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Summary 
Bark beetles with the capacity to kill and colonize living trees are main pests of 

coniferous forests around the world. The European spruce bark beetle, Ips typographus, 

belongs to a group of bark beetles possessing facultative attack patterns. For long periods I. 

typographus  is living in low populations only on seriously weakened hosts. However, 

following disturbances like storms or drought periods, the amount of suitable breading 

material increases dramatically and the population size of beetles may rise within a short time 

to epidemic levels. In the epidemic phase I. typographus behaves aggressively, attacking 

healthy trees and destroying large areas of Norway spruce forest. Bark beetles with this 

pattern of behaviour are exploiting a different ecological niche than during the endemic, low 

population phase: in broken or seriously weakened hosts they exploit a relatively poor source 

of nutrients without dealing with host defences. Instead they have to deal with a higher degree 

of interspecific competition. On the other hand, a living host provides breeding material, 

which is rich in nutrients and relatively free from interspecific competition, but there beetles 

have to fight the defence responses of the host tree. Host defences can be overcome by mass 

attack of  thousands of beetles on the same tree, which is coordinated by aggregation 

pheromones. The trade-off between evaluating host quality and risk rating host defences is a 

great challenge for the pioneering beetles, that initiate an attack before any pheromone plumes 

exist. The host choice mechanism can be divided in several distinct steps: 

1. habitat location during flight 

2. host location during flight 

3. host evaluation after landing, involving detection of host suitability and spacing 

between species and individuals to avoid inter- or intraspecific competition. 

4. risk rating host defences after entrance into host phloem. 

The question whether the beetles’ attack behaviour is ruled by pheromone attraction alone or 

is guided by markers for host suitability has been an issue of debate for decades. 

 

The peripheral nervous system of bark beetles possesses olfactory receptor neurons for 

both pheromones, host volatiles and non-host volatiles. Several studies support the theory that 

non-host volatiles cues play an important role in habitat location, while host volatiles are 

involved in host finding and host acceptance, either alone or through modulating pheromone 

attraction. Host defence responses consist of physical barriers and chemical compounds that 

may be detrimental to invaders. Conifers maintain a certain level of preformed (constitutive) 
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defence that can be enhanced during and after the attacks, e.g. by the increased production of 

defensive metabolites and development of defensive structures. The different metabolites 

involved in a trees defence responses may be important markers for beetles to evaluate the 

trees’ defensive ability, and guide them in their decision to enter a host. 

Because the population density is an important factor influencing the beetles’ success 

in overwhelming a trees defence, it has been hypothesized that it also will modulate beetles 

behaviour, either directly or through its influence on the beetles’ quality.  

This introductory paper is written to obtain an overview over the literature dealing 

with different aspects of host choice in bark beetle species exhibiting so called aggressive host 

colonisation behaviour. Different hypotheses and aspects of importance for the host choice 

behaviour are discussed. Finally, I propose a host choice model for the European spruce bark 

beetle Ips typographus.   
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Terminology used in this essay  

Alleles: variant forms of a gene resulting in different phenotypes. 

Allomone: a semiochemical produced and released by an individual of one species that 

affects the behaviour of an individual of a different species to the benefit of the releaser. 

Commensal: a symbiotic relationship between different species favouring one part and 

leaving the other unaffected.  

Constitutive defence: preformed defences involving physical barriers formed by cell 

structures and availability of for intruders toxic and/or inhibiting chemicals.  

Endemic population: local population with low size unable to attack on landscape or 

regional scale.  

Epidemic population: population with exponential growth dispersing on a landscape 

scale.  

Facultative: having the capacity to live under different conditions or to adopt a different 

mode of life. 

Hypersensitive response: mechanism in plants involving rapid cell death and induction 

of chemical defence pathways in the local region surrounding an infection. 

Induced defence: onset of increased defences after infection involving induction of 

defensive metabolite production and mobilisation of growth of defensive structures. 

Kairomone: semiochemical released by a species different from the perceiving species; 

may be attractive or repellent. 

Meristematic: term used for tissues that can divide; growth tissue, either apically (at the 

top leader or sprouts) or secondary (thickness increase). 

Mycangia: structures on the body of an insect adapted to transport fungal spores. 

Obligate: limited in a ecological function of a interspecific relationship, e.g. fungi that 

can not survive without being spread by a bark beetle. 

Pheromone: semiochemical used within a species; may be attractive or repellent. 

Phloemophagous: living on phloem (living inner bark).  

Saprophytic: living from dead or decaying organic matter. 

Semiochemical: chemical signal; chemical compounds or mixtures carrying a message 

perceived and recognized by an organism.  

Suberized: supplied with suberin, a highly hydrophobic, waxy biopolymer found in cork 

cells and in endodermal cells in roots. 

Xylophagous: living on wood. 
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1. What are “ aggressive bark beetles”? The ecology of a guild of 
phloemophagous herbivores. 

Bark beetles are beetles (Coleoptera) from the superfamily Curculionoidea that are main 

decomposers of dead wood. Some species, also called Ambrosia beetles, from the subfamilies 

Platypodinae and Scolytinae live in symbiosis with different fungi that enable them to break 

down wooden materials. In the Scolytinae, several species in the genera Dendroctonus, Ips, 

Scolytus, Pseudohylesinus and Pityogenes are often termed to be “aggressive” by their 

capacity to kill and colonize living trees (Wood 1982a and references therein). The use of the 

term “aggressive” for these genera can be questioned, because of the emotional value imposed 

on this word. In this literature review, the term “aggressive” will be used for pragmatic 

reasons to distinguish these genera from bark beetle genera unable to colonize and kill living 

hosts and to accede to common use in specialist literature. Mass attacks causing the death of 

living trees within weeks are known only in coniferous forests, mainly belonging to the 

family Pinaceae (Franceschi et al. 2005). The largest bark beetle outbreak ever recorded 

(Raffa et al. 2008) is ongoing in British Columbia in western Canada since the late 1990s: 

Dendroctonus ponderosa has caused the death of an estimated 500 million m2 of lodgepole 

pine (Pinus contorta) (Kärvemo and Schroeder 2010 and references therein). Except for the 

elm bark beetles Scolytus multistriatus and Scolytus scolytus, transmitting the vascular wilt 

Ophiostoma novo-ulmi as a vector and devastating European and North American elms, 

Scolytids are not associated with great economic or ecological impact on angiosperm forests 

(Ohmart 1989; Wood 1982a). 

