

This is an author produced version of a paper published in Applied Soil Ecology.

This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

Citation for the published paper:

Lagerlöf, Jan; Adolfsson, Lena; Börjesson, Gunnar; Ehlers, Knut; Palarès Vinyoles, Glòria; Sundh, Ingvar. (2014) Land-use intensification and agroforestry in the Kenyan highland: impacts on soil microbial community composition and functional capacity. *Applied Soil Ecology*. Volume: 82, pp 93-99.

http://dx.doi.org/10.1016/j.apsoil.2014.05.015.

Access to the published version may require journal subscription. Published with permission from: Elsevier.

Epsilon Open Archive http://epsilon.slu.se

Land-use intensification and agroforestry in the Kenyan highland: impacts on soil microbial community composition and functional capacity

Jan Lagerlöf, Lena Adolfsson, Gunnar Börjesson, Knut Ehlers Glòria Palarès Vinyoles and Ingvar Sundh.

Published 2014 in Applied soil ecology volume 82, pages 93-99

1	Land-use intensification and agroforestry in the Kenyan highland: impacts on soil
2	microbial community composition and functional capacity
3	
4	Jan Lagerlöf ¹ , Lena Adolfsson ¹ , Gunnar Börjesson ² , Knut Ehlers ³ Glòria Palarès Vinyoles ¹

5	and Ingvar Sundh ⁴ .
6	¹ SLU, Department of Ecology, P.O.Box 7044, SE-750 07 Uppsala, Sweden
7	Corresponding author: jan.lagerlof@slu.se, tel +46 (0)18 672422, fax +46 18 (0)672890
8	² SLU, Department of Soil and Environment, P.O.Box 7014, SE-750 07 Uppsala, Sweden
9	³ German Federal Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
10	⁴ SLU, Department of Microbiology, P.O.Box 7025, SE-750 07 Uppsala, Sweden
11	
12	Abstract
13	
14	This study investigates microbial communities in soil from sites under different land use in
15	Kenya. We sampled natural forest, forest plantations, agricultural fields of agroforestry farms,
16	agricultural fields with traditional farming and eroded soil on the slopes of Mount Elgon,
17	Kenya. We hypothesised that microbial decomposition capacity, biomass and diversity 1)
18	decreases with intensified cultivation; and 2) can be restored by soil and land management in
19	agroforestry. Functional capacity of soil microbial communities was estimated by degradation
20	of 31 substrates on Biolog EcoPlates TM . Microbial community composition and biomass were
21	characterised by phospholipid fatty acid (PLFA) and microbial C and N analyses.
22	All 31 substrates were metabolised in all studied soil types, i.e. functional diversity did
23	not differ. However, both the substrate utilisation rates and the microbial biomass decreased
24	with intensification of land use, and the biomass was positively correlated with organic matter
25	content. Multivariate analysis of PLFA and Biolog EcoPlate [™] data showed clear differences

between land uses, also indicated by different relative abundance of PLFA markers for certain

27 microorganism groups. In conclusion, our results show that vegetation and land use control

- 28 the substrate utilisation capacity and microbial community composition and that functional
- 29 capacity of depleted soils can be restored by active soil management, e.g. forest plantation.
- 30 However, although 20 to 30 years of agroforestry farming practises did result in improved soil
- 31 microbiological and chemical conditions of agricultural soil as compared to traditional
- 32 agricultural fields, the change was not statistically significant.
- 33 Key words: Biolog EcoPlateTM, PLFA, soil nutrients, agriculture, forest plantation, soil C

