

This is an author produced version of a paper published in Journal of Ecology.

This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

Citation for the published paper:

Drobyshev, Igor; Granström, Anders; Linderholm, Hans W.; Hellberg, Erik; Bergeron, Yves; and Niklasson, Mats. (2014) Multi-century reconstruction of fire activity in Northern European boreal forest suggests differences in regional fire regimes and their sensitivity to climate. *Journal of Ecology*. Volume: 102, Number: 3, pp 738-748. http://dx.doi.org/10.1111/1365-2745.12235.

Access to the published version may require journal subscription. Published with permission from: Wiley.

Epsilon Open Archive http://epsilon.slu.se

- 1 Multi-century reconstruction of fire activity in Northern European boreal forest
- 2 suggests differences in regional fire regimes and their sensitivity to climate
- 3 Igor Drobyshev^{1,2}, Anders Granström³, Hans W. Linderholm⁴, Erik Hellberg⁵, Yves
- 4 Bergeron², Mats Niklasson¹
 - Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 49, 230 53 Alnarp, Sweden
 - Chaire industrielle CRSNG-UQAT-UQAM en aménagement forestier durable,
 Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda, J9X 5E4, QC Canada
 - 3 Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
 - Regional Climate Group, Department of Earth Sciences, University of Gothenburg,
 Box 460, 405 30 Gothenburg, Sweden
 - 5 Swedish Environmental Protection Agency, Forskarens väg 5, 831 40 Östersund, Sweden

- 6 Correspondence author E-mail: <u>Igor.Drobyshev@slu.se</u> / <u>Igor.Drobyshev@uqat.ca</u>
 7
 8 Key-words: climate variation, dendrochronology, determinants of plant community diversity
- 9 and structure, drought, fire risk, fire weather, natural disturbances, natural hazards,
- 10 Scandinavia
- 11

12 Summary

13	1.	Forest fires are one of the main disturbance agents in boreal and temperate			
14		ecosystems. To decipher large-scale temporal and spatial patterns of past fire activity			
15		in Scandinavia, we analyzed the synchronicity of dendrochoronologically			
16		reconstructed fire events in a large network of sites ($n = 62$; 3296 samples, 392			
17		individual fire years) covering a wide geographical gradient (56.5 - 67.0 $^{\rm o}$ N and 9.3 -			
18		20.5 ° E) over AD 1400-1900. We identified large fire years (LFY) as years with			
19		regionally increased forest fire activity and located the geographical centers of			
20		climatic anomalies associated with synchronous LFY occurrence across the region,			
21		termed LFY centroids.			
22	2.	The spatial pattern of LFY centroids indicated the presence of two regions with			
23		climatically-mediated synchronicity of fire occurrence, located south and north from			
24		60° N. The return intervals of LFYs in Scandinavia followed a Weibull distribution in			
25		both regions. Intervals however differed: a period of 40 years would carry a 0.93			
26		probability of LFY occurrence in the southern region, but only a 0.48 probability of			
27		LFY occurrence in the northern region.			
28	3.	Over 1420 - 1759, the northern region was characterized by significantly higher			
29		temporal variability in LFY occurrence than the southern region. Temporal			
30		correlation of LFYs with reconstructed average summer temperature and total			
31		precipitation were evident mainly for the northern region. LFYs in this region were			
32		associated with positive temperature and negative precipitation anomalies over			
33		Scandinavia and with colder and wetter conditions in more southern parts of the			
34		European sub-continent.			

35	4.	Synthesis. Historical patterns of the occurrence of large fire years (LFY) in
36		Scandinavia point towards the presence of two well-defined zones with characteristic
37		fire activity, with the geographical division at approximately 60° N. The northern and
38		mid-boreal forests, although exhibiting lower LFY frequencies, appeared to be more
39		sensitive to past summer climate, as compared to the southern boreal forests. This
40		would imply that fire regimes across Scandinavia may show an asynchronous
41		response to future climate changes.
42		

43 Introduction

44 Forest fire activity has been an integral part of natural disturbance dynamics of the Scandinavian boreal and hemi-boreal forests over large parts of the current post-glacial 45 46 period (Tryterud 2003, Barnekow et al. 2008). Except for (probably uncommon) fire refugia 47 (Segerström et al. 1996, Ohlson & Tryterud 1999), fires in Scandinavian forests have 48 occurred, on a stand scale, with typical intervals of 20 to 300 years, depending on landscape 49 and site properties (Hellberg et al. 2004), and the human setting of a particular time period 50 (Niklasson & Granström 2000, Granström & Niklasson 2008). Climate has been shown to be 51 strongly linked with the extent of regional forest fire activity in many temperate and boreal 52 biomes (Stocks & Lynham 1996, Veblen et al. 1999, Girardin et al. 2006). In Scandinavia, the influence of climate on fires has in general been analyzed in a long-term (millennial) 53 54 context using coarse-resolution paleoecological methods (Miller et al. 2008, Greisman and 55 Gaillard 2009, Bradshaw et al. 2010). Studies done with higher temporal resolutions (e.g. 56 annual and seasonal) have mostly dealt with non-climatic determinants of forest fire activity, such as interactions between humans and fire (Bleken et al. 1997, Øyen 1998, Groven and 57 58 Niklasson 2005, Granström and Niklasson 2008), fire suppression activities (Högbom 1934), the effects of landscape structure (Hellberg et al. 2004) and the role of fuels (Schimmel and 59 60 Granström 1997). Thus, the lack of annually resolved and long-term historical climate-fire 61 relationships limits our ability to analyze climate-fire coupling in historical, modern, and future contexts. 62

The level of fire activity in Scandinavia has long since been related to summer drought
conditions (Högbom 1934), suggesting a link between climate variability and forest fires.
Indeed, a study of recent (20th century) fire activity in Sweden demonstrated a strong, though
spatially inhomogeneous, correlation between various drought indices and annually burned
forest areas (Drobyshev *et al.* 2012). In terms of total area burned, forest fire activity in

Northern Europe has been decreasing since the late 19th century (Tryterud 2003). In Sweden, 68 fire cycles (the time required to burn the area equal to the study area, sensu Van Wagner 69 1987) in different regions are currently on the scale of 10^3 - 10^4 years (Drobyshev *et al.* 2012). 70 This decline in forest fire activity has been attributed to efficient fire suppression policies 71 introduced in the second half of the 19th century (Högbom 1934).