Hypotheses about the evolution of aggressiveness are difficult to test and remain 

speculative. Ohmart (1989) propose two possible explanations for the non-aggressiveness of 

species attacking hardwood: “1) The hypersensitive (induced) response of hardwood phloem 

to the invasion of fungi introduced by attacking bark beetles has always been too complex and 

effective for the evolution of beetles which could successfully colonize this phloem; 2) the 

physiological costs incurred by bark beetles attacking angiosperm phloem are greater than the 

nutritive benefit gained by the beetles and therefore evolution of successful colonizers of 

hardwood phloem could not occur.” In spite of the speculative character of these explanations 

remains the fact, that species exploiting dead or strongly weakened host, like most ambrosia 

beetles in hardwood, escape the defence system of living trees, while some Scolytids have 

evolved to combat the strong defence of their conifer hosts. The death of the host is a 

requirement for a successful beetle establishment and reproduction in a healthy conifer tree,  
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unless the trees’ different defence responses will repel either adult beetles or be detrimental 

for their brood (Raffa and Berryman 1987and references therein).  

Aggressive bark beetles possess two mechanisms to overwhelm the defences of a 

conifer: 1) an efficient pheromone system that allows coordinated mass attacks of thousands 

of beetles within short time (Berryman et al. 1985), 2) the association with fungi, 

disseminated during the attack in the wood of the host, and often leading to blockage of the 

water transport system and finally causing a rapid death of the tree. While the dependence of 

xylophagous Ambrosia beetles on associated fungi in order to break down cellulose is 

obligate, the benefit of fungal associates for the tree killing beetles that feed on the living, 

nutritious inner bark of trees, is much more unclear (Klepzig and Six 2004). 

 Aggressiveness can be regarded as a gradation continuum among different bark beetle 

species: the most ‘aggressive’ species are able to attack healthy trees whereas less aggressive 

species only overcome weakened or completely nonvigorous host trees (Wood 1982a). 

Weakened hosts may be spatially and temporally rare and migratory losses during dispersal to 

suitable hosts can be high. Moreover, while the weakened breeding material is easy to invade, 

it may also be nutritionally less valuable and in some cases also attractive to interspecific 

saprophytic competitors (Raffa 2001).  Raffa (1987) examined two different ‘aggressive’ 

scolytid beetles and their hosts: the fir engraver (Scolytus ventralis) infesting grand fir (Abies 

grandis) and the mountain pine beetle (Dentroctonus ponderosae) infesting lodgepole pine 

(Pinus contorta var. latifolia). The fir engraver is attacking only trees that are severely 

weakened, while the mountain pine beetle usually attacks healthy lodgepole pines and to 

some extent also other pine species. Raffa (1987) concluded that evolution may have favoured 

the development of aggressiveness and a high tolerance against monoterpenes in the mountain 

pine beetle due to a generally high level of preformed (constitutive) defence (resin and 

monoterpene content) in pine bark and sapwood and relatively low induced defence reactions 

after attack. In contrast, grand fir maintains a lower level of preformed defences, but is 

capable to raise highly variable and strong induced responses after attack; inoculation of the 

beetles symbiotic fungus induced a multiple increase in resin production and a dramatic 

change in monoterpene composition with big differences between single trees. Thus, fir 

engravers encounter an unpredictable, diverse environment upon host choice, making a 

cooperative, aggressive behaviour less adaptive. 

 The European spruce bark beetle Ips typographus (L.) belongs to a group of bark 

beetles possessing facultative attack patterns. For long periods I. typographus  is living in 

small populations on  sporadically occurring weakened hosts. However, following 
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windstorms, drought periods or other environmental disturbances the availability of suitable 

breeding material may increase abruptly and the population size can rise to epidemic levels. In 

the epidemic phase I. typographus behaves aggressively, attacking healthy trees and 

destroying large areas of Norway spruce forest . Bark beetles with this pattern of behaviour 

are exploiting two different ecological niches: the sudden increase of population size opens up 

a new ecological niche, rich in nutrients and relatively free from interspecific competition, 

that can be exploited allthough there are no more trees with poor defences (Berryman et al. 

1989; Raffa et al. 2005; Wallin and Raffa 2004). If the epidemic population would have been 

reduced to only exploit weakened hosts, these would have been quickly exhausted resulting in 

equally sudden crashes of the population. Healthy trees seem to be preferred during an 

epidemic phase as newly wind thrown trees can be seen unattacked while groups of standing 

trees are been attacked (personal observations). Boone et al. (2011) measured the constitutive 

resin flow of lodgepole pine and found that eruptive populations of D. ponderosae preferred 

trees with higher resin flow rate than beetles from endemic densities. The ability to modify 

host preferences according to group size is similar to the behaviour of packhunting predators. 

It requires some degree of pre-adapted communal behaviour and that the benefits of a group 

attack exceeds the costs of sharing the host for an individual bark beetle (Berryman et al. 

1985; Schlyter and Birgersson 1999; Wertheim et al. 2005).  

Epidemics can suddenly collapse when different factors individually or in synergy 

depress the epidemic population under the critical level that allows beetles to overwhelm the 

defence of available trees. There are several major factors affecting the development of an 

ongoing epidemic: temperature during summer and autumn, precipitation (affecting both host 

tree condition and dispersal possibilities), the phase of the ongoing epidemic and the build-up 

of predator population size, intraspecific competition (affecting size, number and health of 

offspring) and finally the availability of suitable host trees (trees with a relative defence 

ability being below the attacking power of the beetle population) on a landscape level. The 

different factors are involved in feedback processes that may amplify themselves and increase 

or decrease the threshold for an epidemic to arise or collapse (Hedgren and Schroeder 2004; 

Långström et al. 2009; Raffa et al. 2008; Wermelinger 2004). 

 



10 
 

2. What is a suitable victim for an ‘aggressive’ herbivore?  

At times of low population size, also ‘aggressive’ bark beetle species are entirely 

dependent of finding rare, severely weakened hosts. The bark of wind broken trees will dry 

out during one summer, but can still offer a good food resource for the reproduction of one 

beetle generation depending on bark thickness, temperatures and precipitation. Wind fallen 

trees with some root contact left will last for a longer time, but are severely stressed and will 

not be able to mobilize strong defence reactions. A common attack pattern observed in an 

incipient outbreak is, that new attack spots on standing trees are concentrated to places 

affected by stress, like e.g. drought, increased sun exposure on new forest borders or tree 

decline (Moeck et al. 1981 and references therein; Wermelinger 2004). At very high 

population levels even apparently healthy trees are going to be attacked. In attacked areas, 

where almost all trees have been killed, single unattacked trees can be found, either with 

unsuccessful attacks or without any visible signs of attack. Successful tree defence often 

results in copious resin flow flooding out beetles from their entrance holes, but even dry 

entrance holes without beetles have been observed (personal observations). Thus, the 

suitability does not seem to be an immutable property of a tree, but depends on an intricate 

balance between the physiological state of trees, population dynamics of the beetles and 

environmental factors, such as weather (Raffa et al. 2005).  
 

