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Classification of Sweden’s Forest and Alpine Vegetation Using 
Optical Satellite and Inventory Data.  

Abstract 
Creation of accurate vegetation maps from optical satellite data requires use of 
reference data to aid in interpretation or to verify map results. Reference data may be 
taken, for example, from field visits, aerial photo-interpretation, or ground-based 
inventories. National inventories are a potential source of reference data useful in land 
cover mapping projects. 

This thesis addresses aspects of mapping forest and alpine vegetation in Sweden 
through combined use of optical satellite data and inventory data. Issues such as 
reference and satellite data pre-processing, spatial scale, quantity and quality of 
reference data, and classification methods have been examined. Optical satellite data 
with pixel sizes ranging from 10 to 300 m have been used together with reference data 
from the Swedish National Forest Inventory (NFI), National Inventory of Landscapes 
in Sweden (NILS), a point sample based on the Terrestrial Habitat Monitoring program 
(THUF), and a forest stand database.  

Results include modifications to common remote sensing methods, such as 
introducing iterative adjustment of prior probabilities in Maximum Likelihood 
classification, and improved topographic normalization (C-correction) of satellite data. 
Probability-based samples such as NFI, NILS and THUF provide data necessary for 
assignment of prior probabilities, estimation of continuous values, and are useful as 
training and validation data. For managed boreal forest stands, coarser pixel (60 m) 
AWiFS data were nearly as effective for stem volume estimation as SPOT 5 data (10 
m). On the other hand, the most accurate classification of detailed alpine vegetation 
types (72.9% overall accuracy) was from SPOT 5 data combined with elevation 
derivatives, while classifications of Landsat TM (25 m), AWiFS, and MERIS (300 m) 
were less accurate. Non-parametric methods (e.g., random forests, decision/regression 
trees) produced higher classification accuracies than traditional parametric methods for 
alpine vegetation. The quantity of reference data affected classification accuracy, as 
more reference data produced higher map accuracy, although other factors such as 
distribution and quality of the reference data should be considered. As seen in this 
thesis, the characteristics of the landscape exert an influence on satellite and training 
data requirements, classification methods and resulting map accuracy. 
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1 Introduction 

Land cover maps are valuable data sources for environmental monitoring, 
natural resource inventory and management, policymaking and enforcement, 
climate change studies, and wildlife habitat mapping, to name just a few 
applications. The underlying primary data source for these maps is often 
remotely sensed data, whether from aerial- or satellite-borne sensors. Satellites 
provide a continuous and synoptic view of the globe, making wall-to-wall land 
cover mapping possible on local, regional and global scales. However, 
processing satellite data into map products requires the use of reference data, 
whether to aid in interpretation of the satellite data or to verify map results. 
Reference data may be derived from field visits, aerial photo-interpretation, or 
ground-based inventories, for example. National inventories are a potential 
source of reference data that can be applied to large-area land cover mapping 
projects. 

An increasing number of countries have established National Forest 
Inventories (NFIs; Tomppo et al., 2010), although the sampling design, 
sampling method, variables measured, and temporal cycle of the inventory may 
differ between countries (Lawrence et al., 2010). The Nordic countries are 
among those with a long-established history of NFIs (Tomppo et al., 2008) and 
Sweden’s NFI started in 1923 (Axelsson et al., 2010). Today, the Swedish NFI 
measures forest variables based on fixed-area GPS-located plots for all forested 
land within the country, running on a five-year cycle. Sweden also has a newly 
established (started 2003) terrestrial inventory program, the National Inventory 
of Landscapes in Sweden (NILS), measuring variables on fixed-area GPS-
located plots for all land cover types (Ståhl et al., 2011). Both the NFI and 
NILS are objectively collected, probability-based samples, providing a sound 
basis on which to assess and monitor resources and biodiversity over large 
regions. The possibility of combining Sweden’s NFI data and satellite data has 
been researched and put into operational use for mapping forest types and 
parameters (Nilsson, 1997; Reese et al., 2003). The relatively new NILS 
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program provides similar opportunities for mapping other land cover types, 
such as in the mountain areas. 

The creation of land cover maps from the combination of satellite data and 
inventory data is seldom straightforward, and there are many factors that 
influence the final outcome. Factors that must be considered during the 
mapping process include geo-location of the reference data and co-location 
with satellite data; the spatial properties of the inventory unit, the satellite data, 
and the landscape to be mapped; the distribution and amount of the reference 
data; the radiometric pre-processing of the satellite imagery; the thematic 
classification scheme; methods used to classify the satellite data; and 
assembling a dataset for accuracy assessment. Despite the existence of 
inventories and satellite data over several decades, some aspects of their 
combined use are still in experimental as opposed to operational stages. 

This thesis addresses the subject of land cover mapping using different 
sources of optical satellite data and inventory data. The study areas are located 
in both the forest and mountain areas of Sweden. Various challenges 
encountered in image processing, such as topographic normalization, image 
data pre-processing, scale issues, quantity and quality of reference data, and 
classification methods, have been addressed in the papers. In some cases, the 
work has been carried out in relation to an operational, nationwide mapping 
project or as steps towards such a project. 

1.1 Optical satellite sensors 

By the term “optical” satellite data, it is meant that the sensor operates within 
the optical spectrum (from 100 nm to 1 mm), of which the 400-780 nm 
wavelengths are visible to the human eye (e.g., blue, green, red). The optical 
sensors used in this thesis are concerned with those that operate in the visible, 
as well as near- and short-wave-infrared portions of the optical spectrum 
(Kramer, 2002; Lillesand et al., 2008). The optical sensors recording reflected 
solar energy are considered “passive” sensors, whereas “active” sensors (e.g., 
radar, LiDAR) send out self-generated energy whose return signals are 
recorded by the sensor. This thesis restricts the scope of study to passive 
optical sensors carried on satellite platforms.  

Optical satellite sensors have several important and variable properties, 
including the pixel resolution, nadir viewing versus off-nadir viewing 
capability, swath width, number of spectral bands and bandwidths, radiometric 
quantization of each band, and temporal resolution. Table 1 gives properties of 
the optical satellite data sources used in this thesis. 
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1.2 Land cover mapping 

Land cover is defined as “the type of feature present on the surface of the 
earth” (e.g., forest, water, asphalt), while the term land use is “associated with 
human activity or economic function” (e.g., forestry or residential areas) 
(Lillesand et al., 2008). Land use/land cover (LULC) is often used as a 
collective term, indicating that a map is either one or a mix of both types. The 
first LULC maps derived from remotely sensed data used aerial photography as 
a basis (Colwell, 1960). Early optical remote sensing efforts (the earliest 
known dating to 1858) involved placing cameras on balloons and kites 
(Lillesand et al., 2008). Starting in the early 1900’s, photographs were taken 
from airplanes, initially for military purposes, and later for civilian mapping 
purposes. In the 1960’s, space-based cameras were introduced, and in the 
1970’s the era of operational satellite-borne sensors for earth resource 
monitoring began and continues today.  

LULC maps derived from photographic data (e.g., aerial photographs) have 
commonly been interpreted visually by delineating polygons around 
homogenous land cover units. Detailed land cover mapping projects using 
aerial photos tended to be local or regional in area, due to labor-intensive 
interpretation and areal coverage of photographs. However, a few national 
LULC mapping projects using aerial photography have also been completed 
(e.g., Land Cover of Scotland 1988, Sweden’s Mountain Vegetation Map).  

A shift towards operational large-area LULC mapping projects was made 
possible with the launch of the first civilian Earth Observation (EO) satellite on 
July 23, 1972 (ERTS-1, later renamed Landsat-1; Kramer, 2002). The EO 
satellites provided digital data over the Earth’s surface in a consistent manner, 
making data available for land cover mapping for all locations on the globe. In 
the 1970’s and early 80’s, analyzing a single satellite image or subset of an 
image was common. In the mid 1980’s to early 90’s, national and global 
mapping applications began to appear using coarse resolution meteorological 
satellite data (e.g., NOAA AVHRR) with a resolution of 4 km pixels 
(Townshend et al., 1987), increasing to 1 km (Loveland et al., 1991). Global 
scale mapping continues in the 21st century, using AVHRR data (Hansen et al., 
2000; Walker et al., 2005) or other coarse resolution optical sensors such as 
SPOT-VEGETATION (Bartholome & Belward, 2005), ENVISAT MERIS 
(Arino et al., 2008), or Terra/Aqua MODIS (Friedl et al., 2010).  
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Table 1. Properties of the satellite sensors used in this thesis. 

Satellite and 

Sensor 

Swath width 

(km) 

Number of 
bands 

Spectral bandwidths 

(µm) 

Pixel  

size (m) 

Radiometric 

quantization  

Landsat 
TM/ETM+ 

185 7/81 Blue (0.45-0.52) 

Green (0.52-0.60) 

Red (0.63-0.69) 

NIR (0.76-0.90) 

SWIR1 (1.55-1.75) 

SWIR2 (2.09-2.35) 

Therm (10.40-12.50) 

Pan (0.50-0.90) 1 

30 

30 

30 

30 

30 

30 

120/602 

13×15 

8-bit 

SPOT HRG 60-80 4 Green (0.50-0.59) 

Red (0.61-0.68) 

NIR (0.78-0.89) 

SWIR (1.58-1.75) 

10 

10 

10 

20 

8-bit 

IRS-P6 
Resourcesat-1 

AWiFS 

3703 4 Green (0.52-0.59) 

Red (0.62-0.68) 

NIR (0.77-0.86) 

SWIR (1.55-1.70) 

60 

(resampled 
from 56 at 
nadir) 

10-bit 

ENVISAT 
MERIS4 

575 15 1 (0.408-0.418) 

2 (0.437-0.447) 

3 (0.485-0.495) 

4 (0.505-0.515) 

5 (0.555-0.565) 

6 (0.615-0.625) 

7 (0.659-0.669) 

8 (0.677-0.685) 

9 (0.703-0.713) 

10 (0.750-0.758) 

11 (0.759-0.763) 

12 (0.771-0.786) 

13 (0.855-0.875) 

14 (0.880 – 0.890) 

15 (0.895-0.905) 

300 

300 

300 

300 

300 

300 

300 

300 

300 

300 

300 

300 

300 

300 

300 

16-bit 

TERRA/ 
AQUA MODIS 

2330 365 Red (0.620-0-670) 

NIR (0.841-0.876) 

Blue (0.459-0.479) 

Green (0.545-0.565) 

NIR (1.230-1.250) 

SWIR1 (1.628-1.652) 

SWIR2 (2.105-2.155) 

250 

250 

500 

500 

500 

500 

500 

16-bit 

1Panchromatic band (band 8) on Landsat ETM+ only. 2Thermal band has 60 m resolution for Landsat ETM+ 
only. 3Using one sensor, swath width is 370 km, while using both sensors gives a swath width of 740 km. 
4MERIS’ bandwidths are programmable. At time of imaging, the bandwidths shown were used, ranging from 
violet to NIR. 5Bands 1-7 only shown, bands 8-36 (from 0.405 up to 14.385 µm) have 1 km pixel size. 
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In the mid- to late-90’s, more large-area, multiple scene mapping projects 
began using medium resolution satellite data (e.g., Landsat TM). This change 
was due to several factors including advances made in computer technology 
allowing processing of larger data amounts (Wulder et al., 2003), the decreased 
cost of satellite data and cooperative buy-and-use agreements (Lauer et al., 
1991; Lins & Kleckner, 1996), and improved GPS-positioning, especially after 
2000 when intentional degradation of GPS positioning ceased and better 
technology increased positional accuracy. For much of the 1980’s, 90’s and 
early 2000’s, the Landsat series of satellites was the primary data source for 
LULC mapping projects. Landsat TM possessed a pixel size (30 m) suitable to 
many mapping purposes and a wide swath width (185 km), making it more 
practical and less expensive to use than SPOT data (60 km swath width). 
However, with the failure of Landsat 7’s Scan Line Corrector (SLC) in May of 
2003, alternative medium-resolution data sources were more actively sought 
for large area projects, such as AWiFS (Johnson, 2008), ASTER (Franklin et 
al., 2011), and SPOT. While Landsat 5 TM acquired data long past its 
scheduled design lifetime, it has ceased to function on an operational level. The 
so-called “Landsat data gap” is now a reality, with lack of access to Landsat 
data before the next Landsat mission (i.e., Landsat Data Continuity Mission or 
LDCM) is to be launched as planned for December 2012 (Goward et al., 2006; 
Franklin et al., 2011).  

Today, current motivators for the production of LULC maps include new 
directives regarding biodiversity monitoring and carbon accounting, with a 
need for data comparable across national boundaries. Some of these stem from 
the EU, such as The Habitats Directive of 1992 and Natura 2000 (Lengyel et 
al., 2008), while others are of a global nature, such as the Kyoto Protocol and 
the Convention on Biological Diversity (CBD 2009). Other large area 
cooperative efforts are, for example, the Global Monitoring for Environment 
and Security (GMES) and Inspire directives in Europe, and the Group on Earth 
Observations (GEO) on the global level.  