1. Introduction

37	The high growth in human population in Sub-Saharan Africa has led to intensification of
38	agriculture, deforestation and use of less suitable land for agriculture. The traditional
39	techniques often leave the soil open to erosion by wind and rain, which result in depletion of
40	soil organic matter and nutrients, in turn leading to lowered fertility.
41	In addition to decreased productivity, these conditions lead to loss of biodiversity both in
42	flora and fauna (Tscharntke et al., 2012; Matson et al., 1997). The above-ground loss of
43	biodiversity is well documented and of great concern, while the below-ground effects have
44	been less studied. There is now, however, an increasing number of studies that have
45	documented changes in soil microorganisms and fauna biodiversity of tropical soils in relation
46	to intensified land use (e.g. Bossio et al., 2005; Huising et al., 2011).
47	The traditional agricultural maize mono-cropping often results in removal of the
48	aboveground biomass of stover after harvest. The consequences for soil fertility are reduced
49	carbon and nutrient supplies (Mutuo et al., 2005). The tillage of crop fields also disturbs the
50	habitats of soil organisms that in most cases show lower numbers and biomass in cultivated
51	land than in undisturbed soil (Brady et al., 2002).
52	This study examines the structure and functional capacity of the microbial community in
53	soil under different land uses on the slope of Mount Elgon in western Kenya, which is
54	intensively used for agriculture. For more than 20 years, implementation of agroforestry in the
55	region has been promoted with help of the NGO Vi Agroforestry Project (Vi AFP) and this
56	type of land use is now wide spread. The aim is to conserve and restore soil fertility and to
57	diversify agricultural production for improvement of farmers' economy and increase of wood
58	production for fuel and construction. The agroforestry systems mainly include inter-cropping,

trees scattered on farm, trees along conservation structures, hedgerow planting and woodlots 59 60 (Gachene et al., 2003; Maundu and Tengnäs, 2005; Dharani, 2002). Mulching with leaves from the trees to the agricultural fields of agroforestry system farms is a recommended 61 practice as well as other forms of returning crop residues to the soil. The beneficial effects of 62 agroforestry on several ecosystem services and its capacity to restore soil structure and 63 function have been assumed and have in many cases been supported by empirical studies 64 (Jose, 2009; Sharma, 2009; Smith et al., 2013; Vincenti et al., 2013). However, not all studies 65 have been able to demonstrate consistently significant effects on soil conditions and in 66 particular not on soil microbial communities (e.g. Lacombe et al., 2009; Tornquist et al., 67 1999). 68

69 In this study the following hypotheses were tested: 1) Deforestation, agricultural 70 cultivation and overuse of land resources lead to decrease of microbial biomass, change in community composition and decreasing functional capacity of soil microorganisms. 2) The 71 72 microbial communities can be restored by active soil management, including implementation 73 of agroforestry. The functional capacity of soil microorganisms was estimated by measuring the degradation of 31 different substrates on Biolog EcoPlates[™]. Microbial community 74 composition and biomass were characterised by phospholipid fatty acid (PLFA) analysis and 75 by determination of microbial C and N. The microbial community was also analysed in 76 relation to chemical and physical soil conditions. 77

78

79 2. Materials and Methods

80

81 2.1. Study area

The study took place on the slopes of Mt Elgon, west of Kitale in Rift Valley province, Kenya 83 84 (coordinates of area centre: 1°04'N, 34°04'E). The areas surrounding Mt Elgon National Park have been almost completely deforested due to agriculture and fuel wood collection, but to a 85 great extent, trees have now been reintroduced in agroforestry systems and in forest 86 plantations and wood lots. The climate is highland equatorial with a mean annual temperature 87 of 18 °C (Kitale town, 1900 m a.s.l.) and average annual precipitation of around 1300 mm, 88 89 most falling during April-July (long rains) and October-November (short rains). The soils on the mountain slopes are reddish sandy clay loams developed from basalt and ashes and rich in 90 organic matter. By the foot of the mountain the soils are dark brown andosols and nitosols. 91 92 Maize and sunflowers are the most favoured crops, while Acacia spp., Grevillea robusta, Sesbania sesban, Calliandra calothyrsus, Passiflora edulis, Cordia africana, Markhamia 93 lutea and Persea americana are the most commonly planted tree species. Mt Elgon National 94 95 Park covers the area of the mountain above ca 2200 m and up to the summit at 4321 m a.s.l. The vegetation is composed of a zonation of mountain forest and afro-alpine vegetation above 96 97 the tree line.

98

99 2.2. Sampling

100

Soil samples were taken in four different habitat types representing increasing land-use intensity: planted forest or woodlots consisting of many different species of trees (FO); agroforestry fields (AF); agricultural fields (AG = harvested and not replanted maize fields); and eroded land (ER= bare, uncultivated land often used as pathways). Together with staff from Vi AFP, farms on the chosen altitudes and cultivation systems were selected. There were nine replicates of each land use; five replicates were situated on altitudes between 1900 and 2000 m and four replicates on altitudes between 2000 and 2200 m. All sampling sites were on small-scale farms, except one that was situated on Olof Palme Agroforestry Centre (OPAC,
1900 m a.s.l.). AF soil samples were collected in small agricultural fields surrounded by
planted trees. For comparison, soil sampling (four replicates) was also performed in
indigenous forest of Mt Elgon National Park (EL, 2200-2400 m a.s.l.). Dominating trees in
the EL sites were *Okotea usambarensis*, *Olea africana* and *Juniperus procera*. In total, this
added up to 40 sampling locations spread over an area of more than 100 km².