3. About Conifer defence. 
The lifetime of a conifer tree spans over many decades, during which it encounters 

various stresses: abiotic like drought, storms, high levels of ground water, different nutrient 

shortages or biotic like root pathogens, fungi and herbivores affecting cones and needles, 

unsuccessful bark beetle attacks or mechanic injury caused by mammals or accidentally by 

forest management. Conifers have evolved effective defence strategies that made them to 

successful colonizers of a wide range of different climatic zones in more than 100 million 

years (Franceschi et al. 2005; Prager et al. 1976). Preformed defence systems are referred to 

as ‘constitutive’ while reactive defence upon a challenge is referred to as ‘induced defence’ 

mechanisms. Various induction events due to stress during the long lifespan of a tree, 

however, may alter the status quo of the constitutive defence systems (Christiansen et al. 

1999). There is usually marked phenotypic plasticity in conifer defences and it is generally 

difficult to discern it from the genotypic variation (Huber et al. 2004).  
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Constitutive defence of conifers  

The different conifer families and genera have evolved a great diversity of structures 

within the non functional part of the phloem (without intact sieve tubes) that work as physical 

and chemical barriers to intruders. The outer bark (periderm) provides a physical barrier, that 

protects the vital assimilate transport within the nutrient and energy rich phloem, and the thin 

and weak meristematic cambium layer (Fig 1.). The periderm consists of several tight layers 

of mostly dead cork cells with lignified and suberized walls (Fig. 2). Calcium oxalate crystals, 

that can be found as intracellular deposits in the phloem and as extracellular layers in the 

periderm may function as sharp hinders against boring and chewing (Hudgins et al. 2003). 

Lignified stone cells (sclereids) can build up clusters containing mostly lignin, but even 

soluble phenolics (Franceschi et al. 2005; Li et al. 2007). They have been shown to affect the 

reproduction of Dendroctonus micans in P. abies (Wainhouse et al. 1990). Different phenolic 

compounds in the bark can have antifungal and antifeedant properties (Brignolas et al. 1998; 

Evensen et al. 2000; Faccoli and Schlyter 2007). The periderm can contain large amounts of 

solid phenolic material and the secondary phloem phenolics are deposited in the vacuoles of 

so called polyphenolic parenchyma cells (PP-cells). The PP-cells can form annual tangential 

rings separated by sieve cell layers outward from the cambial zone into the secondary phloem. 

They can be discerned like the annual rings in the xylem for decades (Franceschi et al. 2005; 

Krekling et al. 2000) (Fig. 4). The large amount of phenolic compounds in the bark and the 

continuous production of  PP-cells underpins the importance of these compounds and 

structures in the constitutive defence system of conifers. Nevertheless their functions and 

effects in the defence of conifers against bark beetles are up to now poorly understood.  

Upon wounding, trees exude resin, which is the most obvious defence in the Pinaceae. 

Intensive research efforts have been made to characterize the resin producing and storing 

structures, the chemical composition and effect of resin, and the biosynthetic pathways of 

resinosis (Borg Karlson et al. 1993; Cox et al. 2007; Huber et al. 2004; Keeling and 

Bohlmann 2006a; Keeling and Bohlmann 2006b; Lewinsohn et al. 1993; Lombardero et al. 

2000; Persson et al. 1993; Rosner and Hannrup 2004; Wainhouse et al. 1997) and others. 

While the resin producing cells form sac-like structures, called blisters in the genera Abies, 

Cedrus, Tsuga, Pseudolarix, they form tube-like ducts in both xylem and phloem in Picea, 

Pinus, Larix, and Pseudotsuga (Fig. 3). The resin is synthesized in the epithelial cells lining 

the cavities within these structures and extruded and stored there under pressure (Nagy et al. 

2000). The resin is formed by volatile monoterpenes (10 carbon), semi-volatile sesquiterpenes 
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(15 carbon) and the 20 carbon diterpenoid compounds. After volatilization of the mono- and 

sesquiterpenes the crystallized diterpenes build up a mechanical barrier against antagonists. 

The constitutive defense ability is thus dependent on the amount of stored oleoresin, but also 

on it’s chemical composition and on the effect to any antagonist (Huber et al. 2004). Both ray 

cells and resin ducts are involved in the translocation of resources between phloem, sapwood 

and heartwood (Berryman 1972), and therefore the resin produced in the xylem is able to 

extrude into the phloem. Ray cells have been speculated to be involved also in the production 

of soluble phenolics and they may provide a way for signal sensing and spreading in the 

systemic induction of defense reactions (Franceschi et al. 1998; Franceschi et al. 2000; 

Hudgins et al. 2004; Hudgins and Franceschi 2004). 
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Figure 1:  

Block diagram of red oak (Quercus robur) stem, showing the transverse, tangential, and radial 

surfaces. In between the inner bark (phloem) and the outer bark (periderm) a meristematic cell 

layer (cork cambium) produces protective tissue (cork) to the outside and living parenchyma 

tissue (phelloderm) to the inside. The phloem consists of the functional phloem with sieve 

tubes surrounded by various forms of parenchymatous tissues and old non-functional phloem 

with collapsed sieve tube elements. The arrangement of the functional elements in the bark 

does not differ essentially between angio- and gymnosperms, while the wood of conifers is 

distinguished from that of angiosperms by lacking vessels. Instead, long tapering tracheids 

constitute the dominant cell type in the wood. In Picea, Pinus, Larix, and Pseudotsuga rays 

often contain large intercellular lumens, so called resin ducts (see Fig. 3).  

From Raven, Evert and Eichhorn, Biology of plants, 5th edition, Worth Publishers, 1992, New 

York 

 
 

 
 

Xylem

Phlo
em
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Figure 2: Transverse section of the bark 

and some secondary xylem from the old 

stem of basswood (Tilia americana). 

Several layers of periderm (arrows) can be 

seen in the outer bark. From Raven, Evert 

and Eichhorn, Biology of plants, 5th 

edition, Worth Publishers, 1992, New 

York  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Block diagram of 

secondary xylem of white pine (Pinus 

strobus), showing the transverse, 

tangential, and radial surfaces. Rays 

consist of ray tracheids and ray 

parenchyma cells. Those containing 

resin ducts are lined with epithelial 

cells to the inner lumen. 