72

73 Understanding long-term climate-fire relationships in Scandinavia is challenging. It requires 74 a spatially large and temporally long network of sites with fire histories extending over both 75 the period of increased anthropogenic burning (~1600 – mid 1800s, Lehtonen & Huttunen 76 1997, Groven & Niklasson 2005) and the fire suppression period (post 1860). Meeting these 77 requirements is not a trivial task, since the availability of living trees and deadwood bearing 78 fire scars, the principal source of fire history information, is generally poor across the region 79 due to forestry practices eradicating the deadwood and fire-scared trees.

The present study attempts to overcome these methodological difficulties and to parameterize 80 81 the climate-fire linkages by capitalizing on a large and annually resolved dataset of fire history reconstructions spread across a large geographical gradient in the Northern European 82 83 boreal forest. The dataset represents, to the best of our knowledge, the most extensive 84 network of this kind in northern Eurasia. Extraction of climate signals from the available dataset of individual fire dates required two main assumptions. First, we interpreted annually 85 86 synchronous occurrence of fires across sites as a sign of climatic influence, the degree of 87 synchronicity being positively correlated with the degree of climatic forcing upon annual fire 88 activity (Falk et al. 2007, Falk et al. 2011). This association has convincingly been 89 demonstrated in several regional and continent-scale studies (Veblen et al. 1999, Brown 2006) and received support in the analysis of 20th century fire activity across Central, Eastern 90 91 and Northern Europe (la-Marta et al. 2007) and, specifically, in Sweden (Drobyshev et al. 92 2012). Secondly, based on results of a previous study (Drobyshev et al. 2012) we assumed

93 that the size of the study area is comparable to the geographical scale of climatic features 94 responsible for patterns of regional fire activity, i.e. at a synoptic scale. This assumption is 95 important since it allows the interpretation of synchronicity in fire dates across sites as a 96 geographical "replica" of the overlying climate anomalies. Aiming at understanding large-97 scale climatic controls of fire activity in the European boreal zone we put forward three 98 specific goals: (i) to investigate the presence of large geographical patterns of historical fire 99 occurrences in the Northern European boreal forest, (ii) to examine differences in return 100 intervals of large fire years (LFY), defined as years with strong synchronicity in fire 101 occurrence across sites, and assess the scale of temporal changes in the LFY intervals over 102 the studied timeframe, and (iii) to evaluate the sensitivity of regional fire regimes to climate 103 by analyzing association of LFY with independently reconstructed temperature and 104 precipitation records.

105 Study region

106 The studied sites were located within the geographical boundaries of 56.5 - 67.0 °N and 9.3 -107 20.5 °E (Fig. 1A). The sampled area stretched over four bioclimatic domains, including 108 northern boreal forests, mid- and south boreal forests, and boreo-nemoral forests (Ahti et al. 109 1968). For the purposes of this study we consider the area of Sweden above 60 °N as 110 Northern Sweden, and below this latitude – as southern Sweden. Large gradients in many 111 climatic variables exist between the southern and northern parts of the study area (Fig. 1B-D). 112 Mean January temperatures vary from -2 °C in the south, to -18 °C in the north. Mean July 113 temperature however, is more homogenous, with values between 12 and 16 being common 114 across most parts of the study area. The length of growing season, defined as the number of 115 days with the mean temperature above 5 °C, is 170-200 days in the south and 130-170 days in the north (Raab & Vedin 1995). Total annual precipitation ranges from 1000 mm in south-116 117 western part to 600-700 mm in the south-eastern and northern parts of the study area. Number

118 of days with snow cover varies on average between 50 in the south and 170-225 in the north. Last day with snow cover typically occurs in early April in the southern part of the country 119 and only after 1st of May in the north (Raab & Vedin 1995). A ten-fold variation in lightning 120 121 strike densities is observed in the study area, with south-western Scandinavia receiving the 122 maximum number of strikes (Fig. 1B). 123 The sampled forests were dominated by Pinus sylvestris L. and Picea abies (L.) H. Karst. with a field-layer vegetation composed mainly of various ericaceous dwarf shrubs and with 124 125 moss or lichen-covered ground. 126

127 Material and methods

128 Fire history data and analysis

129 A dataset of 62 fire history sites and 3296 samples were used in the analyses (Figs. 1A and B, Appendix A). For all sites, fire dates were obtained on cross-sections of fire-scarred Scots 130 131 pine (Pinus sylvestris L.), using a classical crossdating technique (Stokes & Smiley 1968) and 132 a number of sub-regional pointer year chronologies (Niklasson et al., unpublished data). Despite the fact that the sites were originally studied within the frame of different projects 133 134 carried out over a period of about 15 years, the field sampling protocols remained largely the same. Each site was searched for the presence of living or dead wood material of Scots pine, 135 136 which was sampled with a chainsaw to obtain wedges or crosssections with fire scars. Old 137 trees were routinely sampled in search of completely closed (overhealed) scars. Crossdating 138 of all samples was verified by one of the co-authors (M.N.). During dating we attempted to 139 recover seasonal information about historical fire events by identifying, when possible, location of the scar with respect to the early- and latewood portions of the ring. The sites 140 141 varied in terms of size of the sampled territory and temporal period covered (Appendix A).

142 Further details of sampling for fire history reconstructions are available elsewhere (Niklasson143 & Granström 2000).

144 Despite differences in the amounts of data among the sites, we did not employ any weighting 145 or filtering protocols, e.g. by assigning higher weights to the sites with larger area covered or 146 single fire years with higher number of samples. The rationale for this was four-fold. First, 147 we lacked a clear a-priori hypothesis giving reason for discriminating sites on the basis of their properties. Secondly, we considered weighting sites or single fire events as not 148 149 appropriate given the current knowledge of forest fire history in Scandinavia. Previous 150 studies have convincingly shown that both the average and the maximum fire sizes have been 151 declining (Niklasson & Granström 2000, Drobyshev et al. 2012), starting at different periods. 152 Further, our unpublished data suggests that these changes also had a spatial component, onset 153 of suppression activities occurring at different times across the country. It follows that 154 adjusting the weight of each fire chronology for the sample replication at site scale would be 155 complicated by changing average/maximum number of samples simply due to changing 156 average/maximum fire size. Any adjustment function developed to address this problem will 157 involve multiple assumptions in time-space domains. Since our goal was to minimize the 158 number of assumptions, we rejected this strategy. Thirdly, giving more weight e.g. to larger 159 sites will inevitably increase the influence of properties of particular landscapes (properties 160 such as average fire size, possibilities of fire spread, fuel loads) on the overall picture of fire 161 activity. Finally, we were interested in preserving the maximum number of sites in the 162 dataset to ensure reasonable amount of data for the spatial analyses. By avoiding data 163 filtering with respect to the absolute number of fire-scarred samples we could potentially face 164 two problems: (i) difficulty in translating occurrence of LFYs into absolute estimates of 165 burned area during those years, and (ii) difficulties in understanding heterogeneity within the 166 group of indentified LFYs, with respect to the actual area burned. Both issues appeared of

167 little importance for the current study since we did not attempt to reconstruct absolute168 estimates of the burned areas.