1.3 Landscape heterogeneity and satellite data pixel size 

The importance of satellite data pixel size and scale issues deserves special 
attention in the case of land cover mapping. In the remote sensing context, 
Woodcock and Strahler (1987) use the term “spatial resolution” to refer to the 
sensors’ ability to resolve the spatial detail of the landscape. Satellite data are 
often categorized by the pixel size (i.e., spatial resolution) as low (coarse; 200-
1000 m pixel size), medium (moderate; 10-200 m), or high (fine; <10 m) 
resolution. Strahler et al. (1986) described two different types of models 
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representing the interaction between satellite spatial resolution and the scale of 
the objects being observed. These were H-resolution and L-resolution, in which 
H-resolution image pixels are smaller than the objects observed, and in L-
resolution where the objects are smaller than the image pixels. As an example, 
for forests, H-resolution may translate to “several pixels per tree”, while L-
resolution translates to “many trees per pixel.” Several studies have shown 
decreasing thematic classification accuracy with increasing spatial resolution 
(Woodcock & Strahler, 1987; Marceau et al., 1994). In general, coarser 
resolution satellite data will have more pixels containing mixtures of cover 
types, making estimation of vegetation parameters more difficult (Lu, 2006). 
H-resolution imagery does not assure higher classification accuracies 
(Atkinson & Aplin, 2004), as aggregated spectral information of the landscape 
may be necessary for accurate classification. For example, not only the spectral 
reflectance from tree crowns but also the shadow cast by the tree crowns is an 
important source of information for the estimation of forest parameters. A 
moderate resolution pixel will capture both tree crown and its associated 
shadow. Higher spatial resolution data may provide more thematic detail, but 
the trade-off in pixel size is generally paid for with a smaller scene area 
coverage, resulting in a potentially more costly and complex mapping project. 

Different landscapes present different levels of heterogeneity and transitions 
between land cover types can be distinct or fuzzy, and hard to define even in 
the field. The spatial composition of the landscape structure, such as the forest 
stand sizes present, and the diversity within it such as presence of elements like 
bedrock outcrops, wetlands, water bodies, and roads, may also have an effect 
on the result (Smith et al., 2002; Aplin, 2006; Lam & Remmel, 2010). The 
properties of the landscape and the goals of the mapping project exert 
important influences on the appropriate choice of remotely sensed data that 
have an “optimal spatial resolution” (Woodcock et al., 1988). Some research 
has been done on determining “optimal pixel size” (Stoy et al., 2009), often 
involving the use of variograms (Woodcock et al., 1988; Atkinson & Curran, 
1995; Treitz & Howarth, 2000). Others have proposed using multiple-scale 
remotely sensed data for land cover classification (Ju et al., 2005; Hilker et al., 
2009). The production of global land cover data often requires the use of 
coarse resolution data, which has stimulated the use of sub-pixel estimation 
methods to capture information about the heterogeneity within the larger pixel 
(Defries et al., 2000). Lastly, it should be noted that the measured spectral 
response is related to the scale of observation, and may result in non-linear 
relationships between the scales of observation, in particular with NDVI 
(Chen, 1999; Jiang et al., 2006).  
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1.4 Combining satellite data and reference data for classification 

Reference data can be derived from many sources, such as high resolution 
remotely sensed data (e.g., aerial photographs, video, IKONOS, or LiDAR), 
map data, field-collected data, and inventory data. Reference data have 
assigned or measured variables describing properties of the sample plot (e.g., 
land cover class, percent shrub cover) and often have associated geographic 
coordinates. The satellite data are provided as geo-coded raster data with 
separate bands for each spectral wavelength. The common geographic 
locations allow the association of the spectral data to the variables from the 
reference data (see Figure 1). The aim is to associate known vegetation 
characteristics with spectral data, ideally having distinguishable spectral 
characteristics (i.e., “spectral signatures”), making creation of LULC maps 
from satellite data possible. 

 
Figure 1. Example of a 10 m radius NFI plot corresponding to the same geographic location in 
Landsat TM data (25 m pixels). 

The process of creating thematic LULC maps is often done using 
“classification” methods, which can be divided into two groups: supervised and 
unsupervised. Unsupervised classification methods first cluster the satellite 
data based on the statistics of the image, initially without use of reference data. 
Reference data are used afterwards to assign a class label to each cluster. 
Unsupervised methods are often used when reference data are sparse or 
inadequate (Cihlar et al., 2000). Supervised classification is initially dependent 
on reference data. The reference data are used to identify a subset of the pixels 
in the image to build a model for the classification algorithm. The model is 
then applied to the entire satellite image. These reference data are referred to as 
“training data”, and a good training data set should assign class labels to the 
range of spectral values present within the satellite image. 

There are many different supervised classification methods, which can be 
separated into two groups: parametric methods, such as the maximum 
likelihood classification method (Hubert-Moy et al., 2001; Tso & Mather, 
2009), and non-parametric methods, such as decision and regression trees (Pal 
& Mather, 2003), random forests (Pal & Mather, 2005; Gislason et al., 2006), 

NFI data: 100% pine, 15 m mean tree height, 1000 stems/ha 

Satellite data DNs: Red band = 42, NIR = 77, SWIR = 61 
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kNN (Tomppo et al., 2008), support vector machines (Foody & Mathur, 2006; 
Tso & Mather, 2009), and neural networks (Atkinson & Tatnall, 1997). 
Parametric classifiers rely on defined statistical properties of the training data 
(e.g., normal distribution), whereas non-parametric do not. Classification can 
be carried out at the pixel level or at an aggregated level, such as segments 
(e.g., object-oriented classification). Classification methods can be combined, 
such as ensemble or majority-vote classifiers (Pal, 2005; Foody et al., 2007), or 
guided clustering (Bauer et al., 1994). Lu and Weng (2007) provide a recent 
review of image classification methods. 

While this thesis focuses primarily on classification of satellite data, 
estimation methods should also be mentioned. Estimation methods for raster 
data use models to predict continuous values as an output, as opposed to a 
thematic class, for each pixel in the satellite data. Estimation of forest 
parameters is a common application (e.g., stem volume, percent forest cover). 
Estimation requires reference data and satellite data as input, and applies 
methods such as kNN (Nilsson, 1997; Tomppo et al., 2008), regression, or 
regression trees (e.g., Olthof & Fraser, 2007). Raster output from continuous 
value estimation can also be used to assign a thematic class to a pixel. When 
continuous values are estimated with the goal of creating a thematic map, this 
is sometimes referred to as “soft” classification (Fernandes et al., 2004). As a 
simple example, a raster output of percent forest cover can be converted to a 
two class thematic map of forest and non-forest by defining forest by the 
percent forest cover. Running et al. (1995) suggests that estimating continuous 
variables and creating thematic classes from the results allows for more 
flexibility and use of the results.  

The availability of reference data (or lack thereof) is a major factor 
influencing many aspects of a mapping project. Much research has been 
conducted on classification methods, while relatively few guidelines have been 
published regarding methods of collection or properties of training data for 
operational mapping projects. In projects where reference data are scarce or not 
available, data for the purpose of the project are often collected, sometimes 
called “purpose-collected” training data. The training samples are often 
subjectively chosen locations, and homogenous groups of pixels, either 
identified in the field or by other means, and frequently in close proximity to 
roads. Subjective identification of training data is thus biased by the operator, 
however, it is the most common method of constructing a training data set. 
There may be advantages and disadvantages to using either subjectively or 
objectively collected training data. In operational projects, availability of data, 
cost of data collection, the characteristics of the landscape, the scale of the 
satellite data, and the aims of the mapping project (e.g., classification scheme 



17 

or accuracy goals) often determines what type of training data will be used. 
Reference data have another significant role in the image classification process, 
which is for accuracy assessment of the map.  

1.5 Pre-processing of satellite data 

Satellite data can be influenced by effects from the atmosphere, solar 
illumination angles, topography, and sensor view angles. Since these effects 
complicate the classification process and can decrease classification accuracy, 
a great deal of research has been carried out to develop methods to reduce their 
influence. However, in many large area projects, pre-processing beyond 
geometric correction is often not done (Franklin & Wulder, 2002). Vogelmann 
et al. (2001a) review the effects of radiometric calibration on landscape 
mapping. 

One correction is the reduction of atmospheric effects in order to obtain 
reflectance values. There are two categories of corrections, namely absolute 
and relative. Absolute correction requires data regarding atmospheric 
conditions at the time of image acquisition, which are often difficult to obtain. 
Relative reflectance correction can be done by normalizing an image relative to 
another data source, for example, to another image which has already been 
corrected (Song et al., 2001). Large area projects often need to use satellite 
images from different dates. If multiple scenes are used with extension of 
training data from one scene to another (Pax-Lenney et al., 2001; Olthof & 
Fraser, 2007), reflectance normalization is a necessary pre-processing step. 
Clouds and haze are a common problem in mountainous and tropical 
environments. For Sweden’s GSD-Land Cover map, a haze normalization 
process used NFI data to identify dense coniferous forest to construct a relative 
scene-wise haze index based on these areas (Hagner & Olsson, 2005). 

Topographic characteristics of the landscape, such as slope and aspect, in 
combination with the solar zenith and azimuth angles, result in illumination 
differences within a satellite image. Topographic normalization methods adjust 
the spectral radiance in an image so that a vegetation class will have similar 
spectral values whether facing away from or towards the sun (Holben & 
Justice, 1980). While in mountainous areas the effects of topography and 
illumination angles are greater, topographic and illumination normalization is 
also performed for images over non-mountain areas. There are several 
categories of topographic normalization methods, such as 
photometric/photometric-empirical, statistical-empirical, sun-canopy-sensor, 
and physically based models (Soenen et al., 2008). Based on the fact that non-
Lambertian reflectance varies in degree with surface roughness and therefore 



18 

by vegetation characteristics (Holben & Justice, 1980; Teillet et al., 1982), 
different topographic normalization methods are suggested for different 
vegetation types. Sun-canopy-sensor models or physically based models are 
more appropriate for forests, whose geotropic growth and canopy self-
shadowing need to be taken into account (Gu & Gillespie, 1998). Semi-
empirical normalization methods, such as the C-correction (Teillet et al., 1982) 
and Minnaert correction (Smith et al., 1980) are more appropriate for 
vegetation of shorter stature, such as that in the alpine areas.  

Wide-angle sensors, such as AVHRR, MODIS, MERIS, and AWiFS, 
acquire data over such large swath widths that the radiance measured at nadir is 
not comparable to the radiance at the far edge of the image for the same 
vegetation class. The sensor viewing angles and solar illumination angles differ 
over the image area, but can be described by the Bidirectional Reflectance 
Distribution Function (BRDF) and thereby corrected (Li et al., 1996). Such a 
correction is more critical in the case of physical parameter estimation as 
opposed to classification. The distributors of MODIS data provide Nadir 
BRDF-adjusted image products (Roman et al., 2009). 

1.6 Classification methods  

1.6.1 Discriminant analysis and maximum likelihood 

Discriminant analysis is a method by which one assigns class membership to 
an unknown observation based on a sample of data with known class 
memberships (Lachenbruch & Goldstein, 1979). For each class, a probability 
density function based upon the sample data distribution, as well as prior 
probability weights for each class (normally assigned by the user) are used to 
calculate the probability of getting the values in the sample data set. Then a 
posterior probability that an observation belongs to a certain class is calculated 
using the prior probabilities, the probability density function, and the 
probability of occurrence for that observation. These calculations are 
collectively also called the Bayes’ rule. The maximum likelihood estimator is a 
rule used in Bayesian discriminant analysis, in which the observations are 
assigned to the most “likely” (i.e., highest probability) class, in order to 
maximize correct classification assignment. Discriminant analysis works best 
following the assumption that the data for each class and variable are normally 
distributed. In some cases, the covariance matrices of the different classes in 
the data may have the same distribution, and in this case, a linear discriminant 
analysis can be used. In cases where covariance matrices are not the same 
between classes, quadratic discriminant analysis should be used.  
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In remote sensing, practitioners often refer to the “Maximum Likelihood” 
(ML) supervised classification method (Lillesand et al., 2008). Maximum 
likelihood classification was often used for land cover mapping projects in the 
1980’s and 90’s, and is still used today. In practice, the application of ML 
classification in land cover mapping has often assumed equal prior probability 
of class occurrence due to lack of sufficient information about the frequency of 
class occurrence. When prior probabilities of occurrence can be assigned to the 
classes in the training data, this has sometimes been referred to in the remote 
sensing literature as an “extension of maximum likelihood” (Pedroni 2003).  

In essence, when remote sensing practitioners refer to “maximum likelihood 
classification using prior probabilities”, they are most often using Bayesian 
quadratic discriminant analysis, which uses prior probabilities. On the other 
hand, if a “maximum likelihood” classification without prior probabilities is 
used, then this is actually Bayesian discriminant analysis with equal prior 
probabilities for all classes. If equal probability is assumed and no weights are 
used in the training data, the result may be that more frequently occurring 
classes in the training data will be under-classified (errors of omission) in the 
resulting map and less frequently occurring classes will be over-classified in 
the map (errors of commission). Several remote sensing studies have pointed 
out the utility of including prior probabilities within the “maximum likelihood” 
classifier (Strahler, 1980; Skidmore & Turner, 1988; Pedroni, 2003), finding 
that it improved land cover classification accuracy, particularly for spectrally 
similar classes.  

1.6.2 Decision trees, regression trees, and random forests 

The use of non-parametric methods for land cover classification has increased 
in the past decade, with three methods being widely used, namely decision 
trees, regression trees and random forests. Decision trees produce a categorical 
output, regression trees produce continuous variables, and random forests is 
capable of producing both. The non-parametric methods have an important 
advantage over maximum likelihood classification in that data from different 
sources (e.g., spectral data, elevation derivatives, map data) can be combined, 
without the need for assumptions of normal distribution. In decision trees, a 
hierarchical tree is constructed from the training data. The tree consists of root 
nodes, interior nodes and terminal or leaf nodes (Tso & Mather, 2009). Data 
splitting rules are constructed at each non-terminal node based on the training 
data’s spectral and class values. Splitting rules depend on the specific 
implementation of the decision tree, although most often they are based on 
determining the maximum information gain (Quinlan, 1993) and the lowest 
Gini impurity index (Breiman et al., 1984) based on the input variables at each 



20 

node. In decision trees one variable is normally used for splitting at each node, 
although multivariate decision trees have been developed (Friedl & Brodley, 
1997). Pruning of the trees is often necessary to avoid over-fitting of the data, 
often accomplished by setting aside a portion of the training data to use for 
pruning. Regression trees also consist of the same node system, however 
univariate or multivariate regression functions are built to estimate continuous 
values.  

