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Sulfur Cycling in Swedish Arable Soils. A Chemical Perspective 

Abstract 
Sulfur (S) is an essential plant nutrient. Decreased S deposition in combination with a 
switch to high-analysis N/P-fertilizers has increased the need for S fertilization. Thus, 
soil research directed at understanding soil sulfur properties and processes has 
intensified. However, the methodology at hand has been insufficient for determining 
relationships between soil properties, S cycling and S availability to crops.  

In this thesis, recently developed methods were used to study the effect on soil S by 
two management systems, livestock production and arable crop production, at five 
different locations within a Swedish long-term fertility field experimental series. In an 
open incubation study, and a pot trial, where isotopic labeling (35S) was used to trace S 
transformations, S cycling rates were higher in the livestock system, especially in one 
soil (Orup). The S delivering capacity of all soils was too low to avoid S deficiency in 
ryegrass without mineral S application. Observed differences in S cycling patterns 
could not be satisfactorily explained by soil properties; however, multivariate analyses 
indicated net S mineralization was negatively related to C/N-ratios and SO4

2- content. 
The extent of organic S stabilization through organomineral association and physical 
protection within microaggregates was investigated by an extraction/dispersion method. 
The relative distribution between the pools varied between soils, with the residual (non-
extractable) pool always being largest; however, only the physically protected fraction 
was negatively related to plant S uptake.  All soil organic S pools were involved in S 
transformations, although the residual pool was less active than the other pools. 
Chemical speciation of S in soils and soil fractions was determined by S K-edge X-Ray 
Absorption Near-Edge Structure (XANES) spectroscopy. A new method for fitting 
spectra provided reliable quantification of S species by using internally calibrated 
spectra of dilute (30mM) model compounds. The response of S speciation to 
management system differed between soils, but highly oxidized S dominated in the 
organomineral fractions, and intermediate forms of oxidized S in the residual fraction.  

In conclusion, soil organic S speciation can be accurately quantified by S K-edge 
XANES spectroscopy. The speciation differs between organomineral associated S and 
residual S. Treatment effects are dependent on soil type, but S cycling is stimulated by 
long-term farmyard manure application, as seen in the livestock system.  
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matter, organomineral stabilization, S K-edge XANES, quantitative sulfur speciation 
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1 Introduction 

Sulfur (S), an essential element for all living organisms, is required for the 
synthesis of several important biochemical substances, such as the amino acids 
methionine, cysteine and cystine, the vitamin biotin, and co-enzyme A. 
Nonetheless, for a long time sulfur was mainly associated with negative 
phenomena, such as acid rain, toxic substances and to some extent problems 
associated with farming on acid sulfate soils. The latter is a serious problem in 
some parts of South-East Asia and on the Australian continent (Dent, 1986). 
The importance of S as a plant nutrient was largely overlooked in soil science 
research, mainly because the incidental supply of S via deposition and S-
containing nitrogen (N) and phosphorus (P) fertilizers was usually sufficient to 
match crop demand. However, since concerns about acid rain were raised in 
the 1980s, sulfur emissions from fossil fuel burning has decreased remarkably 
in western Europe and North America (Figure 1), as smoke stacks 
 
 

Figure 1. The dramatic change in sulfur deposition in Western Europe and North America during
the past 140 years, exemplified by annual S deposition in central Sweden. Data from EMEP,
recalculated according to Schöpp et al. (2003). Figure kindly provided by Jens Fölster,
Department of Water and Environment, SLU, Uppsala, Sweden. 
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became equipped with flue gas desulfurization and steps were taken to change 
to less S-containing substances. During the same period and within agriculture 
in the Western world, the older types of N/P-fertilizers, which contained up to 
24% sulfur (in ammonium sulfate), were largely replaced by high analysis 
fertilizers containing at most a few percent of S.  

The reduced input of S combined with intensified farming and larger S 
removal in harvests depleted the S stocks in soils and in the 1990s, sulfur 
deficiencies began to be reported (Ceccotti, 1996). Sulfur deficiency can cause 
marked yield loss and reduce the quality of crops and forage (Haneklaus et al., 
1992; Wang et al., 2002; 2008; Zhao et al., 2006a). In addition, S deficiency 
decreases resistance to pathogens (Dubuis et al., 2005; Falk et al., 2007; 
Walters and Bingham, 2007) and reduces nitrogen utilization efficiency 
(Ahmad and Abdin, 2000; McGrath and Zhao, 1996; Schnug and Haneklaus, 
1993). As S is a relatively abundant and cheap element, fertilization with S has 
now become standard over large areas. However, knowledge of how to 
optimize the amount and timing of fertilization is still insufficient and there is 
evidence of negative impacts of non-optimized S fertilization. For example, 
sulfur fertilization can decrease selenium (Se) content in crops, which is 
problematic for animal and human nutrition in Se-poor soils (Shinmachi et al., 
2010; Stroud et al, 2010). Sulfur can also induce eutrophication in freshwater 
wetlands, as the precipitation of iron sulfide releases iron-bonded phosphates 
(Smolders and Roelofs, 1993; Lamers et al., 2002).  

In organic farming systems, regulations restrict the use of mineral fertilizers 
and stipulate animal feed should be organically grown, without any artificial 
additives. Consequently, in these systems it is more difficult to avoid S 
deficiency in crops and animals. As interest in organically produced food 
increased simultaneously with the emergence of S deficiency problems, there 
was a mounted focus on understanding the mechanisms of S supply from soil 
and organic S sources to plants. 
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2 Aim 

The overall aim of this thesis was to study the long-term influence of farming 
management systems on soil S cycling patterns in different soils and to explain 
observed patterns in S behavior, primarily through investigating the chemical 
properties and dynamics of the soil organic S pool. This work included five 
soils from a long-term soil fertility field experimental series, where each soil 
hosts two different management systems: livestock production and arable crop 
production.  The S cycling patterns were studied in a laboratory incubation 
experiment and an outdoor pot trial, where carrier-free 35SO4

2- was used to 
trace the S processes.  

The specific objectives were: 
 To assess the long-term effect of the management systems on net S 

mineralization and plant availability of S in different soils (Papers I and II). 
 To assess the effect of mineral S application on S cycling processes and 

crop growth (Paper II). 
 To determine relationships between observed S cycling patterns, basic soil 

properties and degree of physiochemical protection of soil organic S from 
microbial processes (Papers I and II). 

 To develop a reliable method for quantifying organic S species in soil 
samples by X-ray Absorption Near Edge Structure (XANES) spectroscopy 
(Papers III and IV). 

 To determine the relative distribution of S species in bulk soil and in 
organomineral fractions, as affected by long-term management system and 
soil type (Paper IV). 
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3 Background 

3.1 The Soil Sulfur Cycle 

Plants need sulfur in amounts comparable to those of phosphorus and are 
almost exclusively dependent on the uptake of inorganic sulfate (SO4

2-) from 
the soil substrate for their S supply. However, in general, more than 95% of S 
in soils is in organic form, which means plants are dependent on 
mineralization, the transformation of organic S to inorganic SO4

2-, to satisfy 
their sulfur requirement. There are two main pathways for mineralization, 
biochemical and biological (McGill and Cole, 1981), and both are mediated by 
microorganisms. Thus, S supply to plants is dependent on the activity and 
composition of the microbial communities in the soil (Kertesz and Mirleau, 
2004), which are affected by soil temperature, moisture regime, plant-root 
interactions (Maynard et al., 1985; Castellano and Dick, 1991), cropping 
system (Eriksen et al., 1995a; Vong et al., 2003; 2004) and, organic matter 
quantity, quality1 and availability (Mirleau et al., 2005).  

3.1.1 Biochemical Mineralization 

Biochemical mineralization is the hydrolysis of sulfate esters (R-O-SO3) 
catalyzed by sulfatase enzymes (Fitzgerald and Strickland, 1987). These 
enzymes are normally external to the microorganisms, although intracellular 
sulfatases are important in e.g. Pseudomonas species (Kertesz and Mirleau, 
2004). Sulfatase activity appears to be negatively correlated with inorganic 
SO4

2- levels (Maynard et al., 1985; Prietzel, 2001; Saviozzi et al., 2006) and as 
biochemical mineralization of sulfate esters requires an active energy 

                                                        
 

1. Organic matter quality is an ambiguous term, which is often used without specific definition. 
Here it relates to the composition and degradability of organic substances and the relative 
abundance of important nutrients, i.e. the nutritional value for microbes. 
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investment from microorganisms, this process is considered as being controlled 
by the microbial need for S (Eriksen, 2009). Due to the higher liability for 
hydrolysis, sulfate esters are generally considered a transitory group of organic 
S (McGill and Cole, 1981; McLaren et al., 1985); however, there are 
indications that sulfate esters are less labile than previously considered as they 
appear to accumulate during decomposition (Schroth et al., 2007; Solomon et 
al., 2005; 2009). 