From Raven, Evert and Eichhorn, 

Biology of plants, 5th edition, Worth 

Publishers, 1992, New York 
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Induced defence  

Most trees in a sufficiently good physiological condition are able to enhance the 

preformed defence mechanisms. This can involve activation of  already existing pathways to 

increase and modulate the production of defensive metabolites, e.g. resin production and the 

production of phenolic compounds. In addition, the production of pathogenesis-related 

proteins, like lytic enzymes and chitanases, affecting and degrading fungal cell walls has been 

reported during induction (Bonello et al. 2006). The induction of these defences may be rapid 

and specific and elicited by the antagonist organisms themselves. The activation of protein-

based defences may also result in the formation of new structures that increase the production 

of defence compounds in a long term, and also may result in new physical barriers. If the tree 

defences are activated to a higher level as a consequence of  a challenge or weak attack, the 

responses provide the tree with an increased defence for future challenges, a process often 

referred to as acquired resistance or priming (Bonello et al. 2006; Franceschi et al. 2005).  

The most explicit defence reaction resulting in both structural and chemical changes is 

the hypersensitive response. It implies the rapid death of individual cells occurring locally at 

the site of attack or infection and results in lesions of dead tissue that encapsulates pathogens 

and in the release of defensive metabolites in the surrounding tissues (Nagy et al. 2000). 

Lesions are cut off from the intact parts of living tissue by callus formation, subsequently 

lignified, suberized, impregnated by phenolics and finally forming wound periderms and 

replacing damaged structures (Franceschi et al. 2005).  

After one to three weeks following wounding or infection, changes in the cambium near 

the site of challenge leads to the formation of traumatic resin ducts (TD) (fig. 3 B,D). They 

differentiate axially imbedded in the new xylem and are interconnected with the radial resin 

ducts to the phloem. TD  increase the area of resin producing epithelial cells; the resin 

produced in the new structures can be different from the composition of constitutive resin and 

may be more toxic to invaders (Martin et al. 2002). The proliferation and swelling of 

polyphenolic parenchyma cells (PP-cells) (fig. 3A-D) is an other visible sign for an induced 

defence reaction. Together with the formation of TD, the PP-cells have been shown to be 

associated with increased resistance to pathogenic fungi (Krokene et al. 2003). 
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Figure 3  

Induced anatomical responses in sapwood and phloem of Norway spruce after pretreatment 

inoculation and mass inoculation with the “blue-stain fungi” Ceratocystis polonica. All 

figures are cross sections.  

(A) Fresh bark at the time of pretreatment (June 24) showing anatomy typical of untreated 

samples. Sieve cells (S) and the three most current annual layers of PP cells (PP97-95) can be 

seen above the cambial zone (CZ). R = radial ray.  

(B) Sample taken 3 weeks after pretreatment inoculation, with a layer of large traumatic resin 

ducts (TD) at the interface of the xylem (X) and cambial zone.  

(C) Bark sample taken above the mass inoculated section 15 weeks after mass inoculation, 

showing swelling of PP cells, crushing of the older sieve cell layers, and abundant extra PP 

cells between the cambial zone and PP97 (PPex) and adjacent to the cambium (arrowheads).  

(D) Sample taken 15 weeks after mass inoculation from a tree that was pretreated 24 weeks 

earlier. Two distinct layers of large TDs can be seen; the layer close to the cambium (TD2) 

was probably induced by the mass inoculation, whereas the layer deeper within the xylem 

(TD1) was probably induced by the pretreatment 9 weeks earlier.  

Bars = 50 μm (A and C) and 200 μm (B and D).  

from (Krokene et al. 2003) 
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3. The adaption of bark beetles to their host 

 The ‘aggressive’ behaviour of bark beetles in conifers is tightly interconnected with the 

defensive capacity of their host trees. The aggregating behaviour, however, is a multifaceted 

phenomenon for these beetles. Under endemic conditions and when suitable breeding material 

with low defensive capacity is scarce, a single individual will hardly benefit from sharing a 

limited resource. Males that only respond to pheromones released during an ongoing attack 

and not to kairomones evaluating host quality, may find a limited resource exhausted by the 

time they arrive. However, during the epidemic phase the aggregation is necessary for the 

survival of the pioneers. When sharing an attack on vigorous trees during epidemics, those 

beetles responding to pheromone signals will cheat from the risks of a primary attack and 

shorten dispersal time. Thus, the question is: what then, are the driving forces in the evolution 

of an aggregating behaviour? There seem to be as many drawbacks as advantages associated 

with aggregation: costs for the emitters of aggregating signals (producing pheromone and 

experience competition); costs for the responders (competition and exhausted breeding 

material); benefits for the emitters (avoiding to fight alone against the defence system of the 

host); benefits for the responders (to avoid the risks being pioneers, shorter dispersal before 

host finding, avoid costs to detoxify poisonous host compounds and produce pheromones) 

(Raffa and Berryman 1987). The advantages have to outweigh the costs for the trait to 

become adaptive and to evolve; both emitters and responders have to benefit, otherwise the 

system would have been lost during evolution by natural selection. The origin of the 

aggregation behaviour in an ancestral non-killing bark beetle species may simply have been a 

sex-pheromone, exploited by other males to increase the change of finding mates. The 

behaviour of tree killing by a mass attack cannot have been the driving force for the original 

evolution of aggregation pheromones, because they are the prerequisite for this behaviour 

(Schlyter and Birgersson 1989; Wertheim et al. 2005). The successful detoxification of toxic 

levels of host compounds in weakened, but still fresh, living bark may stepwise have adapted 

bark beetles to a new, more valuable resource, making the outcome of this process 

(oxygenated derivates of host compounds) to a part in the aggregation pheromones (Alcock 

1982; Birgersson and Bergström 1989; Vanderwel 1994). Thus, the trees defence has been 

turned into a weakness by it’s assassinator. However, during an endemic phase the few 

beetles present will not be able to defeat a healthy trees defence. Only a few species belonging 

to the genus Dendroctonus, such as the European D. micans,  possess the ability to survive in 
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phloem of a living tree without killing them, literally swimming in the resin flow of defending 

hosts (Storer and Speight 1996).  

An increasing body of research is revealing the genetic background for conifers 

constitutive and induced defences. The terpene products are synthesized by terpene synthases 

(TPSs) with high functional plasticity, most of them forming multiple products (Keeling et al. 

2008; Phillips and Croteau 1999). The high number of genes coding for TPSs are believed to 

be the result of multiple gene duplications. It has been shown, that only a few mutations have 

to occur to completely change the products derived by two di-TPSs (Keeling et al. 2008). In 

the arms race to defend and overcome defence, the high plasticity may be important for 

conifer trees, to cope with the bark beetles, which comprise hundreds of generations during 

the life time of one tree.  

The evolution of the bark beetles’ pheromone production by making use of and 

detoxifying defence compounds could be counteracted by the trees in a reduced production of 

monoterpenes that are precursors of the pheromones. Trees with this trait could be resistant by 

the inability of attacking beetles to call for conspecifics to join the attack. In the case of  Ips 

typographus one component of the aggregation pheromone (2-methyl-3-buten-2-ol) (Fig. 4) is 

produced de novo (Lanne et al. 1989), while the other component 4S-(–)-cis-verbenol (Fig. 4) 

(Bakke et al. 1977) is derived by oxygenation of the host monoterpene (–)-α-pinene (Fig. 4). 