Random forests are a combination of decision or regression tree classifiers 
that use randomly chosen samples from the training data to construct each 
individual tree. Bootstrap samples are taken from the training data, and a 
decision or regression tree is fit using a binary partitioning of the data. 
Majority-voting by a user-specified number of trees (usually a large number) is 
used to assign the final class or continuous value. Random forests uses bagging 
(Breiman, 1996) as well as a random selection of the variables to consider at 
each node, therefore pruning of trees in random forests is not required. Use of 
the random forests classifier has produced classification results that are equally 
accurate (Pal, 2005) or more accurate than other methods (Gislason et al., 
2006; Na et al., 2010), and it is relatively robust to outliers and noise (Breiman, 
2001). Probability of class membership is based on the frequency of classes in 
the training data. Therefore, all the tree classification methods discussed here 
are subject to misclassifications due to imbalanced data (i.e., having an uneven 
distribution of training samples among the classes), and for this reason, weights 
and other improvements are sometimes added (e.g., McIver & Friedl, 2002; 
Chen et al., 2004; Xie et al., 2009). For a more thorough discussion of these 
methods, see Breiman et al. (1984), Friedl and Brodley (1997), Breiman 
(2001), Fernandes et al. (2004), and Tso and Mather (2009). 

1.7 Training data 

The “training data sample” refers to each individual reference plot with 
associated vegetation and spectral information. The “training data set” is the 
term referring to the collection of all training data samples into a data set. The 
number of training data samples needed, the scale of the training sample, the 
sampling scheme, the interaction between the classification method and 
characteristics of the training data set, and the quality of the training data are 
just a few of the issues revolving around training data for supervised 
classification. A sufficient number of training samples and their 
representativeness are clearly critical for image classifications (Hubert-Moy et 
al., 2001; Chen & Stow, 2002; Mather, 2004). However, precise determination 
of the number of training data samples needed to achieve an accurate 
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classification is elusive. This is, in part due to the “catch-22” nature of needing 
detailed and accurate class and spectral information on which to base estimates 
of the number of training data samples needed. It is also due to the complex 
interaction of different factors that influence the classification results. 

Firstly, the characteristics of the supervised classification method exert an 
influence on the requirements from the training data set. As an example, 
statistical classifiers using the mean vector for class assignment will be 
influenced less by outliers in the training data, while classifiers such as Neural 
Networks can be highly influenced by individual poor quality training data 
samples (Mather 2004). Some classifiers, such as maximum likelihood, require 
a minimum of p+1 (p = number of input variables) training samples per class to 
build statistics (e.g., covariance matrices). Based on this, Mather (2004) 
recommended that 10 to 30 times p training samples per class should be used. 
Non-parametric methods don’t face this restriction, but are still affected by the 
total number and frequency of classes in the training data. The number of 
samples necessary to obtain adequate representation of the spectral variability 
present in a class can be determined statistically by sampling. This was done 
by Curran and Williamson (1986), however they based their calculations on 
only one spectral band or a two-band ratio, rather than on all input variables. 
Traditional distance measures of separation between classes are also often used 
(e.g., Jeffries-Matusita distance or Transformed Divergence), but these may be 
poor predictors of actual classification accuracy (Van Niel et al., 2005), as they 
don’t provide information about the adequacy of spectral representation of an 
individual class. 

Not only the representation of a class’ spectral variability needs to be taken 
into consideration, but also the spectral similarity or dissimilarity to other 
classes (Hubert-Moy et al., 2001). As an example, water has a spectral 
signature so distinct from many vegetation types, that a full description of the 
spectral variability of water may not be necessary for accurate classification. 
Two very spectrally similar classes, such as willow and mesic heath require 
careful and full assignment of their spectral characteristics if one hopes to 
accurately classify these overlapping classes. Considering class spectral 
overlap, Van Niel et al., (2005) found that only 2 to 4p training samples per 
class were sometimes necessary. Foody used neural networks (Foody, 1999) 
and Support Vector Machines (Foody and Mathur 2006) which depend on 
good separation between class boundaries in variable space, therefore only 
needing to include minimum and maximum variable values for all classes, 
allowing the training data set size to be smaller.  

In the estimation of continuous values, a larger training data set is generally 
required. Mathys et al. (2009) found that for estimation of continuous 
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parameters, a training data set consisting of the whole range (0-100%) of the 
parameter was necessary. In fact, training samples containing mixes or 0% of 
the parameter were more important than training samples with 100% 
representation of the parameter. 

The size of the sample plot used for training data is also important. Gong 
and Howarth (1990) suggested that training data were best selected using 
single pixels and a systematic sample, however Chen and Stow (2002) said this 
was more suitable for homogeneous land cover types. Chen and Stow (2002) 
tested training samples taken on single pixel level and in blocks of pixels, 
finding that training data set size mattered more when single pixel training 
samples were used, and that blocks of pixels produced higher accuracies for 
training in heterogeneous landscapes. However, their result may have been 
dependent on the urban land use classes particular to their study. When the 
landscape of a study area is complex and heterogeneous, selecting sufficient 
training samples becomes difficult (Lu and Weng 2007). 

The frequency of the classes as represented in the training data has an 
influence on the results. In large area projects, it is desirable to have a priori 
information on the frequency of classes in the area (Cihlar 2000), as input to 
the supervised classification. For this reason, prior probabilities are assigned in 
Bayesian classifiers. Additionally, weights can be added in Decision and 
Regression Tree models to counteract imbalanced data (Xie 2009). Rare 
classes are often a desired class in map products, and sufficient training data 
may need to be collected specifically for this purpose.  

There are also temporal aspects to recognize when using training data. 
Reference data may be collected from dates differing from the satellite imagery 
and this may cause erroneous class assignment. The timing of the image 
acquisition and the vegetation phenology must be considered in relation to the 
training data. In the case of the alpine landscape, the natural seasonal dynamics 
and change in moisture conditions that can occur within the growing season as 
well as from one year to another in the alpine region pose challenges to using 
training data and satellite data from different time points. Within managed 
forest landscapes, silvicultural activities such as thinning and clear-cutting 
need to be identified. In many large area projects satellite images from 
different dates may be used in mosaics, and may involve extension of training 
data, further complicating training data use (Pax-Lenney et al., 2001; Olthof & 
Fraser, 2007).  

Finally, several researchers emphasize the importance of quality control and 
refining training data in order to obtain accurate classifications (e.g., Foody & 
Arora, 1997; Chen & Stow, 2002; Frery et al., 2009; Kavzoglu, 2009). Some 
authors suggest reducing the effects of outliers in the training data by 
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weighting training samples according to their quality (Mather 2004), or by 
subjecting training data to majority-vote classifiers to detect mislabeled data 
(Brodley & Friedl, 1999).  

1.8 Accuracy assessment 

Accuracy assessment of the map product is often an important element for 
the users of the data. It is sometimes not carried out, however, for large area 
projects, due to the lack of reference data, or limitations in project time or 
funding. An independent and objectively collected evaluation data set is 
essential to an unbiased assessment of the map product. Stehman and 
Czaplewski (2003) defined four criteria that should be met: 1) probability 
sampling, 2) adequate sample sizes with which to estimate user’s accuracies 
with acceptable level of precision, 3) cost efficiency must be considered, and 
4) spatial distribution of samples must be representative across the area of 
interest.  

Stehman and Czaplewski (1998) have established three basic elements to 
consider in the design of an accuracy assessment plan: the sampling design, the 
response design, and the estimation and analysis protocol. The sampling unit 
may be a pixel, fixed-area plot or polygon, although the optimal unit depends 
on the application. Stehman et al. (2000) favor pixel-based evaluation units, as 
larger units render the results non-site specific. Polygon assessments also tend 
to lead to conservative estimates of classification accuracy (Verbyla & 
Hammond, 1995). Class homogeneity within the accuracy assessment unit is 
appealing, but not necessary, and if intentionally included, may bias the 
assessment of the map accuracy. A design-based sample with known inclusion 
properties is best, but the distances between plots should be large enough that 
potential spatial auto-correlation effects do not influence the result. Definitions 
constituting correct and incorrect responses should be established (e.g., if 
polygon accuracy assessment units are used, the rule may be that a “correct” 
classification requires a majority of the classified pixels to be correctly labeled 
as the dominant class, or the rule may be that the two most dominant classes 
must both be classified). 

As with training data, questions regarding the sample size and sampling 
scheme of the accuracy assessment data need to be addressed. Stehman (2001) 
suggests that a sample size of 100 samples per class assures the population is 
estimated adequately. Congalton and Green (2009) suggest a minimum of 50 
samples per class. To capture the necessary number of samples for rare classes, 
a stratified sample may be useful (Stehman, 2001). The quality of evaluation 
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data is of much importance, and a quality check of the evaluation data should 
be carried out before use. 

Accuracy assessment is often presented in an “error matrix”, with errors of 
commission (called “user’s accuracy”) and omission (called “producer’s 
accuracy”) for each class in the map, as well as a measure of overall accuracy. 
The kappa statistic, or k-hat, is also a measure of overall accuracy, and is 
intended to account for the chance of random agreement (Congalton and 
Green, 2009). A desired overall map accuracy of 85% is often given as a 
benchmark, but may not be realistic to achieve (Wulder et al., 2006). Fuzzy 
accuracy assessment (Gopal & Woodcock, 1994; Foody, 2002) can be a useful 
measure of portraying different types of errors that may be more or less 
acceptable. 

It is slightly more common that inventory data are used for accuracy 
assessment than for training (e.g., Riemann et al., 2010). Wulder et al. (2006) 
encountered difficulties when applying 2 ha polygon-based inventory data due 
to differences between the raster and vector data, particularly because the 
polygon interpretation included heterogeneous cover. When purpose-collected 
video data were later photo-interpreted for accuracy assessment, the 
uncertainty in the photo-interpretation and the lack of a probability-based 
sample were drawbacks (Wulder et al., 2007). One of the primary requests 
emerging after Canada’s EOSD land cover mapping project was for improved 
collection strategies of calibration (training) and validation (accuracy 
assessment) data (Wulder et al., 2008).  

1.9 National inventories  

Probability-based national inventories can be a source of high quality 
reference data. The initial development of such inventories was often for the 
purpose of estimating the quantity and quality of resources over a given area, 
with the aim of better planning and management of those resources (Cochran, 
1977; Ståhl, 1994; Gregoire, 1998). Inventories may be focused on a particular 
resource, such as forest, or may be more encompassing, such as a terrestrial 
inventory. Today, many countries have some sort of national inventory 
program, but the scope and quality often depends on the economic importance 
of the resource to the country, political or legal requirements, and 
governmental support and administration. 

Sampling techniques can be divided into those that are design- or 
probability-based (“objective”) or non-probability based (“subjective”). There 
are inventories that are collected subjectively, such as wall-to-wall mapping of 
forest stands. Probability-based sampling methods are most often used in 
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inventory design because they can produce data with known statistical 
properties. Probability-based sample designs can differ in their layout, such as 
systematic, stratified random or two-stage cluster sampling. Likewise, the 
sampling unit varies and may be, for example, fixed-area plots or line transects 
(or a combination). Most often a fixed-area plot is used, such as a circular plot 
of a given radius, or square, rectangular, or hexagonal plots. The temporal 
resolution of an inventory is another factor, and plots may be re-surveyed on a 
fixed time cycle (i.e., “permanent plots”, resurveyed every five years), or not 
(“temporary plots”), or have a combination of these. The variables measured 
are a key characteristic of the inventory and can differ widely in number and 
detail. Most inventories undergo moderation in design and methods in order to 
adapt to changing demands by the users of the data, new policy directives and 
new technology.  

Many countries now have a National Forest Inventory program, although 
there are differences between them such as sampling design, definition of 
forest, method of sampling, variables measured, and temporal cycle of the 
inventory (Lawrence et al., 2010). An overview of different NFIs is given in 
McRoberts et al. (2010c) and Tomppo et al. (2010). The Nordic countries are 
among those with a long-established history of NFIs (Tomppo et al., 2008). 
Larger area countries such as Canada and the US tended until recently to have 
forest inventories conducted independently at provincial/territorial or state 
levels. However, a plot-based and aerial photograph-based NFI using a 
common method for the country as a whole was established in Canada (starting 
in 2000) (Gillis et al., 2010) and in the US, the Forest Inventory Analysis 
(FIA) initiated consistent national level inventory in the 1990’s (McRoberts et 
al., 2010b).  

The manner and degree to which remote sensing plays a part in different 
NFIs varies by country. There are synergistic uses of these data sources that 
may improve the results of using either data source alone. Remotely sensed 
data can be used within the context of NFIs in several ways, including as 
ancillary data or substitute for field visits, aiding the estimation of forest 
parameters, and mapping (McRoberts & Tomppo, 2007). Multi-source 
inventory is a term for the inventory system that combines inventory data and 
satellite data derived maps to calculate statistics of the resource under study 
(Tomppo & Tuomainen, 2010). Finland has an example of a true multi-source 
inventory, where forest maps are created from satellite data using the kNN 
algorithm (Tomppo et al., 2008). In Finland and Sweden, satellite images are 
used as an ancillary data source to improve area statistics by post-stratification 
of the NFI statistics (Nilsson et al., 2009; Axelsson et al., 2010). Canada uses 
aerial photographs for inventory assessment in remote areas and Wulder et al. 