169 Analysis of age cohort data, temporal coverage of dated samples, and timing of the onset of 170 fire suppression on each site were used to keep a proper track of eventual hiatuses in the fire records. Particularly, site replication in a year was understood as the number of sites 171 172 supplying material for a particular calendar year. Importantly, a site contributed to the 173 replication only up to the year of the last fire on that site. Sites in the fire suppression period, 174 onset of which in Sweden is dated to the period between mid 1700s and mid-1800s, were 175 therefore of little use for our analyses and by removing them we ensured that that analyses 176 were done on the pool of sites where fires could occur. Thus, even if dendrochronological 177 material was available for a site, the latter did not contribute to overall replication if it already 178 had entered the fire suppression period.

179

180 Defining synchronicity in fire occurrence

181 We used a composite definition of LFY, utilizing both the percentage of sites burned in a 182 year and theoretical probabilities of observing a particular number of sites burned in a year. In particular, we first evaluated the relationship between absolute number of sites recording a 183 184 fire year and corresponding proportion of these sites in the total number of recording sites 185 during that year (Appendix B) and selected years with $\geq 20\%$ of sites burned. Secondly, we 186 evaluated the theoretically expected frequencies of years with fire recorded at different 187 number of sites and calculated joint probabilities of fire occurrence for years with up to eight sites burning in the same year (Swetnam 1993). We limited our analysis by eight sites since 188 189 in our dataset the theoretically expected number of years with eight sites burned was zero 190 (assuming random occurrence of fire across sites, Appendix C). We calculated expected

191 frequencies of years with no, one, and multiple sites burning, assuming the binominal192 distribution of the events:

193
$$p(X) = \frac{N!}{X!(N-X)} p^{x} q^{N-X}$$
 (Eqn. 1),

194 where N was the total number of recording sites in the analysis of a specific period; X - X195 number of burned sites in a single year; p – the probability of a site burning in any year, and q196 - inverse of this probability. The differences between expected and observed frequencies 197 were estimated with the Chi-square test (Sokal and Rolf 1995). The selection of threshold 198 was based on the analysis of expected and observed frequencies of years with different 199 numbers of burned sites. The threshold was selected as a minimum number of burning sites, 200 corresponding to at least a two-fold difference between observed and expected frequencies 201 within any of the 100-year periods within the studied time frame (AD 1400-1900). This was 202 done to address the fact that fire frequencies varied over time and to verify that our selected 203 threshold was not compromised on shorter intervals.

Years qualifying both criteria were considered as climatically-driven large fire years (LFY).
Following this protocol, we effectively avoided problems with non-climatic variability in
average fire sizes over the different parts of the study period (Niklasson & Granström 2000);
enhancing the climatic signal in the resulting LFY record.

208

209 Spatial analyses

The spatial analysis was used to classify the study area into sub-regions, based on the synchronicity of fire years among sites. Our rationale was that synchronicity in fire occurrence is a manifestation of atmospheric circulation anomalies with a defined spatial extent and a geographical center. To estimate its center position, termed *LFY centroid*, we averaged coordinates of all sites burned during a LFY. Geometrically, a LFY centroid

215 corresponded to the centroid of points, which in this case were burned sites (Appendix D, a). 216 Clearly, the position of the LFY centroids was not "absolute" in a sense that it was dependent 217 on configuration of the study area, the number and location of actual recording sites. LFY 218 centroid might therefore be biased in relation to the actual climate anomaly (Appendix D). 219 We, however, did not consider that as a problem for this study since the aim of the whole 220 spatial exercise was to establish the zonation within the study area. Another potential 221 difficulty with this method would arise if different weather systems caused fire activity e.g. in 222 two separate parts of the study area. In this case, coordinates of the centroid would point to 223 the area away from the centers of the respective climate anomalies. The resulting effect, if 224 present, would decrease the power of the spatial classification algorithm. We used K-means 225 clustering (Hartigan & Wong 1979; Sokal & Rolf 1995) on latitude-longitude coordinates of 226 established LFY centroid to objectively identify the geographical affinity of each LFY. 227 To estimate the optimal number of clusters, i.e. the classification minimizing the loss of 228 information, we bootstrapped 1000 times the value of the Jaccard index, a measure of 229 similarity among *a priori* established clusters, for classifications with up to seven clusters, 230 and selected classification with the lowest Jaccard index values (Hennig 2007). To do that, 231 we selected randomly and with replacement LFYs from the complete pool of LFYs and 232 recalculated LFY centroids and respective Jaccard values for each bootstrap run. To assess 233 the statistical robustness of the obtained classification we compared the obtained two-cluster 234 classification and a set of 1000 bootstrapped classifications utilizing the same set of LFY 235 centroids but with randomly chosen cluster identities. To verify if sizes of study areas 236 differed among sub-regions we compared distributions of site areas by Student t-test. 237

251

238 Analysis of return intervals for LFYs

239 The distribution of fire-return intervals, i.e. the average number of years between successive 240 fires for a single stand, can often be well represented by the Weibull probability distribution 241 (Grissino-Mayer 1999). We tested whether the distribution of LFY return intervals could be 242 approximated by a Weibull distribution using the Hollander-Proschan test, utilizing only 243 complete (uncensored), observations (Dodson 1994). In the context of our analyses, 244 uncensored intervals were those between two LFY recorded within a geographical region. 245 Cumulative functions were compared using the Cox-Mantel test, a powerful test for 246 comparison of survivorship functions drawn from populations that follow Weibull or 247 exponential distributions (Lee et al. 1975). Differences in spreading of return intervals, 248 represented by the scale parameter, were tested by a permutation test. It consisted of random 249 resampling without replacement of the original distributions and recording the number of 250 cases when empirical difference in scale parameters exceeded the value obtained during 251 resampling.