3.1.2 Biological Mineralization 

In contrast to biochemical mineralization, which directly provides the 
microorganisms with S, biological mineralization is considered a byproduct of 
microorganisms decomposing organic matter in search of carbon (C) for 
satisfying their energy demand (McGill and Cole, 1981). Some of the S 
ingested in this process will be used by the microorganisms for cell synthesis 
and only excess S is excreted as sulfate (Freney and Stevenson, 1966). As a 
consequence, S mineralized in this way should be dependent on the C/S ratio 
of the substrate material and have a close correlation with carbon and nitrogen 
(N) mineralization (Kowalenko and Lowe, 1975; Gharmakher et al., 2009; 
Tabatabai and Al-Khafaji, 1980).  

3.1.3 Immobilization 

Concurrent with mineralization of S is an opposite process, immobilization, 
whereby inorganic SO4

2- is incorporated into organic compounds by 
microorganisms. This process is stimulated by readily available C compounds 
(Maynard et al., 1985; Ghani et al., 1992; 1993a; Eriksen, 1997a; 1997b; 
Knights et al., 2001; Vong et al., 2003) and nitrogen (Vong et al., 2003) and is 
dependent on both the C/N and the C/S ratios of the organic matter. The 
immobilization rate also correlates with sulfatase activity (Vong et al., 2003) 
and sulfate esters may constitute the first step of both immobilization (Ghani et 
al., 1993a; Saggar et al., 1981) and mineralization (Norman et al, 2002).  

3.1.4 Organomineral Stabilization 

Organic matter can be adsorbed onto clay surfaces via bridging of polyvalent 
metal ions. The resulting organomineral complexes play an important role in 
soil aggregation (Tisdall and Oades, 1982), but this stabilizing effect means 
organic matter is protected from microbial breakdown, especially if it is 
contained inside microaggregates, where it is assumed physically inaccessible 
for microorganisms (Ladd et al., 1993). Thus, a considerable amount of the 
organic S pool is probably passive (Eriksen et al., 1998). The chemical 
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properties and dissolution rates of the protected S pool, and its effect on S 
cycling processes, are still largely unknown. 

3.1.5 Net S Mineralization 

The availability of S to crops is dependent on several simultaneous processes 
(Figure 2) that are reliant on different factors: this means the assessment of the 
net result, i.e. net S mineralization (or immobilization), is complicated. There 
have been many attempts to determine correlations between various soil 
properties and net S mineralization in order to provide an easy way of 
estimating the rate of S supply to crops from organic sources and to make 
reliable fertilizer recommendations. However, to date, the only general rule this 
work has generated, is that substrate C/S ratios above 400 result in net S 
immobilization and ratios below 200 result in net S mineralization (Barrow, 
1960; Reddy et al., 2002; Tabatabai and Chae, 1991).  

 

Inorganic
S

Organic S

Physically 
protected S

Microbial 
S

Organomineral
complexes 

Residual S
Adsorbed 

sulfate

Solution 
sulfate

Plant S

Atmospheric S

D
eposition

Harvest

Fertilizer S

L
eaching

3.1.3

3.1.2

3.1.4
4.3.2

3.1.1

3.1.6

3.1.6

3.1.4
4.3.24.3.2

 
Figure 2. Conceptual model of the soil sulfur cycle in Swedish arable soils. The numbers refer to 
the sections in the text where the processes and fractions are described. Dashed arrows depict 
processes of uncertain magnitude. 
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3.1.6 Fertilizers 

In order to provide reliable fertilizer recommendations, it is insufficient to 
estimate the rate of sulfate release from the organic pools in the soil. The fate 
of fertilizer S has to be known as well; and this is dependent on the type of 
fertilizer applied, S cycling and leaching properties of the particular soil, and 
the properties of the crop being grown.  

Mineral fertilizers generally contain S in the form of inorganic sulfate or 
elemental S0. Inorganic sulfate is directly available for plant uptake, but is 
prone to rapid leaching in most arable soils. Sulfate can be adsorbed onto 
mineral surfaces and temporarily stored in the soil. However, the adsorption is 
pH-dependent and in soils with a pH>6, sulfate adsorption capacity is 
negligible (Curtin and Syers, 1990). Elemental S0 has to be transformed into 
sulfate by microorganisms before it can be utilized by the plants; thus, 
elemental S0 is recommended on e.g. sandy soils prone to leaching. However, 
oxidization of S0 causes a decrease in pH and can have a negative impact on 
the microbial composition and activity (Gupta et al., 1988). Regardless of the 
chemical speciation of the mineral S that is applied, there appears to be very 
limited build-up of S stocks from mineral fertilizers even long-term (Eriksen 
and Mortensen, 1999; Knights et al., 2001).  

The soil organic S pool can be replenished with long-term supply of 
farmyard manure (FYM) or other organic fertilizers (Eriksen and Mortensen, 
1999; Knights et al., 2001; Reddy et al., 2001; Singh et al., 2007). However, 
the rate of sulfate release from organic fertilizers is dependent on the same 
processes as S mineralization from organic S pools in the soil, and is just as 
difficult to estimate. FYM appears to stimulate net S mineralization in the 
long-term (Knights et al., 2001; Reddy et al., 2001), but it is unclear why and 
to what extent this stimulation occurs. There is no indication organic S from 
FYM is more readily mineralized short-term than bulk soil organic S (Eriksen, 
2009), which emphasizes the importance of long-term experiments for 
evaluating different management systems.  

3.2 Methodological Background 

Predicting the S supply to crops requires an understanding of the mechanisms 
and processes of the soil S cycle. This entails identification of soil properties 
that affect S transformations and accurate quantification of the identified 
properties and of the processes they control.  
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3.2.1 Methods for Quantifying Soil S Mineralization 

Incubation experiments are commonly used to estimate the rate of net S 
mineralization in soils. However, the correlation of the results with plant 
uptake of S appears arbitrary (Maynard et al.,1985; Nzigueba et al., 2005; 
2006; Pamidi et al., 2001), which renders the experiments unreliable predictors 
of plant S availability. Even so, if correctly planned, it is a relatively quick and 
convenient method for determining the potential net S mineralization and 
testing the influence of different factors on S cycling rates on a laboratory 
scale. 

Pot and field experiments yield reliable information about the amounts of 
available S and net S mineralization in a field situation (Eriksen et al., 1995a; 
Vong et al., 2007). However, these methods are slow and costly and still 
provide only limited information about the mechanisms behind the 
observations, unless combined with isotopic labeling. The radioactive isotope 
35S is advantageous for tracing S originating from the soil inorganic sulfate 
pool or fertilizer S (Eriksen, 1997a; 1997b; Nzigueba, 2006; Vong et al., 2004), 
but recycling of S between different pools within the soil obscures the overall 
patterns (Eriksen, 2005). Work that is more specific is therefore needed to 
reveal the actual pathways.  

Another limiting factor for understanding how soil properties affect S 
cycling patterns is that treatment effects, especially long-term effects, on soil S 
transformation rates are rarely studied on different soil types simultaneously. 
This undermines the possibility of making general conclusions and limits the 
value of the information gained in the experiments.  

3.2.2 Methods for Determining Soil S Properties 

Much focus in agricultural soil S research is put on studying the relationship 
between chemical properties of soil organic S and S transformations in soils. 
However, when the interest in soil S research began to flourish, it became 
evident the existing methods for determining soil S properties provided 
insufficient information for explaining the mechanisms and processes behind 
observed S cycling patterns. The search for improved methods is still an 
ongoing process. 

HI/Raney-Ni Reduction Method 

For many years, knowledge of the chemical properties of soil organic S was 
based on a complicated fractionation procedure in which hydroiodic acid (HI) 
reduces organic S (Tabatabai, 1982). HI only reduces sulfur not directly bound 
to carbon, resulting in a fractionation between HI-reducible S and C-bonded S 
(Table 1). This is generally interpreted as a division between sulfate esters and 
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 Table 1. Soil organic S fractions by the HI-reduction method (Tabatabai, 1982). Examples of 
functional groups within each fraction according to Freney (1986) 

HI-reducible C-bonded (not reduced by HI) 

 Raney-Ni reducible Not reduced by Raney-Ni 

Sulfate esters, R-O-SO3 

Sulfamic acids, R-NH-SO3H 

S-sulfocysteine, Cys-SO3H 

Disulfides (e.g. cystine), R-S-S-R´  

Thiols (e.g. cysteine), R-SH 

Thioethers (e.g. methionine), R-S-R´ 

Sulfoxides, R-SO-R´ 

Sulfinic acids, R-SOOH 

Aromatic sulfonic acids, Aryl-SO3H 

Sulfones, R-SO2-R´ 

Aliphatic sulfonic acids,  

Aliph-SO3H 

C-bonded S, as sulfate esters dominate the HI-reducible group. The C-bonded 
S can be further divided into Raney-Ni reducible S and S that is not 
reduced by this method. The Raney-Ni reducible S group contains reduced 
organic S and some forms of oxidized organic S. The fraction not reduced by 
Raney-Ni is considered to comprise unreactive oxidized C-bonded S (Zhao et 
al., 1996).  

