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Setosphaeria turcica, fungal mating and plant defence 

Abstract  
The heterothallic ascomycete Setosphaeria turcica (anamorph: Exserohlium turcicum) 
causes turcicum leaf blight on maize and sorghum. A survey was undertaken in Uganda 
to examine the sorghum – S. turcica interaction in terms of disease severity and 
incidence, overall fungal population structure, and new resistant resources. Highest 
disease severities were recorded on caudatum accessions, whereas kafir genotypes were 
most resistant. Highly resistant sorghum accessions originating from a regional 
collection were found among the five local sorghum races. The disease was more 
severe in the most humid farmlands. Upon cross inoculation on maize differential lines, 
S. turcica isolates corresponding to race 0, 1, 2 and 3 were found, increasing the 
number of known races in Uganda. The two S. turcica mating type genes MAT1-1 and 
MAT1-2 were found in 20 of 23 districts sampled and in equal proportions on sorghum 
and maize indicating that sexual recombination is present in Uganda. Fungal mating 
types in Pezizomycotina are characterised by genes encoding either an HMG or α1 
domain protein, occupying the same locus on corresponding chromosomes. We present 
sequence comparisons, phylogenetic analyses, and in silico predictions of secondary 
and tertiary structures, which support our hypothesis that the α1 domain is related to the 
HMG domain and share a common ancestor. We have also characterized a new 
conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent 
to and downstream of the α1 domain. The S. turcica genome contains 123 unique 
protein sequences not found in related fungi. These are of importance for plant cell wall 
degradation, ion-binding and transport. Genome comparisons of maize versus Brassica 
infecting fungi revealed 628 maize specific protein groups including a number of 
potential effectors. 

Six NB-LRR encoding St genes residing in three pairs in one locus on chromosome 
5 in sorghum were found to mediate resistance to S. turcica. The St gene homologs 
have all highly conserved sequences, and commonly reside as gene pairs in the grass 
genomes. 
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1 Introduction 
The emergence of agriculture is one of the most fundamental transformations 
of the human-environment interaction. Evidence for agricultural activity appear 
in fossil records 7000-12000 years ago, spanning at least seven independent 
centres in the world (Richerson et al., 2001; Brown et al., 2008). With 
agriculture came diseases to humans, plants and animals and the earliest 
mention of plant diseases are in ancient Greek literature. Many significant 
human diseases are thought to have arisen concurrently with the advent of 
agriculture, creating transmission pathways between humans and animals 
(Pearce-Duvet, 2006). Emerging plant diseases are caused by pathogens that 
have increased in incidence, geographical- or host range; changed 
pathogenesis; or are newly recognised (Anderson et al., 2004). Superimposed, 
changes in cropping systems, climate, and human activities such as 
international trade significantly affect spread and crop losses incited by plant 
pathogens. Our history comprises of numerous examples of crop failures that 
have led to regional or national famine, emigration, political instability and 
huge economic losses. 
 
This summary covers large research areas particularly within fungal genetics, 
plant-pathogen interactions and plant defence responses. The intention is not to 
fully cover all findings reported but to highlight present understanding and 
concepts. Thus, a number of important reviews and recent discoveries are 
referred to. Despite the strong conceptual framework for understanding plant-
pathogen molecular interactions, much is based on few pathosystems and a 
range of fundamental, evolutionary and molecular questions remain to be 
answered. 
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1.1 Maize and sorghum cultivation in Sub-Saharan Africa 

1.1.1 Origin 

Maize (Zea mays) was domesticated in Mesoamerica between 6000-10000 
years ago from teosinte, which translates to ‘grain of the gods’ and comprises a 
group of species in the genus Zea (Beadle, 1939; Bush et al., 1989; Doebley, 
2004). Teosinte is similar in morphology to maize, however the female 
inflorescences differ considerably with teosinte producing a few kernels in a 
hard seed case compared to the many exposed kernels on maize. Sorghum 
(Sorghum bicolor) includes all wild sorghums and cultivated sorghum 
(Sorghum bicolor ssp. bicolor) and is indigenous to Africa and Asia and it is 
suggested that cultivated sorghum became domesticated in sub-Saharan Africa 
5000-6000 years ago particularly in the Nile basin (DeWet and Huckabay, 
1967; Kimber, 2000). The sorghum genus is noteworthy in that it includes one 
of the world´s most noxious weeds, Johnson grass (S. halepense), an 
interspecific hybrid of S. bicolor and S. propinquum (Holm et al., 1977). The 
latter contributing rhizomatousness, which together with seed dispersal by 
disarticulation of the mature inflorescence, contribute to the troublesome 
weedy traits of Johnson grass. 

Domestication of maize and sorghum gave rise to landraces with seeds 
containing high levels of starch, typically 65-75% (Ai et al., 2011). This 
abundance of starch coupled with developments in agriculture provided a 
plentiful food supply allowing ancient civilisations to blossom for example, in 
pre-classic Mesoamerica (1250 BC to 250 AD) maize constituted 50% of the 
diet in the ancient Maya society (White and Schwarcz, 1989). Maize was so 
important for their survival the Maya worshiped a maize god and even believed 
that Man originated form maize. Maize arrived at the African continent during 
the 1600 century. It was shipped from Central America to the African west 
coast, together with cassava, beans and potato, and spread slowly, first in the 
costal areas and later in the inlands of Africa  (McCann, 2006). Records claim 
that it was used as a garden vegetable crop in Ethiopian highland until the 
beginning of the twentieth century (McCann, 1995). 

1.1.2 Economical importance of maize and sorghum 

Today, maize and sorghum are the most important staple cereals for Sub-
Saharan Africa (SSA) and constitute two of the top five cereal crops in the 
world along with wheat, rice and barley (FAO, 2011). In addition to a staple 
for human consumption, maize and sorghum are used for animal fodder and 
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recently, biofuel. On the African continent, maize and sorghum are grown on 
28 and 27 million hectares, respectively, which constitutes approximately 20% 
and 60% of the world total. The world maize yield average is 5.0 tons per 
hectare (t/Ha) but the yield varies hugely with North America producing 9.6 
t/Ha and Africa just 1.7 t/Ha. World average sorghum yields significantly are 
lower than maize with African yields averaging 0.9 t/Ha compared with 4.4 
t/Ha in North America (FAO, 2011).  

Despite the low yield, sorghum is used in an extensive range of cultivation 
systems because sorghum is generally tolerant to drought, high temperature 
stresses and low soil fertility (Doggett, 1988). These traits allow cultivation in 
arid and semi-arid areas with low or limited irrigation unsuitable for maize, 
strengthening food security in vulnerable regions. Low average yields of maize 
and sorghum in Africa compared to world averages are accredited to a 
multitude of factors including poor soils, low inputs (low yielding genotypes, 
fertilizers, agrochemicals, machinery etc), traditional farming practices and 
biotic constraints. Common pests and pathogens in SSA are stem bores 
(Lepidoptera spp.), sucking bugs (Homoptera and Hemiptera spp.), turcicum 
leaf blight (Setosphaeria turcica), grey leaf spot (Cercospora zeae-maydis, 
Cercospora sorghi), and maize streak virus disease (Ceballos et al., 1991; 
Adipala et al., 1993a; Nkonya et al., 1995; De Vries and Toenniessen, 2001; 
Pingali and Pandey, 2001; Tilahun et al., 2001). A combination of improved 
farming methods coupled with the greater availability of high yielding, 
pathogen resistant, maize and sorghum hybrid varieties is increasing yields in 
Africa. In this perspective, the International Maize and Wheat Improvement 
Centre (CIMMYT) and the International Crops and Reasearch Institute for the 
Semi-Arid Tropics (ICRISAT) breeding initiatives together with regional 
universities and research institutes, are important drivers in the crop 
improvement processes (Bantilan et al., 2004; Katema 2008; Olembo et al., 
2010; www.cimmyt.org; www.icrisat.org). 

1.1.3 Turcicum leaf blight (TLB) 

The heterothallic ascomycete Setosphaeria turcica (Luttrell) Leonard & Suggs 
(anamorph: Exserohlium turcicum, former Helminthosporium turcicum) causes 
turcicum leaf blight (TLB) also know as northern corn leaf blight (NCLB) on 
maize, sorghum and related wild grasses (Hamid and Aragaki, 1974; Chiang et 
al., 1989). In Africa, the impact of TLB has historically been of minor 
importance. However, in 1988 in Uganda extensive yield losses were recorded 
on maize (Adipala et al., 1993a) and severe and sporadic outbreaks of TLB 
have since reappeared in East Africa (Ebiyau and Oryokot, 2001; Pratt and 
Gordon, 2006). Maize and sorghum share agro-ecologies and TLB epidemics 
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in SSA are now common (De Vries and Toenniessen, 2001). During 
epidemics, incidence of infection can reach 100% causing significant yield 
losses (Raymundo, 1981; Carson, 1995; Ramathani et al., 2011).  

1.2 Setosphaeria turcica 

1.2.1 Biology  

S. turcica is a hemibiotrophic ascomycete fungus, living on live plant tissue 
before causing necrosis drawing nutrition from dead tissue. The pathogen 
thrives in temperatures ranging between 17-28°C and moderate to high 
humidity but can tolerate harsher conditions (White, 2000). S. turcica has been 
recorded in Europe, the Americas, Australasia, Asia and Africa however, to 
date, S. turcica has not been recorded in Sweden. Maize is expanding in area in 
Sweden and is expected to become a major crop for silage in near future (Roos 
et al., 2011). Thus, this has the potential of introducing to new disease 
problems such as TLB. 

S. turcica primarily lives on leaf material spreading systemically through 
the plant however it will survive or over-winter on decaying plant material 
when conditions are favourable (Leach, 1977). Reproduction is almost entirely 
asexual producing conidia. Unequal distribution of mating types and gametic 
phase disequilibrium within tropical regions has been suggested to be the result 
of sexual reproduction, possibly while the fungus is residing in decaying plant 
material (Borchardt et al., 1998; Ramathani et al., 2011). Like many 
ascomycete plant pathogens, S. turcica is thought to spend the majority of its 
life as a haploid organism only becoming diploid for a brief stage during sexual 
recombination before undergoing meiosis to produce haploid ascospores 
(Moghaddam and Pataky, 1994). The sexual stage however has so far not been 
reported on any field material. 

1.2.2 Origin 

Based on DNA sequence information derived from 28S rDNA sequences, 
Setosphaeria species such as S. turcica are placed within the Pleosporaceae 
family (Kodsueb et al., 2006). Pleosporaceae contains many economically 
important pathogens of monocots including Cochliobolus species such as C. 
heterostrophus (anamorph Bipolaris maydis) the casual agent of southern corn 
leaf blight on maize (Tatum, 1971), Alternaria species which attacks a vast 
number of crop species (Thomma, 2003) and Pyrenophora species like P. teres 
that causes barley net-spot blotch disease (Mathre, 1997). 

The centre of origin for S. turcica has been suggested to be either 
Mesoamerica or East Africa through a co-evolution with either maize or 
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sorghum (Borchardt et al., 1998). In either case, a relationship with maize or 
sorghum would be complimented with wild grass relatives and may not be 
linked to the domestication of maize and sorghum, as shown in smut pathogens 
(Munkacsi et al., 2007).  

1.2.3 Infection and spread 

Turcicum leaf blight is primarily a foliar disease on maize and sorghum, and 
infection begins when an S. turcica spore lands on a susceptible plant leaf. S. 
turcica colonisation is dependant on specific climate conditions and usually 
begins after a dew period when moisture levels are high, temperature moderate 
and light levels are low. As the spore begins to germinate, hyphae then grow 
from the spore in a bipolar manner. Germination is dependant on light with 
constant light of 150 µmolE m-2·sec-1 or blue light (465-480 nm) inhibiting 
germination by up to 85% when compared to normal light conditions (Levy 
and Cohen, 1983). The hyphae protruding from the spore grow along the leaf 
surface and then produce one or multiple appressoria (Figure 1). An infection 
peg develops from the appressorium, which penetrates directly through the 
cuticle and epidermis of the leaf and rarely through the stomata (Knox-Davis, 
1974; Muiru et al., 2008).  