Samples for soil physical and chemical analyses were collected on all 40 locations during February – March 2007. Five soil cores from 0-25 cm depth were randomly collected with an auger from a ca. 25 m x 25 m area. The cores were bulked into one soil sample, put in plastic bags and tagged and then carefully mixed. The bags were left open to air-dry for a minimum of five days before transport to the lab at Moi University in Eldoret where soil physical and chemical analyses were done.

120 Samples for soil microbial analyses were taken at the same 40 locations as for physical and chemical analyses and by the same sampling technique, but at a later date during March 121 122 2007. These samples were transported in cool boxes and with minimal disturbance within 46 123 h to the Tropical Soil Biology and Fertility Programme of International Centre for Tropical Agriculture/World Agroforestry Centre laboratory in Nairobi (TSBF-CIAT/ICRAF) where 124 total microbial C and N and Biolog EcoPlateTM analysis were done on the fresh soil. 125 Thereafter the remaining soil was stored in freezer at -20 °C for later transport to SLU in 126 Uppsala, Sweden, where the PLFA analysis was done. 127 128

129 2.3. Physical and chemical analyses

130

All physical and chemical analyses were performed according to Okalebo et al. (1993) and/or
Anderson and Ingram (1993). Briefly, soil particle size analysis was performed using the

hydrometer method. Sand, silt and clay content of the soil was measured as percentage of 133 134 weight of oven-dry and organic matter-free soil. Extractable nitrate was determined by a colorimetric method. Soil samples were extracted with potassium sulphate after which 135 136 salicylic acid and sodium hydroxide were added and then analysed by the molybdenum blue method. After colour development, absorbance was read at 419 nm. Plant available P was 137 analysed by the Olsen method. Air-dried soil was extracted with sodium bicarbonate at pH 138 8.5. The solution was filtered and the absorbance was measured at 880 nm. The organic 139 carbon content was determined by complete oxidation by heating after addition of sulphuric 140 acid and aqueous potassium dichromate mixture. The remaining potassium chromate that was 141 titrated against ferrous ammonium sulphate gave the measure of organic carbon content. For 142 total nitrogen, samples were completely oxidised by treating with hydrogen peroxide, 143 selenium and sulphuric acid. After the acid digestion, sodium reagents were added and the 144 145 absorbance was measured at 650 nm.

146

147 2.4. Microbial analyses

148

149 Microbial C (MBC) and N (MBN) was analysed by chloroform fumigation-extraction.

150 Fumigated and non-fumigated soil was extracted with potassium sulphate and the difference

151 in concentration gave the amount of microbial biomass C and N in soil (Anderson and

152 Ingram, 1993).

Microbial metabolic activity was measured using 96-well Biolog EcoPlatesTM where soil microbes are cultured in different substrates. The assay is based on the capacity of microorganisms to utilise different substrates and thus generating a metabolic fingerprint providing information on functional biodiversity in the soil (Insam, 1997; Preston-Mafham et al., 2002). Out of the 31 carbon sources, seven were carbohydrates, two amines/amides, six

158	amino acids, nine carboxylic acids, three miscellaneous and four polymers (Biolog, 2007).
159	From each of the 40 samples, 10 g of fresh soil was suspended in 90 ml of 0.145 M NaCl
160	(dilution to 10 $^{-1}$). With additional NaCl solution, the suspension was subsequently diluted to
161	10 $^{-3}$, transferred to the wells and the plates were incubated for four days at 25 °C. The colour
162	development was followed over time by measuring the absorbance at 595 nm every 24 h up to
163	96 h. Average well colour development (AWCD) was calculated both as the total sum and for
164	the different groups of substrates (Elfstrand et al., 2007). The diversity in colour development
165	for all substrates after 96 h incubation was calculated with the Shannon-Weaver Diversity
166	Index, according to the formula: $H' = -\sum p_i \ln p_i$, where p_i is the proportion of AWCD of a
167	particular substrate to the AWCD of all substrates of a certain land use (Yan et al., 2000).
168	Extraction and methylation of PLFAs were done as described by Börjesson et al. (1998).
169	Fatty acid methyl esters (FAME) were subsequently quantified by gas chromatography
170	(Hewlett-Packard model 6890 GC) as described by Börjesson et al. (1998) and Steger et al.
171	(2003). 37 peaks were identified as PLFAs using a gas chromatograph with a mass-
172	spectrometer (Hewlett-Packard HP 6890 equipped with a HP 5973 mass selective detector).
173	Fatty acids were used as markers for different general groups of microorganisms (Börjesson et
174	al., 2012; Elfstrand et al., 2007; Frostegård and Bååth, 1996, Frostegård et al., 2011).
175	
176	2.5. Statistical analyses