The amount of sulfate ester S in a soil is potentially important for the 
mineralization rates, as sulfate esters are susceptible to mineralization external 
to microbes and thus, possibly more labile than C-bonded S. Even so, the 
information gained by HI/Raney-Ni fractionation is limited and the explanatory 
value of the different fractions in terms of S cycling rates and plant-availability 
of S is low (Ghani et al., 1993b; Eriksen et al., 1995a; Eriksen et al., 1998; 
Knights et al., 2001; Mansfeldt and Blume, 2002). The problem being that the 
method is indirect and destructive and the resulting groups are operationally 
defined; each group contains several functional S-groups with varying 
chemical properties and stability.  

X-ray Spectroscopy 

In the late 1990s and the beginning of the 2000s, soil S researchers began to 
explore the possibility of S K-edge X-ray Absorption Near Edge Structure 
(XANES) spectroscopy for determining S speciation in soils (Prietzel et al., 
2003; Solomon et al., 2003; Vairavamurthy et al., 1997; Xia et al., 1998). 
XANES is a non-destructive, direct method that provides the opportunity for 
determining all oxidation states of the sulfur present in soil and for identifying 
different chemical species (functional groups) of S. The principle behind 
XANES is that synchrotron generated X-ray radiation is absorbed by the S 
atoms: electrons are transmitted to unoccupied or partially occupied higher 
energy states (1s→3p) or are ejected into the continuum as photoelectrons. 
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This absorption edge occurs at slightly different energy levels depending on the 
electronic configuration (or oxidation state2) of the absorbing atom and on the 
geometry of neighboring atoms. Thus, the peaks in an S K-edge XANES 
spectrum provide specific information regarding which sulfur containing 
functional groups are present in the sample (Vairavamurthy et al., 1997). The 
species are commonly identified through deconvolution of the spectrum into a 
number of Gaussian peaks (theoretically corresponding to the 1s→3p 
transmissions) and arctangent step functions (theoretically corresponding to the 
ejection of photoelectrons), and then assigning each Gaussian peak to a group 
of S species (Solomon et al., 2009; Xia et al., 1998). There are several 
problematic assumptions involved in this procedure. One of the more obvious 
problems is that all S peaks are assumed to have a Gaussian shape, which is not 
true (cf. Figure 3). This can be avoided by applying another commonly used 
method: curve-fitting of actual spectra from model S compounds (Beauchemin 
et al., 2002; Vairavamurthy et al., 1997) by least-squares linear combination 
fitting (LCF).  

S K-edge XANES spectroscopy has become popular in soil S research and 
has successfully been used to determine S speciation in extracts of humic and 
fulvic acids (Morra et al., 1997; Xia et al. 1998), and in particle size separates 
(Solomon et al. 2001), where S concentration is higher than in the original bulk 
soil samples. As the technique developed, enhancement of the S concentration 
became unnecessary and it is now possible to measure untreated bulk soil 
samples (Prietzel et al., 2007), which greatly improves the reliability of the 
results. The method is now generally accepted for qualitative determination of 
soil S species and has been used to demonstrate changes in S chemistry both 
during changes in land use (Solomon et al., 2003; 2005; Zhao et al. 2006b) and 
during organic matter decomposition (Schroth et al., 2007). The non-
destructive, direct nature of the method, in combination with a more detailed 
determination and functionally based grouping of S species, provides the 
potential for explaining observed S cycling patterns.   

However, problems still exist, with the most obvious being the need for a 
synchrotron facility to perform the analyses: this limits applicability in 
everyday research. In addition, it is difficult to distinguish between S species 
with similar oxidation states, e.g. inorganic sulfate/sulfate esters, or 
thiols/sulfides (Prietzel et al., 2003; 2007; Waldo et al., 1991). Another issue, 
which will be addressed in this thesis, is that in order to use XANES data in 

                                                        
 

2. The formal oxidation states of sulfur can range between –II and +VI, but are ambiguously 
assigned. Thus, it is more accurate to speak of electronic configuration or oxidation indices 
(Vairavamurthy, 1998). 
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statistical tests and correlation analyses, the relative abundance of different S 
species has to be determined; however, reliable quantification of S species is 
more difficult than qualitative analysis for several reasons, including: 
1. Self-absorption of the signal within the sample can be a problem in high-

concentration samples. Self-absorption alters the shape of the peaks making 
them broader with reduced amplitude (Figure 3). This can cause 
overestimation of the contribution from certain species, when high-
concentration model spectra are used to fit low-concentration sample 
spectra. 

2. The peaks change depending on factors such as pH (Pickering et al., 1998), 
complex formation with metal ions (Jalilehvand, 2006) and, whether the 
compound occurs in solution or in solid state (Pickering et al., 1998). Thus, 
the model compounds need to be in the same chemical and physical state as 
the corresponding compounds in the sample, which can be difficult to 
achieve. 

3. In a sample with more than one S-containing compound, a reduced S 
compound of the same concentration as an oxidized S compound will have 
a smaller peak area. This is the result of a stepwise increase in absorption 
intensity as an electron is ejected into the continuum when the irradiation 
energy increases above the binding energy of the core electron (i.e. post-
edge). The magnitude of the change in peak area is often assumed 
proportional to the number of ejected electrons (i.e. the number of 3p 
vacancies) (Waldo et al., 1991). However, the assumption that the step size 
is independent of the structural composition surrounding the S atom 
introduces uncertainty into the fit (≤ 15% according to Waldo et al., 1991), 
which can cause notable errors in the estimation of relative abundance.  

 

 
Figure 3. Absorption spectra for a) DMSO ((CH3)2SO, liquid and in aqueous solutions) b) sodium 
sulfate (Na2SO4·10H2O, solid and in aqueous solutions) and c) organic sulfate (Chondroitin 
sulfate ester, C14H19NO14SNa2, sodium salt and in aqueous solution). 
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Methods for Determining Physical and Chemical Protection of Organic S 

Organomineral stabilization is important, and can explain the refractory 
behavior of a large part of the organic S pool (Eriksen et al., 1995b; 1995c; 
Eriksen, 1997a). This notion led to the development and use of several 
techniques for studying organic matter based on its susceptibility to microbial 
processes. These techniques include particle size separation (Hinds and Lowe, 
1980; Anderson et al., 1981; Eriksen, 1996) and molecular weight (MW) 
fractionations (Keer et al., 1990; Eriksen et al., 1995c). Another technique is to 
use acetylacetone to break the organomineral bonds and disperse the 
microaggregates by ultrasound treatment; thereby releasing physically 
protected S (Keer et al., 1990; Eriksen et al., 1995b; 1995c; Eriksen, 1997a). 
The methods have provided evidence that a majority of the organic S in soils is 
passive due to physical protection within the microaggregates (Eriksen et al., 
1995b; 1995c; Eriksen, 1997a) or association with clay mineral surfaces (Hinds 
and Lowe, 1980; Anderson et al., 1981; Eriksen, 1996) and/or high MW 
compounds (Keer et al., 1990; Eriksen et al., 1995c). Moreover, sulfate esters, 
as determined by HI-reduction, appear to be overrepresented in fractions 
associated with clay and high MW compounds (Keer et al., 1990; Eriksen, 
1996); this could explain the low contribution of sulfate esters to S 
mineralization (Ghani et al., 1992; Zhou et al., 2005), despite them presumably 
being labile compounds. 