After penetration is achieved the fungus continues to grow causing necrosis 
and tissue collapse. The mycelia grow through the leaf tissue and into the 
vascular system, spreading systemically throughout the plant (Muiru et al., 
2008). The growth of mycelium in the xylem is copious, blocking the xylem 
and causing wilting due to water deficiency (Thakur et al., 1989). The 
developing lesions are cigar shaped and grey-brown in colour and typically 5-
20 cm in length spreading longitudinally along the leaf. The infection is 
generally limited to the leaf material of the plant and does not cause damage to 
the seed directly. However, large and numerous leaf lesions are sufficient to 
cause wilting and a reduction in photosynthetic potential reducing yield 
(Raymondo and Hooker, 1981). 

After the initial infection the fungus produces conidia on conidiophores that 
protrude directly out of the leaf surface and lesions (Knox-Davis and Dickson, 
1960). Conidial dispersal is triggered by a reduction in humidity and is usually 
highest in the morning after a dew period and requires a minimum of 2h 
darkness as in constant light conidiophores are produced without conidia 
(Flaherty and Dunkle, 2005). Dispersal can involve rain splash or an 
electrostatic force that volleys the spore into the air to spread the spores over a 
larger distance (Leach, 1977). The conidial spread can cause secondary 
infections on the same plant or spread the infection to neighbouring plants or 
larger distances between fields.  
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In warm climates the broad host range of S. turcica including many wild 
grasses maintains high levels of inoculum, acting as a reservoir for the fungus 
allowing continuous re-infections (Harlapur et al., 2007). In cooler climates the 
fungus overwinters as mycelium, conidia or resting spores, chlamydospores, on 
stubble and decaying plant material allowing re-infection when conditions are 
favourable (Leach, 1977). 

 
 
Figure 1. S. turcica spores on sorghum leaf surface. Mycelia can be seen growing out of the spore 
along the leaf surface. Arrows indicate appressoria.   

1.2.4 Molecular data 

Dissecting the molecular mechanisms underlying infection by S. turcica is 
critical to gaining a full understanding of the disease but also for successful 
resistance breeding. Many up-regulated genes associated with asexual conidial 
development under constant darkness have been identified such as homologs of 
monomeric GTP-binding and G-proteins, zinc binuclear cluster-type proteins, 
transcription factors and receptor proteins (Flaherty and Dunkle, 2005).  In 
addition, germination of conidia and the formation of appressorium are 
regulated by a mitogen-activated protein kinase signal transduction pathway 
(Fan et al., 2007). 
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The pathogen facilitates penetration and colonisation with the production of 
a range of secondary metabolites and toxins. The S. turcica genome contains 
two genes encoding xylanase enzymes, which degrade arabinoxylan in the 
plant cell wall causing loss of integrity and aiding penetration (Degefu et al., 
1997; Degefu et al., 2004). Catalases have been detected from artificial 
cultures, where two particular isoforms showed implications in spore 
germination and early infection processes (Keissar et al., 2002). A multitude of 
toxins have been isolated from S. turcica (Robeson and Strobel, 1982; Zhang et 
al., 2007). One toxin, Helminthosporium turcicum (HT) toxin, has been 
identified as a lipophilic phytotoxin called Monocerin. Monocerin treated 
maize and sorghum plants cause inhibited chlorophyll synthesis, reduced root 
growth and lesions and necrosis on susceptible genotypes (Cuq et al., 1993; 
Bashan et al., 1995; Zang et al., 2007). Furthermore, leaves punctured and 
treated with Monocerin develop necrosis that spreads throughout the vascular 
system suggesting that the Monocerin HT-toxin is not only involved in 
penetration but also in later stages of infection (Cuq et al., 1993).  

1.3 Fungal genomics 

1.3.1 Genome sequencing 

Developments in sequencing technologies and reductions in costs have resulted 
in the number of fungal genomes sequenced to expand rapidly 
(www.fungalgenomes.org). Fungi generally have small genomes with the 
majority between 20 and 50 Mbp, and low amounts of long repeats compared 
to other eukaryotes (Kullman et al., 2005; Karaoglu et al., 2005). Enormous 
quantities of data are becoming available to researchers providing an 
invaluable resource for diverse areas of research such as genomic comparisons, 
phylogenetics and effector biology. Fungal taxonomy has been previously 
based on morphology however, now groups of genes and genomes are used to 
produce more detailed resolution (Schoch et al., 2006; Zang et al., 2006). For 
example, data from early divergent fungi such as species from Zygomycota, 
Glomeromycota and Chytridiomycota is now becoming available (James et al., 
2006).  

1.3.2 S. turcica genome 

In March 2011 the S. turcica genome v1.0 was completed using Roche (454), 
Sanger Fosmids, and shredded consensus from velvet assembled Illumina data 
(www.jgi.doe.gov). The S. turcica genome is 43 Mbp in size comprising 
11,702 predicted gene models. The genome size is comparable to other plant 
pathogens currently sequenced with the exception of Mycosphaerella fijiensis 
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(74 Mbp), which has a complex genome containing eight dispensable 
chromosomes (Goodwin et al., 2011). The number of predicted genes models 
is also similar to that found in related fungal species (Figure 2). Culturing S. 
turcica on artificial media is possible and the fungus is amenable to genetic 
modifications using Agrobacterium tumefaciens-mediated transformation 
(Degefu and Hanif, 2003). Because genome data now is available it is 
anticipated that this knowledge will be widely exploited for functional studies. 

 
Figure 2. A selection of fungal plant pathogens with genome sequence data available. Phylogeny 
based on trees presented in Schoch et al. (2006) and Zang et al. (2006). Genomic information was 
obtained from the Broad Institute (www.broadinstitute.org) and the Joint Genome Institute 
(www.jgi.doe.gov). 

1.3.3 Comparative genomics   

One area of particular interest is the comparison for environmentally and 
economically important fungal plant pathogens with non-pathogenic fungi, 
oomycete plant pathogens and plant pathogens with different infection 
strategies. This is being used to identify genes responsible and required for 
virulence (Soanes, 2007; Schirawski et al., 2010; Duplessis et al., 2011). Once 
the genome data is available, re-sequencing of different fungal strains is 
possible aiding research in functional genomics, population structure, mutation 
variation and pathogenicity among others (Schacherer et al., 2007; Montero et 
al., 2008; Timmermann et al., 2010; Nishant et al., 2010). The evolution of 

Stagonospora nodorum 
Leptosphaeria maculans
Setosphaeria turcica
Cochliobolus heterostrophus
Alternaria brassicicola
Pyrenophora teres
Pyrenophora tritici-repentis
Hysterium pulicare
Rhystidhysteron rufulum
Mycosphaerella graminicola
Mycosphaerella !jiensis
Septoria musiva
Dothistroma septosporum

Botrytis cinerea

Verticillium dahliae
Verticillium albo-atrum
Colletothrichum graminicola
Fusarium verticillioides
Fusarium graminearum
Fusarium oxysporum
Magnaportha grisea

37.1 15983
44.9 12469
43.0 11702
34.9 9633
30.3 10688
33.6 11799
37.8 12171
38.4 12352
40.2 12117
39.7 10952
74.1 13903
29.3 10233
30.2 12580

42.7 16448

33.8 10535
32.8 10221
51.6 12006
41.8 14179
39.7 10952
61.3 17735
38.8 11108

Species Genome size
Mbp

No. genes

Dothideomycetes

Leotiomycetes

Sordariomycetes

Ascomycetes

Host *Database

Cereals
Brassica 
Maize/sorghum 

Brassica 

Large host range 
Large host range 

Large host range 

Large host range 
Large host range 

Maize

Wheat

Wheat
Banana

Rice

Barley

Tree bark

Pine
Poplar

Citrus Plants

Maize

Rice

BI
BI
JGI
JGI

JGI
JGI

JGI

JGI

JGI

JGI

JGI
JGI

BI

BI
BI

BI
BI
BI

BI

BI

BI

* BI = www.broadinstitute.org  JGI = www.jgi.doe.gov



 19 

pathogen-associated genes has produced anomalies in contention with the 
orthodox view of fungal evolution. One suggested explanation is horizontal 
transfer of genes (HGT), clusters or even chromosomes (HCT) between 
distantly related species (Mehrabi et al., 2010). Some toxin genes or 
chromosomes containing toxin genes are more similar to those in distantly 
related than closely related fungi, supporting the HGT/HCT theory (Inderbitzin 
et al., 2010). Evidence is also mounting for cross kingdom HGT between the 
morphologically similar but phylogenetically distinct oomycetes and fungi 
although the mechanisms are poorly understood (Richards et al., 2006). The 
possibility of transferring pathogenicity between species has the potential to 
create new pathogenic fungi, races and epidemics in a single instance. Further, 
gain of genes and loss of certain pathways like molybdopterin biosynthesis 
have recently been shown to play important roles for different lifestyle 
evolution on pathogens in Chromalveolata (Kemen et al., 2011). These, and 
similar analysis will have profound affect on our understanding of pathogenic 
organisms. 

1.4 Mating in fungi 

1.4.1 Sex and reproduction strategies 

Sex is advantageous in fungi as it increases the efficiency of natural selection 
through recombination, diversification of the population and removal of 
deleterious mutations (Goddard et al., 2005). Ascomycete fungi reproduce 
sexually and/or asexually depending on lifestyle, environment and a number of 
other factors (Lee et al., 2010). For many plant pathogens it is beneficial to 
rapidly spread to all available host tissue to aid infection making asexual 
reproduction the most optimal method as millions of identical spores can be 
produced in a short period of time without the need to find a mate (Taylor et 
al., 1999). After infection is achieved, and if the conditions are favourable, the 
fungus may then switch to sexual reproduction. For many plant pathogenic 
fungi asexual reproduction has become the only strategy as the ability to 
reproduce sexually has been lost (Rossman and Palm-Hernandez, 2008). 
Interestingly, many fungi thought to be exclusively asexual have been found to 
maintain functional genes required for sexual recombination (Alby and 
Bennett, 2010). It has been hypothesised that they may have only recently lost 
the ability to reproduce sexually or, as shown in Aspergillus fumigatus, they 
may do so only once in thousands of generations (Taylor et al., 1999; Dyer and 
Paoletti, 2005).   
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1.4.2 Genetic control of mating  

Sexual reproduction in Pezizomycetes is controlled by the mating type (MAT1) 
locus (Debuchy et al., 2010). In heterothallic fungi, the MAT1 locus comprise 
of two mating types, termed MAT1-1 and MAT1-2, with one of each mating 
type required for sexual reproduction (Figure 3). The MAT1 locus contains 
dissimilar sequences between mating types and encodes MAT genes, which are 
numbered according to the system developed by Turgeon and Yoder (2000). 
The major genes in the MAT1 locus are the alpha box domain (α1) containing 
gene MAT1-1-1 found only in MAT1-1 and the high motility group 
(MATA_HMG) domain-containing gene MAT1-2-1 found in MAT1-2 (Souza 
et al., 2003). The defining gene is the α1-containing gene MAT1-1-1 as MAT1-
1 may contain genes with MATA_HMG domains but MAT1-2 has no α1 
containing genes. The α1 and MATA_HMG domain containing genes MAT1-
1-1 and MAT1-2-1 code for proteins that are transcription factors that activate 
MATα and MATa specific genes respectively, causing developmental changes 
leading to mating. 