Data for soil physical, chemical and biological factors were analysed with a General Linear
Model with the land uses (FO, AF, AG and ER) and altitudes as model components (Minitab
15 or PASW Statistics 17.0). When significant effects were found (P<0.05) Tukey's pairwise
comparisons was used to compare treatment means. Since the sampling locations of Mt Elgon
natural forest (EL) was situated on higher altitude than the other sampling sites, the difference

183	between EL and the other four land uses cannot be attributed only to land use, an altitude
184	effect cannot be excluded. Therefore, EL was not included in the statistical analysis but the
185	results are shown for comparative purposes. Data were tested for normal distribution and if
186	needed log transformation was done in order not to violence the assumptions of normality and
187	equal variances. Correlation analysis among all soil variables was performed. A principal
188	component analysis (PCA) was done on correlation matrix for Biolog-data (Minitab 15) and
189	covariance matrix for PLFAs converted to mole percentage (JMP ver., SAS Institute, Cary,
190	U.S.A.). In this case the EL data were also included.
191	
192	
193	3. Results
194	3.1. Altitude effects
195	
196	There were no significant differences between the two altitudes for any of FO, AF, AG and
197	ER land uses, in any of the tested variables, except for PLFA. Therefore, results of the lower,
198	1900-2000 m a.s.l., and the higher altitude level, 2000-2200 m a.s.l., will in most cases be
199	presented together. Results from EL (only on altitudes 2200-2400 m a.s.l.) are presented as a
200	reference but not included in the statistical analysis.
201	
202	3.2. Soil physics, chemistry and microbial biomass
203	
204	The clay content was significantly higher in ER than in AF and FO while AG was not
205	significantly different from ER. Sand and silt content showed the opposite trend with the
206	highest percentage in FO and AF (Table 1).

207	Land use generally affected most soil chemical parameters in similar direction, with an
208	increasing trend from ER to AG and AF, FO and EL the highest (Table 1). The mean pH, C
209	and N significantly separated FO from AG and ER, but not from AF, and mean of EL was the
210	highest. The MBC and MBN showed similar patterns; the concentrations increased with
211	decreasing disturbance. The concentration of plant available phosphorus was significantly
212	higher in AF than in ER and AG, while EL had the lowest value.
213	
214	3.3. Decomposition capacity of soil microorganisms and functional diversity
215	
216	The substrate utilisation capacity of soil microbes followed the same pattern as for soil
217	physical and chemical variables. Thus, total AWCD was highest in EL, FO and AF,
218	intermediate in AG (not significantly different from the land uses with trees) and significantly
219	lower in ER (Table 1). Utilisation patterns were similar also when split into the different
220	substrate groups, i.e. carbohydrates, amines/amides, amino acids, carboxylic acids,
221	miscellaneous and polymers (data not shown). Total AWCD was, however, not significantly
222	correlated with any of the other variables, except a positive correlation to plant available
223	phosphorus (Table 2).
224	All 31 substrates were utilised in soil from all habitat types, but at different rate, and
225	decomposition rates of each substrate were lower in the more disturbed land uses. The
226	functional diversity measured as Shannon-Weaver index did not differ among land uses
227	(range of H': 3.313-3.356). The PCA score plot analysis (Fig. 1) clearly separates ER from
228	the rest of land uses. It also shows a slight separation of tree-based systems from AG, which is
229	the most similar to ER.
230	