252

253 Connection of LFYs to independently reconstructed climate

We used Europe-wide gridded $(0.5^{\circ} \times 0.5^{\circ})$ seasonal temperature (Luterbacher *et al.* 2002) 254 255 and precipitation (Pauling et al. 2006) reconstructions to relate sub-regional LFY records to 256 reconstructed summer precipitation. Since the precipitation reconstructions extended back to 257 only 1500, we did not consider LFY chronologies prior to that year. For the southern region, 258 the LFY chronology covered the period 1523-1759 and contained 16 LFYs. For the northern 259 region, the chronology covered the period 1514-1858 and contained 11 LFYs. For each 260 region-specific LFY and grid point we obtained average summer (JJA) climate anomaly, 261 calculated as difference between the focal (LFY) and long-term values. Prior to the analysis, 262 we transferred climate data for each grid point by calculating difference between each value 263 and ten previous years. This was done to reduce the effect of low frequency variability in

- 264 reconstructed climate variables on results of the comparisons. The statistical significance of
- 265 precipitation and temperature anomalies during LFYs in each region was tested assuming
- 266 normal distribution of data values using 0.1 significance level in Climate Explorer
- 267 (http://climexp.knmi.nl/, van Oldenborgh and Burgers, 2005).
- 268
- 269 Results
- 270 Temporal and spatial patterns in fire activity
- 271 The site fire history chronologies contained 392 individual fire years over the 500-year period
- 1400-1900. Site replication stayed above 20 sites from 1400 to 1880, and dropped down to 10
- for the last 20 years of the 19th century (Fig. 1B). Considering the whole dataset, general
- synchronicity of fire occurrence was considerable: we found 9 fire years (1391, 1446, 1568,
- 275 1575, 1652, 1677, 1807, 1858, and 1868) with occurrences at $\ge 25\%$ of the sites (Fig. 1C).
- 276 The year 1652 was clearly exceptional in the analyzed dataset, with 48% of the sites burned.
- 277 K-means clustering resulted in two clusters with significantly different positions (P < 0.01).
- 278 Bootstrapping with up to 7 *a priori* selected clusters showed that two-cluster classification
- 279 yielded the lowest Jaccard index value (mean and SD for 1000 runs: two clusters $0.449 \pm$

280 0.422, 3 clusters - 0.815 \pm 0.235, 4 clusters - 0.721 \pm 0.232, 5 to 7 clusters - > 0.681 \pm 0.226).

This indicated that the chosen two-cluster classification was optimal in minimizing loss ofinformation.

Visual examination of LFY centroid positions revealed that geographically they were separated by the latitude of 60° N (Fig. 2A). To verify that the average coordinates of active sites during LFY did not have an impact on the classification results, we also plotted the results as differences between LFY centroid coordinates and average latitude and longitudes for respective year (Appendix G). The original classification yielded the highest ratio

between-cluster/total sum of squares (55.00), as compared to 1000 bootstrapped runs with geographical locations assigned randomly chosen LFY centroid identities (maximum values in all runs – 34.0), indicating that it was superior over any bootstrapped classification. Sites below 100 ha dominated the whole dataset and both regions (Appendix E). T-tests for interdependent samples showed no difference between the two regions with respect to the size distribution of the sites (P = 0.957).

A moderate proportion of fires were dated with seasonal resolution in each sub-region: 10% and 19% in north and south sub-regions, respectively. Dormant-season fires and fires timed at the start of the earlywood development dominated in the southern region, whereas this group of fires was the smallest one in the northern region (Appendix H).

298

299 Return intervals for LFY within northern and southern sub-regions

300 At the sub-regional level, the classification protocol used thresholds of six sites for both the 301 northern and southern sub-regions. We used the Hollander-Proschan test to confirm that the 302 resulting distributions of LFY return intervals could be approximated by Weibull

303 distributions (Table 1), negative exponential distributions being inadequate for both sub-

304 regions. The fire return intervals were longer in the northern than in the southern region (Fig.

305 2B). Cox-Mantel test statistics was 2.35 and significant at P = 0.019. Over the 1400-1900

306 period, LFY return intervals in the northern region showed large variability (Fig. 3). Long-

307 term pattern of LFY intervals suggested a decline in interval lengths in the second half of the

308 1600s and their subsequent increase over the 1700s, observed mostly in the northern sub-

309 region. A trend towards shorter intervals could also be noted in the 1800s.

310 Generally, the temporal dynamics of LFY return intervals was more pronounced in the

311 northern than in the southern sub-region. Indeed, permutation test with the scale parameter of

312 Weibull distributions for northern and southern sub-regions showed that the empirical

difference between scale parameters (39.75) was equal or smaller than a resampled value
only 8 times in 1000 permutations (with average difference 7.62), giving 0.008 probability of
this difference being a random event.

316

317 Comparing LFY records with climate reconstruction

318 The LFYs, identified separately for both regions, were compared with summer (JJA) 319 temperature and precipitation reconstructions to evaluate association of LFY with climate 320 anomalies (Fig. 4). LFY in the northern sub-region were associated with positive 321 temperature anomalies covering Northern and a larger part of Central Europe, areas below 322 50° N showing cooler than normal conditions. With regard to precipitation, these years 323 exhibited negative anomalies located approximately above 60° N, and wetter conditions 324 below 60° N, including a larger part of the continental Western Europe and British Isles. 325 LFY in the southern sub-region were not associated with any temperature anomalies which 326 were significant at 0.1. However, a tendency for warmer summers in Southern Scandinavia 327 and Western Europe was visible in the data (Fig. 4). Analysis of precipitation suggested that 328 these years were wetter in Southern Scandinavia (~ below 65 ° N), along the Atlantic coast of 329 Europe and in the British Isles.

330

331 Discussion

332 Geographical pattern of historical fire activity

Years with increased forest fire activity are crucial drivers of ecological processes in
temperate regions, making profound impacts on the atmospheric properties, landscapes, and
population dynamics of species. Long-term ecological effects of fire disturbances occurring
during such years has previously been acknowledged (Meyn *et al.* 2007), although in many