 
Figure 3. Schematic overview of mating type locus in Pezizomycetes. (A) The mating type locus 
can either contain MAT1-1 or the MAT1-2 genes. (B) Possible domains present in either MAT1-1 
or MAT1-2. For a more details see figure 7 (II). 

The HMG domain is a small (~80 amino acids) domain that forms three 
alpha helices which produce a ‘L’ shape and binds the minor grove of DNA in 
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a non-specific manor (Read et al., 1993; Palasingam et al., 2009). During the 
binding with DNA, the side groups of specific amino acids on the internal 
surface of the protein intercalate with the DNA bases causing an ~80 degree 
bend required for transcription (Thomas and Travers, 2001; Klass et al., 2003). 
The fungal MATA_HMG domain binds DNA, facilitating the transcription of 
MATa specific genes including pheromone a-factor and the receptor for the 
opposite pheromone factor (Souza et al., 2003). The function of α1 domain has 
been determined as a transcriptional co-activator of mating pheromone α and 
the receptor for the opposite pheromone factor (Tsong et al., 2007; Debuchy et 
al., 2010). The α1 protein binds to a MADS-box transcription factor Mcm1, 
and is required before the complex can bind DNA and activate transcription of 
α specific genes (Hagen et al., 1993; Carr et al., 2004).  

The MATA_HMG is a member of the ancient HMG superfamily, predating 
the split of plants, fungi and metazoa (Laudet et al., 1993; Griess et al., 1993; 
Fraser and Heitman, 2005). The α1 domain is found exclusively in 
ascomycetes and has a complex evolutionary history (Lee et al., 2010). As the 
MATA_HMG and α1 domain share the same locus and both have similar 
functions it has been hypothesised that they may share evolutionary history 
(Idnurm et al., 2008).   

1.5 Sorghum taxonomy and genomics   

1.5.1 Evolution of major crop plants 

Monocots and eudicots diverged 150-300 million years ago (mya) and are 
fundamentally distinct in development and physiology (Figure 4). Eudicot 
include among others Fabaceae, Solanaceae, Brassicaceae and Euphorbiaceae 
families, which contain important crop species like pea, soybean, lentil, 
tomato, potato, rapeseed, cabbage and cassava. The monocots contain the most 
economically important staple crops in the world in the grass family (Poaceae) 
which is divided into three subfamilies; Panicoideae, containing sorghum, 
maize, sugarcane and millet, Pooideae, containing oats, barley and wheat, and 
Ehrhartoideae, containing rice. Panicoideae is believed to have diverged from 
other grasses 50-70 mya with Ehrhartoideae, and Pooideae diverging ~46 mya 
(Bolot et al., 2009). 
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Figure 4. Phylogenetic relationships and divergence-time between crops (Bolot et al. 2009). All 
plant species descend from a single eukaryotic ancestor that acquired a photosynthetic 
endosymbiont. The estimated dates for evolutionary splits in the “green linage” in the “tree of 
life” is as following: green algae 1,200 mya, bryophytes (mosses) 450 mya, gymnosperms (trees) 
250 mya, and for 150-300 mya, dicots (eudikots) and monocots (grasses) diverged from each 
other (Bowman et al., 2007). Dates are based on data by Yang et al. (1999) and Wang et al. 
(2008).   Whole genome duplication event, ~70 mya (Salse et al., 2008; Wang et al., 2011). 

Snowden (1936) made a thorough classification of sorghum species that has 
been reorganised several times. Present taxonomy place the genus Sorghum, 
subtribe Sorghinae in Andropogoneae. The genus Sorghum consists of 25 
species, classified into five subgenera (Price et al., 2005). S. bicolor is 
considered to be the most primitive grain sorghum and the most ubiquitous 
breed, widely distributed in Africa and Asia, (Dahlberg, 2000; Kimber, 2000). 
Cultivated S. bicolor is further divided, based on morphology into five so-
called races; bicolor, caudatum, guinea, durra, and kafir (Harlan and de Wet, 
1972). However, several intermediate and spontaneous races are suggested that 
in some cases blurs present taxonomic classifications. 

1.5.2 The sorghum genome 

Sorghum is mainly a C4, self-pollinating and diploid species (2n=2x=20) with a 
genome size of 730 Mbp. Plant genome size varies hugely between species and 
the sorghum genome is relatively small compared to other crop plants (Table 
1). In 2009, Paterson and co-workers sequenced the entire sorghum genome 
revealing a genome content of 27,640 bona fide protein-coding genes from 
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34,496 gene models. Putative function has been designated to genes based on 
homology searches and conserved domain architecture allowing comparisons 
to be made with other genomes (www.phytozome.net). The sorghum genome 
contains 55% retrotransposons, which largely explain the relative net genome 
expansion compared to rice. The genome has experienced ancient duplications, 
today reflected as 57.8% collinear gene models compared to rice. Interestingly, 
as many as 9,503 orthologous gene families were found between sorghum, 
rice, Arabidopsis and Poplar genomes. In comparison, 5,337 gene families are 
shared between sequenced monocots and potato (The Potato Genome 
Sequencing Consortium 2011). Various tools are now under development for 
grass species like the integrative database GramineaeTFDB for putative 
transcription factors (Moshida et al., 2011). A consensus sorghum map with 
QTLs from a wide range of studies in order to exploit valuable markers for 
crop improvements have also been compiled (Mace and Jordan, 2011). 

Table 1.  Selected plant species and their genome sizes. 

Species Common name ~Mbp* 

Arabidopsis thaliana Thale cress 135 
Brachypodium distachyon Purple false brome 272 
Oryza sativia Rice 372 
Setaria italic  Foxtail millet 406 
Sorghum bicolor Sorghum 698 
Saccharum officinarum Sugarcane 930 
Brassica napus Rapeseed 1130 
Zea mays Maize 2076 
Pennisetum glaucum  Pearl millet 2450 
Hordeum vulgare Barley 5000 
Avena sativa Oats 11000 
Triticum aestivum  Bread wheat 17000 

*Mbp values derived from sequence data (www.phytozome.net; www.maizesequence.org; www.plantgdb.org). 

 
In the S. bicolor genome 211 NB-LRR encoding R-proteins are present, 

which is approximately half the number found in rice and slightly more 
compared to Arabidopsis (Paterson et al., 2009). The number of NB-LRR 
encoding genes in the large maize genome draft is predicted to be 95 (Li et al., 
2010), and in the small genome of the wild grass Brachypodium distachyon 
178 (The International Brachypodium Initiative, 2010). Depending on search 
programs and threshold settings, slightly different R-gene numbers in each 
grass species are published (Li et al., 2010). The largest number of R-genes 
(62) is found on chromosome 5 (Paterson et al., 2009).  The rice chromosome 
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11 is homologous to sorghum chromosome 5 and also contains a large number 
of R-genes (106) showing a conservation of R-genes in chromosome location 
(Wang et al., 2011). Sorghum chromosome 5 and 8 share an ancestor through a 
whole genome duplication event in the ancestor of grasses and show 
remarkable similarity to rice chromosome 11 and 12 (Salse et al., 2008; Wang 
et al 2011).  

1.6 Plant resistance genes 

Plants are constantly exposed to microbes. To be pathogenic, most microbes 
must access the plant interior, either by penetrating the leaf or root surface 
directly or by entering through wounds or natural openings such as stomata. 
Consequently, plants are under strong evolutionary pressure to maintain 
surveillance against pathogens. In the early 1990s the first plant resistant (R) 
genes were cloned and today we have approximately 100 identified R-genes 
including allelic variants correlated with a known pathogen. For details see 
(Hammond-Kosack and Jones, 1997; Hammond-Kosack and Parker, 2003; 
Nimchuck et al., 2003; Ravensdale et al., 2011). New sequencing technologies 
have resulted in important data on both plant hosts and pathogens leading to a 
deeper understanding of distribution of R-genes, evolutionary aspects of these 
genes and producing abundant information on pathogen genomes and presence 
of effector genes (Egan and Talbot, 2008; Van de Wouw and Howlett, 2011). 
Effectors in this instance are defined as secreted pathogen proteins and other 
molecules that modulate plant defence circuitry and enable parasitic 
colonization of plant tissue (Hogenhout et al., 2009). In particular, insights of 
the Phytophthora genomes and interactions with respective plant host have 
contributed to this area (Kamoun, 2007; De Wit et al., 2009; Thines and 
Kamoun, 2010).  

We have learnt that plants have evolved two classes of immune receptors to 
detect non-self molecules. One class consists of membrane-resident pattern 
recognition receptors (PRRs) that detect microbe-associated molecular patterns 
(MAMPs). MAMPs are evolutionarily conserved structures that include 
components of fungal cell walls such as chitin (N-acetyl-chitooligo-saccharide 
oligomers), most likely lipopolysaccharides (LPS) from gram-negative 
bacteria, as well as short peptides derived from bacterial flagellin or the 
elongation factor EF-Tu (Zipfel and Felix, 2005; Altenback and Robatzek, 
2007).  

Plant resistance (R) proteins define a second mainly intracellular immune 
receptor class that have the capacity to detect directly or indirectly isolate-
specific pathogen effectors, encoded by avirulence genes. Like PRR-triggered 
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immune responses, R protein-conditioned immunity is also linked to ROS 
accumulation and to defence gene activation, but differs both quantitatively 
and kinetically from the former, typically leading to host cell death at 
attempted invasion sites (Chisholm et al., 2006; Jones and Dangl, 2006; 
Maekawa et al., 2011). 

Sequence comparisons among R-genes have revealed a remarkable 
conservation of structural features, despite the diversity of the pathogens with 
which their products, indirectly or directly, interact. Most commonly, 
resistance proteins are composed of a nucleotide-binding domains (NB) 
followed by a series of leucine repeats (LRRs). In contrast to animal NB-LRR 
proteins, plant R proteins usually have a different N-terminal domain. The N-
terminal domain in plants may be a coiled coil (CC) sequence or a domain that 
shares sequence similarities with the Drosophila TOLL and human interleukin-
1 receptor referred to as TIR. Intriguingly, plant and animal defence against 
microbes have striking similarities (Ronald and Beutler, 2010). R proteins can 
interact with effector proteins in various ways or become activated via other 
trigger proteins. R protein activation often has cell death or hypersensitive 
response (HR) as a final outcome, thus its activation has to be tightly regulated 
(Lukasik and Takken, 2009). It is further suggested that upstream interactions 
of R proteins involves conserved chaperon complexes for proper folding, 
accumulation and regulation (Shirazu, 2009). Effector recognition is thought to 
induce conformational changes in the R proteins, releasing inhibition and 
freeing NB-LRR domains to activate downstream signalling (Collier and 
Moffett, 2009). Concerning downstream signalling, events that link NB-LRR 
activation remains elusive and several studies suggest nuclear activity of some 
NB-LRRs to trigger proper responses. Besides nuclear localization, WRKY 
transcription factors seem to play crucial roles (Elmore et al., 2011). In an 
evolutionary perspective R-genes have been proposed to follow two distinct 
evolutionary patterns, i.e. fast or slow-evolving types (Vleeshouwers et al., 
2011). Rapidly evolving R-genes are characterized by frequent sequence 
exchanges between paralogs, resulting in obscured allelic relationships. In 
contrast, slowly evolving R-genes are characterized by infrequent sequence 
exchange between paralogs, resulting in tractable relationships. 