The combined determination of chemical properties (MW and HI-
reducibility) and physiochemical protection of soil organic S provides valuable 
information, but does not satisfactorily explain differences in S cycling rates 
between soils. One of the main issues is the low resolution of organic S 
speciation provided by the destructive, indirect, operationally based 
determination. Thus, the possibilities to reveal relationships between the 
processes and properties of soil organic S would improve, if the functional 
groups of chemical S species in organomineral associated fractions could be 
more accurately identified and quantified, e.g. by S K-edge XANES 
spectroscopy.
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4 Materials and Methods 

4.1 Long-term Field Treatments and Soils 

The Swedish long-term soil fertility field experimental series (Carlgren and 
Mattsson, 2001) provides a unique possibility for studying long-term 
management and fertilization responses among different soil types. The 
experimental series was initiated between 1957 and 1966 on ten locations in 
south and central Sweden. There are two main treatments, a livestock 
production system and an arable crop production system, with two field 
replicates at each site. The only differences between the two systems are that in 
the livestock production system, ley replaces oilseed rape in the crop rotation, 
FYM is applied to the field, and crop residues (CR) are removed. Thus, the 
organic matter input quality differs between the systems. Within each 
management system there are several sub-treatments with varying application 
levels of mineral N, P and K fertilizer. Sulfur is not included in the fertility 
study, and mineral S has been applied to all fields across all treatments since 
1998 to avoid S deficiency in the crops. As the aim of this project was to study 
the effect of the management systems on soil S cycling patterns, only the main 
treatments were relevant. However, when the field experiments were initiated, 
the older types of mineral NPK fertilizers were used, and these contained large 
amounts of mineral S (e.g. 13% in mono-superphosphate). In order to isolate 
the effect of management system on organic S quality, it was considered 
necessary to minimize the historic input of inorganic S. Thus, only the sub-
treatment with no PK and normal N fertilization (to avoid problems due to N 
deficiency in the microbial community) was sampled in each main treatment. 
The specific details of the management systems are presented in Table 2 and 
the systems are henceforth referred to by their organic matter source, i.e. FYM 
(livestock production) and CR (arable crop production).  
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Five locations with different soil types 
were selected from the ten sites that 
compose the field experimental series 
(Table 3, Figure 4). All five soils were 
included in the incubation experiment 
(Paper I), four were selected for the 
pot trial (Paper II) and three for the 
chemical speciation study (Paper IV). 
Before each experiment, soil samples 
(10 per plot) were taken from the 
plough layer (0-20 cm), and the sub-
samples from the two field replicates 
were combined into one composite 
sample for each treatment at each site. 
More detailed descriptions on 
sampling and storing procedures are 
given in Papers I and II.  
 

 

Table 3. Experimental sites and soil types 

a Soil Taxonomy (Carlgren and Mattson, 2001) 
b World Reference Base (Carlgren and Mattson, 2001) 
c Soil Taxonomy (Kirchmann et al., 2005) 
d World Reference Base (Kirchmann et al., 2005) 

Site Latitude Texture Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Classification Included  

in papers 

Fjärdingslöv 54o24’ N 

 
Sandy Loam 55.1 25.9 19.1 Oxyaquic Hapludolla 

Haplic Phaeozemb 

I, II 

Fors 60o20’ N 

 
Silt Loam 28.3 54.9 16.9 Udic Haploborolla 

Calcaric Phaeozemb 

I, II, IV 

Högåsa 58o30’ N 

 
Sandy Loam 75.4 17.3  7.4 Humic Dystrocryeptc 

Arenic Umbrisold 

I, II, IV 

Orup 55o49’ N 

 
Sandy Loam 60.2 29.0 10.8 Aquic Haploborolla 

Haplic Phaeozemb 

I, II, IV 

Vreta Kloster 58o29’ N 

 

Silty Clay 8.1 49.1 42.9 Oxyaquic Haplocryollc 

Haplic Phaeozemd 

I 

Figure 4. Location of experimental sites. The
management practices differ slightly between
South and South-Central sites due to climatic
adaptations (Table 2). 
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4.2 Experiments 

4.2.1 Incubation Experiment (Paper I) 

An open incubation technique was selected for determining net S 
mineralization potential and its relation to soil properties. In open incubation, 
the sulfate produced by mineralization is continuously leached and collected 
for analysis. The leaching is supposed to simulate plant removal of sulfate 
(Maynard et al., 1983; Tabatabai and Al-Khafaji, 1980; Valeur and Nilsson, 
1993) and provides the possibility to follow the net S mineralization over time. 

In preparation for the incubation study, the fresh soil samples were sieved 
(≤ 2 mm) and mixed with glass-beads (Ø 2 mm) at a 3:2 ratio, before being 
placed in drained Plexiglas tubes (3 replicates) (Figure 5). After two weeks of 
pre-incubation (18oC, soil moisture at -10 kPa), the initial sulfate content was 
removed by leaching with 0.016 M KH2PO4. Thereafter, artificial sulfate-free 
“rain water”3 was used to remove excess phosphate and regenerate a realistic 
salt concentration in the soil. The soils were incubated for 95 days in the same 
conditions as the pre-incubation and leached every two weeks with the 
artificial “rain water” to remove any SO4

2- that had formed. At the end of the 
experiment, the soils were leached with 0.016 M KH2PO4 to ensure all SO4

2- 
that had formed during the incubation period was removed. 

All leachates were filtered (Millipore 0.45 μm filter) and analyzed for 
sulfate content by anion chromatography. 

 

 
Figure 5. Experimental set-up of incubation experiment (left) and pot trial (right). 

 

                                                        
 

3. Ion concentrations in μmol per liter: K+: 5, Na+: 60, Ca2+: 15, Mg2+:10, NH4
+: 60, NO3

-: 30 
and Cl-: 145. 
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4.2.2 Pot Experiment (Paper II) 

The incubation experiment was followed-up by a pot trial to measure actual S 
delivery from soil to plants. To simulate as natural climatic conditions as 
possible, the pot experiment was conducted outdoors in a restricted area with 
full-height netted walls and a glass-roof (Figure 5); to avoid wet deposition of 
S and access by animals and unauthorized people. The inorganic sulfate pool in 
the soil was labeled with isotopic sulfur (35S) to enable better tracing of gross 
mechanisms. Additionally, the selection of ryegrass as the experimental crop, 
allowed for two harvests and, thus, further improved the possibilities of 
monitoring S mineralization (as measured by plant S uptake). 

Four soils were selected for the pot trial. Vreta Kloster, with its high clay 
content, was excluded to avoid technical problems, such as clogging and 
difficulty separating roots from soil. Fresh soil samples, equivalent to 7 kg dry 
soil each, were used in the pots and the pots were kept at field capacity. The 
original inorganic sulfate pool was labeled with isotopic sulfate (carrier-free 
H2

35SO4) for determining the sources of plant S and flow between S pools 
within the soil. After two weeks of soil pre-incubation, Italian ryegrass (Lolium 
multiflorum cv. SW Fredrik) was sown and fertilized with a basal dressing of 
N, K, P, Mo, Mg, Mn and Cu to ensure no deficiencies apart from S deficiency 
would occur. Two experimental treatments were applied: no S fertilization (-S) 
and “optimized” mineral S fertilization (+S) (15 mg S per kg dry soil); with six 
replicates for each soil within both FYM and CR. In total there were 96 pots: 4 
soils x 2 experimental treatments x 2 management systems x 6 replicates.  

The grass was harvested twice during the experiment. At the first harvest 
(41 days after sowing), only shoots (≥ 6 cm above soil surface) were removed. 
At the end of the experiment (73 days after sowing), shoots, stubble (0-6 cm 
above the soil surface), and roots (from three of the six replicates) were 
harvested. Soil samples for post-trial analyses were collected from the three 
replicates where roots were not harvested. Thus, there were six replicates for 
above-ground plant variables and three replicates for soil, root and total 
variables.  

4.2.3 XANES Experiments (Papers III and IV) 

The S speciation in bulk soil from three sites (Fors, Högåsa and Orup) and 
extracts of organomineral associated S from two sites (Fors and Högåsa) was 
determined by S K-edge XANES. The selection of soils was made to maximize 
the differences in total S and distribution of S between organic fractions.  

In order to obtain reliable quantification of S species in the samples, the 
problems associated with self-absorption and compound-dependent post-edge 
intensities needed to be minimized (see section 3.2.2). Therefore, a new 
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method was developed for data treatment of spectra from natural samples with 
a low S concentration. The fitting of sample spectra was by model spectra 
rather than Gaussian curves, the model compounds were diluted to avoid self-
absorption, and the peak areas were internally calibrated by combining model 
compounds of the same concentration to ensure that post-edge intensities were 
accurate.  

4.3 Analytical Methods 

4.3.1 Basic Soil Properties 

Basic soil properties were determined at the beginning of each experiment with 
standard methods described in Papers I and II. The averages between the two 
sampling occasions are presented in Table 4. In the pot experiment, total S was 
determined again after the experiment (data not shown), to allow for mass 
balance calculations. 