26 

(2010) have proposed the introduction of MODIS data for forest monitoring 
and inventory update. The US also uses satellite imagery for both pre-
stratification and post-stratification in their FIA (McRoberts et al., 2002) most 
recently with the use of model-based approaches (McRoberts, 2010) and to 
construct spatially explicit forest maps (McRoberts et al., 2010a).  

The nature of forest inventories has recently been influenced by importance 
of biodiversity indicators and carbon accounting. This has changed and 
expanded the spatial, temporal and categorical properties of many NFIs 
(Falkowski et al., 2009; McRoberts et al., 2010c). Within the latest cycle of the 
Swedish NFI, more fieldwork has been conducted within the mountain birch 
forest than in earlier cycles.  

Some countries have sample-based inventory programs that cover all land 
cover types, regardless of the resource. The UK has conducted the British 
Countryside Survey (Haines-Young et al., 2003), a terrestrial inventory, at 
regular intervals since 1978. More countries are initiating just such inventories, 
as was recently introduced with the Swedish NILS program. Inventory 
programs exceeding national borders are also being initiated, such as the 
European-wide LUCAS inventory that aims to provide a common reference 
data set for Europe with over 230,000 plots across the EU (Martino & Fritz, 
2008). The process to harmonize European inventories used for environmental 
monitoring has also been initiated to enable sharing of data across national 
boundaries (Bunce et al., 2008). 

Sweden has a number of national inventory programs, three of which are 
described in the following sections. All of these inventories have their 
administrative and, in part, functional base within the Department of Forest 
Resource Management at the Swedish University of Agricultural Sciences. The 
placement of these inventory programs within a university allow for research to 
be conducted which can be used in the inventory program, and provides 
infrastructure for data sharing and communication among the sections at the 
Department, which includes the Section of Forest Remote Sensing. 

1.9.1 The Swedish National Forest Inventory (NFI) 

The NFI is a probability-based stratified sample that measures hundreds of 
variables on trees, vegetation, soil, and other aspects. Circular field plots (10 m 
radius for permanent plots, 7 m radius for temporary plots) are systematically 
arranged as tracts that vary in number, dimension, number of plots, and 
distance between plots, depending on the geographic stratum in which they are 
located. All permanent plots are re-surveyed every five to ten years, and GPS 
has been used for assigning plot coordinates since 1996 (Axelsson et al., 2010). 
Over 10,000 plots are field-visited and measured each year. 
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1.9.2 The National Inventory of Landscapes in Sweden program (NILS) 

The objective of the NILS program is to “provide data for and perform 
analyses of landscape biodiversity conditions and changes in terrestrial 
environments in Sweden” (Ståhl et al., 2011). Towards this aim, a probability-
based stratified sample inventory was established. The stratification is based on 
ten geographical regions within Sweden, and within each stratum 5 × 5 km 
squares are arranged systematically, forming the basic inventory units. There 
are a total of 631 squares, with distances between them depending on the 
geographic stratum. Within each 25 km2 sample unit, the inner 1 × 1 km square 
is photo-interpreted using a full-coverage polygon delineation, and twelve 
systematically arranged (250 m between plot centers) fixed-area plots are field-
visited, in addition to twelve 200 m long line transects for linear feature 
inventory between the field plots. The field plots are GPS-located and 
permanent, and all plots are re-surveyed on a five-year cycle. The field plots 
are based on concentric circles, with a 20 m, 10 m, and 3.5 m radius plot, with 
an addition three small plots of 0.28 m radius in a cluster arrangement from the 
plot center, with different variables measured in each of these plot sizes.  

1.9.3 The Terrestrial Habitat Monitoring program (THUF) 

The Terrestrial Habitat Monitoring program (THUF) is concentrated on 
vegetation types to be protected under the EU species and habitat directive. It 
is conducted in close cooperation with NILS. A project within THUF is the 
“Demonstration of an integrated North-European system for monitoring 
terrestrial habitats” project, or MOTH (Gardfjell & Hagner, 2011). Within the 
25 km2 squares of NILS, a point-sample is systematically arranged over a 2 × 5 
km area and photo-interpreted from CIR aerial photographs. There are 200 
points, arranged with 250 m between each point, and a vegetation class (based 
on Natura 2000 classification system) is recorded for the center point within a 
10 m radius circle. Plots containing vegetation types of interest are field-
visited.  

1.10 National land cover mapping projects using optical satellite 
data 

Among one of the first national land cover maps produced from moderate 
resolution data was the UK’s 1990 Land Cover Map (LCM1990). The LCM is 
one of two complementary parts of the British Countryside Survey, the other 
part being a national field-based inventory of 508 1 × 1 km squares (Smart et 
al., 2003). LCM 1990 used two-season Landsat TM data and subjectively 
chosen training data for a supervised classification (Fuller et al., 1994). 



28 

Accuracy assessment was conducted with both subjectively chosen field-
visited areas and some Countryside Survey field data. The LCM was repeated 
in 2000 (Fuller et al., 2002) and 2007 (Morton et al., 2011) using Landsat data 
and subjectively chosen reference data. 

The CORINE project mapped land cover for European Union countries, 
using Landsat TM data from 1990 and repeated using Landsat TM/ETM+ data 
from 2000 (CLC1990 and CLC2000). The mapping was operated at a national 
level, with a common classification scheme and variable classification 
methods, ranging from manual visual interpretation to fully automated 
supervised classification. The UK and Sweden chose to first develop more 
thematically and spatially detailed national products which were then 
generalized to produce the 25 ha resolution CORINE land cover map (e.g., 
Fuller et al., 2002; Hagner & Reese, 2007).  

In the US, the Gap Analysis Program (GAP) began in 1987 to produce 
regional and national land cover maps from Landsat TM data to be used in 
habitat analyses. Classification was conducted at state or multiple-state levels. 
Supervised classification was carried out primarily with subjectively-chosen 
field data sites (e.g., Homer et al., 1997), sometimes complemented with 
inventory data (e.g., Reese et al., 2002; Lowry et al., 2007). An updated 
nationwide GAP land cover map was recently completed in 2010. Concurrent 
to GAP, a mapping project called the National Land Cover Data set (NLCD 
1992; Vogelmann et al., 2001b) was initiated based on a single classification 
method for the whole country. NLCD 1992 employed an unsupervised 
classification of Landsat TM/ETM+ data and used aerial photographs as 
reference data. The project was repeated in 2001 (NLCD 2001; Homer et al., 
2007), this time using decision and regression trees with Landsat, DEM 
derivatives and other ancillary data, to produce both a thematic land cover map 
and continuous values (e.g, percent tree canopy and percent urban impervious 
surface). The training data were derived from map data, field-visited plots and 
FIA plot data. NLCD 2006 has been recently completed, which is an update to 
NLCD 2001 using change detection methods (Xian et al., 2009). 

Canada has produced a national land cover map referred to as EOSD Land 
Cover 2000 (Wulder et al., 2008). Over 480 Landsat TM/ETM+ images were 
used to produce an unsupervised classification of 23 classes for the forested 
area. Provincial forest inventory data, aerial photo data, and local knowledge 
were used to assign class labels to the clusters. At the time of the EOSD LC 
2000 project, the new Canadian NFI had not been completed, and was not 
available for operational use. Recently, classifications made from the 
integration of new NFI data and Landsat data (Remmel et al., 2005) have been 
tested in British Columbia. 
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The number of operational large area classification projects employing 
national inventory data as training data is surprisingly few. The US NLCD 
2001 map used FIA data together with Landsat data in a decision tree 
classification and regression tree estimation of percent tree cover (Homer et al., 
2007). In Sweden, NFI data were used in an automated, supervised maximum 
likelihood classification of Landsat data for the forest classification in 
CORINE and the more detailed national product, the GSD-Land Cover Map 
(Hagner & Reese, 2007). Within Canada’s EOSD mapping project, although an 
unsupervised hyper-clustering approach was used for forest, a combination of 
provincial forest inventory data and aerial photo data were used to label the 
clusters (Wulder et al., 2008). Such large-area operational projects are often 
made up of multiple satellite scenes, and often need to rely on some degree of 
automated processing in order to maintain consistent results between scenes, to 
enable reproduction of results, and to meet time and budget restraints 
(Aitkenhead & Aalders, 2011). However, use of automation is not widely 
prevalent, perhaps due to the intricacies and the “art” of classification, where 
manual intervention is seen as necessary.  

Large area, medium-resolution map products which are predictions of 
continuous values (as opposed to thematic classifications) based on the 
combination of satellite data and NFI are more numerous, as the popularity of 
the kNN method (Tomppo, 1990) for forest parameter estimation spread from 
the Nordic countries. Finland started to produce nationwide wood volume 
databases by combining satellite data and NFI data in 1990, and Sweden 
produced a nationwide wood volume database in the same manner in 2000 
(Reese et al., 2003) and 2005, and the 2010 database is under production 
(skogskarta.slu.se). The US NLCD 2001 provides a nationwide map of percent 
tree cover, and several US states such as New Hampshire and Minnesota have 
produced kNN maps of wood volume (Lister et al., 2005; McRoberts, 2010).  

1.11 Optical remote sensing characteristics of forest and 
alpine/subalpine vegetation  

Sweden’s vegetation is dominated by forests, covering approximately 24.5 
million ha or 60.4% of Sweden’s land area (Anonymous, 2006). Scots pine 
(Pinus sylvestris) Norway spruce (Picea abies), and birch species (Betula 
pendula, Betula pubescens) are dominant, with other deciduous and coniferous 
species present. Sweden has a long history of forestry carried out by private, 
public and commercial actors, and much of the forest is managed, primarily in 
stands. The boreal forest zone stretches from the northern tip of Sweden 
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towards the Dal River (“Dalälven”), and the hemi-boreal forest zone is located 
from the Dal River and down to the southern tip of Sweden.  

The ability to separate and classify coniferous and deciduous forests is well 
established in the remote sensing literature, as deciduous leaves reflect more of 
the NIR wavelength than coniferous trees (Lillesand et al., 2008). Mixed 
deciduous/coniferous forests are more difficult to classify correctly due to the 
spatial arrangement and uneven mixtures of the deciduous and coniferous 
species within pixels. For boreal and managed coniferous forests, SPOT and 
Landsat data have a primarily negative correlation with wood volume in the 
visible and mid-infrared bands (Trotter et al., 1997). Correlation with the near-
infrared band is often more varied and might be lacking (Franklin, 1986). 
Forest canopy self-shadow has a large effect on the spectral response, yet it can 
be used to help derive stand parameters (Li & Strahler, 1986; Nilson & 
Peterson, 1994). For Swedish forest conditions, shadow is particularly 
important (Ardö, 1992) due to several factors including that coniferous tree 
species’ crowns tend to cast more shadows than deciduous species and that the 
low sun angles occurring at Sweden’s relatively high latitude produce more 
shadow and illuminate ground vegetation less (Nilson, 1992). The SWIR bands 
have been shown to be of significance in forest parameter estimation, most 
likely due to their sensitivity to shadow patterns (Olsson, 1994). As forests 
mature, the canopy tends to close, decreasing the amount of shadow and 
weakening the ability to determine forest parameters from optical satellite data 
(Franklin, 1986; Danson, 1987; Spanner et al., 1990; Ekstrand, 1994; Trotter et 
al., 1997). Trotter et al. (1997) found poor correlation between the SWIR band 
(TM band 5) and plantation forests, however, this was most likely due to the 
lack of complexity and shadows within the even-height plantation forests. The 
correlation between spectral data and wood volume tends to be stronger for 
younger stands than older stands (Franklin, 1986; Horler & Ahern, 1986; 
Peterson & Nilson, 1993). Horler and Ahern (1986) found Landsat’s two 
SWIR bands to be the most sensitive to forest vegetation density, particularly 
in the case of regenerating forest stands. Clear-cuts are easily identifiable, with 
increased reflectance from the visible and SWIR bands and changes in the NIR 
reflectance (NIR may increase or decrease depending on the management 
activities and ground/field layer reflectance; Olsson, 2009). Determination of 
wood volume using Landsat and SPOT data has been hampered in several 
studies by the limited dynamic range of the spectral data (Trotter et al., 1997), 
as reflectance of forest tends to be relatively low.  

The Swedish alpine and subalpine areas make up approximately 6 million 
ha or 15% of the land area in Sweden (Anonymous, 2006). Regional alpine and 
subalpine zones have been defined based on elevation, and differ between the 
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northern and southern parts of the mountain chain (Rafstedt, 1985). The 
subalpine forest consists of two regions: the coniferous forest region, which 
generally occurs between 400 and 900 m elevation (depending on latitude), and 
the mountain birch region occurring between 600 to 950 m elevation. In the 
study area of this thesis, the coniferous forest reaches a maximum of 700 m, 
while the mountain birch region reached a maximum elevation of 900 m (with 
some individuals occurring over 900 m). The most common tree in the latter 
zone is subalpine mountain birch (Betula pubescens ssp. czerepanovii), which 
grows relatively sparsely, with undergrowth categorized as lichen-dominated, 
moss and shrub-dominated, or grass-forb dominated. Subalpine mountain birch 
forest classification has been studied more extensively than alpine vegetation 
classification due to interest in tree-line changes, biomass (carbon) assessment, 
and detection of anthropogenic or insect-related damages (Jepsen et al., 2009). 
In northern Sweden, Dahlberg (2004) found the red band had the highest 
correlation with biomass and LAI of mountain birch, with NIR the second most 
correlated, and the SWIR2 (Landsat TM7) band also having a strong negative 
correlation. The Simple Ratio (Red/NIR) was the vegetation index with 
strongest correlation, and NDVI had the next strongest correlation. In Finland, 
Heiskanen (2006) used ASTER data and found the same correlations as 
Dahlberg (2004), also finding the SAVI index had strong correlations with 
biomass. Heiskanen and Kivinen (2008) used multi-temporal MODIS data to 
map continuous fields of tree cover along the tundra-taiga boundary. 
Heiskanen (2006) found that undergrowth vegetation and background 
reflectance were very likely to affect the relationship between spectral data and 
biophysical parameters. In Norway, changes in the mountain birch tree-line 
have been observed using multi-temporal remotely sensed data, including 
aerial photo based maps and Landsat data (TØmmervik et al., 2009). The effect 
of solar zenith angles, tree growth on sloping topography, and the presence of 
shadows from the sparsely growing mountain birch trees are also important for 
understanding the observed spectral response from these areas.  