Plant pathogens differ markedly in the number of plant species they are able 
to colonize and cause disease on. A majority of plants are immune against most 
pathogens and the likelihood that a pathogen can infect two plant species in a 
habitat decreases with the phylogenetic distance between the plants (Gilbert 
and Webb, 2007). The non-host resistance phenomenon i.e. resistance response 
outside the host range of a given pathogen has received much attention 
(Kamoun, 2001; Mysore and Ryu, 2004; Nürnberger and Lipka, 2005). 
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Understanding nonhost responses on molecular levels is attractive since it 
could lead to more durable or broad-spectrum resistance to all strains/races of a 
pathogen species compared to specific R-genes. A handful of studies not least 
on responses in barley to various pathogens are presently given new insights in 
this area (Stein et al., 2006; Zellerhoff et al., 2010; Aghnoum and Niks, 2010). 
It has been hypothesised that the relative contribution of R proteins and PRR-
triggered immunity to nonhost resistance changes as a function of phylogenetic 
divergence time between host and nonhost plants (Schulze-Lefert and 
Panstruga, 2011). Likewise, a pathogens host range expansion could be driven 
by variation in the effector repertoires, leading to reproductive isolation and 
subsequent pathogen speciation. Further experimental work is needed to 
provide sufficient data to test this intriguing concept.  
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2 Aims of the study 
This thesis is one of several efforts in Sweden to strengthen North-South 
partnership in agricultural related bioscience research. The disease problems 
addressed are those prioritised by our partners in East Africa. The work has 
been tightly linked to the Eastern Africa Regional Programme and Research 
Network for Biotechnology, Biosafety and Biotechnology Policy Development 
(BIO-EARN), run 1999-2010, supported by the Swedish government via the 
Swedish International Development Cooperation Agency (Sida). Academic 
training of mutual interests have been one core component to establish a deeper 
understanding of near future problems involving food security, use of natural 
resources, climate change effects and several other global issues of importance. 
For more details on the BIO-EARN program, see www.bio-earn.org and its 
continuation http://bioinnovate-africa.org. 

The emphasis of the work was to study the Setosphaeria turcica – sorghum 
pathosystem with some contributions on maize. The specific aims were to: 
 

• Investigate the extent of TLB on sorghum in Uganda. 
 

• Characterise the mating type genes in S. turcica and investigate fungal 
mating type evolution with emphasis on the α1 domain.   

 
• Initiate work on Setosphaeria turcica genomics.  

 
• Identify new resistance genes to S. turcica in sorghum to be used in 

breeding programs in Uganda. 
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3 Results and Discussion 

3.1 S. turcica, disease and resistance in Uganda 

3.1.1 Incidence and severity of TLB in Uganda  

In collaboration with our colleagues at the Crop Science Department, Makerere 
University, a survey was undertaken in Uganda to examine the sorghum – S. 
turcica interaction in terms of disease severity and incidence, overall fungal 
population structure, and new resistant resources (I). The climate in Uganda 
varies from semi-arid in the north to tropical in south and central regions, 
which are ideally suited for S. turcica (White, 2000). Field trips and surveys in 
Uganda were carried out annually, starting 2006. On each occasion maize and 
sorghum leaf material was collected from different regions and disease 
incidence at field level recorded. TLB was found in every district sampled 
although severity varied between regions (I). Unsurprisingly the disease was 
most severe in humid farmlands where maize and sorghum are grown. The 
high susceptibility to S. turcica of the rather popular hybrid variety Epuripur 
(used mainly for brewing, can yield 1700kg/ha) is problematic. Improvement 
of Epuripur is of great importance to increase household income and resistance 
breeding and further advancements are now prioritised. 

3.1.2 Resistance in sorghum accessions 

Natural accessions and landraces of sorghum are important sources of new 
resistance to S. turcica. The race bicolor is the most commonly grown sorghum 
in East Africa and the incorporation in breeding programs of TLB resistant 
germplasm from kafir, guinea, caudatum, and durra races is seen as way to 
compliment important traits including resistance in bicolor germplasm. 
However, durra is rare in Eastern Africa. 

A large collection of 196 sorghum accessions covering all five sorghum 
races was tested for resistance to S. turcica (I).  A varying degree of resistance 
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was identified in all races and those identified are now implemented in regional 
breeding programs. Mapping populations are currently evaluated at Makerere 
University to enhance the knowledge on genetics. Qualitative resistance has 
been shown in maize to protect plants against specific races of S. turcica 
however this has never been successfully applied in Uganda despite earlier 
reports that only race 0 and 1 were present (Adipala, 1993b). Qualitative 
resistance is likely overcome and work on discovery of quantitative disease 
resistance in maize is on-going  (Chung et al., 2011). 

3.1.3 S. turcica races 

During testing of 18 sorghum derived S. turcica isolates on maize differential 
lines, we found four S. turcica isolates identified as race 1, two as race 2, one 
race 0 and one race 3. The remaining 10 S. turcica isolates did not cause any 
disease symptoms on the maize lines assessed. Race proliferation has been 
reported in Africa, Asia and America in recent years. The genes responsible for 
race determination in S. turcica are poorly understood however the maize 
genotypes used to assess races contain single R-genes possibly indicating a 
gene-for gene system (Lim et al., 1974) but more complex segregating rations 
have been observed (Moghaddam and Pataky, 1994). Genes for toxins may 
determine race, and there is evidence that specific virulence to Ht1 is conferred 
by a specific toxin (Zhang et al., 2007). That any fungal isolate from sorghum 
could cause disease on maize was not expected, however, it seems to have been 
known locally for some time. Surprisingly we also found that the expected 
susceptible A619 plants carrying no Ht genes were resistant to the isolates 
designated race 1, 2 or 3 (I). The progenitor of all races has been suggested to 
be race 0 and the emergence of new races is thought to have been driven by the 
use of the Ht genes in maize in USA (Ferguson and Carson, 2007). The new 
races we identified in Uganda where the Ht genes are not widely used in maize 
suggests that in Uganda, races other than 0 are not the product of Ht 
overexposure. Clearly this is a complicated pathosystem and far from fully 
understood and our results highlight the fact that any new breeding efforts and 
cultivation practices must take into consideration the notion that new races and 
sorghum isolates able to infect maize are present in Uganda.  

3.1.4 Mating types  

A small section of ~300 nucleotides of the highly conserved MAT_HMG DNA 
binding domain was previously identified using degenerate primers (Arie et al., 
1997). We used a similar approach to align α1 containing sequences from 
related fungi, and sequenced a small section of ~250 nucleotides of the α1 
domain from S. turcica. Armed with a small section from each idiomorph we 
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amplified flanking regions for both MAT1-1 and MAT1-2. When sequence data 
for ~2500 nucleotides for each mating type was obtained we found that like 
most ascomycetes the MAT1-1 and MAT1-2 idiomorphs harbour identical 
flanking regions. Sequence data can be retrieved from Genbank no. 
GU997137.1 and GU997138.1. Previously the mating type of isolates was 
determined by crossing each isolate with an isolate of known mating type or 
using PCR primers designed to the HMG sequence (Furguson and Carson, 
2004). The problem of using only one primer pair to determine mating type is 
that a negative result cannot confirm the presence of the one mating type 
meaning crossing with tester isolates is still required. Crossing S. turcica with 
tester isolates require the complex Sachs medium, is time consuming, and is 
not always successful (Hebert, 1971; Furguson and Carson, 2004), therefore a 
PCR based method is an excellent alternative. Using our sequence data we 
designed mating type specific primers for both mating types allowing large 
collections of isolates to be screened in a short time.  

Using our mating type specific primers we tested two collections of S. 
turcica isolates, one from infected maize leaves and the other from infected 
sorghum. We found that the distribution of mating types in both collections 
were not significantly different from an even distribution (I). Furthermore, we 
found that there were many regions in Uganda where both mating types were 
present (20 of 29) on maize and/or sorghum meaning that the different mating 
types may be in direct contact with one another allowing mating to occur. 
Interestingly not all isolates tested were found to contain only MAT1-1-1 or 
MAT1-2-1 genes as a five maize derived isolates were found to contain both.  
 

3.1.5 Searching for the perfect stage of S. turcica 

The presence of the perfect stage on field level has never been reported in the 
literature however in Uganda we have been informed that it has been observed 
earlier. We wanted to clarify that issue and took on a specific field survey. The 
regions of Sotori, Iganga and Mbale were chosen as both mating type were 
present, the climate was optimal for S. turcica, and the crops were mature 
because it had been suggested that the sexual stage is likely to be present on 
dead leaf material or decaying leaf litter with advanced stages of the disease 
(Borchardt et al., 1998). We collected ~700 lower leaf samples from maize 
heavily infected with S. turcica in the later stage of the disease when large 
necrotic lesions were present. We failed to identify the presence of the sexual 
stage in any of our samples despite the large numbers of leaves surveyed. 
Likewise, a corresponding survey on sorghum materials did not show any 
evidence of a perfect stage. However, another pathogen, Stenocarpella maydis, 
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was common on our maize and sorghum samples. This pathogen is regarded as 
causing minor disease problems in East Africa but seems to be more frequent 
the last years. Our work on S. turcica raised a number of questions on basic 
fungal mating biology, which led us to the work on the origin of the fungal α1 
domain (II). 

3.2 Evolution of the fungal α1 domain 

Whilst aligning S. turcica α1 and MATA_HMG sequences we noticed a small 
section of the α1 sequence that seemed to be highly conserved within related 
fungi. The section was ~40 amino acids in length and consistently had the 
same or similar amino acids in specific positions. This is not unexpected for 
related α1 sequences, however what was unexpected was that we found a 
similar ~40 amino acid region in the MATA_HMG domain. The 
MATA_HMG domain is a member of a long-standing gene family stretching 
back hundreds of millions of years (Laudet et al., 1993; Griess et al., 1993; 
Fraser and Heitman, 2005). The domains are found in plants, Oomycetes and 
many distantly related organisms and have roles in sex both Metazoa and 
Fungi. 

It has been suggested that the α1 and MATA_HMG domain might share a 
common ancestor however no evidence had been put forward to support this 
theory (Idnurm et al., 2006). We called the ~40 amino acid region which 
showed similarities between the α1 and MATA_HMG the core region (II). The 
core region was also found to be conserved in the HMG domain of sex related 
genes in Metazoa and even to a lesser degree to the HMG domain of plants, 
oomycetes and other distantly related organisms. This core region and 
specifically the highly conserved positions revealed by the WebLogo tool, 
appear to be key components of the HMG domain. Using computer programs 
we predicted the secondary and tertiary structure of the α1 domain and found it 
was extremely similar to that of the HMG domain. Sequences that have low 
levels of exact sequence matches but have amino acids with similar properties 
can have remarkably similar tertiary structures. This is the case of the 
MATA_HMG and the α1 sequences with the predicted tertiary structures 
almost an exact match when overlaid (II). In collaboration with Robert 
Debuchy, Gillian Turgeon and co-workers we are involved in a project to 
determine the protein structure of the α1 domain coupled with genetic analysis 
of Podospora anserina MAT genes to support our earlier findings. 
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3.3 Fungal comparative genomics 

Since the genome of S. turcica was released spring 2011, we have initiated a 
fungal genome comparative study in order to learn more on this pathogen (III). 
This work is in an early stage and will continue by co-workers after this thesis 
work. Early results looking at orthologous protein groups between S. turcica 
and closely related plant pathogens show 123 proteins unique to S. turcica. 
They are of predicted importance for plant cell wall degradation, ion-binding 
and transport, together with potential new types of effector candidates.  