337 parts of the temperate and boreal regions we lack detailed information on the frequency and 338 spatial patterns of these events. In this paper we provide the first large-scale analysis of 339 historical fire occurrence in Northern European boreal forest, suggesting the presence of 340 well-defined temporal and spatial patterns during years with increased fire activity. Spatial 341 analysis of LFY centroids suggested that over the studied area the geographical division 342 between two regions with characteristic fire activity could be found around 60° N. Although a N-S division of the defined clusters was not surprising, given the large N-S extent of the 343 study area and differences in general length of the fire season along this axis (Raab & Vedin 344 345 1995), the position of the actual division line is of interest. It revealed the same geographical 346 pattern as shown in studies of modern fire records, historical drought indices, and distribution pattern of fire-adapted species. Specifically, an analysis of 20th century county-scale forest 347 fire activity in Sweden suggested two zones with largely independent fire activity located 348 349 approximately above and below 60° N (Drobyshev et al. 2012). Moreover, a reconstruction of 350 the Drought Index (DI), a ratio of actual to equilibrium evapotranspiration (AET/EET) over 351 the growing season, indicated that the separation of zones with different DI dynamics occurs 352 around 57-60° N (Drobyshev et al. 2011). The biological meaningfulness of this geographical limit is also implied by the fact that the division line roughly coincides with Limes 353 354 Norrlandicus, a major biogeographical division between the northern and southern boreal 355 forests, dividing the Central Plain and the Fennoscandian shield in Sweden (Dahl 1998). 356 Interestingly, a number of fire-associated species have their northern distribution limits close 357 to the above-mentioned latitudes. For example, a fire-adapted herb species Geranium bohemicum, whose germination is triggered by heat, extends its northern distribution limit to 358 approximately 63° N (Granström 1993). 359 360 We envision two non-exclusive explanations of the observed geographical pattern. First,

361 different atmospheric circulation systems could be responsible for establishment of two zones

362 with mostly independent fire activity. In the North, years with strong anti-cyclonic activity 363 are associated with increased temperature and decreased precipitation (Antonsson et al. 364 2008). Anticyclonic activity apparently decouples the weather pattern of this sub-region from 365 the rest of Scandinavia and likely enhances the role of local convection processes, delivering lightning ignitions. Second, differences in fire seasonality might play a role in shaping the 366 367 observed pattern. The limited number of LFY-fires dated with seasonal resolution demonstrated a small but significant difference in fire seasonality between the two sub-368 369 regions (Appendix H). Further, analysis of modern fire activity (Drobyshev *et al* 2012) 370 suggest that the majority of the burned area in southern Sweden is recorded earlier than in the 371 north, perhaps related to earlier snow-free conditions at a time of year when precipitation 372 typically is at its lowest (Raab and Vedin 1995).

373

374 Dynamics of LFY return intervals

375 The probability of LFY was significantly higher for the southern region where a period of 40 376 years would carry 0.93 probability of LFY occurrence, compared to only 0.48 probability of LFY occurrence in the northern region. Shorter return intervals in the southern region might 377 reflect (a) higher synchronization in the frequency of effective lightning ignitions, and (b) a 378 379 generally longer fire season in the south, increasing the frequency of regional fire-prone 380 episodes. The geographical differences in lightning strikes (Fig. 1B) and lightning ignition 381 densities could contribute to the short return interval of LFY in the southern sub-region. A 382 study of modern lightning ignition data across Sweden has showed a 5-fold gradient of 383 lightning-caused fires with its highest frequency observed in the southern-eastern part of the country (Granström 1993). 384

In both regions a prominent feature of the temporal dynamics of LFY return intervals was a
sharp increase in interval length during the 1700s. The timing of this period coincided with

the coldest period of the Little Ice Age in Scandinavia (Fig. 10 in Gouirand *et al.* 2008).

Although the temperature reconstructions suggest that the 1700s in Scandinavia were not much different (difference within 0.5 °C) from the conditions at the turn of 20th century, the summer precipitation appeared to stay generally above the long-term average (Appendix I,

391 Luterbacher *et al.* 2004), suggesting lower water deficits in forest fuels.

392 Cold weather might not necessarily translate into longer LFY return intervals in the past. The 393 generally cold period known as Maunder solar minimum (second half of 1600s) coincided 394 with shorter LFY intervals, the effect being mostly visible in the northern sub-region. Decline 395 in solar activity translated into colder weather recorded across the temperate zone of the 396 Northern Hemisphere (Luterbacher et al. 2001, Xoplaki et al. 2005) and was also associated with more negative values of spring NAO, implying reduced precipitation amounts reaching 397 398 Scandinavia, particularly during the spring period. This, in turn, would suggest higher levels 399 of water deficit developing in forest fuels over the summer and a higher frequency of years 400 with increased fire hazard. Association between colder weather and lower air humidity has 401 earlier been suggested for the area of Quebec, where lower temperatures reconstructed for the 402 period of the Little Ice Age coincided with increased fire frequency and shortening of the 403 regional fire cycles (Bergeron & Archambault 1993; Girardin et al. 2012). We speculate that 404 a similar mechanism might have been in action also in Scandinavia, the colder conditions 405 being primarily related to a reduced transport of moist air from the Atlantic during spring 406 months. Indeed, in the seasonal precipitation reconstructions of Pauling et al. (2006), several 407 periods with clearly reduced summer precipitation are visible for both regions during the 408 Maunder minimum (Appendix I). We should note here that the mentioned climate 409 reconstructions represent "mean" climate whereas LFY dynamics generally reflect more 410 extreme conditions at shorter, often sub-seasonal temporal scales, which may not be well 411 captured by such reconstructions. Although this limits the meaningfulness of comparing

412 climate- and fire reconstructions, they may nevertheless point to important links between413 these processes at different temporal domains.

414 Considering a temporal perspective, longer fire return intervals in the North would translate 415 into longer periods of fuel accumulation, higher quantities and continuity of fuels, and, 416 possibly, stronger fire synchronicity within that region. However, our analyses showed the 417 opposite pattern (higher synchronicity in the South as compared to the North), indicating that 418 this feedback was of little importance at large regional scales in Scandinavia.

419

420 Sensitivity of Northern European boreal forest to climatic variability

421 Association between LFYs and anomalies in summer temperature and precipitation (Fig. 4) suggested an important role of climate in controlling regional forest fire activity in 422 423 Scandinavia. Both temperature and precipitation patterns during LFYs in the northern sub-424 region pointed to continental-scale changes in atmospheric circulation during such years. We speculate that southward shifts of westerly storm tracks, leading to warmer and drier 425 426 conditions in northern Scandinavia (Bengtsson et al. 2006; Linderholm et al. 2007), was the 427 primary driver of LFYs in that sub-region. As for the southern sub-region, association of LFYs with increased summer precipitation is counter-intuitive but could possibly arise if the 428 429 fires during LFYs are separated in time from the bulk of precipitation. This warrants further 430 analyses. In two out of four comparisons between LFY lists and climatic datasets (namely, 431 precipitation analyses for both regions, Fig. 4) geographical borders of significant climate 432 anomalies were located close to 60° N. This observation supported the results of the spatial 433 analyses of the fire record, suggesting a division of the study area into two sub-regions with 434 the border between them located at that latitude. Differences in fire seasonality might be 435 behind both the larger temporal variability in fire activity and its better link to climate in the 436 northern sub-region.