231 3.4. Microbial community biomass and composition

233	Total PLFA concentration (Table 3), which reflects total microbial biomass, differed
234	significantly among land uses and was the highest in EL (281 mmol g ⁻¹) followed by FO, AF,
235	AG and ER in decreasing order. However, the difference between AG and AF was not
236	significant. This is the same trend as for microbial N and C. Total PLFAs per g soil C (Table
237	3) also show significant differences between the land uses (P<0.001) with the amounts in EL
238	2.7 times those in ER. However, the differences were smaller than when calculated per g soil.
239	The total PLFA content was positively correlated with most of the chemical and biological
240	soil properties (Table 2). Exceptions are nitrate and clay that were significantly negatively
241	correlated with total PLFA, while the correlation with AWCD was only weakly positive.
242	Similar to Biolog EcoPlate [™] data, the PCA of PLFA data showed ER to form a distinct
243	cluster separated from the other sites (Fig. 2). In the loading plot (figure not shown), the main
244	drivers for PC 1 were monounsaturated PLFAs ($16:1\omega7$, $18:1\omega5$ and $18:1\omega7$) on the positive
245	side and 20:4 together with branched PLFAs (i16:0, i17:0, a17:0, br18:0) on the negative side;
246	while PLFA 16:0 dominated strongly in the positive direction of PC 2. Thus, the position of
247	ER samples in Fig. 2 can be explained by relatively high proportions of branched PLFAs
248	compared to the other sites, but also low proportions of the mentioned mono-unsaturated
249	PLFAs (Table 4).
250	Looking at single PLFAs, most had highest concentrations per g soil (as well as per g
251	microbial biomass C) in EL with a decreasing trend towards ER, like the values for total

252 PLFA. One exception is 20:4 (a marker for Protozoa) that had markedly higher values per

253 gram soil and per g C in ER than in the other land uses.

Expressed as relative contributions, the sum of PLFA markers for bacteria constituted 55-

255 60 % of the PLFA, except in ER, where it was 49.5 % (Table 3). PLFAs typical of G+

bacteria (except actinobacteria) also had lower share in ER (19.6 %) than in the other land

uses (24.2-26.7 %) while the markers for actinobacteria had the highest relative abundance in
AG (3.3 %) and the lowest in EL (1.8 %). Signature fatty acids for G- bacteria had the highest
percentage in EL (28.5 %) and significantly lower in ER (20 %), while markers for fungi had
a share of around 7 % in all land uses.

Table 4 shows the relative abundance of each PLFA as percentage of total PLFA. The 261 most abundant fatty acid in all land uses was 16:0 followed by i15:0, the former ubiquitous in 262 all living matter, the latter a marker for G+ bacteria. A number of PLFAs are sticking out with 263 different values for certain land uses. For example, 18:1007 (a marker for G-bacteria) had 264 higher relative contribution in EL than in the other habitats. Moreover, 10Me18:0 (marker for 265 266 actinobacteria) and 10Me16:0 (marker for sulphur reducing bacteria) were especially abundant in AF and AG. ER stood out from the other habitats by significantly lower 267 contributions of several PLFAs, e.g. markers for sulphur reducing bacteria, G-, G+ and 268 269 actinobacteria. Conversely, the contribution of the Protozoa marker 20:4 was substantially higher in ER than in the other habitats. Relative values of markers for fungi (18:2, 18:3 and 270 271 $18:1\omega 9$) did not separate among land uses.

272

273

275

Since EL only occurs on higher altitudes than the other studied land uses it was not included in the statistical analysis. However, data from EL can give a quite realistic indication of what conditions could be expected in undisturbed forest soils also on lower elevation. Also among the other four land uses, initial conditions were probably not completely identical. Difference in soil particle size distribution with higher clay and lower sand contents in ER and AG than in FO (with AF intermediate) indicate that sites with more sandy and probably less fertile soils have been selected for forest plantation while the soils with more clay and higher fertilityhave been used for agriculture and agroforestry.

The high clay contents in ER could possibly be explained by the fact that the upper, sandier soil horizons (with more organic matter) have been washed away while soils richer in clay in lower horizons have been exposed. With this in mind, our results demonstrate a decrease in soil organic matter, microbial C and N and microbial biomass with increasing disturbance related to cultivation, which supports our first hypothesis.