3.4 NB-LRR encoding genes in sorghum 

3.4.1 Sorghum R-genes effective against S. turcica  

During a germplasm screen for resistance to S. turcica in Uganda a number of 
valuable genotypes were identified. We chose to work with one of the most 
resistant types, GA06/18, and the susceptible cultivar (Sila) commonly grown 
in Uganda. In parallel, we used susceptible (A619) and resistant (A619Ht1) 
maize plants for the same purpose. We used cDNA-AFLP to identify novel or 
up-regulated gene fragments in the resistant plants compared to the susceptible 
(IV). From over 3000 transcript-derived fragments more than 150 were cloned 
and sequenced. The sequences included a number of stress related genes, 
pathogen associated genes and a maize putative resistance gene 
(GRMZM2G005347). This gene had the classic R-gene domain structure CC-
NBS-LRR. The gene was found to be one of a pair in a single locus on 
chromosome 2. In sorghum, the GRMZM2G005347 sequence was found to 
have 6 orthologous genes formed of three gene pairs in a single locus. We 
named those genes with resistance to S. turcica (St). We then looked for gene 
orthologs in other plant species. We found those to be highly conserved, with 
rice containing nine homologs in a single locus. We can only speculate that this 
conserved evolution and gene expansion reflects their importance. We also 
used the St gene sequences from sorghum to search the Arabidopsis genome 
for orthologs. We found that the St proteins had high e-values when using 
BLAST comparisons with similar Arabidopsis R-genes. We aligned a selection 
of known Arabidopsis resistance genes with the St genes and performed 
phylogenetic analysis. The Arabidopsis RPM1 mediating resistance to 
Pseudomonas syringae isolates expressing the avrRpml or avrB genes (Grant et 
al., 1995) was found to be the closest gene to the St genes. 

In a parallel study on sorghum anthracnose, we identified two loci on 
chromosome 9 containing NB-LRR genes mediating resistance to 
Colletotrichum sublineolum (Biruma et al., 2011). The Cs2 proteins clustering 
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closest to the St proteins, harbour a WD40 domain at their C-terminal ends, 
whereas the Cs1 pair is more distantly related (Figure 5). 
 

 
Figure 5. Unrooted maximum-likelihood phylogram inferred from nucleotide binding (NB) and 
leucine rich repeat (LRR) domains, of four resistance proteins to C. sublineolum (Cs) and six 
resistance proteins to S. turcica (St) in sorghum, compared with Arabidopsis NB-LRR resistance 
proteins with known function. LR-ELW values above 75% are shown. Labelling is as follows: 
(A) NB-LRR resistance proteins with NB-LRR proteins with a coiled-coil (CC) domain at the N-
terminal end. (B) NB-LRR resistance proteins with a Toll/Interleukin-1 receptor (TIR) at the N-
terminal end. (C) Two of the sorghum proteins did not clustering with any Arabidopsis protein 
candidate. 

3.4.2 Virus induced gene silencing in sorghum 

Complementation via transformation in sorghum is a laborious task therefore 
we used virus induced gene silencing (VIGs) to assess function of the St-genes. 
The Brome mosaic virus (BMV) had been previously used to silence genes in 
maize however it has never been reportedly used in sorghum (Ding et al., 
2006). In the published study by Ding and co-workers an intermediate step 
after in vitro transcription involving barley was used in order to allow the virus 
to replicate before it was inoculated onto maize. We found that VIGs worked 
without this step through direct rub-inoculation of in vitro transcripts onto 
sorghum.  
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The transient nature of the VIGs procedure can be problematic, thus the 
system was first studied using a section of the phytoene desaturase (PDS) gene 
inserted to BMV p3 plasmid (Burch-Smith et al., 2006) enabling us to follow 
development of gene silencing more closely. Plants inoculated with the p3-
PDS transcript had a white streaky phenotype indicative of PDS silencing. 
Silencing began in the second or third leaf above the inoculation site and 
continued to the third or fourth leaf to a lesser extent. Based on this experience, 
silencing of St genes was found to be successful. To determine if silencing was 
taking place the second leaf above the inoculation site RNA was collected and 
extracted. Real time qPCR confirmed a down-regulation of the target genes in 
most of the samples. We could conclude that the silencing of the St genes 
compromised resistance in the resistant sorghum GA06/18 genotype. 
Interestingly, the Sila variety used as a susceptible control also showed larger 
and more numerous lesions when the St genes were silenced compared to non-
VIGS inoculated plants. Since inoculation with empty vector yielded no such 
response, we interpret the results as additional gene targeting in this particular 
plant material and not an effect of the virus infection.  

3.5 Identifying resistant maize lines  

We tested resistance and susceptibility of 13 CIMMYT maize lines from 
Kenya when challenged with two virulent maize S. turcica strains. One derived 
from a Ugandan maize leaf sample, MBRA14 and the other, a reference isolate 
from the USA, 18 (MAT1-2) kindly provided by M Carson, USDA-ARS 
Cereal Disease Lab, Univ. of Minnesota, USA. Inoculations of plants were 
carried out following the methods used in II. Two lines with stock no D61-3 
and D61-4 showed a very high resistance response with no sign of spore 
colonization on the leaves. Two additional lines, D61-1 and D61-15 did 
respond with small chlorotic lesions but no sporulation was seen. The 
additional seven lines (D61-2, D61-8, D61-9, D61-12, D61-14, D61-20, D61-
21) showed various degrees of susceptibility, and two lines (D61-7, D61-19) 
failed to germinate. No difference was observed between the two different 
fungal isolates used. This assessment was done 2008 and the result 
immediately transferred to the breeders in Kenya for implementation in their 
pedigrees. 

3.6 Evaluating natural variation in Arabidopsis to S. turcica 

Early in this thesis work we screened selected Arabidopsis accessions and 
mutant lines carrying mutations in known resistance genes in our collection   
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(>40 genotypes) against the highly virulent S. turcica isolate MBRA14 derived 
from infected maize leaves collected in Uganda. Four-week old Arabidopsis 
seedlings were wound-inoculated using 5ul of 75,000 spores/ml and incubated 
in 100% humidity for one week. Sorbo and An-1 showed mildly susceptible 
phenotype with small necrotic tissue around infection sites. RILs from a cross 
between Sorbo and the resistant Gy-0 have been previously produced (O’Neill 
et al., 2003). Further work on this material will be done elsewhere. 
Interestingly, the lms1 mutant, in Ler background (Bohman et al., 2004) was 
found to be very susceptible to S. turcica. LMS1 codes for a lipid phosphate 
phosphatase localized to plastids (Oide et al., 2011). The lms1 mutation 
involves sulfoquinovosyldiacylglycerol upon pathogen attack, resulting in 
over-activation of SA signalling, which collaborates with a yet unidentified 
signal to trigger the lms1 disease susceptibility to both adapted and non-
adapted pathogens. 
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4 Conclusions 
These are the main conclusions from the work presented in this thesis: 
 

• Mating type genes from S. turcica were cloned and sequenced and 
their distribution in 30 Ugandan districts on maize and sorghum 
mapped. 

 
• S. turcica strains from sorghum can infect maize and new fungal races 

found. 
 
• Resistance resources in Sorghum germplasm identified. 

 
• The extant α1 box genes may originate from an ancestral HMG gene. 

 
• Comparative genomics generated sets of candidate proteins of 

importance for virulence of two maize fungal pathogens. 
 

• CC-NB-LRR encoding genes identified that confer resistance to S. 
turcica. 
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5 Future perspectives 
This work started from near zero knowledge on the sorghum - S. turcica 
pathosystem and many difficulties and challenges have been overcome. 
Several already initiated studies will be completed in near future. The 
following areas however need further exploration: 

It would be essential to collect S. turcica isolates from sorghum and test a 
larger set against maize lines to evaluate the reciprocal infection and generate 
deeper understanding of the cross-infection situation. It would be valuable to 
generate genetic data on the St genes using the mapping populations that are in 
progress and more information is needed on the actual gene function. To 
couple such knowledge with effectors in S. turcica is challenging. Genome 
analysis of S. turcica could hopefully reveal potential novel gene families of 
importance for virulence, generating a starting point for functional studies. The 
bulk of the sorghum gene pool, located in East Africa, is largely 
uncharacterised. Re-sequencing selected East African sorghum genotypes 
would give us valuable data on the genetic variation present in this important 
crop. 
 
 
 

 
 
 
 
 
 
 
 



 40 

 
 
 



 41 

References 
Adipala, E., Lipps, E. and Madden, L. (1993a) Occurrence of Exserohilum turcicum on maize 

in Uganda. Plant Dis. 77, 202-205. 
Adipala, E., Lipps, P. and Madden, L. (1993b). Reaction of maize cultivars from Uganda to 

Exserohilum turcicum.  Phytopathol. 83, 217–223. 
Ai, Y., Medic, J., Jiang, H., Wang, D. and Jane, J.L. (2011) Starch characterization and ethanol 

production of sorghum. J. Agric Food Chem. DOI: 10.1021/jf2007584 
Aghnoum, R. and Niks, R.E. (2010) Specificity and levels of nonhost resistance to nonadapted 

Blumeria graminis forms in barley. New Phytol. 185, 275-284. 
Alby, K. and Bennett, R. (2010) Sexual reproduction in the Candida clade: cryptic cycles, 

diverse mechanisms, and alternative functions. Cell. Mol. Life Sci. 67, 3275-3285. 
Altenbach, D. and Robatzek, S. (2007) Pattern recognition receptors: from the cell surface to 

intracellular dynamics. Mol. Plant-Microbe Interact. 20, 1031-1039.  
Anderson, P.K., Cunningham, A.A., Pater, N.G., Morales, F.J., Epstein, P.R. and Daszak, P. 

(2004) Emerging infection diseases of plants: pathogen pollution, climate change and 
agrotechnology drivers. Trends Ecol. Evol. 19, 535-544. 

Arie, T., Christiansen, S., Yoder, O. and Turgeon, B. (1997) Efficient cloning of ascomycete 
mating type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet. 
Biol. 21,118-130. 

Bantilan, M.C.S., Deb, U.K., Gowda, C.L.L., Reddy, B.V.S., Obilana, A.B. and Evenson, 
R.E. (2004) Sorghum genetic enhancement: research process, dissemination and impacts. 
Patancheru, Andhra Pradesh, India, International Crops Research Institute for the Semi-Arid 
Tropics.320pp. ISBN92-9066-470- 3. 

Bashan, B., Levy, R., Cojocaru, M. and Levy, Y. (1995) Purification and structural 
determination of a phytotoxic substance from Exserohilum turcicum. Physiol. Mol. Plant 
Pathol. 47, 225-235. 

Beadle, G. (1939) Teosinte and the origin of maize. J. Heredity, 30, 245-247. 
Bohman, S., Staal, J., Thomma, B.P.H.J., Wang, M. and Dixelius, C. (2004). Characterisation 

of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires 
camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid 
signalling. Plant J. 37, 9-20. 



 42 

Bolot, S., Abrouk, M., Masood-Quraishi, U., Stein, N., Messing, J., Feuillet, C. and Salse, J. 
(2009) The inner circle of the cereal genomes. Curr. Opin. Plant Biol. 12, 119-125. 

Borchardt, D., Welz, G. and Geiger, H. (1998) Genetic structure of Setosphaeria turcica 
populations in tropical and temperate climates. Phytopathol. 88,322-329. 

Bowman, J.L., Floud, S. and Sakakibara, K. (2007) Green genes – comparative genomics of 
the green branch of life. Cell, 129, 229-234. 

Brown, T.A., Jones, M.K., Powell, W. and Allaby, R.G.  (2008) The complex origins of 
domesticated crops in the Fertile Crescent. Trends Ecol. Evol. 10, 103-109. 

Burch-Smith, T.M., Schiff, M., Liu, Y. and Dinesh-Kumar, S.P. (2006) Efficient virus-
induced gene silencing in Arabidopsis. Plant Physiol. 142, 21-27. 

Bush, M., Piperno, D. and Colinvaux, P. (1989) A 6,000 year history of Amazonian maize 
cultivation. Nature, 340, 303-305. 

Carr, E.A., Mead, J. and Vershon, A.K. (2004) α1-induced DNA bending is required for 
transcriptional activation by the Mcm1-α1 complex. Nucl. Acids Res. 32, 2298-2305. 

Carson, ML. (1995) Inheritance of latent period length in maize infected with Exserohilum 
turcicum. Plant Dis. 79, 581-585. 

Ceballos, H., Deutsch, J. and Gutiérrez, H. (1991) Recurrent selection for resistance to 
Exserohilum turcicum in eight subtropical populations. Crop Sci. 31, 964-971. 