437 The larger variability in historical frequency of LFYs and a stronger association between 438 LFYs in the northern sub-region and continental-scale climate variability suggested that 439 northern and mid-boreal forests might be more sensitive to past changes in summer climate, 440 compared to vegetation in more southern parts of Scandinavia. In the context of future 441 projections, this would imply that fire regimes across Scandinavia may show an 442 asynchronous response to future climate changes. Particularly, the fire regime of the northern boreal forests is expected to follow changes in future temperature and precipitation regimes 443 444 more closely than other parts of the North European temperate region. A higher sensitivity of 445 northern forests coupled with projections from global climate models (GCM) indicating more 446 severe climate changes at high latitudes (Meehl et al. 2007) would point to much more 447 dynamic and uncertain future of this vegetation. Specifically, changes in summer aridity 448 affected by projected increases in temperature (Buentgen et al. 2011) and precipitation 449 (IPCC 2007) will define trends in LFY return intervals and regional fire cycles. 450 Eventual higher sensitivity of northern forests coincides with generally higher percentage of 451 forest cover in the North, lesser fragmentation of the forest cover and forest fuels, as 452 compared to forests in the south of Scandinavia. This may amplify the climatic forcing upon 453 fire regimes in the northern sub-region, representing a general trend of increasing ecosystem 454 sensitivity to climatic changes with increasing latitude (e.g. Serreze & Barry 2011). In 455 contrast to North America (Bergeron et al. 1997), even large changes in regional fire regimes 456 in Scandinavia, characterized by generally low diversity of tree strata and wide-spread 457 dominance of very few boreal trees, are unlikely to have an effect on the distribution of main 458 tree species.

459

460 Acknowledgements

461	The project was done within the frameworks of the Nordic-Canadian network on forest
462	growth research, supported by the Nordic Council of Ministers (grant # 12262 to I.D.), the
463	Swedish-Canadian network on dynamics of the boreal biome, supported by the Swedish
464	Foundation for International Cooperation in Research and High Education STINT (grant #
465	IB2013-5420 to I.D.), and was also supported by the Swedish Research Council FORMAS
466	(grant # 2007-1048-8700-51 to H.L.). We thank Swedish Meteorological and Hydrological
467	Institute for giving us access to lightning strike data. M. N. thanks FIREMAN project (Fire
468	Management to Maintain Biodiversity and Mitigate Economic Loss) for financial support.
469	We thank Narek Pahlevanyan, Gyumri State Pedagogic Institute, and Sandrine Picq, UQAT,
470	for programming help, Mélanie Desrochers (UQAM) for help with cartography, Geert Jan
471	van Oldenborgh (KNMI) for advice on the use of Climate Explorer, and anonymous
472	reviewers for constructive comments on earlier versions of the MS.
473	
474	Data Accessibility

475 Data used in this paper is available in the Supporting Information section and online at
476 www.dendrochronology.se/fdbase (from 2015-03-01).

477

478 References

- Agee, J. K. (1998) Fire and pine ecosystems. Pages 193-208 *in* Ecology and Biogeography of
 Pinus. Cambridge University Press, Cambridge.
- 481 Ahti, T., Hämet-Ahti, L. & Jalas, J. (1968) Vegetation zones and their sections in
- 482 northwestern Europe. Ann. Bot. Fenn., **5**, 169-211.

- 483 Antonsson, K., Chen, D. & Seppä, H. (2008) Anticyclonic atmospheric circulation as an
- 484 analogue for the warm and dry mid-Holocene summer climate in central Scandinavia.
- 485 *Climate of the Past*, **4**, 215-224.
- 486 Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the
- 487 pre-industrial European climate. *Climate Dynamics*, **27**, 743-760.
- 488 Barnekow, L., Bragee, P., Hammarlund, D. & Amour, N. St. (2008) Boreal forest dynamics
- 489 in north-eastern Sweden during the last 10,000 years based on pollen analysis. *Vegetation*
- 490 *History and Archaeobotany*, **17**, 687-700.
- 491 Bergeron, Y. (1998) Consequences of climate changes on fire frequency and forest
- 492 composition in the southwestern boreal forest of Quebec. Geographie Physique et
- 493 *Quaternaire*, **52**, 167-173.
- 494 Bergeron, Y. & Archambault, S. 1993. Decreasing frequency of forest fires in the southern
- 495 boreal zone of Quebec and its relation to global warming since the end of the "Little Ice
- 496 Age". *The Holocene*, **3**, 255-259.
- 497 Bergeron, Y., Leduc, A. & Li, T. X. (1997) Explaining the distribution of *Pinus* spp. in a
- 498 Canadian boreal insular landscape. *Journal of Vegetation Science*, **8**, 37-44.
- Bleken, E., Mysterud, I., & Mysterud, I. (1997) Forest fire and environmental management.
- 500 A technical report on forest fire as an ecological factor. Directorate for Fire and Electrical
- 501 Safety and Department of Biology, University of Oslo. 266 pp.
- 502 Bradshaw R. H., Lindbladh, M. & Hannon, G. E. (2010) The role of fire in southern
- 503 Scandinavian forests during the late Holocene. *International Journal of Wildland Fire*, **19**,
- 504 1040-1049.
- 505 Brown, P.M. (2006) Climate effects on fire regimes and tree recruitment in Black Hills
- 506 ponderosa pine forests. *Ecology*, **87**, 2500-2510.