Table 4. Basic soil properties, averages between the two sampling occasions (Papers I and II) 

Soil Field  

treatment 

pHa SO4
2- b  

 

(mg kg-1 
dry soil) 

Total Sc 

 

(mg kg-1 
dry soil) 

Total Cd 

 

(g kg-1 
dry soil) 

Total Nd 

 

(g kg-1 
dry soil) 

Anaerobic N  

mineralizatione 

(mg day-1 kg-1 
dry soil) 

Fjärdingslöv FYM 6.91 1.4 244 15.7 1.80 1.4 

CR 6.93 1.7 209 12.7 1.55 1.1 

Fors FYM 7.66 2.0 490 22.9 2.11 1.0 

CR 7.79 1.6 468 20.2 1.74 0.4 

Högåsa FYM 6.12 2.2 250 20.6 1.81 2.3 

CR 6.43 2.3 239 19.6 1.73 2.0 

Orup FYM 5.44 2.0 280 22.6 2.11 1.2 

CR 5.86 1.8 281 19.9 2.07 1.1 

Vreta Klosterf FYM 6.88 2.2 351 20.4 2.40 1.4 

CR 6.87 1.7 320 18.2 2.27 0.7 
ain H2O 
bH2O-extraction, ion chromatography 
cHNO3/HClO4 digestion, ICP-AES 
ddry combustion in CHN analyzer 
eindication of microbiological activity (Drinkwater et al. 1996), only measured in Paper I 
fsoil only included in Paper I 
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4.3.2 Physically Protected S 

The degree of organomineral stabilization and physical protection of S within 
microaggregates was determined on fresh soil by ultrasonication and extraction 
in acetylacetone, according to a method originally proposed by Keer et al. 
(1990), and later modified by Eriksen et al. (1995a; 1995b). The 
determinations were done before the incubation experiment and both before 
and after the pot experiment. Soil samples were extracted sequentially in three 
steps (Figure 6) and each step was repeated once before proceeding to the next 
step. This resulted in three fractions of decreasing degree of availability to
microbes and one residual, inextractable fraction (OrgS-Res). The steps of 
extraction and resulting fractions were: 
1. 0.016 M KH2PO4 – Inorganic and easily dissolved organic S (Sol-S) 
2. 0.2 M acetylacetone – Physically unprotected organic S in organomineral 

complexes (organic S extracted from non-dispersed soil, OrgS-ND) 
3. Ultrasonication (1800 J ml-1) in 0.2 M acetylacetone – Physically protected 

organic S in organomineral complexes (organic S extracted from dispersed 
soil, OrgS-D)  

All extracts were analyzed for total-S by ICP-AES, but the acetylacetone 
extracts were digested by HNO3 prior to analysis, as acetylacetone extinguishes 
the flame of the ICP-apparatus. The S speciation in extracts from the Högåsa 
and Fors soils was determined by S K-edge XANES spectroscopy, as 
previously described. 

4.3.3 Plant Analyses 

All plant samples were dried, weighed, and ground. Total S was determined in 
all plant parts by ICP-AES after digestion with concentrated HNO3. Total N 
was analyzed in shoots (dry combustion in a CHN analyzer) to ensure N 
deficiency had not occurred. 

4.3.4 Radio-Isotope Analyses 

The post-trial samples from the pot experiment analyzed for total S (i.e. plant 
parts, bulk soil and extracts from the physically protected S fractionation) were 
also analyzed for 35S activity by liquid scintillation counting. 
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KH2PO4

Total S
Bulk soil

Acetyl-
acetone

Ultrasonic
dispersion

OrgS-Res

Inorganic and 
easily dissolved organic S

OrgS-D

Sol-S

Physically unprotected
organic S in organomineral
complexes

Physically protected
organic S in organomineral
complexes

OrgS-ND

S K-edge XANES

Highly oxidized S 

Intermediate S 

Reduced S 

S K
-ed

ge X
A

N
E

S

e.g. aminoacids

e.g. sulfoxides

e.g. sulfate esters

Acetyl-
acetone Highly oxidized S 

Intermediate S 

Reduced S 

Residual organic S  
Figure 6. Overview of the fractionation of soil S according to organomineral association and 
physical protection and the determination of organic S speciation in bulk soil and organomineral 
fractions. 

4.3.5 S K-edge XANES Spectroscopy 

The S K-edge XANES Spectroscopy was performed at beamline I811 at the 
MAX-laboratory, Lund University, Sweden. All spectra were recorded in 
fluorescence mode, using a Lytle detector, and with a helium atmosphere at a 
slight over-pressure to minimize noise related to the absorption and scattering 
by air. The energy was calibrated by recording the S K-edge spectrum of solid 
sodium thiosulfate pentahydrate (Na2S2O35H2O) (Aldrich) immediately before 
or after every sample, and assigning the maximum of the first peak in the 
spectrum to 2472.02 eV (Williams et al., 1997). The raw XANES spectra were 
background-subtracted by a linear function extrapolated from the pre-edge 
region, and, if necessary, the same procedure was performed after the edge 
region to achieve a slope of zero in the post-edge region (E>2500 eV). 
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Model Compounds 

Reference solutions (30 mM) for a number of model compounds (Table 5) 
were prepared by combining each model compound with dimethyl sulfoxide 
(DMSO), sodium sulfate or thiosalicylic acid. Using dilute solutions 
minimized the problems with self-absorption and 30 mM was found to be an 
optimal concentration for this purpose (Figure 3, section 3.2.2). The 
combination of two compounds at equal concentrations and well separated 
absorption peaks enabled internal calibration of post-edge intensities and 
relative maximum intensities. Internally calibrated model spectra were 
obtained by normalizing the peak intensity of DMSO at 2476.4 eV to 1.00 and 
linear regression fitting the individual spectra for the two combined 
compounds to the reference solution spectrum (Figure 7). DMSO was used as 
the primary internal calibration reference compound because it is chemically 
stable, soluble in both polar and non-polar solvents, and its absorption edge is 
clearly separated from typical reduced and oxidized S forms. Sodium sulfate 
and thiosalicylic acid, with edge peaks 2482.4 and 2473.4 eV respectively, 
were calibrated against DMSO and then used as internal calibration reference 
compounds when the absorption edge of a model compound coincided close to 
DMSO. In this manner, the maximum K-edge intensities of all model 
compounds were related to the normalized DMSO peak (Table 5, Figure 7). 

 
Figure 7. Normalized S K-edge XANES spectrum of an aqueous solution of DMSO (30mM) and 
sodium sulfate (30mM), with separation of the substances according to best fit with linear 
regression. Residuals from the linear regression are indicated by the dashed line. 
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Sample Data Treatment 

A sub-set of bulk soil samples and acetylacetone extracts from the physically 
protected S fractionation for the incubation experiment (Paper I) were freeze-
dried and used for determination of S speciation by S K-edge XANES 
spectroscopy (Figure 6, section 4.3.3). The spectra were baseline corrected and 
normalized by setting the intensity at 2490 eV to 1.0. Thereafter, a least 
squares LCF regression method used the internally calibrated spectra of model 
compounds (Table 5) to fit the sample spectra. Model S species that 
contributed less than 2%, according to the preliminary fit, were excluded in the 
final fits. The quantification of contributing S species was through three groups 
of model compounds: reduced S (peak energy <2475), intermediate forms of 
oxidized S (peak energy 2475-2479), and highly oxidized S (peak energy 
>2479) (Table 5). The division corresponded to the three main absorption 
peaks in the sample spectra (Figure 8). The fit in the post-edge region was used 
as an internal quality control to ensure the model compounds included in the fit 
were representative of those in the sample. 
 

 
Figure 8. Sulfur K-edge XANES spectrum for Högåsa FYM bulk soil (black line) with best LCF 
fit (dashed black line) of model spectra (lines as described in Table 5). The divisions of model 
spectra into groups depending on their electronic configuration are depicted by dashed vertical 
lines. 
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4.3.6 Statistical Analyses 

The differences between treatments and soils were investigated at a 95% 
confidence level with one-way and two-way analyses of variance (ANOVA), 
followed by paired t-tests between treatments within soils, and between soils 
within treatments. One-way ANOVA was used throughout Paper I (due to an 
imbalanced data set caused by a failed incubation tube) and for S treatment 
effects in Paper II. Two-way ANOVA was used for management system and 
soil effects in Paper II. Single linear regression and partial least squares 
regression (PLS) analyses were used to determine relationships between 
different soil properties and net S mineralization in Paper I. MINITAB release 
15.1 was used for all statistical analyses, except PLS, where SIMCA-P version 
11.0 was used. The fitting of the XANES spectra in Papers III and IV was done 
in Microsoft Excel with the LINEST function.  
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5 Results and Discussion 

5.1 Soil Sulfur Cycling 

Sulfur mineralization was higher than S immobilization in all cases, when no 
mineral S was added to the soils, resulting in net S mineralization in all tubes 
during the incubation (Paper I) and all pots within the –S treatment during the 
pot trial (Paper II) (Table 6). Furthermore, averaged over all sites, net S 
mineralization rate was higher in the FYM treatment than in the CR treatment, 
both in the incubation experiment (p=0.012) and in the –S treatment in the pot 
trial (p<0.001). With the addition of mineral sulfate (+S treatment in the pot 
trial, Paper II), transformation rates based on S uptake varied arbitrarily (Table 
6); net S immobilization occurred in five out of eight cases and net S 
mineralization in the remaining three cases. There was no significant difference 
in the rate of S uptake between the management systems in the +S treatment, 
suggesting that when mineral S was applied, the uptake rate depended on 
factors other than S supply.  