Chiang, M., van Dyke, C. and Leonard, K. (1989) Evaluation of endemic fungi for potential 
biological control of Johansongrass (Sorghum halepense): Screening and host range tests. 
Plant Dis. 73, 459-464. 

Chisholm, ST., Coaker, G. and Day, B. and Staskawicz, B.J. (2006) Host-microbe 
interactions: shaping the evolution of the plant immune response. Cell, 124, 803-814.  

Chung, C-L., Poland, J., Kump, K., Benson, J., Longfellow, J., Walsh, E., Balint-Kurti, P. 
and Nelson, R. (2011) Targeted discovery of quantitative trait loci for resistance to northern 
leaf blight and other diseases of maize. Theor. Appl. Genet. 123, 307-326. 

Collier, SM. and Moffett, P. (2009) NB-LRRs work a “bait and switch” on pathogens. Trends 
Plant Sci. 14, 521-529. 

Cuq, F., Herrmann-Gorline, S., Klaebe, A., Rossignol, M. and Pettprez, M. (1993) 
Monocerin in Exserohilum turcicum isolates from maize and the study of its phytotoxicity. 
Phytochem. 34, 1265-1270. 

Dahlberg, J.A. (2000) Classification and characterization of sorghum. In: C. W. Smith and R. A. 
Frederiksen (eds.), Sorghum: Origin, History, Technology, and Production. John Wiley and 
Sons, Inc., New York. pp 99-130. 

De Vries, J. and Toenniessen, G. (2001) Securing the harvest. Biotechnology and breeding 
methods for African Crops. The Cromwell Press, Wiltshire, UK. 208pp. 

De Wit, P.J., Mehrabi, R., V. den Burg, H.A. and Stergiopoulos, I. (2009) Fungal effector 
proteins: past, present and future. Mol. Plant Pathol. 10, 735-747. 

Debuchy, R., Berteaux-Lecellier, V. and Silar, P. (2010) Mating systems and sexual 
morphogenesis in Ascomycetes. In: Borkovich KA, Ebbole DJ, eds. Cellular and Molecular 
Biology of Filamentous Fungi. Washington, DC: ASM Press. pp 501–535. 

Degefu, Y. and Hanif, M. (2003) Agrobacterium tumefaciens-mediated transformation of 
Helminthosporium turcicum, the maize leaf blight fungus. Arch. Microbiol. 180, 279-284.  



 43 

Degefu, Y., Paulin, L. and Lubeck, P. (1997) Cloning, sequencing and expression of a xylanase 
gene from the maize pathogen Helminthosporium turcicum. Eur. J. Plant Pathol. 107, 457-
465.  

Degefu, Y., Lohtander, K. and Paulin, L. (2004) Expression patterns and phylogenetic analysis 
of two xylanase genes (htxyl1 and htxyl2) from Helminthosporium turcicum, the cause of 
northern corn leaf blight of maize. Biochimie, 86, 83-90. 

DeWet, J.M.J. and Huckabay, J.P. (1967) The origin of Sorghum bicolor. II. Distribution and 
domestication. Evol. 21, 787-802.  

Ding, X.S., Schneider, W.L., Chaluvadi, S.R., Mian, M.A.R. and Nelson, R.S. (2006) 
Characterization of a Brome mosaic virus strain and its use as vector for gene silencing in 
monocotyledonous hosts. Mol. Plant–Microb Interact. 19, 1229-1239. 

Doebley, J. (2004) The genetics of maize evolution. Annu. Rev. Gen. 38, 37-59. 
Doggett, H. (1988) Sorghum. 2nd edition. New York: John Wiley  
Doust, A.N., Kellog, E.A., Devos, K.M. and Bennetzen, J.L. (2009) Foxtail millet: a sequence-

driven grass model system. Plant Physiol. 149, 137-141. 
Duplessis, S., Cuomo, CA., Lin, Y-C. et al. (2011) Obligate biotrophy features unraveled by the 

genomic analysis of rust fungi. Proc. Nat. Acad. Sci. USA, 108, 9166 -9171. 
Dyer, P. and Paoletti, M. (2005) Reproduction in Aspergillus fumigatus: sexuality in a 

supposedly asexual species. Med. Mycol. 43, 7-14. 
Ebiyau, J. and Oryokot, O. (2001) Sorghum (Sorghum bicolor (L.) Moench. Agriculture in 

Uganda. Volume II. Crops: National Agricultural Research Organisation Fountain Publ. 594 
pp. 

Egan, M.J. and Talbot, N.J. (2008) Genomes, free radicals and plant cell invasion: recent 
developments in plant pathogenic fungi. Curr. Opin. Plant Biol. 11, 367-372. 

Elmore, J.M., Lin, Z.J.D. and Coaker, G. (2011) Plant NB-LRR signaling: upstreams and 
downstreams. Curr. Opin. Plant Biol. 14, 365-371.  

Fan, Y., Gu, S., Dong, J. and Dong, B. (2007) Effects of MEK-specific inhibitor U0126 on the 
conidial germination, appressorium production and pathogenicity of Setosphaeria turcica. 
Agricultural Sciences in China, 6, 78-85.   

Ferguson, L. and Carson, M. (2004) Spatial diversity of Setosphaeria turcica sampled from the 
eastern United States. Phytopathol. 94, 892-900. 

Ferguson, L. and Carson, M. (2007) Temporal variation in Setosphaeria turcica between 1974 
and 1994 and origin of races 1, 23, and 23N in the United States. Phytopathol. 97, 1501-1511. 

Flaherty, J. and Dunkle, L. (2005) Identification and expression analysis of regulatory genes 
induced during conidiation in Exserohilum turcicum. Fungal Genet. Biol. 42, 471-481. 

Food and Agriculture Organisation of the United Nations (FAO). www.faostat.fao.org 31 
July 2011. 

Fraser, J.A. and Heitman, J. (2005) Chromosomal sex-determining regions in animals, plants 
and fungi. Curr. Opin. Genet. Dev. 15, 645-651. 

Gilbert, G.S. and Webb, C.O. (2007) Phylogenetic signal in plant pathogen-host range. Proc. 
Natl Acad Sci USA, 104, 4979-4983. 

Goddard, M. R., Godfray, H.C.J. and Burt. A. (2005) Sex increases the efficacy of natural 
selection in experimental yeast populations. Nature, 434, 636–640. 



 44 

Goodwin, S,B., Ben M’Barek, S., Dhillon, B. et al. (2011) Finished genome of the fungal wheat 
pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, 
and stealth pathogenesis. PLoS Genet. 6:e1002070 

Grant, M.R., Godiardt, L., Straube, S., Ashfield, T., Lewald, J., Satler, A., Ines, R.W. and 
Dangl, J.L.  (1995) Structure of the RPM1 gene enabling dual specificity disease resistance. 
Science, 269, 843-846. 

Griess, E.A., Rensing, S.A., Grasser, K.D., Maier, U.G. and Feix, G. (1993) Phylogenetic 
relationships of HMG box DNA-binding domains. J. Mol. Evol. 37, 204-210. 

Hagen, D.C., Bruhn, L., Westby, C.A. and Sprague G.F, Jr. (1993) Transcription of alpha-
specific genes in Saccharomyces cerevisiae: DNA sequence requirements for activity of the 
coregulator alpha 1. Mol. Cell Biol. 13, 6866-6875. 

Hamblin, M.T., Mitchell, S.E., White, G.M., Gallego, J., Kukuatla, R., Wing, R.A., 
Paterson, A.H. and Kresovich, S. (2004) Comparative population genetics of the panicoid 
grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of 
Sorghum bicolor. Genetics, 167, 471-483. 

Hamblin, M.T., Salas Fernandez, M.G., Casa, A.M., Mitchell, S.E., Paterson, A.H. and 
Kresovich, S. (2005) Equilibrium processes cannot explain high levels of short- and medium 
range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics, 171, 1247-
1256.  

Hamid, A. and Aragaki, M. (1974) Inheritance of pathogenicity in Setosphaeria turcica. 
Phytopathol. 65, 280-283. 

Hammond-Kosack, K.E. and Jones, J.D.G. (1997) Plant disease resistance genes. Annu. Rev. 
Plant Physiol. Plant Mol. Biol. 48, 575-607.  

Hammond-Kosack, K.E. and Parker, J.E. (2003) Deciphering plant-pathogen communication: 
fresh perspective for molecular resistance breeding. Curr. Opin. Biotech. 14, 177-193.  

Harlan, J.R. and de Wet, J.M.J. (1972) Simplified classification of cultivated sorghum. Crop 
Sci. 12, 172-176. 

Harlapur. S.I., Kulkarni, M.S,. Wali, M.C., Patil, B.C., Kulkarni., S. and  Hegde, Y. (2007) 
Saccharum arundinaceaum – A new report of alternative host of turcicum leaf blight of maize 
Karnataka J. Agricul. Sci., 20, 867-868. 

Hebert, T. (1971) The perfect stage of Pyricularia grisea. Phytopathol. 61, 83-87. 
Hogenhout, S.A., van der Hoorn, R.A.L., Terauchi, R. and Kamoun, S. (2009) Emerging 

concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22, 
115-122.  

Holm, L.G., Plucknett, D.L., Pancho, J.V. and Herberger, J.P. (1977) The world’s worst 
weeds: distribution and biology. Univ. Press Hawaii, Honolulu. 

Idnurm, A., Walton, FJ., Floyd, A. and Heitman, J. (2008) Identification of the sex genes in an 
early diverged fungus. Nature, 451, 193–196. 

Inderbitzin, P., Asvarak, T. and Turgeon, BG. (2010) Six new genes required for production of 
T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. 
Mol. Plant-Microbe Interact.  23, 458-472. 

James, T.Y., Kauff, F., Schoch, C.L. et al.  (2006) Reconstructing the early evolution of Fungi 
using a six-gene phylogeny. Nature, 443, 818-822. 



 45 

Jones, J.D.G. and Dangl, J. (2006) The plant immune system. Nature, 444, 323-329. 
Kamoun, S. (2001) Nonhost resistance to Phytophthora: novel prospects for a classical problem. 

Curr. Opin. Plant Biol. 4, 295-300. 
Kamoun, S. (2007) Groovy times: filamentous pathogen effectors revealed. Curr. Opin. Plant 

Biol. 10, 358-365.  
Karaoglu, H., Lee, C. and Meyer, W. (2005) Survey of simple sequence repeats in completed 

fungal genomes. Mol. Biol. Evol. 22,639-649. 
Keissar, H., Bashan, B., Levy, Y. and Kenigsbuch, D. (2002) Stage specificity of catalase 

isoform activity in Exserohilum turcicum. Physiol. Mol. Plant Pathol. 60,163-168. 
Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A.C., Balmuth, A.L., Robert-

Seilaniantz, A.R., Bailey, K., Holub, E., Studholme, D.J., MacLean, D. and Jones, J.D.G. 
(2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen 
of Arabidopsis thaliana. PLOS Biol. 9, e1001094. 

Ketema, S. (2008) Strategic choices and research priorities for the ASARECA sub-region: Food 
crops, Livestock, natural resources management, Policy and information, 760pp. 

Kimber C.T. (2000) Origins of domesticated sorghum and its early diffusion into India and 
China. In Sorghum: origin, history, technology and Production. C.W Smith & R.A. 
Frederiksen (eds.), John Wiley & Sons, New York, 3-98. 

Klass, J., Murphy, F., Fouts, S., Serenil, M., Changela, A., Siple, J. and Churchill, M.E.A. 
(2003) The role of intercalating residues in chromosomal high-mobility-group protein DNA 
binding, bending and specificity. Nucl. Acids Res. 31, 2852–2864.  

Knox-Davies, P. (1974) Penetration of maize leaves by Helminthosporium turcicum. 
Phytopathol. 64, 1468-1470. 