- 507 Buentgen U, Raible CC, Frank D, et al (2011) Causes and Consequences of Past and
- 508 Projected Scandinavian Summer Temperatures, 500-2100 AD. Plos One, 6.
- 509 Dahl, E. (1998) The phytogeography of Northern Europe: British Isles, Fennoscandia and
- 510 adjacent areas. Cambridge University Press.
- 511 Dodson, B. (1994) Weibull analysis. ASQC, Milwaukee, Wisconsin.
- 512 Drobyshev, I., Niklasson, M. & Linderholm, H. (2012) Forest fire activity in Sweden:
- 513 Climatic controls and geographical patterns in the 20th century. Agricultural and Forest
- 514 *Meteorology*, **154-155**, 174-186.
- 515 Drobyshev, I., Niklasson, M., Linderholm, H.W., Seftigen, K., Hickler, T. & Eggertsson, O.
- 516 (2011) Reconstruction of a regional drought index in southern Sweden since AD 1750.
- 517 *Holocene*, **21**, 667-679.
- 518 Falk, D.A., Miller, C., McKenzie, D. & Black, A.E. (2007) Cross-scale analysis of fire
- 519 regimes. *Ecosystems*, **10**, 809-823.
- 520 Falk, D. A. et al. (2011) Multi-scale controls of historical forest-fire regimes: new insights
- 521 from fire-scar networks. *Frontiers in Ecology and the Environment*, **9**, 446-454.
- 522 Girardin, M.P., Tardif, J.C., Flannigan, M.D., & Bergeron, Y. (2006) Synoptic-scale
- 523 atmospheric circulation and Boreal Canada summer drought variability of the past three
- 524 centuries. *Journal of Climate*, **19**, 1922-1947.
- 525 Girardin, M.P., Ali, A.A., Carcaillet, C., Gauthier, S., Hely, C., Le Goff, H., Terrier, A., and
- 526 Bergeron, Y. 2013. Fire in managed forests of eastern Canada: Risks and options. For. Ecol.
- 527 *Manage.* **294**, 238-249.
- 528 Gouirand, I., Linderholm, H.W., Moberg, A. & Wohlfarth, B. (2008) On the spatiotemporal
- 529 characteristics of Fennoscandian tree-ring based summer temperature reconstructions.
- 530 *Theoretical and Applied Climatology*, **91**, 1-25.

- 531 Granström, A. (1993) Spatial and temporal variation in lightning ignitions in Sweden.
- 532 *Journal of Vegetation Science*, **4**, 737-744.
- 533 Granström, A., & Niklasson, M. (2008) Potentials and limitations for human control over
- 534 historic fire regimes in the boreal forest. Philosophical Transactions of the Royal Society B-
- 535 *Biological Sciences*, **363**, 2353-2358.
- 536 Greisman A. & Gaillard, M. J. (2009) The role of climate variability and fire in early and mid
- 537 Holocene forest dynamics of southern Sweden. *Journal of Quaternary Science*, **24**, 593-611.
- 538 Grissino-Mayer, H. D. (1999) Modeling fire interval data from the American Southwest with
- the Weibull distribution. *International Journal of Wildland Fire*, **9**, 37-50.
- 540 Groven R. & Niklasson, M. (2005) Anthropogenic impact on past and present fire regimes in
- a boreal forest landscape of southeastern Norway. *Can. J. For. Res.*, **35**, 2719-2726.
- 542 Hartigan, J. A. & Wong, M. A. (1979) A K-means clustering algorithm. *Applied Statistics*,
 543 28, 100-108.
- 544 Hellberg, E., Niklasson, M. & Granström, A. (2004) Influence of landscape structure on
- 545 patterns of forest fires in boreal forest landscapes in Sweden. *Can. J. For. Res.*, **34**, 332-338.
- 546 Hennig, C. 2007. Cluster-wise assessment of cluster stability. Computational Statistics and
- 547 *Data Analysis*, **52**, 258-271.
- 548 Högbom, A.G. (1934) Om skogseldar förr och nu och deras roll i skogarnas
- 549 utvecklingshistoria [On forest fires in the past and today and their role in forest succession].
- 550 Uppsala & Stockholm, Almqvist & Wiksell, 101 pp.
- Kelly, P.M. & Sear, C.B. (1984) Climatic impact of explosive volcanic eruptions. *Nature*,
 311, 740-743.
- 553 Kneeshaw D., Bergeron, Y. & Kuuluvainen, T. (2011) Dynamics across the circumboreal
- forest, pp. 261-278. In A. Millington, M. Blumler, and U. Schickhoff [eds.], The SAGE
- 555 Handbook of Biogeography. Sage Publications. 624 pp.

- 556 la-Marta, P.M., Luterbacher, J., Weissenfluh, H. von, Xoplaki, E., Brunet, M. & Wanner, H.
- 557 (2007) Summer heat waves over western Europe 1880-2003, their relationship to large-scale
- 558 forcings and predictability. *Climate Dynamics*, **29**, 251-275.
- Lee, E.T., Desu, M.M. & Gehan, E.A. (1975) A Monte-Carlo study of the power of some
 two-sample tests. *Biometrika*, 62, 425-432.
- 561 Lehtonen, H., & Huttunen, P. (1997) History of forest fires in eastern Finland from the
- 562 fifteenth century AD The possible effects of slash-and-burn cultivation. *Holocene*, 7, 223563 228.
- 564 Linderholm HW, Folland CK, Hurrell JW (2007) Reconstructing Summer North Atlantic
- 565 Oscillation (SNAO) variability over the last five centuries. In:Tree Rings in Archaeology,
- 566 Climatology and Ecology, Vol. 6: Proceedings of the DENDROSYMPOSIUM 2007, May
- 3rd 6th 2007, Riga, Latvia (eds Elferts D, Brumelis G, Gärtner H, Helle G, Schleser G), pp.
 6-13. Potsdam.
- 569 Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. (2004) European
- 570 seasonal and annual temperature variability, trends, and extremes since 1500. *Science*, **303**,
- 571 1499-1503.
- 572 Luterbacher, J., R. Rickli, Xoplaki, E., Tinguely, C., Beck, C., Pfister, C. & Wanner, C.
- 573 (2001) The Late Maunder Minimum (1675-1715) A key period for studying decadal scale
- 574 climatic change in Europe. *Climatic Change*, **49**, 441-462.
- 575 Meehl, G. A. et al. (2007) Global climate projections. in S. Solomon, D. Qin, M. Manning,
- 576 and *et al.* editors. Climate change 2007: the physical science basis. Contribution of Working
- 577 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- 578 Cambridge University Press, Cambridge, UK.