Beetles attacking trees that produce more of the (+)- enantiomer produced the trans-verbenol 

(Fig. 4), which is not functional as pheromone, in a corresponding proportion (Lindström et 

al. 1989). The proportion of the (–)-enantiomer of α-pinene varied between 28% to 78% (C. 

Schiebe, unpublished results), corresponding with 32% to 98% found by Lindström et al 

(1989). The production of cis-verbenol in male I. typographus correlate to a high extent with 

the amount of (–)-α-pinene in individual trees (Birgersson 1989). The other pheromone 

component methyl butenol, which is produced de novo by males did not correlate with any 

specific monoterpene hydrocarbon, but was inversely related to a trees defence reaction and 

the total monoterpene content (Birgersson and Leufven 1988; Zhao et al. 2011). It can be 

hypothesized, that the pheromone production may be reduced, when beetles allocate resources 

to detoxify detrimental levels of defensive compounds.  

The large individual variation in the enantiomeric proportion of α-pinene is commonly 

found in all terpenes in the oleoresin (Persson et al. 1993; Persson et al. 1996) and also for 

phenolics produced in Norway spruce bark (Lieutier et al., 2003 , C. Schiebe, unpublished 

results). It seems unlikely that an adaptation by bark beetles to use highly variable host 

compounds as kairomones would occur; only individual compounds that are specifically up- 



19 
 

or downregulated during stress responses could be thought of becoming kairomones 

signalling either suitable (weakened) or resistant hosts.  

   
          pheromone           no pheromone 

Figure 4:  

Ips typographus pheromone components and host monoterpene precursors. 
 

4. Beetles recognition of host state: acceptance or resistance 

Orienting towards an host by flying bark beetles is mostly facilitated by olfactory cues 

(Wood 1982b) although visual cues may be involved (Niemeyer 1985; Strom et al. 1999). In 

non-aggressive species of bark beetles the attraction to host kairomones is well established 

(Schlyter and Birgersson 1999; Schroeder and Lindelow 1989). For the aggressive behaviour 

of bark beetle species the existence of a strong pheromone system is a necessary prerequisite. 

The pheromone attraction in tree killing species is generally designated secondary attraction, 

while the primary attraction accounts for the attraction to host semiochemicals by so called 

pioneer beetles (Person 1931). The host choice of pioneers may involve a long-range habitat 

recognition during flight and a close range post-landing decision whether to enter a host or to 

leave it again if found unsuitable. After landing even tactile and gustatory sensations may 

affect host acceptance behaviour (Raffa and Berryman 1982). The example of empty entrance 

holes and tunnels, mentioned above, indicates even a third step of host acceptance: beetles 

may encounter tree defence or recognize an unsuitable bark quality after the first tunnelling 

attempts in the phloem. 
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Only volatile compounds are conceivable as long-range attractants to hosts. The most 

volatile compounds are monoterpene hydrocarbons and their alcohol-, ketone- or other 

derivates and to some degree at high temperatures even sesquiterpenes. Neither diterpenes, 

phenolics, alkaloids nor other compounds associated with host defence emit high amounts of 

volatiles at natural conditions. Beetles may possibly encounter detectable concentrations at 

really close range, when they walk on or enter the bark.  

A primary long-range kairomone attraction has been difficult to show for aggressive 

species, which has led to a considerable debate, whether these species select suitable hosts in 

the attack initiation process by volatile host compounds or only by random landing (Byers 

1996; Gries et al. 1989; Moeck et al. 1981; Pureswaran and Borden 2003b; Saint-Germain et 

al. 2007). But McCarty (1980) showed a significant and dose-dependant response to α-pinene 

in D. frontalis in a laboratory walking bioassay. While D. ponderosae was significantly 

attracted in field to traps baited with γ-terpinene alone (Miller and Borden 2003), there was no 

primary attraction found to different mixtures of monoterpenoids in the same species 

(Pureswaran and Borden 2005). Ips pini was weakly attracted to β-phellandrene alone in a 

behavioural field assay (Miller and Borden 1990). Baier et al. (1999) found some correlation 

of different release rates of the pinenes and limonenes from felled trees to attack of either I. 

typographus or Pityogenes chalcographus and Polygraphus polygraphus. Other studies were 

able to show the enhancement of pheromone attraction when pheromones were used in 

combination with different monoterpenes or host tree turpentine. Very high release rates of 

host compounds either increased or decreased the attraction to pheromones (Seybold et al. 

2006 and references therein). In Ips typographus the attraction to it’s aggregation pheromone 

was increased by the combination of  (–)-α-pinene and (+)-limonene, but was reduced by β-

myrcene and (+)-α-pinene in a study by (Reddemann and Schopf 1996). Later Erbilgin et al. 

(2007) could confirm the attraction to a high dose of (–)-α-pinene and a low dose of 

pheromone.  

It is very difficult to estimate the concentrations of volatile host compounds in odour 

plumes that flying beetles may perceive. From measurements of emissions from felled spruce 

trees and standing trees under attack we can estimate the release of the most abundant 

monoterpene α-pinene from a single tree to approximately 10 – 20 mg / hour (C. Schiebe, 

unpublished results). However, the upper parts of the stem, where the bark is thinner, usually 

release a multiple of these values during sun exposure. Flying insects do not experience mean 

concentrations or a continuous odour plume, but rather package like concentration 

fluctuations in a meandering odour plume. Insects are able to respond to concentration 
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fluctuations experienced during parts of seconds, and host finding behaviour may reflect 

response to momentaneous high concentrations of host volatiles (Strand et al. 2009 and 

references therein). Moreover, it has been shown that bark beetles readily recognize non-host 

volatiles (Poland et al. 1998; Pureswaran et al. 2004; Zhang and Schlyter 2004). Thus, habitat 

finding may involve both host and non-host cues. Little is known about how the perception of 

for bark beetles relevant compounds is affected by the background odours in a landscape, i.e.. 

with noise or conflicting signals, e.g. host volatiles versus non-host volatiles. In the 

‘semiochemical diversity hypotheses’ Zhang and Schlyter (2003) propose, that host location 

by specialist herbivores may be influenced of such “semiochemical diversity” in a diverse 

landscape. 

