long-term ecosystem change. We synthesize multiple lines of evidence from a long-term ‘natural experiment’ to illustrate how ecosystem retrogression (the decline in ecosystem processes due to long-term absence of major disturbance) drives vegetation change, and thus aboveground and belowground carbon (C) sequestration, and communities of consumer biota.
2. Our study system involves 30 islands in Swedish boreal forest that form a 5000 year fire-driven retrogressive chronosequence. Here, retrogression leads to lower plant productivity and slower decomposition, and a community shift from plants with traits associated with resource acquisition to those linked with resource conservation.
3. We present consistent evidence that aboveground ecosystem C sequestration declines, while belowground and total C storage increases linearly for at least 5000 years following fire absence. This increase is driven primarily by changes in vegetation characteristics, impairment of decomposer organisms and absence of humus combustion.
4. Data from contrasting trophic groups show that during retrogression, biomass or abundance of plants and decomposer biota decreases, while that of aboveground invertebrates and birds increases, due to different organisms accessing resources via distinct energy channels. Meanwhile, diversity measures of vascular plants and aboveground (but not belowground) consumers respond positively to retrogression.
5. We show that taxonomic richness of plants and aboveground consumers are positively correlated with total ecosystem C storage, suggesting that conserving old growth forests simultaneously maximizes biodiversity and C sequestration. However, we find little observational or experimental evidence that plant diversity is a major driver of ecosystem C storage on the islands relative to other biotic and abiotic factors.
6. Synthesis. Our study reveals that across contrasting islands differing in exposure to a key extrinsic driver (historical disturbance regime and resulting retrogression), there are coordinated responses of soil fertility, vegetation, consumer communities, and ecosystem C sequestration, which all feed back to one another. It also highlights the value of well replicated natural experiments for tackling questions about aboveground-belowground linkages over temporal and spatial scales that are otherwise unachievable.

Authors/Creators:Wardle, David A. and Jonsson, Micael and Bansal, Sheel and Bardgett, Richard and Gundale, Michael and Metcalfe, Daniel
Title:Linking vegetation change, carbon sequestration and biodiversity
Subtitle:insights from island ecosystems in a long-term natural experiment
Series Name/Journal:Journal of ecology
Year of publishing :2012
Page range:16-30
Publication Type:Research article
Article category:Scientific peer reviewed
Version:Accepted version
Full Text Status:Public
Agris subject categories.:K Forestry > K01 Forestry - General aspects
K Forestry > K70 Forest injuries and protection
Subjects:(A) Swedish standard research categories 2011 > 4 Agricultural Sciences > 401 Agricultural, Forestry and Fisheries > Forest Science
Keywords:islands, chronosequence, biodiversity
Permanent URL:
ID Code:9454
Department:(S) > Dept. of Forest Ecology and Management
Deposited By: Professor David Wardle
Deposited On:28 Feb 2013 08:25
Metadata Last Modified:04 Feb 2016 19:55

Repository Staff Only: item control page


Downloads per year (since September 2012)

View more statistics