- 579 Meyn, A., White, P.S., Buhk, P.S. & Jentsch, A. (2007) Environmental drivers of large,
- infrequent wildfires: the emerging conceptual model. *Progress in Physical Geography*, **31**,
 287-312.
- 582 Miller P.A., Giesecke, T., Hickler, T., Bradshaw, R.H.W., Smith, B., Seppa, H., Valdes, P.J.
- 583 & Sykes, M.T. (2008) Exploring climatic and biotic controls on Holocene vegetation change
- in Fennoscandia. *Journal of Ecology*, **96**, 247-259.
- 585 Niklasson, M., & Granström, A. (2000) Numbers and sizes of fires: Long-term spatially
- 586 explicit fire history in a Swedish boreal landscape. *Ecology*, **81**, 1484-1499.
- 587 Nilsson, N.E. (1996) Forests. Swedish National Atlas. SNA Förlag, Stockholm.
- 588 Ohlson, M., & Tryterud, E. (1999) Long-term spruce forest continuity a challenge for a
- 589 sustainable Scandinavian forestry. For. Ecol. Manage., 124, 27-34.
- 590 van Oldenborgh G.J., Burgers G (2005) Searching for decadal variations in ENSO
- 591 precipitation teleconnections. Geophysical Research Letters, 32.
- 592 Pauling, A., Luterbacher, J., Casty, C. & Wanner, H. (2006) Five hundred years of gridded
- 593 high-resolution precipitation reconstructions over Europe and the connection to large-scale
- 594 circulation. *Climate Dynamics*, **26**, 387-405.
- 595 Raab B., & Vedin, H. (1995) Klimat, sjöar och vattendrag. Sveriges National Atlas. SNA
 596 Förlag, Stockholm.
- 597 Schimmel J. & Granström, A. (1997) Fuel succession and fire behavior in the Swedish boreal
- 598 forest. Can. J. For. Res., 27, 1207-1216.
- 599 Segerström, U., Hornberg, G. & Bradshaw, R. (1996) The 9000-year history of vegetation
- 600 development and disturbance patterns of a swamp-forest in Dalarna, northern Sweden.
- 601 *Holocene*, **6**, 37-48.
- 602 Serreze, M.C., & Barry, R.G. (2011) Processes and impacts of Arctic amplification: A
- 603 research synthesis. *Global and Planetary Change*, **77**, 85-96.

- 604 Skogsstyrelsen (2010) Skogsstatistisk årsbok [Annual Forestry Statistics Book].
- 605 Skogsstyrelsen, Jönköping.
- 606 SMHI 2004. Database on lightning strike occurrences BLIXDATA. Swedish Meteorological
- 607 and Hydrological Institute, Norrköping.
- 608 Sokal, R.R. & Rolf, F.J. (1995) Biometry: the principles and practice of statistics in
- 609 biological research. W. H. Freeman, New York.
- 610 Stocks, B.J. & Lynham, T.J. (1996) Fire weather climatology in Canada and Russia. Pages
- 611 481-494 in J. G. Goldammer, and V. V. Furyaev editors. Fire in ecosystems of boreal
- 612 Eurasia. Kluwer Academic Publishers, Dordrecht.
- 613 Stokes, M.A., & Smiley, T.L. (1968) An introduction to tree-ring dating. University of
- 614 Chicago Press, Chicago, Illinois, USA.
- 615 Swetnam, T.W. (1993) Fire history and climate-change in Giant Sequoia groves. *Science*,
 616 262, 885-889.
- 617 Tryterud, E. (2003) Forest fire history in Norway: from fire-disturbed pine forests to fire-free
- 618 spruce forests. *Ecography*, **26**, 161-170.
- 619 Turner, J.A. (1972) The drought code component of the Canadian Forest Fire Behaviour
- 620 System. Canadian Forest Service Publication 1316. Ottawa, Ontario, Canada, Environment621 Canada.
- 622 Van Wagner, C. E. 1987. Development and structure of the Canadian Forest Fire Weather
- 623 Index. Can. For. Serv., For. Tech. Rep. 35, 37 pp.
- 624 Veblen, T.T., Kitzberger, T., Villalba, R. & Donnegan, J. (1999). Fire history in northern
- 625 Patagonia: The roles of humans and climatic variation. *Ecological Monographs*, **69**, 47-67.
- 626 Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N., Grosjean, M. & Wanner, H.
- 627 (2005) European spring and autumn temperature variability and change of extremes over the
- 628 last half millennium. *Geophysical Research Letters*, **32**, 1-4.

- 629 Øyen, B.H. (1998) Skogbrann i Norge de siste 200 år [Forest fires in Norway in the last 200
- 630 years]. Fana, Norsk institutt for skogforskning.

632 Table 1.

633 Distribution parameters for return intervals of large fire years (LFY) in two regions for the

634 common period 1420-1759 (see statistics for the whole study period in Appendix F). n - 1

635 number of intervals, HP - Hollander-Proschan goodness-of-fit test for conformity of

636 empirical distribution to a Weibull distribution. Only complete intervals were used in

- 637 analyses.
- 638

Geographical sub-region	ns n	Mean ± SD	Range	Weibull shape, scale	Covariance, shape/scale	HP test (statistics, <i>P</i>)
Northern	7	54.4 ± 46.0	7 - 124	1.15 / 57.2	2.25	- 1.36 * 10 ⁻² / 0.989
Southern	15	15.1 ± 12.0	1 - 50	1.31 / 16.5	0.269	-1.07 * 10 ⁻² / 0.915

639

640

642 Figure captions

643 Fig. 1. Geographical location of the study sites (A); pattern of cloud-to-ground lightning strike density, May through September, for 1997-2000, 2002, and 2003 (SMHI 2004) (B); 644 long-term pattern of summer (June though August) average temperature (C) and total 645 646 precipitation (D) over 1900-2000; data replication represented as number of recording sites 647 covering the study period (E) and frequency of fires years (F). Frequency of fire years is 648 presented as a number of sites recording a particular fire year among all sites, which were 649 "active", i.e. recording, in that year. 650 The annual lightning strike density was calculated for the circle with 50 km radius for grid 651 cells with the dimensions of $10x10 \text{ km}^2$. Fig. 2. Geographical location of LFY centroids over 1450-1850 and its classification into two 652 653 geographical clusters (A), and cumulative distribution functions for Northern (filled circles) 654 and Southern (empty circles) sub-regions (B). Dotted lines refer to 95% confidence envelop for each curve. The common period analyzed was 1420 - 1759. 655 Fig. 3. Temporal dynamics of return intervals of LFYs for northern (filled circles) and 656 657 southern (empty circles) sub-regions. Points represent middles of respective intervals. The average percentages of sites burned during LFY were 28.1% and 31.2% in the northern and 658 659 southern sub-regions, respectively. Fig. 4. Relationship between LFYs and temperature (Luterbacher et al., 2004) and 660 precipitation reconstructions (Pauling et al. 2006) in two sub-regions over 1500 - 1860. Color 661 662 codes represent departures significant at 0.1 for all graphs except for the graph with LFYs 663 and temperature comparison for the southern sub-region, where no departures were

significant at 0.1 and results are shown without filtering.

665 Fig. 1.

667 Fig. 2.

673 Fig. 4.