Final host choice, manifested by attack and colonization does not seem to be directly 

connected with host finding, as landing does not reflect the susceptibility of the tree. Beetles 

can land on trees in great numbers without attacking them and have been caught even on non-

hosts with passive landing traps (personal  observations). In an extensive study comparing 

landing rates on artificially weakened or naturally diseased trees, that were thus predisposed 

to bark beetle attack, Moeck et al. (1981) found that beetles landed on weakened and 

subsequently colonized trees as often as on healthy trees. Thus, they found no evidence for 

primary attraction and concluded that final host choice must occur after landing. However, 

this study did not allow for testing a possible importance of host odours in a habitat scale, i.e. 

the finding of host patches in mixed habitats or discriminating groups of host trees with high 

emission rates (e.g. stressed trees exposed to high sun irradiation or drought stressed) from 

trees with relatively low emission rates. After habitat location mediated by semiochemicals 

the landing on single trees still may occur randomly.  

Host acceptance during a mass attack is known to be modulated by anti-aggregation 

pheromones, changes in rates and composition of aggregation pheromones or oxygenated host 

compounds indicating an already colonized and possibly overexploited host (Alcock 1982; 

Schlyter and Anderbrant 1989; Schlyter et al. 1989). The repellent signals help avoiding 

intraspecific competition and are involved in the switch over of an attack to a neighbouring 

tree. Verbenone, for example, is produced by autoxidation and by microorganisms from α-

pinene in the galleries of bark beetles and has a repellent influence on several genera like 

Dendroctonus and Ips (Miller et al. 1995; Rudinsky et al. 1974; Schlyter et al. 1989).  

Semiochemicals affecting host acceptance or rejection after landing are likely to contain 

also less volatile compounds like phenolics, diterpenoids and alkaloids. Various laboratory 

assays on beetle response to media amended with host monoterpenes indicate that the 
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concentration rather than type of monoterpenes may be a critical factor for postlanding 

acceptance. Depending on the physiological condition of beetles (see more in part 8), low and 

medium concentrations tend to increase acceptance to artificial media, while high 

concentrations always prevent tunnelling (Raffa and Smalley 1995; Wallin and Raffa 2000; 

Wallin and Raffa 2002; Wallin and Raffa 2004). Phenolic compounds are a part in the 

defence system of conifers (see above) but to what extent these compounds are effective in 

the constitutive defence and confer resistance against bark beetles is still poorly understood. 

As mentioned above, most of the aggressive species are more or less closely associated with 

symbiotic fungi. If these fungi are affected by defensive metabolites from the host, this may 

in turn affect bark beetle colonisation and survival (Franceschi et al. 2000). The antifungal 

effect of several phenolics against bark beetle associated fungi has been shown in some 

studies (Brignolas et al. 1995; Brignolas et al. 1998; Evensen et al. 2000; Lieutier et al. 1997), 

but the connection of this effect to the host choice of bark beetles remains unclear. A feeding 

assay with I. typographus, however, showed a direct antifeedant dose-response effect for 

three phenolics, particularly on pioneering males (Faccoli and Schlyter 2007). In addition to 

phenolics, also the potential role of diterpene acids and other diterpenoids has so far not been 

studied  comprehensively. Kopper et al.(2005) found a strong antifungal effect for abietic and 

isopimaric acid, but no effect on host acceptance or larvae survival of I. pini. Alkaloids can be 

found in pines and other conifers in very variable concentrations, but these are generally 

present in much lower concentrations than either phenolics or terpenoids (Gerson and Kelsey 

2002; Gerson and Kelsey 2004). In spite of their toxicity, the role of alkaloids as anti-feedants 

against bark beetles is still unknown. 

5. Beetle - fungi association – a key factor for host acceptance? 

General consensus has not been reached in the debate if the association between fungi 

and tree killing bark beetles is obligate for the beetles or not  (Lieutier et al. 2009). While the 

association is obligate for the fungi, as these are transported by the beetles and in many cases 

seem to be disseminated solely by them, there are arguments for both points of view regarding 

the dependency of the beetles on their fellow-travellers (Klepzig and Six 2004). In addition, 

there is a  lack of knowledge about the interactions of various symbiotic, commensal or 

antagonistic fungi that can be found in trees colonized by bark beetles. An example of an 

antagonistic interaction between bark beetles and fungi is the endophytic fungus Phomopsis 

oblonga in Elm trees (Ulmus ssp.), that prevent the successful breeding of the vector of Dutch 

elm disease Scolytus spp. (Webber and Gibbs 1984). In a study in southern Poland 65 
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different taxa of fungi were obtained from phloem infested by I. typographus, 14 of which 

belonged to the ophiostomatoid blue stain fungi (Jankowiak 2005) containing the genera 

usually establishing first and being most virulent (Solheim 1992; Solheim et al. 2001). There 

is a large variation in the fungal flora present and vectored by bark beetles depending on 

region, time or hibernation site (Jankowiak 2005; Klepzig and Six 2004; Persson et al. 2009; 

Solheim 1992). The establishment of bark beetles in a tree is associated with a fungal 

complex more than single fungal species. The intricate interaction between a trees defensive 

capacity and the establishment of different antagonistic fungi with different virulence may be 

important for the outcome of beetle colonisation (Klepzig and Six 2004; Lieutier et al. 2009). 

Furthermore new data indicate that the establishment of fungi can be promoted by symbiotic 

bacteria carried by beetles or inhibited by bacteria found on host trees (Adams et al. 2009). 

Considering this tightly interconnected web of adapted organisms it would be surprising if  

bark beetles did not have evolved any means to sense the successful establishment of 

symbiotic organisms as an indicator for a favourable environment for colonization. Such a 

mechanism might require a fast reaction of tree defence on pathogens, recognized by the 

beetles or a direct (presumably enzymatic) influence of bacteria and/or fungi on the contact 

surface between tree and beetle. 

 

6. Olfactory detection in Ips typographus and other ‘aggressive’ 
bark beetles. 

In spite of the difficulties to show a clear behavioural role of host compounds in host 

choice, the response to host compounds through single olfactory receptor neurons has clearly 

been shown on I. typographus and I. pini antenna (Mustaparta et al. 1979; Tømmeras and 

Mustaparta 1987) and lately in a comprehensive assessment for I. typographus  by Andersson 

et al. (2009). Andersson and co-workers (2009) found a large proportion of narrowly tuned, 

highly specific olfactory receptor neurons (ORNs), that responded to host compounds. In 

addition, a considerable proportion (≈ 25%) of responding neurons where found to be tuned to 

non-host volatiles, emphasizing the importance of non-host cues in orientation by this bark 

beetle. In contrast to other insects, where ORNs related to pheromones can be found on 

specific sensillum types, spatially separated from other ORNs, there was a poor segregation 

between pheromone responding ORNs and those responding to plant odours in I. typographus  