The Swedish alpine region is characterized by three main vegetation zones: 
namely the low, middle, and high alpine regions (Rafstedt, 1985). In the study 
area of this thesis, the high alpine region is reported to begin at approximately 
1500 m, the middle alpine region at 1200-1500 m, and the low alpine region 
starts at the tree-line and ends at approximately 1200 m (Curry-Lindahl, 1963; 
Rune, 1963), with the upper boundary often defined by growth of bilberry 
(Vaccinium myrtillus; Rafstedt, 1985). The high alpine belt consists primarily 
of exposed bedrock and boulders, glaciers, snowfields, and a general lack of 
coherent vegetation. The topographic gradient, access to water, the soil, 
climate, and aspect position play a large role in the vegetation composition 
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(Gould et al., 2002). The vegetation tends to become sparser and shorter 
further up the elevation gradient. Alpine vegetation types are defined by their 
vegetation composition, height and density of the vegetation. In creating 
Sweden’s Mountain Vegetation Map by photo-interpretation of CIR aerial 
photographs, Ihse and Wastenson (1975) established vegetation classes that 
could be determined with sufficient mapping accuracy. These vegetation 
classes have also been found to be discernable from optical satellite data 
(Boresjö-Bronge & Wester, 1999). Relative to forested ecosystems, the remote 
sensing of alpine vegetation is less well-studied. Alpine vegetation is 
characterized by multiple scales of spatial heterogeneity (McFadden et al., 
1998; Stow et al., 2004) and researchers have reported that pixel sizes coarser 
than 10 m have not been adequate for mapping alpine vegetation in some areas 
(Stow et al., 1993; Mosbech & Hansen, 1994). In Sweden, Dahlberg (2001) 
found that traditional classification methods were not suitable for the 
heterogeneous alpine vegetation types. Boresjö-Bronge and Wester (1999) 
developed a knowledge-based classification method. They determined from 
Landsat TM data that NIR and SWIR were the most important bands in 
classification of Swedish alpine vegetation types, but that the green band was 
not significant.  

Other alpine vegetation classification projects using medium resolution 
optical satellite data have applied various classification methods with different 
levels of thematic detail. Olthof et al. (2009) used unsupervised classification 
of Landsat TM/ETM+ data in northern Canada, deriving 10 vegetation classes 
above the tree-line (four graminoid classes, three shrub classes, three sparse 
vegetation classes). TØmmervik et al. (2003) used a hybrid 
supervised/unsupervised classification of Landsat MSS and TM/ETM+ images 
and more than 500 field-visited plots for cluster labeling. The classes were 
birch forests, lichen-rich Empetrum birch forest, dwarf birch-Empetrum-
Vaccinum myrtillus heaths, and two dwarf birch-lichen heath types. Johansen 
and Karlsen (2005) mapped alpine and subalpine vegetation over 
Finnmarksvida and northern Fennoscandia using Landsat data, DEM and other 
ancillary data. They derived several forest and wetland classes, seven alpine 
vegetation types, three snow-bed vegetation types, and other classes (gravel 
ridges, snow, water).  

Many studies have found high correlations with NDVI for different alpine 
vegetation types (Deng et al., 2007). Stow et al. (1993) were able to separate 
moist tundra, wet sedge and dry heath using SPOT HRV data, but found the 20 
m resolution inadequate for capturing the necessary spatial detail. For alpine 
meadows, Gianelle et al. (2009) found NDVI and a Green-NIR-VI from 
spectrometer data and simulated Landsat TM and MODIS data to have the 
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most significant relationships with LAI and other biophysical parameters. 
Kushida (2009) found NDVI best correlated with the alpine sedge-shrub 
coverage ratio, but for green phytomass, NDII had the strongest correlation. 
Laidler et al. (2008) found NDVI to be highly correlated with percent cover of 
the vegetation type. The amount of soil and rock showing through the plant 
canopy is likely to play a strong role in the spectral response for the alpine 
vegetation types (Boresjö-Bronge & Wester, 1999; Laidler et al., 2008; 
Montandon & Small, 2008). 
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2 Objectives 

The objective of this thesis is to evaluate different aspects of combining 
inventory data and optical satellite data for the mapping of forest and alpine 
vegetation over large areas. The specific objectives for papers I-V are 
 
I To develop and test a method in which the frequency of forest classes 

according to NFI data are used to adjust the prior probabilities in maximum 
likelihood classification, and therefore derive a classification of forest types 
reflecting area statistics in agreement with those from NFI data. 
 

II To investigate the utility of ENVISAT MERIS data for mapping mountain 
vegetation in Sweden, and to test suitable training data and classification 
methods for use with coarse pixel size satellite data. 
 

III To investigate the spectral and spatial properties of the newly available 
Resourcesat-1 AWiFS data in relation to boreal forest stand characteristics, 
such as stem volume and tree species, and to compare results from AWiFS 
data with those from SPOT 5 data.  
 

IV To develop a reliable procedure for estimation of the c-parameter, used in 
the C-correction topographic normalization method, for the correction of 
optical satellite data over alpine areas.  
 

V To evaluate the feasibility of mapping alpine and subalpine vegetation 
using a combination of optical satellite data and reference data; to evaluate 
use of different optical satellite data sources for mapping alpine vegetation 
classes; to assess the effect of using different amounts and configurations of 
training data for classification; and, to compare classification accuracy 
resulting from a parametric and non-parametric classification method. 
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3 Materials and methods 

3.1 Materials 

3.1.1 Study sites 

The study sites in this thesis were located in the forested and mountainous 
areas of Sweden (Figure 2). Paper I had three evaluation areas, each 
corresponding to a Landsat scene, in forested areas of northern, central, and 
southern Sweden. Paper III covered two separate 3600 km2 forested areas in 
Västerbotten Province. Papers II, IV and V were conducted in the mountains of 
Västerbotten and Norrbotten Provinces, with Paper II covering a 400 × 150 km 
area and Papers IV and V covering a 110 × 110 km area.  

3.1.2 Remotely sensed data  

The image data used for classification in this thesis ranged from the 10 m pixel 
size of SPOT 5 to the 300 m pixel size of ENVISAT MERIS (Table 2). While 
SPOT 5 and Landsat TM/ETM+ are well-established medium resolution 
sensors, the use of ENVISAT MERIS data and Resourcesat-1 AWiFS data 
were investigations into newly available image data sources.  

Fifty Landsat 7 ETM+ images were classified using the method described 
in Paper I, and the evaluation results from three of these Landsat images are 
presented in Paper I. In Paper II a full resolution ENVISAT MERIS image was 
classified using training data from an unsupervised classification of three 
Landsat ETM+ images. Paper III used a Resourcesat-1 AWiFS image and two 
SPOT 5 images for classification of forest and prediction of stem volume. 
MODIS Nadir BRDF-adjusted reflectance 16-day composites were used as a 
data source for reflectance normalization in Papers III, IV and V. Paper IV 
tested a topographic normalization method using two Landsat 5 TM and two 
SPOT 5 HRG two-image mosaics. Paper V compared classifications of a two-
image SPOT 5 mosaic, a Landsat 5 TM image and an AWiFS image.  
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Figure 2. The images used in this thesis. Paper I used three Landsat 7 ETM+ scenes (white 
squares outlined in black); Paper II used one MERIS image, represented by a black dashed line; 
Paper III used an AWiFS image represented by the speckled square, and also two SPOT 5 images 
shown by the two black squares: Paper IV used two overlapping Landsat 5 TM images shown by 
the cross-hatched area, and two SPOT 5 two-image mosaics shown by two gray rectangles; Paper 
V used the same AWiFS image as Paper III, one of the Landsat 5 TM images shown by the cross-
hatched area, and one of the SPOT 5 two-image mosaics, shown by the darker gray rectangle.  
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Table 2. The optical satellite data used in this thesis. 

Sensor Acquisition Date Purpose Paper 

Landsat 7 ETM+ 4 September 1999 Classification I 

Landsat 7 ETM+ 10 July 1999 Classification I 

Landsat 7 ETM+ 27 July 2000 Classification I 

Envisat MERIS 31 July 2005 Classification II 

Landsat 7 ETM+ 29 July 2000 Training II 

SPOT 5 HRG XS   4 July 2005 Classification III 

SPOT 5 HRG XS 31 July 2005 Classification III 

AWiFS 31 July 2005 Classification III, V 

Landsat 5 TM 19 August 2006 Classification IV 

SPOT 5 HRG XS 29 July 2004 Classification IV 

SPOT 5 HRG XS 24 August 2008 Classification IV, V 

Landsat 5 TM 31 July 2005 Classification IV, V 

SPOT 5 HRG XS 28 July 2010 Classification V 

AWiFS 17 August 2008 Classification V 

MODIS1 28 July-12 August 2005 Reflectance Normal. III, IV, V 

MODIS1 27 July-11August 2004 Reflectance Normal. IV, V 

MODIS1 11 August-26 August 2008 Reflectance Normal. IV, V 

MODIS1 9 August-24 August 2006 Reflectance Normal. IV, V 

MODIS1 20 July-4 August 2010 Reflectance Normal. V 
1 Nadir BRDF-Adjusted 16 day composite 

 
For all papers, the Landsat images have been resampled with cubic convolution 
to 25 m pixels, to fit the grid used with Swedish national geographic data. 
Digital aerial photographs were also used for reference data collection in 
Papers IV and V. Twenty-one 5 × 5 km areas were covered by three 
overlapping (stereo) CIR aerial photographs at 1:30,000 scale from the NILS 
inventory, and seven 10 km × 1 km areas were covered by CIR aerial 
photographs at 1:2,000 scale in Paper V. 

3.1.3 Reference data 

National Forest Inventory data were used as reference data in Paper I. Within 
each Landsat scene, a complete five-year cycle of NFI plots was used, 
providing an average of 2,000 NFI plots per image. In Paper II, training data 
were derived from an unsupervised classification of Landsat ETM+ data, and 
also from NILS photo-interpreted polygons. The reference data used for 
production of categorical and continuous value predictions in Paper III was a 
stand-based forest inventory data set from the forestry company Sveaskog, 
which was derived from aerial photo interpretation and in situ field checks. The 
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inventory had a total of over 9,000 polygons, of which 3,950 were within the 
study area. Papers IV and V employed a point sample aerial photo-
interpretation and NILS field data as reference data. The aerial photographs 
were based on the NILS systematic inventory, and a point sample photo-
interpretation was carried out, similar to that done in the THUF/MOTH project.  

3.1.4 Ancillary data 

In all five Papers, the National GSD-DEM (50 m grid cell resolution), derived 
by interpolating elevation profiles measured manually from stereo aerial 
photograph models, was used for topographic normalization of the images, and 
in Papers II, IV and V, the DEM was used as ancillary data input to the 
classification. The Swedish Mountain Vegetation Map was used as reference 
data in Paper II, while the 1:100,000 scale GSD-Road Map was used for 
ancillary data, reference data, and map masks (Paper I, II, III, IV). The GSD-
Land Cover map (earlier called the GSD-Land and Vegetation Cover map), 
derived from a classification of Landsat TM/ETM+ data, was used in Paper IV.  

3.2 Methods 

3.2.1 A method for calibrated maximum likelihood classification of forest types 
(Paper I) 

Paper I describes and evaluates a modification to the Maximum Likelihood 
(ML) classification algorithm (referred to as “calibrated maximum likelihood”) 
used within Sweden’s part of the EU-CORINE land cover mapping project. 
The focus is on classification of forest cover types using Landsat TM/ETM+ 
data and NFI as reference data. In an extension of the maximum likelihood 
algorithm, class prior probabilities may be assigned; in this paper prior 
probabilities were initiated using class frequency determined from the NFI 
data. Even given prior probabilities, the ML classification output may still 
under-classify less frequent classes and over-classify more dominant classes. 
With calibrated maximum likelihood, the aim was to iteratively adjust prior 
probabilities so the classified output would more closely reflect class 
proportions as calculated from NFI data. Although this method was applied for 
an operational mapping project of the whole country (50 Landsat images), 
three representative Landsat scenes in northern, central, and southern Sweden 
were chosen for evaluation.  

NFI plots from a minimum five-year time span within the Landsat scene's 
extent were used, which gave approximately 2,000 plots per Landsat scene. A 
plot-to-image matching routine was developed to better geo-locate plots 
measured previous to 1996 when GPS was introduced to the NFI, as well as for 



39 

plots geo-located after 1996, using estimated errors of GPS accuracy. Forest 
variables such as stem volume, age and tree height were updated or “back-
dated” to the time of satellite image acquisition using growth estimation 
models (Soderberg, 1986). NFI variable measurements taken on plots with less 
than 10 m radius were adjusted to reflect a 10 m plot radius, better agreeing 
with the Landsat pixel size of 25 m (Hagner & Tingelöf, 2002). Pre-processing 
of the satellite data included reduction of within-image haze differences 
(Hagner & Olsson, 2005), topographic and illumination normalization (Teillet 
et al., 1982), NFI plot-to-image geometry matching, and radiometric modeling 
(Hagner & Tingelöf, 2002). Many of these pre-processing steps used NFI data.  