Although the relative abundance of PLFAs typical for microbial groups differed to some 289 extent among the studied habitats (Fig. 2, Table 3 and 4), all PLFAs were detected in all of 290 291 them. Also all 31 tested substrates were decomposed in all habitats (Table 1, Fig.1). This indicates that on microbial community level, probably no vital functional and structural 292 features of the soils were lost by intensified land use. However, the capacity (decomposition 293 294 rate) and microbial biomass did decrease substantially. Thus, our first hypothesis is supported regarding decreased biomass and activity, but less obviously regarding microbial diversity. 295 296 However, in the case that some organisms disappear, as long as there is a broad spectrum of 297 organisms remaining, others can take advantage of the changed conditions of altered land use and decomposition can be sustained (Griffiths et al., 2001; Susilo et al., 2004). 298

299 The Biolog method, based on incubations, has been found to favor just a few genera; those that can grow on the substrates and those that are fast growing (r-strategists), while the 300 majority of oligotrophic species (K-strategists) are out-competed. Still, the Biolog EcoPlateTM 301 contains a high number of substrates that are relevant for the soil environment and thereby 302 303 expresses the action of a large number of enzymes. Therefore, it has been useful for comparing microbial communities in contrasting environmental samples. It has been 304 305 recommended to combine the Biolog method with other techniques for analysis of the functional ability of the entire soil microbial community (Ros et al., 2008) but for this study 306

further analyses were not feasible. We also employed the PLFA analysis, which gives a clear
picture of the structure of the microbial community. With knowledge of the ecology of the
different microorganism groups this also gives some insight into the functional ability of the
community.

Although microbial biomass and decomposition capacity in AF were slightly higher as 311 compared to AG, this difference was not significant. This shows that agroforestry in 20 to 30 312 313 years was not sufficient to restore the chemical and biological conditions of agricultural soil to the recommended levels, but forest plantations on the same farms are useful for restoration 314 of soil biodiversity and function (decomposition capacity) of degraded soils. It should be kept 315 316 in mind that AF samples were taken in arable fields at a certain distance from trees and other perennial vegetation. It is possible that if we had sampled under such vegetation components 317 318 we could have been able to demonstrate improvement as compared to AG. Microbial 319 community development depends on the growth of the aboveground vegetation either directly (symbionts and decomposers) or indirectly via supply of carbon (autotrophic microbes) 320 321 (Jasper, 2007).

322 Bossio et al. (2005) studied soil microbial community response to land use changes in different soil types at several locations in Western Kenya. Soil type was the key determining 323 324 factor for the microbial community composition (determined by denaturing gradient gel electrophoresis - DGGE and PLFA analyses), with secondary variation between forested and 325 agricultural soils, with highest total abundance and diversity in forested sites. Their data from 326 Biolog EcoplateTM and enzyme activity analyses demonstrated that substrate utilisation 327 profiles were more weakly related to soil type and land use than the microbial community 328 structure was. They concluded that substrate utilisation profiles can be similar in spite of 329 genetically different and less diverse microbial communities, because redundancy among 330 communities will promote soil stability and protect soil processes. This is in agreement with 331

our results, showing low correlation between total AWCD and microbial biomass, measuredas total microbial C and N or PLFA.

Soils of the indigenous forest in EL had lower levels of plant available P than the other 334 habitats except ER. One possible explanation can be that the agricultural soils may have been 335 fertilized with inorganic P, or P has been added by supplementing mulch and other organic 336 matter, especially in the agroforestry system. Burning of crop residues in AF may have 337 supplemented P-rich ash and increased availability of P (Ketterings et al., 2002). Additionally, 338 in the forest soil there certainly was a great competition for P leaving very low plant available 339 amounts in the soil. P deficiency is likely to occur in tropical agricultural soil when levels of 340 341 plant available P is less than 15 mg per kg soil (Fairhurst, 2012).

Differences among soil types were smaller when relating PLFA to g soil C than to g soil (Table 3). This indicates that not only the concentration of organic matter is decisive for microbial biomass but also substrate quality as well as other biotic and abiotic factors. We can assume that the organic matter in ER was older than in the other habitats since input of fresh organic matter is low.

Mono-unsaturated PLFAs, indicating G- bacteria, some of which are known to be involved in nitrogen cycling, showed lower relative abundance in ER than in the other soil types. It is likely that this reflects the nutritional status, since G- bacteria are known to increase after nitrogen fertilisation, both through mineral fertilisers and manure (Peacock et al., 2001).