(Andersson et al 2009). This distribution may be an indication for the integrated system of 

pheromone- and plant odour detection for host selection. ORNs for the specific detection of 
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the host-compound, 1,8-cineole, are even co-localized on the same sensillum with the ORNs 

for a pheromone component cis-verbenol (Andersson et al. 2009). Interestingly, high doses of 

1,8-cineole were found to inhibit the response to cis-verbenol, underlining the potential of this 

host compound as a key marker for host suitability (Andersson et al. 2010). The response to 

host compounds on the peripheral nervous system detected by GC-EAD (coupled gas-

chromatograph – electroantennographic detection) has also been reported for other aggressive 

bark beetle species (Dendroctonus pseudotsugae, D. ponderosae, D. rufipennis and 

Dryocoetes confuses) (Pureswaran et al. 2004) and detected through SSR (single-sensillum 

recordings) on D.  pseudotsugae (Dickens et al. 1984). The detection of oxygenated 

monoterpenes in the host by bark beetles is still rarely identified, but the strong responses to   

(–)-verbenone, 1,8-cineole and other oxygenated monoterpenes involved in the 

semiochemical systems of bark beetles are well-known (Andersson et al. 2009; Tømmeras et 

al. 1984). Recent work show strong responses in I. typographus to small amounts of several 

oxygenated compounds in volatiles from felled P. abies (Schiebe unpublished). The 

proportion of oxygenated monoterpenes rises after bark beetle attack in the bark surrounding 

beetle galleries (Leufven and Birgersson 1987) and after induction of defence responses 

elicited by treatment with methyl jasmonate in volatiles from foliage in Norway spruce 

(Martin et al. 2003), as it did in spruce logs with ageing (Schiebe unpublished).  The 

proportion of oxygenated compounds in the volatiles of a host as indicators for stress and 

degradation may be an important cue for the evaluation of it’s suitability. 

It should be kept in mind that the ability to detect host volatiles still does not tell us 

anything about the behavioral function of these responses. They could facilitate e.g. a general 

host habitat selection on a landscape scale, discrimination between non-host odours and 

distinct host patches with high release rates of host odours, indication of stressed or damaged 

hosts (true primary attraction), or detection of competition in already colonized hosts. The 

detection of single compounds by the peripheral nervous system is still not completely 

explored, neither is the integration of the signals reaching the central nervous system 

understood. The behavioural function of the detection of single compounds may mainly be 

integrated in whole semiochemical blends, modulated by compositional shifts in these blends.  
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7. The interface of individual host choice and population dynamics 

So little we know about host selection by means of kairomones and allomones, so much 

more apparent and dominant is the importance of a strong aggregation pheromone system for 

the behaviour of ‘aggressive’ bark beetles. These pheromones have in most species a triple 

function: to attract mates as a sex pheromone; to attract conspecifics of both genders, but by 

changed rates of release or composition they may also shut of the attraction of conspecifics in 

order to avoid overcrowding (Raffa 2001; Schlyter and Anderbrant 1989; Schlyter et al. 

1987). As discussed in a previous chapter, there are not only advantages of an aggregation 

behaviour. Rather, the importance of aggregation can depend on the actual state of the 

population. In cases of very limited supply of breeding material it would be more adaptive for 

the host selecting gender to locate suitable breeding material by perceiving host odours. 

Beetles that are able to recognize and find suitable breeding material with the best available 

quality would have the best fitness. A less prevailing influence of pheromone attraction can 

be suspected in situations of excess of breeding material during endemic population 

conditions e.g. after a storm with huge amounts of downed trees. It has been observed that the 

colonization of wind fallen trees occurs in many logs rather than is concentrated on few logs 

when the population is low (Komonen et al. 2011; pers. observations; G. Birgersson pers. 

comm.). In an outbreak situation, however, the benefit of aggregation behaviour seems clear. 

In a study testing the fitness consequences of different arrival time during an attack sequence 

in D. frontalis, the first arriving beetles seemed to have higher costs by pheromone production 

and suffered from higher risks by the tree’s defence, whereas beetles that arrived in the 

middle of an attack sequence had highest fitness (Pureswaran et al. 2006). As a consequence, 

beetles during the epidemic phase could be considered to have a higher fitness by quickly 

responding to pheromone signals, rather than evaluating host quality by means of kairomones. 

The beetles responding to host signals are taking higher risks during dispersal and by 

evaluating host suitability or fighting host defences. It has been speculated that these two 

different situations in population dynamics could result in different behavioural patterns 

(phenotypic plasticity) or even heritable traits (alternating selection on traits favouring actual 

population size)  (Wallin and Raffa 2004; Wallin et al. 2002). In an extensive comparative 

study between D. rufipennis from 29 eruptive versus endemic sites, Wallin and Raffa  (2004) 

found pronounced between-population differences regarding acceptance of host monoterpene 

amended artificial media, but also high variation within populations. Differences between 

endemic and epidemic populations persisted following three generations rearing in a common 
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environment. The heritability of host acceptance behaviour has even been tested on I.  pini in 

a laboratory bioassay by both positive and negative selection of the trait. Acceptance of a 

medium amended with α-pinene increased by positive selection from 59 + 7 % (mean + SD) 

to 90 + 11 % in the third generation and dropped by negative selection from 50 + 6 % to 9% 

in the third generation (Wallin et al. 2002). In the study of Wallin and Raffa two other 

interesting factors influenced beetle acceptance of host media: total lipid body content was 

positively correlated with acceptance of terpene concentrations regardless population; beetles 

from eruptive sites had lower mean fat content; the lower acceptance to higher concentrations 

in epidemic beetles was unexpected by the authors. An other factor, however, compensated 

for the lower acceptance in these populations: adding higher number of  beetles in the assay 

arena increased the acceptance in the epidemic, but not in the endemic populations. The 

beetles seem to perceive the presence of each other. Because the risk of being killed by a trees 

defence is dependent on the number of attacking beetles, this reaction would be ecologically 

relevant. In an other study Wallin and Raffa  (2002) tested the host acceptance and gallery 

construction in I.  pini in a series of assays with medium containing different concentrations 

of α-pinene and limonene. They found that both entrance and gallery construction behaviour 

was affected by the number of beetles present on the surface of the medium or boring 

galleries. Gallery construction but not entrance was influenced by the presence of aggregation 

pheromone. Hence, both visual, auditory (Rudinsky et al. 1973; Rudinsky et al. 1976) or 

tactile sensing may be involved to evoke a shift in behaviour towards a higher tolerance of 

toxic host compounds. Sallé et al. (2005) found significant body size differences related to 

attack densities between endemic and epidemic populations of  I. typographus. High densities 

in outbreak conditions rendered a reduced body size and was hypothesized to influence male 

pheromone emission and dispersal capacities (see also Anderbrant et al. 1985). Potentially 

even the perception of beetles could be influenced by reduced size and fat content, as the fat 

content of 3000 tested beetles correlated with both dispersal length and response to 

pheromones and trap trees (Gries 1985). Trypodendron lineatum became responsive to host 

odours first after several hours of flight exercise (Graham 1959). 