Nine primary forest classes were classified and spectrally homogenous 
subclasses of these nine primary classes were defined, resulting in a total of 32 
subclasses. The first iteration of the ML classification was initialized using 
prior probabilities based on NFI-derived class frequencies within each scene, 
and afterwards the proportion of pixels per sub-class from the output was 
compared to the NFI-based class frequencies. Prior probability weights were 
adjusted proportionally to the representation error, being decreased if 
overrepresented and increased if underrepresented. This process was run 
iteratively until the output class proportions converged to the NFI-based class 
frequencies or when a maximum number of iterations (n=15) was reached. To 
compare the results from the calibrated-ML algorithm to those from a ML 
algorithm without iterative adjustment of prior weights, three Landsat images 
were processed using both methods. The area of each class within the scene 
after classification was compared to the NFI-based class frequencies, and 
additionally, overall classification error was determined using leave-one-out 
cross-validation. 

3.2.2 Using MERIS for mountain vegetation mapping and monitoring in 
Sweden (Paper II) 

The utility of data from the newly available coarse resolution ENVISAT 
MERIS sensor was tested for the mountain areas of Sweden. As the pixel size 
of MERIS is 300 m and the alpine and subalpine land cover is a heterogeneous 
mosaic, “soft” classification methods such as regression trees were 
investigated. Seven primary land cover types were classified: water, bare rock, 
grass heath, other heath (mesic and dry heath), meadow, wetland, and 
mountain birch.  

Pre-processing of the MERIS data involved a Simplified Method for 
Atmospheric Correction (SMAC; Rahman & Dedieu, 1994) and topographic 
and illumination normalization using the C-correction (Teillet et al., 1982). 
The MERIS Terrestrial Chlorophyll Index (MTCI) was calculated (Dash & 
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Curran, 2004), and principal components analysis (PCA) were used to 
transform the 13 spectral bands, from which the first two PCs were used (PC1, 
PC2). A training data set was built using 800 randomly selected 300 × 300 m 
areas from a Landsat-based classification, in addition to 100 homogenous areas 
from the NILS photo-interpretation. The input variables were PC1, PC2, 
MTCI, elevation, slope, and aspect. Regression trees and linear regression were 
used to estimate the fraction of the land cover types present within each pixel. 
The results were evaluated using 100 randomly selected 300 x 300 m plots 
from the Landsat-based classification. 

3.2.3 Comparison of Resourcesat-1 AWiFS and SPOT 5 data over managed 
boreal forest stands (Paper III) 

This study tested the utility of the newly available Resourcesat-1 AWiFS data 
for boreal forest information such as stem volume predictions and forest type 
classification. While the pixel size is coarser (60 m pixel) than Landsat or 
SPOT, the swath width of one AWiFS sensor is 370 km, allowing more 
inventory data plots to be included and possibly reducing multiple-date image 
processing complications. Comparisons between AWiFS and SPOT 5 data 
were made, such as band-wise correlations at different spatial aggregations, as 
well as stand-wise estimation of forest parameters using a polygon-based forest 
inventory database from Sveaskog. The influence of stand size on stem volume 
prediction from AWiFS and SPOT spectral data was investigated over a range 
of stand sizes.  

The AWiFS and SPOT images were reflectance normalized relative to 
MODIS Nadir BRDF-adjusted reflectance data and topographically normalized 
using C-correction. Using a stand-wise forest inventory database as reference 
data, band-wise mean spectral values per stand were calculated. Multiple linear 
regression was used to determine relationships between the spectral data and 
stem volume. Correlations between the spectral data and stem volume were 
analyzed for the entire data set and also by stand size categories. Quadratic 
discriminant analysis of tree species and stem volume classes was performed. 
Finally, band-wise correlations between AWiFS and one of the SPOT 5 images 
(acquired 12 minutes after the AWiFS image) were performed on block 
aggregations of the data (60 m and 120 m).  
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3.2.4 C-correction of optical satellite data over alpine vegetation areas (Paper 
IV) 

Topographic characteristics of the landscape, such as slope and aspect, in 
combination with the solar zenith and azimuth angles, result in illumination 
differences within a satellite image. Prior to classification, especially in the 
mountains, topographic normalization is a necessary pre-processing step for 
optical satellite data. Topographic normalization methods adjust an image so 
that a vegetation class will have similar spectral values whether facing away 
from or towards the sun (Holben & Justice, 1980). C-correction (Teillet et al., 
1982) is a commonly used topographic normalization method, suitable for 
alpine vegetation areas. However, details about deriving the C-correction’s c-
parameter are lacking in the published literature. This study looked at the 
influence of the sample used to determine the c-parameter, and the c-
parameter’s influence on topographic normalization results in an alpine area of 
Sweden. Four satellite images from different dates were used, each of which 
had different solar illumination and sensor viewing angles.  

The C-correction consists of a modified cosine correction plus the empirical 
parameter c, which is derived from the linear relationship between the spectral 
data and the cosine of the solar incidence angle, i, with respect to surface 
normal (Teillet et al., 1982). Cosine of i is calculated as a function of the local 
terrain slope and aspect, and the solar illumination angles upon the surface at 
the time of satellite data acquisition (Table 3, Eq. 1). Linear regression is used 
to estimate intercept (b) and gradient (m), using cosine of i as the independent 
variable and reflectance as the dependent variable (Eq. 2). The c-parameter is 
calculated as b divided by m (Eq. 3) for each wavelength band since the 
relationship between reflectance and cosine of i is wavelength dependent. The 
c-parameter is added to the numerator and denominator of the cosine correction 
to form the C-correction equation (Eq. 4). A sample from the satellite data used 
to determine c has commonly been taken in one of two ways: 1) selection 
(often subjective) of a relatively small number of observations (n < 100) for a 
target vegetation type over a range of topographic conditions, or 2) random 
sampling of a varying quantity of observations from either a subset or an entire 
image.  
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Table 3. Symbols and their definitions (a) used in the equations (b) for C-correction. 

a) Symbols and definitions 
i = solar incidence angle with respect to surface normal
z  = solar zenith angle
s = terrain slope angle
a = solar azimuth angle
a' = terrain aspect angle

t̂  = topographically influenced (t) reflectance of band λ

b = intercept of linear regression
m = gradient of linear regression
cλ = c-parameter for band λ

h̂  = topographically normalized (h) reflectance of band λ 

b) Equations 
Cosine of i (cos i) 
 
Linear regression 
between reflect-ance 
and cos i 
 
c-parameter 
 
 
C-correction 
 

cos i = cos z * cos s + sin z * sin s * cos (a - a')     (1)     
 

t̂  = b + m * cos i                                            (2)  

                                                                          

cλ = 
m

b

                                                                 (3)     

h̂  = t̂



ci

cz




cos

cos

                                      (4)      

 
Two Landsat TM images and two SPOT 5 image mosaics were first reflectance 
normalized relative to MODIS Nadir BRDF-adjusted reflectance data. Alpine 
vegetation and non-alpine vegetation were then separated using a map-mask. 
Three sampling methods for calculating the empirical c-parameter were tested: 
a random sample; a stratified random sample with stratification on north and 
south aspects; and, a stratified random sample with stratification by the cosine 
of the solar incidence angle, i. For the sample stratified by cosine of i, an 
optimal allocation method called power allocation (Bankier, 1988) was used to 
determine the quantity of observations for each stratum. Precision of c was 
assessed by taking the standard deviation of c as calculated from five separate 
samples, for each sampling method. Accuracy of c was tested by visual 
assessment, classification accuracy and two-sample independent t-tests.  

3.2.5 Varying training data set size for supervised classification of alpine 
vegetation (Paper V) 

Updating of vegetation maps over the mountainous areas of Sweden is 
currently of interest for several reasons. There are several challenges, however, 
in the use of optical satellite data for mapping detailed alpine vegetation 
classes. Alpine vegetation tends to be spatially heterogeneous and consist of 
complex mosaics of vegetation types. The pixel resolution of the satellite data 
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source needs to accommodate the structure of the landscape and will have an 
impact on the outcome of the map product. Mapping detailed vegetation 
classes can be difficult from spectral data alone, as there is a large degree of 
spectral overlap. Alpine class occurrence is highly dependent on topographic 
gradients, and the addition of DEM derivatives may improve classification 
accuracy. Reference data are needed for both the classification and evaluation 
of the satellite data, and Sweden’s newly available NILS and THUF inventory 
programs may provide a data source for this purpose. In large area mapping 
projects, the question is often “How much training data is enough?” This study 
looks at the effect of the quantity and distribution of training data on 
classification accuracy. The results are presented for two different 
classification methods, and for three different optical satellite data sources. 

Reference data were based on photo-interpreted plots within twenty-one 5 × 
5 km squares. Each 5 × 5 km square contained 110 systematically arranged 
plots for which vegetation class and percent area coverage were photo-
interpreted for the center point, and a 5, 10, 20, and 30 m circular radius around 
the center point. The data were quality controlled before use as training data. In 
summary, a total of six different training sets were tested: 2xNILS, 2xNILS50, 
1xNILS, 1xNILS50, Subjective, and NILS Field.  

 
 “2xNILS” is the complete data set after quality control, taken from all 

21 of the 5 × 5 km primary sampling units, using all 110 secondary 
sample plots; 

 “2xNILS50” uses all of the 21 5 × 5 km primary sampling units, but 
only half (55 of 110) of the secondary sample plots (every other plot); 

 “1xNILS” uses all 110 secondary sample plots, but only 13 of the 5 × 5 
km primary sampling units; these 13 primary sampling units are those 
used in the actual NILS inventory; 

 “1xNILS50” uses only half (55 of 110) of the secondary sample plots 
(every other plot), and only 13 of the 5 × 5 km primary sampling units; 
these 13 primary sampling units are those used in the actual NILS 
inventory;  

 “Subjective” refers to the training data samples chosen subjectively; all 
21 of the 5 × 5 km primary units were used, and approximately 30 
samples per 5 × 5 km area were taken; 

 “NILS Field” is a training data set based on the field data collected in 
NILS. The data set was used for the AWiFS image only, and is taken 
from the area corresponding to the entire AWiFS image (i.e., larger than 
the 110 × 110 km study area), from a total of 31 NILS 5 × 5 km primary 
sampling units. 
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Each image from SPOT 5, Landsat 5 TM, and Resourcesat-1 AWiFS, was 
reflectance- and topographically normalized, and then subjected to supervised 
classification. Two different classification methods were used, namely 
Quadratic Discriminant Analysis (QDA) and random forests. The input to 
QDA was the spectral bands only, and to the random forests classification, 
spectral bands were combined with spectral indices and DEM derivatives such 
as elevation, slope, aspect and a topographic wetness index. Prior probabilities 
were assigned in the QDA according to class frequencies determined from the 
photo-interpretation of the systematic sample. The random forests algorithm 
was used to produce thematic classifications, and in the case of Landsat and 
AWiFS, fraction of land cover class was estimated as a continuous variable as 
well. Classification accuracy was assessed using photo-interpretation of a 
systematic sample of plots at multiple-scales (5, 10 and 30 m radius), using 
high resolution (1:2,000) CIR photographs.  
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4 Results and discussion 

4.1 A method for calibrated maximum likelihood classification of 
forest types (Paper I) 

The area statistics of the nine forest classes resulting from the output of the 
Maximum Likelihood (ML) and the calibrated-ML classifications show that 
the calibrated-ML algorithm classified the satellite images to more closely 
reflect class proportions from the NFI data (Table 4). Dominant classes over-
represented by the ML classification were classified proportional to the NFI 
data using calibrated-ML. Cross-validation to check the effect on class 
accuracy revealed that accuracy did not decrease.  

Table 4. The percent of the scene area classified for the two most dominant classes and the single 
least prevalent class for each of the three Landsat scenes, using the calibrated maximum 
likelihood classification and maximum likelihood. 

Scene and class Area (%) 

according to 
NFI 

Area (%) 
Calibrated 

Max Like 

Area (%)  

Max Like 

South – Deciduous forest  25.9 25.8 28.3 

South – Coniferous forest > 15m 32.6 34.9 41.1 

South – Young Deciduous forest 3.3 4.6 1.8 

Mid – Coniferous forest > 15m 32.3 32.9 41.1 

Mid – Coniferous forest 5-15m 22.1 22.5 13.9 

Mid – Deciduous forest 2.5 2.5 4.7 

North – Regenerating forest 32.0 32.2 31.4 

North – Coniferous forest 5-15m 22.2 21.8 24.0 

North – Deciduous forest 2.4 2.4 6.4 

 
The NFI data were useful for assigning and adjusting the prior probabilities 
used in ML classification since the NFI data are a probability-based sample, 
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lending themselves to estimation of forest parameters over regions. In projects 
where inventory data are not available, prior probabilities are either not 
assigned, or are based on other data, for example, maps or subjectively 
collected data. As seen in Paper I, even when prior probabilities were initiated 
based on an objective, probability-based sample such as the NFI, the ML 
classification may still tend to over-classify frequent classes and under-classify 
less frequent classes. The use of calibrated-ML with iteratively adjusted prior 
probabilities worked well with an area the size of a Landsat scene (185 × 185 
km), which is more regional in nature. Using NFI data to calibrate the ML 
results over smaller areas, however, such as a SPOT scene (60 × 60 km) or a 
Landsat scene containing only small areas of forest, would be a questionable 
application of this method. This is because at local levels, the variance of 
estimates from NFI data is much higher and therefore less applicable. The 
effect of prior probabilities when using maximum likelihood for mapping 
individual vegetation classes has not been thoroughly studied (Pedroni, 2003). 