Knox-Davies, P. and Dickson, J. (1960) Cytology of Helminthosporium turcicum and its 
ascigerous stage, Trichometasphaeria turcica. Amer. J. Bot. 47, 328-339. 

Kodsueb, R., Dhanasekaran, V., Aptroot, A., Lumyong, S., McKenzie, E., Hyde, K.  and 
Jeewon, R. (2006) The family Pleosporaceae: intergeneric relationships and phylogenetic 
perspectives based on sequence analyses of partial 28S rDNA. Mycologia, 98, 571-583. 

Kullman, B., Tamm, H. and Kullman, K. (2005) Fungal genome size database. 
http://www.zbi.ee/fungal-genomesize. 

Laudet, V., Stehelin, D. and Clevers, H. (1993) Ancestry and diversity of the HMG box 
superfamily. Nucl. Acids Res. 21, 2493-2501. 

Leach, C. (1977) An electrostatic theory to explain violent spore liberation by Drechslera turcica 
and other fungi. Mycologia, 68, 63-86. 

Lee, S., Ni, M., Li, W., Shertz, C. and Heitman J. (2010) The evolution of sex: a perspective 
from the fungal kingdom. Micro. Mol. Bio. Rev. 71, 298-340. 

Levy, Y. and Cohen, Y. (1983) Differential effect of light on spore germination of Exserohilum 
turcicum on corn leaves and corn leaf impressions. Phytopathol. 73, 249-252. 

Li, J., Ding, J., Zhang, Y., Tang, P., Chen, J-Q., Tian, D. and Yang, S. (2010) Unique 
evolutionary pattern of numbers of gramineous NBS-LRR genes. Mol. Gen. Genome, 283, 
427-438. 

Lim, S.M., Kinsey, J.G. and Hooker, A.L. (1974) Inheritance of virulence in Helminthosporium 
turcicum to monogenetic resistance in corn. Phytopathol. 64, 1150-1151. 



 46 

Lukasik, E. and Takken, FLW. (2009) STANDing strong, resistance proteins instigators of 
plant defence. Curr. Opin. Plant Biol. 12, 427-436. 

Ma, L-J., van der Does, H.C., Borkovich, K.A. et al. (2010) Comparative genomics reveals 
mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367-373. 

Mace, R.S. and Jordan, D.R. (2011) Integrating sorghum whole genome sequence information 
with a compendium of sorghum QTL studies reveal uneven distribution of QTL and of gene-
rich regions with significant implications for crop improvement. Theor. Appl. Genet. 123, 
169-191. 

Maekawa, T., Cheng, W., Spiridon, LN., Töller, A., Lukasik, E., Saijo, Y., Liu, P., Shen, Q-
H., Micluta, MA., Somssich, IE., Takken, FLW., Petrescu, A-J., Chai, J. and Schulze-
Lefert, P. (2011) Coiled-coil domain-dependent homodimerization of intracellular barley 
immune receptors defines a minimal functional module for triggering cell death. Cell Host & 
Microbe. 9,187-199. 

Mathre, D. (1997) Compendium of Barley Diseases, 2nd edition. APS Press, St. Paul, Minnesota, 
USA. 

McKann, J. (1995) People of the Plow: An Agricultural History of Ethiopia Madison: University 
of Wisconsin Press, 

McKann, J. (2006) Maize and grace. Africa’s encounter with a new world crop, 1500-2000. 
Harvard Univ Press. USA. 304 pp. 

Mehrabi, R., Bahkali, A.H., Abd-Elsalam, K.A., Moslem, M., Ben M’barek, S., Gohari, 
A.M., Jashni, M.K., Stergiopoulos, I., Kema, G.H.J. and de Wit, P.J.G.M. (2011) 
Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. 
FEMS Microbiol. Rev. 35, 542-554. 

Moghaddam, P. and Pataky, J. (1994) Reactions of isolates from matings of races 1 and 23N of 
Exserohilum turcicum. Plant Dis. 78, 767-771. 

Montero, C.I., Shea, Y.R., Jones, P.A., Harrington, S.M., Tooke, N.E., Witebsky, F.G. and 
Murray, P.R. (2008) Evaluation of Pyrosequencing® technology for the identification of 
clinically relevant non-dematiaceous yeasts and related species. Eur. J. Clin. Microbiol. 
Infect. Dis. 9, 821-830. 

Moshida, K., Yoshida, T., Sakurai, T., Yamagushi-Shinozaki, K., Shinozzaki, K. and Tran, 
L-S. P. (2011) In silico analysis of transcription factor repertoires and prediction of stress-
responsive transcription factors from six major Gramineae plants. DNA Res. doi:10.1093 

Muiru, W. (2008) Histological studies and characterization of races of Exserohilum turcicum the 
causal maize agent of northern leaf blight of maize in Kenya. PhD thesis. University of 
Nairobi, Kenya. 

Munkacsi, A., Stoxen, S. and May, G. (2007) Domestication of maize, sorghum and sugarcane 
did not drive the divergence of their smut pathogens. Evolution, 61, 388-403. 

Mysore, K.S. and Ryu, C-M. (2004) Nonhost resistance: how much do we know? Trends Plant 
Sci. 9, 97-104. 

Nimchuk, Z., Eulgem, T., Holt, B.F.III. and Dangl, J.L. (2003) Recognition and response in 
the plant immune system. Annu. Rev. Genet. 37, 579-609.  

Nishant, K.T., Wei, W., Mancera, D.E., Argueso, J.L., Schlattl, A., Delhomme, N., Ma, X., 
Bustamante, C.D., Korbel, J.O., Gu, Z., Steinmetz, L.M. and Alani, E. (2010) The baker’s 



 47 

yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLoS Genet. 
e1001109. 

Nkonya, E., Xavery, E., Akonaay, H., Mwangi, W., Anandajasekeram, P., Verkuijl, H., 
Martella, D. and Moshi, A. (1998) Adoption of maize production technologies in Northern 
Tanzania. CIMMYT, the United Republic of Tanzania and Southern African Centre for 
cooperation in Agricultural Research (SACCAR), p. 32. 

Nürnberger, T. and Lipka, V. (2005) Non-host resistance in plants: new insights into an old 
phenomenon. Mol. Plant Pathol. 6, 335-345. 

O’Neill, C.M., Gill, S., Hobbs, D., Morgan, C. and Bancroft, I. (2003) Natural variation for 
seed lipid traits in Arabidopsis thaliana. Phytochem. 64, 1077-1090.  

Oide, S., Montiel, V., Peele, H., Lindberg-Yilmaz, J., Persson, M., Guan, N. and Dixelius, C. 
(2011) A putative lipid phosphate phosphatase is required for defense responses in 
Arabidopsis thaliana to adapted and non-adapted pathogens. (Submitted) 

Olembo, K. N,. M’mboyi, F., Kiplagat, S., Sitieney, J. K. and Oyugi, F. K. (2010) Sorghum 
Breeding in Sub-Saharan Africa: The Success Stories. African Biotechnology Stakeholders 
Forum (ABSF), Nairobi- Kenya. 

Palasingam, P., Jauch, R., Ng, C.K.L. and Kolatkar, P.R. (2009) The structure of Sox17 
bound to DNA reveals a conserved bending topology but selective protein interaction 
platforms. J. Mol. Biol. 388, 619-630. 

Paterson, A.H., Bowers, JE., Bruggmann, R. et al. (2009) The Sorghum bicolor genome and 
the diversification of grasses. Nature, 457, 551-556. 

Pingali, P. and Pandey, S. (2001) World maize needs meeting: Technological opportunities and 
priorities for the public sector. In: CIMMYT 1999-2000 World maize facts and trends. 
Meeting world maize needs: Technological opportunities and priorities for the public sector. 
P.L. Pingali (Ed), pp 7-10. CIMMYT, Mexico. 

Pearce-Duvet, J.M. (2006) The origin of human pathogens: evaluating the role of agriculture and 
domestic animals in the evolution of human disease. Biol. Rev. Camb. Philos. Soc. 81, 369-
382. 

Pratt, R. and Gordon, S. (2006) Breeding for resistance to maize foliar pathogens. Plant Breed. 
Rev. 26, 119-173. 

Price, H.J., Dillon, SL., Hodnett, G., Rooney, W.L., Ross, L. and Johnston, J.S. (2005) 
Genome evolution in the genus Sorghum (Poaceae). Ann. Bot. 95, 219-227. 

Ramathani, I., Biruma, M., Martin, T., Dixelius, C. and Okori, P. (2011) Disease severity, 
incidence and races of Setosphaeria turcica on sorghum in Uganda. Eur. J. Plant Pathol. 
DOI: 10.1007/s10658-011-9815-1 

Ravensdale, M., Nemri, A., Thrall, P.H., Ellis, J.G. and Dodds, P.N. (2011) Co-evolutionary 
interactions between host resistance and pathogen effector genes in flax rust disease. Mol. 
Plant Pathol. 12, 93-102.  

Raymondo, A. and Hooker, A. (1981) Measuring the relationship between northern corn leaf 
blight and yield losses. Plant Dis. 65, 325-327. 

Read. C., Cary. P., Crane-Robinson. C. and O’Driscoll. P. (1993) Solution and structure of a 
DNA-binding domain from HMG1. Nucl. Acids Res. 21, 3427-3436. 



 48 

Richards, T.A., Dacks, J.B., Jenkinson, J.M., Thornton, C.R., Talbot, N.J. (2006) Evolution 
of filamentous plant pathogens: Gene exchange across eukaryotic kingdoms. Curr. Biol. 18, 
1857-1864. 

Richerson, P.J., Boyd, R. and Bettinger, R.L. (2001) Was agriculture impossible during the 
Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am. Antiq. 66, 
387–411. 

Robeson, D. and Strobel, G. (1982) Monocerin, a phytotoxin from Exserohilum turcicum 
(=Drechslera turcica). Agric. Biol. Chem. 46, 2681-2683. 

Ronald, P.C. and Beutler, B. (2010) Plant and animal sensors of conserved microbial signatures. 
Science, 330,1061-1064.  

Roos, J., Hopkins, R., Kvarnheden, A. and Dixelius, C. (2011) The impact of global warming 
on plant diseases and insect vectors in Sweden. Eur. J. Plant Pathol. 129, 9-19. 

Rossman, A. and Palm-Hernandez, M. (2008) Systematics of plant pathogenic fungi - why it 
matters. Plant Dis. 92, 1376-1386. 

Salse, J., Bolot, S., Throude, M., Jouffe., Piegu, B., Quraishi, U.M., Calcagno, T., Cooke, R., 
Delseny, M. and Feuillet, C. (2008) Identification and characterization of shared duplications 
between rice and wheat provide new insight into grass genome evolution. Plant Cell, 20, 11-
24. 

Schacherer, J., Ruderfer, DM., Gresham, D., Dolinski, K., Botstein, D. and Kruglyak, L. 
(2007) Genome-wide analysis of nucleotide-level variation in commonly used Saccharomyces 
cerevisiae strains. PLoS ONE e322. 

Schirawski, J., Mannhaupt, G., Münch, K. et al. (2010) Pathogenicity determinants in smut 
fungi revealed by genome comparison. Science, 330, 1546-1548. 

Schnable, P.S., Ware, D., Fulton, R.S. et al. (2009) The B73 maize genome: complexity, 
diversity and dynamics. Science, 326, 1112-1115. 

Schoch, C., Shoemaker, R., Seifert, K., Hambleton, S., Spatafora, J. and Crous, P. (2006) A 
multigene phylogeny of the dothideomycetes using four nuclear loci. Mycologia, 98, 1041-
1052. 

Schulze-Lefert, P. and Panstruga, R. (2011) A molecular evolutionary concept connecting 
nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Science, 16, 
117-125. 