For individual sites, the difference between FYM and CR was only 
significant (p<0.05) in the –S treatment of the pot trial, and not at all in the 
Högåsa soil. There were some differences between the soils (Table 6), 
especially within FYM; in particular Orup FYM had a higher net 
mineralization rate than the other soils, especially in the pot trial. The 
conditions in the –S treatment of the pot trial clearly stimulated S 
mineralization in Orup FYM compared with the incubation experiment, 
whereas in the other soils, mineralization rates in the two experiments were 
similar regardless of management system. However, there was no correlation 
between the net S mineralization estimates in the two experiments; therefore, 
open incubation could not be validated as a prediction method for plant S 
availability in these soils. 
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Table 6. Net sulfur mineralization rates (µg S per kg dry soil per day ± SE, n=3). Negative values 
indicate net S immobilization. Different lower-case letters within the same column denote 
significant differences between soils within that treatment (paired t-tests, p<0.05) 

 Incubation† Pot trial†† 

   -S +S 

Soil FYM CR FYM CR FYM CR 

Fjärdingslöv 48ac±1 50±10††† 33ab±1 24ab±1 -37a±20 36a±10 

Fors 46a±1 40a±1 39a±5 24a±3 -32a±5 -30b±10 

Högåsa 38b±1 37a±2 49b±5 48b±5 32b±8 -14b±16 

Orup 59c±2 46a±3 107c±6 60ab±11 57ab±32 -4ab±5 

Vreta Kloster 47abc±3 41a±0 Not 
included 

Not 
included 

Not 
included 

Not 
included 

Average 48±2 41±1 57±9 39±5 5±15 -3±9 
†Calculated from accumulated SO4--S collected in leachates, Paper I  
††Calculated from total plant S uptake plus net change (post-trial minus pre-trial) in soil sulfate pool in -S 
treatment, Paper II 
†††n=2 due to clogging of one tube, soil not included in statistical analyses or total average calculations 

The isotopic labeling of the original inorganic sulfate pool in the pot trial 
provided the possibility of tracing S from this pool as it moved through the 
soil-plant system (Figure 9) and calculate net S flow within the system (Table 
7). The transformation rates estimated from isotopic S-flow (Table 7) were 
generally higher than the net calculations (Table 6), because they were closer 
to the gross processes. Both immobilization and mineralization occurred in all 
soils and S cycling rates were always considerably higher in pots containing 
soil from Orup FYM than in the other pots. 

Table 7. Net flow of soil S in the –S treatment in the pot experiment (µg S per kg dry soil per day) 

 Inorganic to  

plant Sa 

Organic to plant Sb  

(mineralization) 

Inorganic to organic Sc  

(immobilization) 

Soil FYM CR FYM CR FYM CR 

Fjärdingslöv 2 5 42 43 2 4 

Fors 3 1 56 41 3 2 

Högåsa 5 10 61 62 5 7 

Orup 41 17 92 66 25 9 
aTotal 35S activity in plant divided by specific activity of original sulfate in fresh soil 
bTotal plant S minus S from inorganic pool (a) 
cTotal 35S activity in organic soil fractions divided by specific activity of original sulfate 



39 

- S

FYM CR

+S

 
Figure 9. Relative distribution of initial inorganic sulfate within soil fractions (textured cells) and 
plant parts (solid cells) in the different soils after the pot trial (Paper II), calculated as total 35S 
activity in a fraction divided by initial sulfate activity (isotopic decay accounted for). The line 
indicates 50% of initial labeled inorganic sulfate. 

During the experiment, all fractions of soil organic S were involved in the S 
transformations, as indicated by the incorporation of isotopic 35S into all pools 
(Figure 9), although net changes in pool sizes were generally small and 
insignificant (Figure 10). Furthermore, there was no correlation between net S 
mineralization and any organic S fraction (OrgS-ND, OrgS-D and OrgS-Res) 
(Paper I), suggesting small differences in transformation rates between the 
pools. However, the physically unprotected part of organic S in organomineral 
association (OrgS-ND) correlated positively with total S in biomass (p=0.009, 
R2=70%, df=7) (Paper II) and had the highest average ratio of 35S 
incorporation relative to total S in the organic fractions (Figure 11), suggesting 
a higher turnover rate in this pool. Conversely, the residual organic S pool had 
a disproportionately low incorporation of 35S (Figure 11). Thus, there was 
some evidence for physical protection reducing S mineralization and the 
residual organic S pool having a slower turnover rate than the bulk of soil 
organic S (Ladd et al., 1993; Eriksen et al., 1998), albeit not to the extent 
previously considered. As the residual pool was only characterized by its 
hydrophobic nature (not extractable in acetylacetone), the pool was probably 
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Figure 11. Percentage of total 35S in soil recovered in each soil fraction after the pot trial plotted 
against percentage of total soil S recovered in the same fraction. Squares indicate –S treatment 
and triangles +S treatment. The line indicates a 1:1 ratio. The average incorporation ratios over 
both treatments were 3.2 for Sol-S, 1.8 for OrgS-ND, 1.5 for OrgS-D, and 0.7 for OrgS-Res. 

heterogeneous with varying degrees of activity. The active part most likely 
consisted of microbial S and fresh organic matter, such as recently dead 
microbes, plant roots, and fresh plant litter. 

The inorganic and easily dissolved organic S pool (Sol-S) was the only soil 
S pool with a net change during the pot trial, according to paired t-tests over all 
sites and both management systems within S treatment (p<0.05) (Figure 10). 
Evidently, this pool was being depleted in both S treatments, meaning that the 
rate of plant uptake of inorganic sulfate was higher than the mineralization rate. 
The PLS analyses (Paper I) revealed a negative relationship4 between Sol-S 
and net S mineralization (Figure 12), suggesting S mineralization was 
stimulated when Sol-S availability was low. This implies biochemical 
mineralization, directly aimed at providing S to the microbes. In addition, PLS 
indicated net S mineralization was positively related to total N content and 
negatively related to C/N ratio and total C (Figure 12), suggesting 
mineralization through the biological pathway or, at least, co-mineralization 

                                                        
 

4. In a PLS loading scatter plot, correlations between variables are indicated by the angle 
between lines drawn from the variables to the origin: 0° - positive relationship, 180° - negative 
relationship and 90° no relationship. 
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with N. Thus, both mineralization pathways were active in the soils, although 
biological mineralization was probably dominant, as C/S ratios were within the 
57-85 range normally found in microbial biomass5 (Scherer, 2001).  

The single regression analyses (Paper I) revealed no significant correlations 
between any basic soil property (Table 4, section 4.3.1.) and net S 
mineralization. However, total C, C/N ratios and microbial activity (as 
indicated by anaerobic N mineralization) were higher in FYM than in CR in all 
soils, although the differences were not significant. This may partly explain the 
higher S cycling rates in FYM, even though the data did not provide statistical 
support for it. 