Pre-processing of the NFI data was required in Paper I, such as the plot-to-
image geo-location procedure, reconciling the forest variables to the date of the 
image as well as the resolution of the image pixel, and outlier detection with 
replacement of class label if necessary. These steps are a form of quality 
control of the training data. Performing this for thousands of NFI plots may 
seem tedious, but all processes were automated, making it a quick, robust and 
repeatable process. There are several sources of potential error in training data 
that should be investigated before the data are used, including labeling error, 
geo-location error, and mismatch between date of inventory and image data. 
However, it is important to maintain the integrity of the probability-based 
sample design (i.e., avoid removal of sample plots from the data set) if it is to 
be applied as it was in the calibrated-ML. An additional use of the NFI plots 
was the scene-wise haze normalization procedure, where the spatial 
distribution and variables measured in the NFI data made them well suited for 
this process.  

The NFI data were also effective for use in the supervised classification of 
detailed forest classes. These classes were based on forest type and tree height 
(e.g., coniferous forest 5-15 m and coniferous forest > 15 m), and were 
spectrally separable using Landsat data. The classification outcome and the 
potential to develop new methods for applying NFI data is partly dependent on 
the characteristics of the land cover to be classified. A landscape that consists 
of managed coniferous boreal forest with relatively large and homogenous 
stands presents different conditions and challenges than, for example, a highly 
fractured landscape or a heterogeneous mix of land cover types.  
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4.2 Using MERIS for mountain vegetation mapping and 
monitoring in Sweden (Paper II) 

When fractions of seven alpine and subalpine vegetation classes (bare rock, 
grass heath, other heath, meadow, wetland, mountain birch, and water) were 
estimated from MERIS data using a regression tree method and linear 
regression, the results were comparable. The regression tree produced an 
overall RMSE of 20.1% while linear regression produced a RMSE of 20.6%. 
When a thematic classification was produced from the class fraction results, 
regression trees provided a higher percent (65%) of correctly identified classes 
as compared to regression (61%). The seven land cover classes were rather 
general, and due to the spatial heterogeneity of the land cover types, it may be 
the limit of what is distinguishable using the coarse resolution MERIS sensor 
(300 m pixel). Aplin (2006) says that thematic class definitions appropriate for 
finer resolution data are not always appropriate for coarser resolution satellite 
data.  

The geo-locational tie points supplied with the MERIS data resulted in a 
poor geo-referencing of the data. To remedy this, image to image geo-
referencing with available Landsat data was necessary. This facilitated the use 
of an unsupervised classification from the same Landsat data as training data. 
Without the image to image geo-referencing, the locational accuracy of the 
MERIS data was too poor to carry out successful training using either NILS 
polygon-based photo-interpretation or the unsupervised Landsat classification. 
One of the most difficult stages in supervised classification of coarse resolution 
data is obtaining adequate calibration and validation data. Good geometry in 
coarse resolution data is essential, as it is difficult to correct afterwards.  

The problem of classifying mixed pixels is not trivial to solve, and water 
often complicates separation of spectral values when it occupies just a portion 
of the pixel. When the pixel resolution is coarse, and the landscape is 
heterogeneous, use of “soft” classification methods as opposed to strictly 
thematic classification methods are more appropriate (Fernandes et al., 2004). 
The use of regression tree to estimate fractions of land cover types or 
continuous values of other parameters is interesting, not only for coarse 
resolution imagery, but also for medium resolution sensors in a landscape with 
heterogeneous land cover (e.g., alpine areas) or if continuous value output is 
desired (e.g., Olthof & Fraser, 2007). Estimation methods used to identify 
fractions of cover types are increasingly being used to create data for 
monitoring purposes, such as the global MODIS percent tree cover data 
(Hansen et al., 2002) or the US NLCD percent tree cover and percent 
impervious surface data from Landsat (Homer et al., 2007). Using training data 
obtained from higher resolution remotely sensed data, as done in Paper V, or 
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map products from higher resolution data as done in Paper II are practical 
methods for the acquisition of training data for land cover fraction predictions.  

4.3 Comparison of Resourcesat-1 AWiFS and SPOT 5 data 
over managed boreal forest stands (Paper III) 

When stem volume was estimated using stand-wise mean spectral values from 
AWiFS (60 m pixel) and SPOT 5 (10 m pixel), the adjusted coefficient of 
determination (R2

adj) resulting from AWiFS was comparable to that from 
SPOT 5 (Table 5).  

Table 5. The adjusted coefficients of determination (R2
adj) based on multiple linear regression of 

AWiFS and SPOT 5 mean spectral data values to estimate stem volume. 

Analysis AWiFS SPOT 5 

R2
adj with stem volume  0.573  0.598 

R2
adj best two band combination  0.573 (NIR + Red)  0.595 (NIR + SWIR) 

R2
adj with stem volume for stands < 2ha  0.310  0.293 

R2
adj with stem volume for stands 20-30 ha  0.677  0.692 

r between SWIR and stem volume -0.651 -0.680 

Discriminant Analysis of forest type  

(% correct) 

 65.6%  66.4% 

Discriminant Analysis stand volume group 
(% correct) 

 61.9%  63.8% 

 
For both AWiFS and SPOT 5, all four bands were negatively correlated with 
stem volume. The SWIR band had the single strongest correlation with stem 
volume, and was stronger for SPOT 5 than for AWiFS. For AWiFS the best 
two-band estimator of stem volume was a NIR and red band combination, 
while for SPOT 5 it was the NIR and SWIR bands. The different results for 
AWiFS might be explained by the increased radiometric resolution (10 bit) of 
all spectral bands and the larger coefficient of variation (CV) of the red band in 
AWiFS.  

When stem volume was estimated by stand size, for stands less than 2 ha in 
size, AWiFS had slightly higher R2

adj values than SPOT 5. This was surprising, 
but may have been due to the relatively “large” minimum stand size of 1.4 ha 
and that many small stands had similar conditions (usually higher volume) in 
neighboring stands. The strength of the relationship between stem volume and 
the spectral data increased with stand size, with the highest R2

adj at 20 ha 
(Figure 3). Hyyppä and Hyyppä (2001) had similar findings, and suggested this 
resulted from sample size or landscape qualities. In Paper III, for stands 20 ha 
and larger the correlation between stem volume and NIR increased while it 
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decreased for the SWIR and visible bands. We concluded that the increase and 
then leveling off of R2

adj with stand size was most likely due to changes in stem 
volume resulting from management practices at different stand sizes. For 
stands 20 ha and greater in size, there was an increased proportion of young re-
generating forest, since the forestry company tended to carry out clear-felling 
operations at a minimum of 20 ha. The landscape characteristics had an effect 
on the outcome, as did the exclusive use of a forestry company’s database as 
training data, and classification over an area managed by a large forestry 
company.  

 
 
Figure 3. R2

adj results of multiple linear regression of the AWiFS and SPOT 5 data as the 
independent variables and stem volume as the dependent variable for data subsets based on stand 
size. 

 
Use of a polygon-based training data set worked well with AWiFS’ 60 m pixel 
size, which was made easier by AWiFS’ good geometric properties. Use of 
NFI data with the Resourcesat-1 AWiFS data was not tested, as applying the 
10 m radius NFI plot to 60 m AWiFS pixels was more uncertain. To date, 
Resourcesat-1 AWiFS data have not been widely used, although they have 
been tested as a replacement for Landsat data in the annual estimation of crop 
area for the US Department of Agriculture (Johnson 2008). Resourcesat-3 
AWiFS (scheduled for launch in 2013) will have 25 m pixels and a large swath 
width (300 m with one camera), encompassing many NFI plots, making 
AWiFS a potentially interesting future data source for classification and 
continuous value predictions over large areas using NFI data. 
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4.4 C-correction of optical satellite data over alpine vegetation 
areas (Paper IV) 

Three different sampling schemes were tested from which the empirical 
parameter c, used in the C-correction for topographic normalization, was 
calculated. The sample stratified by cosine of the illumination angle, i (“cosi 
sample”), together with an optimal allocation of samples in the strata, produced 
the c-parameter with the highest precision and accuracy. The mean coefficients 
of determination (R2

adj) from the linear regressions between cosine of i and the 
spectral data were much higher from the cosi sample (often double) as 
compared to the other sampling methods, for all bands and all four images 
tested. The random sample with n = 16,500 and the aspect sample (n = 5,000) 
also provided reasonably precise c-parameters, although the standard 
deviations (derived from repeated samples) were slightly higher. When c was 
calculated using the random sample with n = 1,600, instable (imprecise) values 
of c were obtained, accounting for some of the inconsistencies and problems in 
calculating c reported in the literature (e.g., Gu and Gillespie, 1998). It could 
be concluded that the sample used to calculate c influenced the value of c and 
the effectiveness of the topographic correction. The c-parameter is based on the 
linear relationship between the spectral data and cosine of i. Since c is 
calculated by dividing the linear regression’s intercept by its gradient, the 
accurate determination of both intercept and gradient are important, which was 
best accomplished using a stratification based on cosine of i. Figure 4 shows 
the samples taken to calculate c for the NIR band from the 2008 SPOT 5 
image. 
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Cosi sample (n =5,000) Random sample (n=16,500) 

 
Aspect sample (n =5,000) Random sample (n =1,600) 

 
Figure 4. Scatterplots of NIR spectral reflectance (y-axis) versus cosine of i (x-axis) for four 
samples taken from the SPOT 5 image.  

The cosi sample produced a larger value of c for the NIR band as compared to 
the other sampling methods, in particular for the SPOT 2008 and Landsat 2006 
images. Previous studies found a need to adjust the empirical parameter used 
for correction of the NIR band, and was done by using a factor or simply 
changing the value (e.g., Civco, 1989; Ekstrand, 1994; Richter et al., 2009). 
The use of an optimal allocation, namely power allocation (Bankier 1988), to 
allocate samples to each cosine of i stratum was important in the cosi sample. 
Power allocation allowed adjustment of sample allocation according to stratum 
importance, making increased allocation within small but important strata 
possible. With power allocation, more samples could be placed in strata having 
large variation in the spectral data, regardless of stratum size.  

For all four satellite images, slightly higher classification accuracies were 
obtained when the c-parameters derived from the cosi sample were used. The 
two-sample independent t-tests indicated that optimal c-parameters may differ 
among the individual alpine vegetation classes. For the NIR band, dry alpine 
heath and alpine grass heath tended to have relatively higher c-parameters, 
mesic alpine heath was slightly lower, and alpine willow had relatively lower 
c-parameters, as did the alpine meadow classes. It could be seen that grass 
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heath and sparse vegetation had a different linear relationship within the NIR 
band sample than did dry/mesic heath, willow and alpine meadow. This may 
have been an influence of the soil background showing through a sparser 
vegetation canopy. Pinter et al. (1990) and Huete et al. (1992) determined that 
the amount of soil viewed through a vegetation canopy contributes to the 
surface anisotropy. It is possible that these vegetation types require separate 
topographic correction, and others (e.g., Bishop & Colby, 2002; Soenen et al., 
2008) suggest further study on vegetation-specific topographic normalization. 

Pre-processing of the satellite imagery is an important step, and geometric 
quality, atmospheric correction, and topographic normalization contribute 
significantly to the classification outcome. These aspects are complex and, 
despite many years of research, are not fully studied or documented in the 
literature. The vegetation within the landscape and the topographic 
characteristics will determine the relationships and calculation of c, and these 
should be understood before conducting a topographic correction. It is possible 
that the sampling strategy proposed in Paper V for calculation of c would also 
be useful for the Minnaert constant, k (Smith et al., 1980), and within the 
SCS+C method used for forest vegetation (Soenen et al., 2005). 

4.5 Varying training data set size for supervised classification of 
alpine vegetation (Paper V) 

The random forests classification of alpine vegetation based on SPOT 5 and 
DEM data using the largest training data set (2xNILS) produced the most 
accurate classification of all combinations (overall accuracy of 72.9%, shown 
in Table 6). Classification of Landsat and AWiFS data resulted in lower overall 
classification accuracies, at best 62.7% and 51.2%, respectively.  
 
Table 6. Percent overall accuracy for the alpine vegetation classification, for the random forests 
(RF) and Quadratic Discriminant Analysis (QDA) classifications of SPOT 5, Landsat TM and 
AWiFS data, when using different training data sets. The evaluation data set was n = 483. 

 SPOT 
RF 

SPOT 
QDA 

Landsat 

RF 

Landsat 

QDA 

AWiFS 

RF 

AWiFS 

QDA 

2xNILS  72.9 60.7 62.7 61.5 46.5 38.9 

2xNILS50  67.0 60.3 61.1 61.1 --2 --2 

1xNILS  64.9 56.5 59.4 60.3 --2 --2 

1xNILS50  63.6 54.4 59.4 59.2 --2 --2 

1xNILS Field data --1 --1 --1 --1 51.2 22.3 

Subjective  69.9 60.3 56.5 60.3 45.9 33.9 

1 Too few NILS Field plots were available within the SPOT and Landsat image. 
 2 AWiFS not classified with the smaller data sets due to initial poor results with 2xNILS data set. 
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Obtaining the best result from SPOT data is likely a result of the 10 m pixel 
size, suitable to the heterogeneous alpine landscape. The multiple-scale photo-
interpretation showed that 10 m radius plots included on average more than 
one vegetation class, while 20 m radius plots included on average two 
vegetation classes.  