Shirazu, K. (2009) The HSP90 –SGT1 chaperone complex for NLR immune sensors. Annu. Rev. 
Plant Biol. 60, 139-164. 

Snowden, J.D. (1936) The cultivated races of Sorghum. Adlard & Son, London. 
Soanes, D,M., Richards, T.A. and Talbot, N.J. (2007) Insights from sequencing fungal and 

oomycete genomes: What can we learn about plant disease and the evolution of 
pathogenicity? Plant Cell, 11, 3318 -3326. 

Souza, C., Silva, C. and Ferreira, A. (2003) Sex in fungi: lessons of gene regulation. Genet. 
Mol. Res. 31, 136-147. 

Stein, M., Dittgen, J., Sánchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., 
Lipka, V. and Somerville, S. (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette 
transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct 
penetration. Plant Cell, 18, 731-746. 



 49 

Tatum, L. (1971) The southern corn leaf blight epidemic. Science, 171, 1113 - 1116. 
Taylor, J., Jacobson, D. and Fisher, M. (1999) The evolution of asexual fungi: reproduction, 

speciation and classification. Annu. Rev. Phytopath. 37, 197-246. 
Thakur, R., Leonard, K. and Leath, S. (1989) Effects of temperature and light on virulence of 

Exserohilum turcicum on corn. Phytopathol. 79, 631-635. 
The International Brachypodium Initiative (2010) Genome sequence and analysis of the model 

grass Brachypodium distachyon. Nature, 463, 763-768.  
The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the 

tuber crop potato. Nature, 475, 189-195. 
Thines, M. and Kamoun, S. (2010) Oomycete-plant coevolution: recent advances and future 

prospects. Curr. Opin. Plant Biol. 13, 427-433. 
Thomas, J. and Travers, A. (2001) HMG1 and 2, and related ‘architectural’ DNA-binding 

proteins. Trends  Biochem. Sci. 3,167-174. 
Thomma, B.P.H.J. (2003) Alternaria spp. from general saprophyte to specific parasite. Mol. 

Plant Pathol. 4, 225–236. 
Tilahun, T., Ayana, G., Abebe, F. and Wegary, D. (2001) Maize pathology research in 

Ethiopia: a review. In: Enhancing the contributions of maize to food security in Ethiopia. N. 
Madefro, D. Tanner and S. Twumasi-Afriyie (Eds.), pp. 97-105. In: Proc.  2nd National 
workshop of Ethiopia. 12-16 Nov 2001.  EARO and CIMMYT, Addis Ababa, Ethiopia.  

Timmermann, B., Jarolim, S., Rußmayer, H., Kerick, M., Michel, S., Krüger, A., Bluemlein, 
K., Laun, P., Grillari, J., Lehrach, H., Breitenbach, M. and Ralser, M. (2010) A new 
dominant peroxiredoxin allele identified by whole-genome re-sequencing of random 
mutagenized yeast causes oxidant-resistance and premature aging. Aging 2, 475-486. 

Tsong, A.E., Brian, B.T. and Johnson, A.D. (2007) Rewiring transcriptional circuitry: mating-
type regulation in Saccharomyces cerevisiae and Candida albicans as a model for evolution. 
In: Heitman J, Kronstad JW, Taylor JW, Casselton LA, editors. Sex in Fungi, molecular 
determination and evolutionary implications. Washington, DC: 

Turgeon, B.G. and Yoder, O.C. (2000) Proposed nomenclature for mating type genes of 
filamentous ascomycetes. Fungal Genet. Biol. 31, 1–5. 

Van de Wouw, A.P. and Howlett, B. (2011) Fungal pathogenicity genes in the age of “omics”. 
Mol. Plant Pathol. 12, 507-514.  

Vleeshouwers, V.G.A. A., Raffaele, S., vossen, J., Champouret, N., Olica, R., Segretin, M.E., 
Rietman, H., Cano, L.M.C., Lokossou, A., Kessel, G., Pel, M.A. and Kamoun, S. (2011). 
Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. 
Phytopathol. 49, 507-531. 

Wang, Y., Diehl, A., Wu, F., Vrebalov, J., Giovannoni, J., Siepel, A. and Tanksley, S.D. 
(2008) Sequencing and comparative analysis of a conserved syntenic segment in the 
Solanaceae. Genetics. 180, 391-408. 

Wang, H., Moore, M.J., Soltis, PS., Bell, C.D., Brockington, S.F., Alexandre, R., Davis, C.C., 
Latvis, M., Manchester, S.R. and Soltis, D.E. (2009) Rosid radiation and the rapid rise of 
angiosperm-dominated forests. Proc. Natl Acad Sci. 106, 3853 -3858. 

Wang, X., Tang, H. and Paterson A.H. (2011) Seventy million years of concerted evolution of a 
homologous chromosome pair, in parallel, in major Poaceae linages. Plant Cell, 23, 27-37. 



 50 

White, D. (2000) Compendium of corn disease. 3rd ed. The American Phytopathological Society. 
APS Press.  

White, C. and Schwarcz, H. (1989) Ancient Maya diet: as inferred from isotopic and elemental 
analysis of human bone. J. Archaeol. Sci. 16, 451-474 

Wikström, N., Savolainen, V. and Chase, M.W. (2001) Evolution of the angiosperms: 
calibrating the family tree. Proc. Biol. Sci. 268, 2211-2220. 

Yang, Y.W., Lai, KN., Tai, P.Y. and Li, W.H. (1999) Rates of nucleotide substitution in 
angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and 
other angiosperm lineages. J. Mol. Evol. 48, 597-604. 

Zang, N., Castlebury, L., Miller, A., Huhndorf, S., Schoch, C., Seifert, K., Rossman, A., 
Rogers, J., Kohlmeyer, J., Volkmann-Kohlmeyer, B. and Sung, G. (2006) An overview of 
the systematics of sordariomycetes based on a four-gene phylogeny. Mycologia, 98, 1076-
1087. 

Zang, L., Dong, J., Wang, C. and Li, Z-P. (2007) Purification and structional analysis of a 
selective toxin fraction produced by the plant pathogen Setosphaeria turcica. Agricultural 
Sciences in China, 6, 452-457. 

Zellerhoff, N., Himmelbach, A., Dong, W., Bieri, S., Schaffrath, U. and Schweizer, P. (2010) 
Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, 
quantitative transcriptional responses. Plant Physiol. 152, 2053-2066. 

Ziolkowski, PA., Kaczmarek, M., Babula, D. and Sadowski, J. (2006) Genome evolution in 
Arabidopsis/Brassica: Conservation and divergence of ancient rearranged segments and their 
breakpoints. Plant J. 47, 63–74. 

Zipfel, C. and Felix, G. (2005) Plants and animals: a different taste for microbes? Curr. Opin. 
Plant Biol. 8, 353–360. 

 
  



 51 

Acknowledgements 
A Ph.D. is tough. It requires patience, hard work, a little bit of luck but most 
importantly of all support from family, friends and colleagues. I have been 
extremely privileged to have the most amazing group of people helping me 
through my Ph.D, keeping my spirits up by making me smile and laugh, with 
lab and manuscript advice, and joining me for a beer every once in a while.  

 
The support I have received has been exceptional and I want to thank everyone 
for making my time as a Ph.D student rewarding and fun. This includes 
everyone at the department, without whom there would be no thesis. There are 
one or two people I would like to thank personally. 
 
Frida. Du är mitt allt. My rock, my love and my life. Thank you for a million 
and one things. I love you with all my heart.  
 
I want to thank my family in England. You have given me the most amazing 
love and support. You mean everything to me. 
 
I would like to thank my supervisor Christina Dixelius. When I first arrived in 
Sweden I was extremely naïve and knew nothing of the scientific world. 
Through you ideas, guidance and determination you turned me from a naïve 
undergrad into a published scientist defending my thesis. It took a lot of hard 
work on your part and I thank you for sticking with it and hope you are proud 
of the result. I also want to thank my second supervisor Anki for always being 
there to talk to and giving me support. 
 
My group are awesome and have always been there for me. You are my lab 
family and mean the world to me. Mattias P, Maria and Jens. When I first came 
here you were the ‘senior’ Ph.D students. You always had good advice, a joke, 



 52 

and time for me. Ramesh and I joined the group at the same time and we have 
had some great times in different countries together. Jonas, you're a great 
friend and we had a lot of fun together in and out the office. You kept helped 
me more than you will ever know. Vera, you are my like a sister to me, always 
there when I need you and making me laugh, your a very special person. Arne, 
Cheers dude, I owe you a beer or two. It has been a lot of fun since you and 
Anna showed up. Mattias M, thank you for being a great friend and having an 
excellent taste in music. The group has grown to include Na, Hanneke, Anna, 
Sultana and Tina and you have all helped me in so many ways, thank you all. 
 
I want to thank a few people who are no longer at the department but made a 
huge impact on me in my first few years. Jeppe, Per and Mats some of the first 
and best friends I have made in Sweden. Monika, you made every day hilarious 
and I still have those golf balls. Boomerang! J  
 
I want to thank Emma for being amazing. Simply amazing. You have been 
there for me when things got tough, you are great fun and a true friend. I want 
to thank your family too, Eric, Alva and Tuva, all of you are the best friends 
anyone can have. What an awesome family. 
 
Udders, you a legend, great fun and a proper mate. You always make me laugh 
and congratulations on the new arrival. Vestman, what a guy, we have had a lot 
of good times, some I will never forget, some I can’t really remember. I will 
try to beat you in the Vasa next year so you had better train hard. Malin, 
Thanks for being brilliant. You have always made me laugh and I wish you all 
the happiness in the world with your new family. 
 
Joel, you have helped me so many times. My first paper would never have 
happened if you hadn’t been there for me. Also, when I finish my defence I am 
going to do a Specky so bring your camera. Ingela, I don’t know where to 
begin. Your awesome, level headed and a lot of fun. Thank you so much. 
 
I worked a lot with Makerere University in Uganda and made a lot of friends 
there. I would like to thank Patrick for valuable advice and laughter. Moses, 
you have been like a brother to me, been a great friend and shown me how 
beautiful Uganda is. I would like to thank Joseph, Idd, Alex and Agnes for 
your friendship and kindness. Wilton, it was fun working with you and I hope 
to see you in Kenya one day.  
 



 53 

Urban, Gunilla, Ingrid and all the technical staff. You have each helped me so 
much with the everyday running of things that without your help everything 
would have fallen apart. I must have asked you each a million stupid questions 
and you always had time to give me a sensible answer. Thank you all.  
 
Mona, Birgitta, Lotta and Monika. You have been so nice to me, helping me 
with everything from booking flights to gardening tips. You were always in a 
good mood and I don’t know what I would do without you. Björn, You have 
been extremely patient with me and helped me so much. 
 
I want to thank all the people who played innebandy. It was always a lot of fun 
and I can’t wait to play again. Thank you Kjell, Ulf, Naeem, Nadeen, Usman, 
Shah and everyone else. 
 
The WESE was always my favourite way to spend a Wednesday afternoon. 
The company is exceptional. Thank you to every single person who joined 
from the hard core such as Eva, Magnus, Jens, Nicklas, David, Mattias T, 
Silva, Harold, Alyona, Henrick, Elke, Jenny, Ulrike, Katrina, Sofia, Veronika, 
Jim, Sarosh, Nurun, CG, Anders and Gunnar to newer members such as Eric, 
Bela, Jordi, Phillip, Selcuk, Carolin, Andrea, Margareta and many many 
more… 
 
I want to thank everyone who has touched my life in one way or another during 
my studies, be it through a course, a conference or outside of work.  
 
Yes, a Ph.D is tough, but with the right people behind you it is a bloody good 
way to spend 5* years. 
 

 
 
 
 
 
 
 
 
 

 
 
 



 54 

* Years may vary depending on fertility  