                                                        
 

5. As a substantial part of the C ingested by microbes is respired, the consumption ratios can be 
expected to be considerably higher than the incorporation ratios, resulting in mineralization of the 
surplus S. 
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Figure 12. Loadings scatter plot for the Partial Least Squares regression. Variance in the
X-variables (soil variables) was used to explain the variance in the Y-variable (S-AccMin,
accumulated net S mineralization). Orup FYM data was excluded from the analysis, as
this soil was identified as an outlier (Paper I). Variables as described in the text, with the
addition of the following: N-PotMin = anaerobic N mineralization (microbial activity),
SO4-Ads = initial adsorbed sulfate and S-Res = OrgS-Res. Sol-S%, Org-SND%, Org-
SD% and S-Res% all refer to the percentage of total S recovered in the respective fraction. 
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5.2 Sulfur Supply and Plant Growth 

Sulfur mineralization was vital for plant S supply in all treatments and soils 
(paper II). The isotope analyses revealed at least 70% of S uptake by ryegrass 
originated from the organic S pool, even when “optimal” amounts of mineral S 
were applied (+S treatment). Moreover, 35S was recovered in shoots from the 
2nd harvest in the –S treatment (Figure 9, section 5.1), indicating re-
mineralization of recently immobilized S contributed to plant S uptake in all 
soils from both FYM and CR. However, the mineralization rates were too slow 
to avoid S deficiency in the ryegrass when no mineral S was applied. The S 
content at 2nd harvest was below the limit for S deficiency6 in all shoots from 
the –S treatment and there were visual signs of S deficiency (yellowish, stunted 
shoots) in the ryegrass grown in all –S pots except those containing soil from 
Orup FYM (Figure 13). In the +S treatment there were no indications of S or 
other nutrient deficiencies, and the ryegrass appeared healthy (Figure 13). The 
S deficiency led to reduced biomass production (p<0.001) in the –S treatment, 
compared with the +S treatment (Figure 14). Analogous with the higher S 
cycling rates, FYM pots within the –S treatment had higher biomass 
production (p=0.022) and higher total plant S uptake (p=0.003, Figure 14) than 
CR pots. Within the +S treatment, only biomass production differed between 
FYM and CR (p=0.011), and in this treatment, biomass production was highest 
in the CR pots. Site differences in biomass production and total S uptake were 
significant (p<0.001) within both S treatments, as determined by ANOVA. The 
paired t-tests revealed some significant differences (p<0.05), especially in the 
–S treatment (Figure 14). The differences in S supply between the management 
systems and soils appeared to be accentuated by S deficiency, whereas, with 
sufficient S, other factors became more important for S mineralization. 

 
Figure 13. Ryegrass at 2nd harvest. 

                                                        
 

6. According to critical relationship calculations between total S and N as suggested by Mathot 
et al., 2009; data not shown. 
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FYM CR

Total S

Biomass

 
Figure 14. Ryegrass biomass production (g dry weight per kg dry soil) below ground (below x-
axis) in roots, above ground (above x-axis) in shoots and stubble, and total S uptake (mg S per kg 
dry soil) in biomass. Error bars represent standard error for total above-ground biomass (shoots 
and stubble), root biomass and total S uptake. Different letters within the same treatment 
combination (FYM/CR and –S/+S) denote significant differences between the sites within that 
treatment combination. 

5.3 Sulfur Speciation 

The S K-edge XANES data treatment method developed for quantification of S 
species in soils and other natural samples (Paper III), provided reliable results 
for all bulk soil samples and extracts (Paper IV). The fits were generally good 
throughout the entire edge and post-edge regions, as exemplified by the 
Högåsa FYM bulk soil spectrum in Figure 8 (section 4.3.5). As previously 
suggested by others (Prietzel et al., 2003; 2007; Waldo et al., 1991), the 
separation between reduced S species was difficult. However, in combination 
with separate measurements of the inorganic sulfate content, the new method 
produced reliable separation between organic sulfate (sulfate ester) and other 
highly oxidized S species, due to a clear pre-peak/shoulder in the sulfate ester 
spectrum (Figure 3c, section 3.2.2). Furthermore, the internal calibration of 
model compounds revealed the relative absorption intensity was considerably 
lower for ester sulfate than for inorganic sulfate in relation to DMSO (Table 5, 
section 4.3.5). This has strong implications for the relative quantification of 
sulfate esters in soils and, thus, the interpretation of data, which emphasizes the 
importance of using internally calibrated model spectra to fit soil spectra. 
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Sulfate ester was the most common S species (40-64% of total S in bulk soil) 
in all samples (Figure 15), which resulted in highly oxidized S being the largest 
group (44-70% of total S in bulk soil), especially in the acetylacetone extracts 
(60-85% of total S in extract). As a group, reduced S species contributed the 
least (13-21%) to total S in all bulk soil samples, except for Orup FYM, where 
intermediate forms of oxidized S were least common (10%). The XANES 
analyses of the acetylacetone extracts and calculated extractability ratios (the 
percentage of a species group in bulk soil extracted by acetylacetone divided 
by the percentage of total S extracted) indicated that stabilization of organic S 
by organomineral association predominantly affected highly oxidized S species 
(extractability ratio >1) (Figure 16, Table 8), which was in accordance with 
previous reports on over-representation by HI-reducible S in clay-associated 
pools (Keer et al., 1990; Eriksen, 1996). Intermediate forms of oxidized S had 
a low extractability ratio (<1) and were mainly associated with the residual 
fraction. In the Högåsa soil, the speciation of the physically protected and 
unprotected organomineral fractions was almost identical; whereas, in the Fors 
soil, the highly oxidized species were less dominant in the unprotected fraction. 
The effect of management system on soil S speciation also differed among the 
soils and soil type appeared important for treatment response of S speciation. 

Figure 15. Relative distribution between groups of S species in bulk soil according to the LCF
best fits of S K-edge XANES spectra. The horizontal line indicates 50% of total S in bulk soil. 
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Figure 16. Modeled (best linear combination fit) S K-edge XANES spectra for bulk soil and 
acetylacetone extracts of organic S fractions in organomineral association (OrgS-ND and OrgS-
D). The fluorescence intensity for each spectrum has been multiplied by the total S content in that 
fraction. The spectrum for the residual organic S fraction (OrgS-Res) was calculated as the 
difference between the bulk soil spectrum and the two acetylacetone spectra. 

 

Table 8. Distribution of different S forms (% of total S in extract) in the acetylacetone samples 
and ratios between the percentage of a species group in bulk soil extracted by acetylacetone and 
the percentage of total S extracted (extractability ratio) 

  FYM CR 

Soil Fraction 
Reduced 

S 
Inter-

mediate S 
Highly 

oxidized S 
Reduced 

S 
Inter-

mediate S 
Highly 

oxidized S 

Fors OrgS-ND 21 12 67 23 16 61 

 OrgS-D 10 14 76 7 8 85 

  Extractability 
Ratio 0.9 0.3 1.7 1.0 0.6 1.1 

Högåsa OrgS-ND 17 10 73 18 8 74 

 OrgS-D 19 8 73 18 10 72 

  Extractability 
Ratio 1.0 0.3 1.6 0.9 0.3 1.4 
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6 General Discussion and Conclusions 

In this thesis, the main sulfur source for arable crops was the organic S pool in 
the soil (Table 7), even when inorganic S fertilizer was applied. Thus, in order 
to optimize S supply to crops, it is necessary to understand the dynamics of S 
transformations within the soil and the influence of management system, 
organic matter quality, and soil type. This thesis demonstrates that a livestock 
management system including ley and regular farmyard manure application 
increased the rate of S delivery to crops in the long term, compared to an arable 
crop production system, where the only organic matter input is incorporation of 
crop residues. Mineral S fertilization stimulated S immobilization, but plant 
uptake of S originating from organic sources was still higher than without 
mineral S application, due to increased biomass production. However, the 
extent of treatment effects depended on soil type. One of the soils, Orup, 
responded more to the management systems than the other soils did. In the 
livestock system, the S cycling rates in the Orup soil were considerably higher 
than in the other soils, whereas in the arable crop system, there was no distinct 
difference between the soils. Consequently, Orup FYM responded less 
markedly to inorganic S fertilization and the effects of S deficiency were less 
severe.  

However, the reasons for the different behavior of the Orup soil were not 
clear. Differences in soil properties did not correlate with differences in S 
cycling rates, and the microbial activity, as indicated by anaerobic N 
mineralization, was at the lower end of the range in Orup FYM. As OrgS-ND 
was highest in Orup FYM and also correlated with total plant S uptake, 
physical protection of organic S could perhaps explain the lower mineralization 
rates in the other soils, but this would need to be confirmed through further 
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studies including more soils. It is possible the addition of P in the experiments7 
stimulated the microbial community (Cleveland et al., 2002) more in the Orup 
soil than in the other soils. At least, the P deficiency for crops due to long-term 
lack of mineral P fertilization in the field is most severe in Orup (Carlgren and 
Mattsson, 2001). 