The alpine vegetation classification in Paper V had thematic detail similar 
to the Swedish Mountain Vegetation Map. Individual class accuracies for bare 
rock, extremely dry heath, dry heath, mesic heath, and grass heath were 
generally above 75% from SPOT data. Classes below this level were wet 
heath, and short and tall alpine meadow, which may be improved by training 
data refinement. Willow also had low accuracy, as it had a high degree of 
spectral overlap with other classes, making correct classification difficult. The 
Saga Wetness Index improved classification accuracy of willow by 8% as it 
was the most important variable for willow, however, methods to improve 
mapping of willow are needed. The most important variables for classification 
of alpine vegetation types included many spectral indices such as NDVI and 
SAVI, and some DEM derivatives, presenting a very different case than for 
forest remote sensing. Several researchers (Stow et al., 1993; Deng et al., 
2007; Laidler et al., 2008) have noted the importance of NDVI for alpine 
vegetation. Rock and bare soil visible mixed with spectral information from the 
vegetation canopy influences the spectral signature of vegetation (Elvidge & 
Lyon, 1985; Boresjö-Bronge & Wester, 1999; Small, 2004; Olthof & Fraser, 
2007; Gianelle et al., 2009). This was supported by the high correlation (r > 
0.78) found between spectral indices (Green-VI, NDVI and SAVI) and the 
percent vegetation cover. 

An ISODATA unsupervised clustering was found effective for separation 
of subalpine forest vegetation from alpine vegetation (with 78% producer’s 
accuracy for subalpine mountain birch forest classification using SPOT data). 
The Swedish Environmental Protection Agency has recently produced detailed 
subalpine forest classes (called “KNAS-5”) from a combination of SPOT 5 
data and texture measures from 1:30000 scale CIR digital aerial photographs 
for the entire Swedish mountain chain. Work done in Paper V therefore 
concentrated more on the classification of alpine vegetation.  

Using AWiFS and Landsat data, fractions of detailed alpine vegetation 
classes estimated using random forests produced an overall RMSE of 33.1% 
for AWiFS and 28.6% for Landsat. Estimation of four simpler classes (shrub, 
forbs, grass and rock, and water) produced an overall RMSE of 23.9% for 
AWiFS and 19.7% for Landsat. In comparison, Olthof and Fraser (2007) 
estimated class fractions of bare, sedge and grass, deciduous shrub (alder, 
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willow, dwarf birch), conifer, and water with the lowest RMSE (16.4%) from 
regression trees and a resampled 90 m pixel of Landsat TM bands 3, 4 and 5.  

The number of training data samples had an effect on classification 
accuracy, with the largest training data sets generally producing the highest 
accuracies. The largest changes in accuracy occurred using the RF 
classification of SPOT data, with the highest accuracy (72.9%) declining to 
63.6% when the smallest training data set (1xNILS50) was used. Compared to 
SPOT, the decrease in classification accuracy from Landsat data after reducing 
training data set size was not as great. In all cases, higher accuracies were 
obtained using a denser distribution of the primary sampling units with fewer 
photo-interpretation plots (2xNILS50), than when using fewer primary 
sampling units yet more photo-interpretation plots (1xNILS). This may have 
been due to capturing more spectral variability using a wider spatial 
distribution of training areas, as well as that many of the NILS squares were 
located on mountain birch areas. The thematic classification of AWiFS data 
were in general poor, however the highest accuracy was obtained using the 
NILS field data (51.2%) which was surprising given the small training data set 
size and the difference between reference data plot size and pixel size. 
Accuracy increased to 62% when the four shrub-heath classes were simplified 
into a single heath class. A number of studies exist regarding influence of the 
number of training data samples on classification (Hubert-Moy et al., 2001; 
Chen & Stow, 2002; Mather, 2004; Van Niel et al., 2005), however, actual 
testing of different training sets is not common. Reference data for alpine areas 
are often difficult to obtain, and presents a limitation (TØmmervik et al., 2009).  

The accuracy of the QDA classifications were generally lower than for the 
RF classifier. While elevation derivatives used in the RF classification 
contributed to increased accuracy (8.9% in the case of SPOT), this was not the 
sole explanation for better accuracy; the classification method itself also played 
a role. The use of elevation data in the RF classification was most beneficial 
for separating dry heath and grass heath, improving the producer’s accuracy of 
dry heath from 30.0% (with QDA) to 73.3% (with RF) using SPOT data.  

The subjectively chosen training data produced lower accuracies than the 
larger 2xNILS objectively sampled training data, in the case of SPOT only 
marginally lower (3.0% for RF and 0.4% for QDA), and in the case of Landsat 
having rather different results (5.2% lower for RF and 1.2% lower for QDA). 
Given the smaller training data set size and the significantly shorter amount of 
time needed to collect the subjective training data, the relatively high 
classification results are of interest. On the other hand, while subjectively 
chosen training data are useful for classification, land cover fraction estimation 
using RF (or any CART method) requires mixed pixels with a full range of 
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values in the training data, and the subjectively collected data (which aims to 
collect plots with homogenous vegetation) is insufficient for this purpose. In 
addition, the establishment of a systematic training sample may allow for 
establishment of a long-term training data set, used in future classifications. 
Thirdly, the systematic sample provides information on the frequency of 
classes used in the prior probability assignment in maximum likelihood/QDA, 
and also affects the outcome of the RF classification. 

4.6 Main findings  

The demand for landscape scale land cover data continues to be high, due in 
part to directives on biodiversity monitoring, carbon accounting, habitat 
studies, and climate change’s potential effect on vegetation. Over the past two 
decades the establishment of inventory programs has increased at both a 
national and international level. There is greater awareness that inventory 
programs and remotely sensed data offer complementary information, as new 
applications and improvements in both subjects are tested. Inventory data 
collected by probability-based sampling can provide statistical information 
about the landscape, while satellite data can provide spatially explicit, full 
coverage maps for repeated points in time. Combining inventory data and 
satellite data for the purpose of vegetation mapping is not always a simple 
process, and careful consideration should be given to several aspects of the 
mapping project beforehand.  
 

The papers in this thesis contribute to the field of remote sensing, 
specifically the supervised classification of land cover, in several ways:  

 
 Modifications to commonly used remote sensing methods were 

introduced. The maximum likelihood classification algorithm was 
modified by introducing iterative adjustment of prior probabilities based 
on class area estimates from NFI data (Paper I). Paper IV presented a 
new guideline for the C-correction topographic normalization method, 
regarding the calculation of the empirical parameter, c. The guideline 
suggests calculation of the c-parameter from a sample stratified by the 
cosine of the illumination angle, and optimal allocation (power 
allocation) of samples into each stratum. Use of a stratified sample 
allows calculation of c from data with stronger relationships (R2 twice as 
large) between spectral data and the illumination angle, as compared to 
those typically derived. This allows for more robust and reliable C-
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correction, and may be applicable to other topographic normalization 
methods, such as SCS+C or Minnaert correction.   
 

 National inventory data provided a reference data source useful for the 
pre-processing and supervised classification of satellite data for both 
forest and alpine vegetation, and essential for the estimation of land 
cover fractions. Forest classification based on height and forest type was 
carried out for a national mapping project using a combination of NFI 
and Landsat satellite data (Paper I). Papers II and V represented the first 
use of NILS data for satellite data classification. Point sample reference 
data collected by aerial photo interpretation (modeled after the 
THUF/MOTH project) produced the highest overall classification 
accuracies of alpine vegetation from SPOT 5 data (72.9%). NILS field 
data produced the highest classification accuracy for AWiFS data 
(51.2% for detailed classes, and 62% for aggregated classes). This 
suggests that NILS field data may be useful as training data if enough 
plots can be assembled (through having larger scene sizes). Subjectively 
collected training data produced relatively good overall accuracy (69.9% 
for SPOT 5 with random forests classification) despite their smaller 
sample size (n = 200), and their suitability as training data should be 
considered.  
 

 The number of training data samples had an effect on classification 
accuracy, more so for the non-parametric (random forests) classifier than 
the parametric classifier (Paper V). The largest number of samples 
generally produced the highest accuracy results for both classification 
methods, while decreasing the training data samples by one-quarter led 
to a larger reduction in accuracy when using random forests (going from 
72.9% to 63.6%). Training data sample quantity was not the only 
influence on classification, as quality and spectral separation between 
classes were important. A wider distribution of fewer training data 
samples (n = 436) produced higher classification accuracies (67.0%) 
than using more training data samples (n = 532) from fewer sampling 
areas (64.9%).  
 

 Resourcesat-1 AWiFS data (60 m pixel) were found to produce stand-
wise stem volume predictions (R2

adj = 0.573) similar to those from 10 m 
pixel SPOT 5 data (R2

adj = 0.598) for a study site over a managed boreal 
forest (Paper III). However, when AWiFS data were used for thematic 
classification of alpine vegetation (Paper V), overall classification 
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accuracies were lower (51.2%) in comparison to those from SPOT 5 
(72.9%) and Landsat TM (62.7%) data. The characteristics of the 
vegetation under study, such as forest stands managed by a large 
forestry company, or highly spatially heterogeneous vegetation such as 
that in the alpine landscape, influence the results and utility of the data.  
 

 Detailed alpine vegetation (ten classes) classification was most accurate 
using SPOT 5 data (Paper V). Classification of SPOT’s four spectral 
bands with quadratic discriminant analysis gave 60.7% overall accuracy, 
and with random forests, 62.3% overall accuracy. When combined with 
elevation derivatives the highest accuracies were produced, with 72.9% 
overall accuracy. The spatial heterogeneity of alpine vegetation was the 
most probable explanation for higher accuracy from SPOT 5 data than 
from Landsat TM, AWiFS, or MERIS data. Estimation of land cover 
fractions in the alpine landscape may be more appropriate for data with 
larger pixel sizes. Spectral vegetation indices such as NDVI and SAVI 
are important for identifying alpine vegetation types. The amount of 
vegetation cover versus visible bare soil and rock exert a strong 
influence on the spectral signatures of alpine vegetation, as seen from 
high correlations (r > 0.78) between percent vegetation cover and 
NDVI, SAVI and Green-VI from both SPOT and Landsat. 

4.7 Concluding remarks 

Creating spatially explicit maps from the combination of remotely sensed data 
and inventory data is a good synergistic use of both data sources. The use of 
national inventory data collected based on probability sampling, offers several 
advantages in regards to supervised classification of remotely sensed data. The 
data are often of high quality, well distributed spatially, have a large quantity 
of samples, are permanently located with GPS-assigned coordinates, surveyed 
multiple times, and provide reliable data on the frequency of vegetation type 
occurrence useful as prior probabilities. The frequency of divided plots 
obtained from a probability-based sample provides information about the 
vegetation heterogeneity of the landscape, which can be an advantage or 
disadvantage in training data, depending on the classification method used, the 
landscape characteristics and the desired output. Some difficulties of using 
inventory data might be that the inventory’s spatial unit does not suit the 
purpose of the classification project, the variables measured are not sufficient, 
that there is insufficient representation of certain classes, and that quality 
control of the training data is perhaps even more important when using 
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inventory data. If the inventory variables don’t meet the requirements for the 
training data, or if the inventory data have too few plots for rare cover types, 
the training data may need to be supplemented. In several operational large 
area land cover mapping projects (e.g., NLCD 2001), using a combination of 
training data sources (inventory data, aerial photo-interpretation, and field-
visited data) is a common practice. 

In some countries, national inventory data may not be available. However, 
this is slowly changing, due to new directives and the harmonization of 
inventory efforts over national boundaries. Even if national inventory data 
exist, there may be other hindrances to its use such as the quantity of data not 
being enough (it is enough for either training or accuracy assessment, but not 
both), or there may be locational and scale issues. There may be institutional 
hinders to using inventory data, such as secrecy regarding the location of the 
inventory sites, or a lack of cross-disciplinary communication between the 
administrators of the inventory data and the remote sensing analysts who wish 
to use the inventory data. Having people in the different organizations that are 
motivated to combine inventory data and remotely sensed data, as well as 
having the infrastructure for communication and data sharing, are catalysts for 
their combined use. The availability of national inventory data and its 
integration with satellite data to create better area statistics is increasing (e.g., 
Nilsson et al., 2009; McRoberts, 2010), and is likely to do so in the future.  

New optical satellite sensors will be launched in the coming years. The 
Indian Resourcesat-3 satellite, scheduled for launch in 2014, will carry an 
AWiFS sensor capable of acquiring large scenes (300 km swath width with one 
sensor) with a 25 m pixel size and an improved 12-bit radiometric resolution. 
The Landsat Data Continuity Mission (LDCM), scheduled for launch in 2012, 
will maintain the 185 km scene size and 30 m pixel size, but have an improved 
12-bit radiometric resolution, and slightly different bandwidths than Landsat 7, 
including a new thermal-IR sensor. Sentinel-2 (part of the European GMES 
initiative and scheduled for launch in 2013) will be a two-satellite constellation 
with 10, 20 and 60 m pixels, 12-bit radiometric resolution of the visible, NIR 
and SWIR wavelength bands, and a scene size of 290 km. The SPOT series of 
satellites will launch a constellation of both SPOT 6 (scheduled for 2012) and 
SPOT 7 to provide data at a 6 m pixel size for the blue, green, red, and NIR 
bands, a 60 km swath width, and a daily revisit ability. Each of these satellites 
will provide new data useful for mapping forest and alpine landscapes. 

Finally, the advancement of 3-D technology in remote sensing will also be 
of importance for land cover classification and continuous value predictions. 
Airborne laser-scanner data can be used to provide data on vegetation height 
and density, as well as to create high-resolution digital terrain models. Digital 
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aerial photographs are also a potential data source for automated digital surface 
models, and the TerraSAR/TanDEM-X radar mission will soon provide new 
global digital elevation models. Improved digital terrain models will certainly 
be useful for topographic normalization of optical satellite data as well as 
providing more detailed elevation derivatives as input to classification. 
Combining laser-derived parameters with optical satellite data has already been 
shown to improve the estimation of forest parameters (Nordkvist et al., in 
press), as the two data sources provide complimentary information. It is 
anticipated that the addition of information on vegetation height and density 
from 3-D data sources together with the spectral information from optical 
satellite data will lead to improved classification of alpine vegetation types, as 
well as for forest.  
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