To summit, there are several possible explanations for the shift of attack patterns that 

can be observed in aggressive species during an outbreak situation and back to periods of 

latent aggressiveness: 

1. Genetic variability: There is a large variation in acceptance behaviour (Wallin 

et al. 2002) and in pheromone production (Birgersson et al. 1988; Pureswaran et 

al. 2008). It can be presumed that a great part of this variation is of genetic 
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origin. The aggregation behaviour with common strong pheromone plumes and 

associated attack behaviour may allow extreme phenotypes and a large 

variability to persist. As aggregation pheromones coordinate the attacks, only 

few individuals need to be able to perceive kairomones to start an attack on 

weakened hosts and the individual contribution to the pheromone plume in a 

mass attack will have a limited potential as a driving force in natural selection 

(Pureswaran et al. 2008). In the same time, this large variability also could 

provide the necessary diversity in a population to quickly adapt to fast shifts in a 

changeable environment.  

2. Allelic shift: During endemic phases, beetles that are able to perceive volatile 

host compounds indicating a weak host, would be strongly favoured by 

selection because of the high dispersal losses (Raffa et al. 2005). The level of 

alleles favouring host finding behaviour may rise quickly (as shown in Wallin et 

al. 2002) and provide the population with a higher general host sensitivity, 

which in the initial phase of an outbreak promotes localization of weak hosts 

when the amount of weakened trees suddenly has risen. 

3. Nutritional state: Larger beetles with higher lipid reserves can be observed in 

endemic sites (Furuta 1989; Wallin and Raffa 2004) and in low density 

offspring (Botterweg 1983). Physiological differences alone or in concert with  

allelic shifts may explain the observed differences in attack pattern. Beetles with 

high lipid content have been found to show higher acceptance to host 

compounds (Wallin and Raffa 2004), and large beetles produced more anti-

aggregation pheromones (Pureswaran and Borden 2003a) or more aggregation 

pheromones (Anderbrant et al. 1985), all of which provides these beetles with 

better abilities to pioneer an attack under risky circumstances. The lipid content 

and nutritional state of bark beetles seems also to influence the timing when 

beetles respond to host signals or pheromones. Dispersing beetles do not land on 

trap trees or are caught in pheromone traps until lipid reserves are used up 

during flight or hibernation (Gries 1985; Hagen and Atkins 1975; Krauße-Opatz 

et al. 1995; Nemec et al. 1993). Even brood density resulting in beetles with 

different nutritional state, hence may influence the response to kairomones or 

pheromones differently (Botterweg 1983).   

4. Population size may influence the attack behaviour per se due to beetles’ 

increased acceptance to higher levels of toxic host compounds when they 
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experience that they are many (Wallin and Raffa 2002; Wallin and Raffa 2004). 

The ground for such semi-social behaviour presumably exceeds pure olfactory 

communication and needs to be explored further.     

 
 

8. A suggested host choice model in Ips typographus:  

First – second year:  

Endemic populations are reduced to find single downed trees, which may be of relatively low 

quality depending on freshness, but may release relatively high plumes of host volatiles. 

Survival rates in endemic populations are suggested to be low due to large dispersal losses 

(predator losses and exhaustion during extended searching for suitable hosts reduces 

population size). Healthy host trees release low amounts of volatiles and possess strong 

defences. Successful host finding is facilitated by host odours released by stressed trees or by 

pheromones released by pioneering beetles. Offspring quality depends on host quality and 

intra/interspecific competition. A low population size can be maintained during many years, 

as long as conditions remain the same. The poor supply of suitable breeding material favours 

beetles with good host detection ability, reducing their dispersal losses and giving them a 

head-start in reproduction.  

Third year: 

A storm or other environmental disturbances may result in large amounts of suitable high 

quality breeding material. This altered condition allows more beetles to find a suitable host, 

resulting in higher survival and high reproduction and offspring quality due to low 

intraspecific condition and high host quality. Host finding is facilitated by high host volatile 

release rates, but pheromone plumes will remain relatively small due to low beetle densities. 

Depending on the weather conditions even a second generation may be able to reproduce and 

the population increases epidemically. There are several circumstances that may shift the 

attack behaviour towards standing trees, e.g. fallen trees lying near by standing trees attract 

many beetles by host volatile and pheromone release. When the colonisation density in the 

fallen trees exceeds the available space, new beetles will try to attack near by standing trees 

and eventually succeed when the population size is big enough to overcome host defences. In 

addition, single standing trees that release larger host volatile plumes compared to 

surrounding trees may attract beetles initiating an attack. The release of host volatiles from 

standing trees increases in high temperatures especially when they are damaged or stressed. 
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The release of pheromones from beetles attacking high quality trees (healthy trees with higher 

nutritious value) is higher than from poor trees. Beetles that attack standing trees attract large 

number of beetles from the growing population pool. The attack will switch over to 

neighbouring trees and continue until no more beetles join the attack. The attack is maintained 

solely by pheromone attraction. As long as the balance between trees’ defensive ability and 

beetles’ population size supports the continued ‘aggressive’ behaviour of beetles, no favour is 

given to beetles with a good host detection ability and the genetic variation of perception is 

maintained. However, trees with extraordinary defence reactions may survive even under 

extreme attack conditions. When weather and other environmental factors favours the defence 

ability of the trees and prevents the dispersal activity of the beetles, the epidemic population 

may suffer by overpopulation depression and the population size may fall under the critical 

threshold that allows beetles to overwhelm the defence of living trees. This reduces the 

population to an endemic level until new events increase the amount of available breeding 

material.     
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9. Gaps of knowledge: issues for further research in the ecology of 
Ips typographus  

On basis of the review of recent literature, the following crucial gaps in our current 

knowledge on ecology of Ips typographus can be identified and should be topics of future 

research: 

 

1. What are the behavioural functions of known host odour responses of the 

peripheral nervous system? 

2. Can we find responses to other compounds indicating host quality and 

influencing host choice, e.g. oxygenated host compounds? 

3. What is the importance of gustatory cues (taste) in host choice? 

4. What is the importance of host defensive capacity for pheromone production and 

thus for the resistance of host trees? 

5. To what extent do symbiotic and antagonistic fungi influence host acceptance by 

aggressive bark beetles? 

6. Does the nutritional state and quality of beetles influence the olfactory system? 

7. Is attack density influencing the host choice behaviour of I. typographus. Can 

beetles perceive that they are many and what are the mechanisms for such ‘semi-

social’ behaviour? 
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