This thesis presented the opportunity to utilize and further develop 
relatively new methods for determining soil S chemical properties and 
organomineral associations. Thus, the organic S speciation was successfully 
determined in bulk soils and acetylacetone extracts with a new method for data 
treatment of S K-edge XANES spectra. This revealed relevant information 
about differences in soil S chemistry in that the effect of management system 
on soil S speciation differed between the soils and the majority of S in 
organomineral complexes was highly oxidized. Moreover, the lower 
contribution from S species of intermediate oxidization in Orup FYM 
compared with the other soils might be part of the explanation for the high 
turnover rate in this soil. In accordance with previous results (Vairavamurthy et 
al., 1994) intermediate forms of oxidized S were not extracted by acetylacetone 
to the same extent as the other groups of S species, but it is unclear whether the 
association with the residual S pool automatically implies a slower turnover 
rate. The residual S pool was the least active in the S cycling processes, but 
was definitely not passive. Schroth et al. (2007) proposed that intermediate 
forms of oxidized S are a transient group of compounds in soils, and 
sulfonates8 are quantitatively important biochemical substances, including 
taurine, cysteic acid and sulfolipids (Vairavamurthy et al. 1994). Thus, a large 
part of the intermediate forms of oxidized S can be assumed to reside in 
microbes, plant roots and fresh organic matter, i.e. the active part of the 
residual S fraction. Therefore, the low contribution from S species of 
intermediate oxidization in Orup FYM was most likely an effect rather than a 
cause of the high S cycling rates. 

 

                                                        
 

7. P was added by leaching with KH2PO4 in the incubation experiment and was part of the 
initial fertilization added to all pots in the pot trial. 

8. Sulfonates were the dominant species in the group of intermediate forms of oxidized S.  
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7 Implications and Future Perspectives 

The focus of this thesis was on the influence of management systems on S 
cycling in Swedish arable soils, and the role of S chemistry, organomineral 
association, and physical protection. The development of a new method for 
data treatment of S K-edge XANES spectra rendered reliable quantification of 
S species in soils and soil extracts. This is a very important step towards an 
improved understanding of the chemical influence on soil S transformations, 
especially as it offers the possibility of determining S speciation in organic 
matter stabilized by organomineral associations and physical protection. These 
processes are thought to affect S mineralization rates, although there was little 
evidence of this in the data collected for this thesis. Differences in S cycling 
patterns were identified between soils and management systems, but it was not 
possible to elucidate the reasons for these differences based on the data 
collected. Therefore, soil chemistry, or at least S chemistry, was not the 
primary controlling factor for S mineralization. Future research should 
encompass more disciplines, especially microbiology, soil biology and plant 
physiology; and sulfur should be studied in relation to the cycling and 
speciation of other nutrients. For example, the importance of organomineral 
association and physical protection might be elucidated if there is sufficient 
information on the speciation of C and N in these pools, as the majority of S 
mineralization in this thesis appeared to be biological, i.e. a byproduct of C and 
N turnover. As P deficiency could be partially responsible for the observed 
differences in S mineralization rates between soils, this emphasizes the 
importance of simultaneous studies on macro- and micronutrients. 

The differences in treatment response between the soils highlight the 
importance of including many soil types within treatments in order to isolate 
treatment effects from soil effects. In this respect, the Swedish long-term 
fertility field experiments are an excellent asset and deserve to receive more 
attention. 
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The practical implications of the results presented in this thesis are mainly for 
future research, but a few words should be added for farmers. Optimal biomass 
production requires that sulfur demand in the crop is satisfied, which in most 
Swedish arable soils necessitates input of S through mineral and/or organic 
fertilization. In the experiments presented in this thesis, S mineralization was 
elevated in a livestock production system compared to an arable crop 
production system, probably because the application of farmyard manure 
stimulates the S cycling processes. Although it remains unclear what caused 
the stimulation, farmyard manure can be a means to limit the dependency on 
mineral fertilizers, for example in organic farming. 
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8 Sammanfattning (Swedish Summary) 

Svavel är ett viktigt näringsämne, men var under lång tid nästan förbisett ur 
växtnäringssynpunkt. Sedan 1980-talet har intresset för svavelomsättningen i 
åkermark ökat markant, som en följd av att svavelbrist började uppstå i 
jordbruksgrödor i västra Europa och Nordamerika. Svavelbristen var i sin tur 
en följd av att åtgärder efter debatten kring surt regn ledde till kraftigt 
reducerad svaveldeposition, samtidigt som nya kväve- och fosforgödselmedel 
introducerades. De gamla gödselmedlen innehöll ofta stora mängder 
sulfatsalter (≤ 24% S) från framställningsprocessen, men de nya medlen 
innehåller mycket lite svavel (≤ 2%). Dessutom har det ökade intresset för 
ekologisk odling medfört ett större behov av kunskap kring organiska 
gödselformer och möjligheten att utnyttja markens förråd av organiskt svavel. 
Växter är i princip uteslutande beroende av oorganiskt sulfat för att tillgodose 
sitt svavelbehov, men i normala fall är mer än 95% av svavlet i marken i 
organisk form. Mycket forskning har därför bedrivits med syfte att på ett enkelt 
sätt kunna förutsäga mängden svavel som tillgängliggörs för grödan från 
markens organiska material under en odlingssäsong. De metoder som har 
använts har dock varit otillräckliga i sin precision och tillförlitlighet.  

I denna avhandling har relativt nya metoder använts för att kartlägga 
svavlets omsättning och kemiska egenskaper i jord från odlingssystemen 
djurhållning och växtproduktion på fem olika platser i en serie svenska 
långliggande bördighetsförsök. Den viktigaste skillnaden mellan systemen är 
det tillförda organiska materialet, som består av kreatursgödsel respektive 
skörderester.  En inkubationsstudie och ett kärlförsök, där det oorganiska 
sulfatet märktes med 35S, visade att kreatursgödseln medfört en ökning av 
svavelomsättningen jämfört med skörderesterna. Detta var speciellt tydligt i en 
av jordarna, Orup. Mineraliseringen av svavel var inte tillräcklig i någon av 
jordarna för att tillgodose behovet av svavel hos rajgräs, när ingen 
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svavelgödning tillfördes. Effekterna av den uppkomna svavelbristen var något 
mindre i kreatursledet, speciellt i fallet Orup.  

Organiskt S kan stabiliseras i marken genom bindning till lermineral och 
dessutom skyddas fysiskt från mikrobiella angrepp genom inneslutning i 
mikroaggregat. Omfattningen av dessa stabiliseringsprocesser studerades 
genom extraktion med acetylaceton och dispergering genom ultraljuds-
behandling. Mängden svavel i de olika fraktionerna varierade mellan jordarna, 
men endast det fysiska skyddet visade en signifikant negativ inverkan på 
svaveltillgängligheten för rajgräs. Inga andra korrelationer fanns mellan 
markkemiska egenskaper och svavelomsättningen, utom att en högre initial 
sulfathalt och en ökande C/N-kvot verkade minska mineraliseringen av S. De 
observerade skillnaderna i svavelomsättning kunde därför inte på ett 
tillfredsställande sätt förklaras med de variabler som studerades. 

En ny metod för behandling av data från röntgenabsorptionsspektroskopi 
(XANES) utvecklades som en del av avhandlingsarbetet.  Metoden tillät 
tillförlitlig identifiering och relativ kvantifiering av olika organiska och 
oorganiska svavelföreningar i jordprover och extrakt. Resultaten visade på 
skillnader i svavelkemi mellan olika jordar och odlingssystem, men eftersom 
behandlingseffekterna varierade mellan jordarna var det inte möjligt att dra 
några generella slutsatser kring odlingssystemens påverkan på fördelningen 
mellan olika svavelformer eller svavelformernas påverkan på omsättnings-
hastigheterna. Analys av extrakt av fysiskt skyddat organiskt svavel, samt 
svavel som stabiliserats genom komplexbildning med lermineral, visade att 
högoxiderade former av svavel, framförallt sulfatestrar, dominerade i dessa 
fraktioner. Svavelformer med intermediär oxideringsnivå, mest sulfoxider, 
återfanns framförallt i den icke-extraherbara residualfraktionen.  Omsättnings-
hastigheten i denna fraktion har tidigare ansetts vara nästan försumbar, men 
enligt resultaten som presenteras i avhandlingen, deltog den aktivt i 
omsättningsprocesserna, om än i mindre utsträckning än övriga fraktioner. För 
att kunna avgöra vad fraktionernas olika svavelkemi har för betydelse för 
svavelomsättningen krävs att extrakt från fler jordar analyseras. 

 Resultaten visade att kreatursgödning har en stimulerande effekt på 
svavelomsättningen, även om det förblir oklart varför. Den nya metoden för 
kvantitativ bestämning av svavelkemin i jord och jordextrakt genom XANES 
spektroskopi ger goda förutsättningar att statistiskt undersöka sambanden 
mellan marksvavlets kemiska egenskaper och dess omsättning. Avhandlingen 
tydliggör vikten av att använda långliggande försök, att inkludera många olika 
jordtyper i samma behandling för att kunna särskilja behandlingseffekter från 
jordeffekter, samt att studera flera näringsämnen samtidigt och arbeta mer 
tvärvetenskapligt inom markkemi och markbiologi/mikrobiologi. 
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