In ER, higher values were found for the Protozoa marker 20:4 and for unk17a, br18, 18:0 and i19:0. Branched PLFAs (e.g. br18 and i19:0) may be used as signatures for G+ bacteria. These bacteria may preferentially utilise old organic matter (*e.g.* Waldrop and Firestone, 2004), but since the abundances of these branched PLFAs were rather low in our samples, any conclusion about this would be very speculative. We are unable to explain the high

contribution of 20:4 in ER, and have not found any support in the literature concerning
relatively high density of Protozoa in depleted soil. On the contrary, Fierer et al. (2003) found
that Gram+ bacteria and actinomycetes tended to increase in proportional abundance with
increasing soil depth, while the abundances of Gram- bacteria, fungi, and protozoa were
highest at the soil surface and substantially lower in the subsurface where C and nutrient
content was lower.

Most abiotic and biotic variables were positively correlated with pH. Fierer and Jackson (2006) studied the diversity of bacterial communities across North and South America. They found that the composition of bacterial communities was unrelated to site temperature, latitude and other variables that typically predict plant and animal diversity. On the local scale, however, differences in communities could largely be explained by soil pH, which is similar as in our data.

In conclusion, we found that Biolog EcoPlate[™] and PLFA analyses give useful 370 371 information on structure and function of soil microbial communities, complementary to 372 estimates of organic matter content and total microbial biomass. Our results indicate that the substrate utilisation capacity and microbial community composition is similar in land with 373 similar vegetation and that the functional capacity and microbial biomass of the soil can be 374 restored by active soil management, such as forest plantation. However, 20 to 30 years of 375 agroforestry practices was not enough to significantly change the conditions of agricultural 376 soil as compared to conventional agriculture. It seems that the well documented positive 377 effects that agroforestry has on above-ground harvest yield, other ecosystem services and 378 socio economy (Jose, 2009; Smith et al., 2013; Sharma, 2009; Vincenti et al., 2013) are not as 379 easily demonstrated for soil biology, which in this study was more resistant to change. 380

381

³⁶³

382 Acknowledgements

383	We are grateful to Björn Horvath and the whole Vi Agroforestry team in Kitale for inviting us
384	to work with the project and for excellent co-operation and hospitality. We also thank
385	personnel at CIAT-TSBF and ICRAF laboratory in Nairobi for help with laboratory work and
386	for great hospitality. The study was financially supported by a Minor Field Study scholarship
387	from Sida/Internationella programkontoret and by a research grant from Formas/Sida for work
388	at CIAT - a CGIAR Institute. We thank Ulf Olsson, SLU and Joseph Mungatu, Nairobi
389	University for statistical advice.
390	
391	
392	References
393	Anderson, J.M., Ingram, J.S.I., 1993. Tropical Soil Biology and Fertility: a Handbook of
394	Methods. CAB International, Wallingford, UK.
395	Biolog, 2007. URL: www.biolog.com. Accessed January 2007.
396	Börjesson, G., Sundh. I., Tunlid, A., Svensson, B.H., 1998. Methane oxidation in landfill
397	cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid
398	analyses. Soil Biol. Biochem. 30, 1423-1433.
399	Börjesson, G., Menichetti, L., Kirchmann, H., Kätterer, T., 2012. Soil microbial community
400	structure affected by 53 years of nitrogen fertilisation and different organic amendments.
401	Biol. Fertil. Soils 48, 245-257.
402	Bossio, D.A., Girvan, M.S., Verchot, L., Bullimore, J., Borelli , T., Albrecht, A., Scow, K.M.,
403	Ball, A.S., Pretty, J.N., Osborn, A.M., 2005. Soil microbial community response to land
404	use change in an agricultural landscape in Western Kenya. Microb. Ecol. 49, 50-62.
405	Brady, N.C., Weil, R.R. 2002. The Nature and Properties of Soils, 13th Edition. Pearson
406	Education Inc., Upper Saddle River, NJ.

- 407 Dharani, N., 2002. Field Guide to Common Trees and Shrubs of East Africa. Struik
- 408 Publishers, Cape Town, South Africa.
- 409 Elfstrand, S., Hedlund, K., Mårtensson, A., 2007. Soil enzyme activities, microbial
- 410 community composition and function after 47 years of continuous green manuring. Appl.
- 411 Soil Ecol. 35, 610-621.
- 412 Fairhurst, T., 2012. African soil health consortium: Handbook of integrated soil fertility. CAB
 413 International, Pondicherry, India.
- Fierer, N., Schimel, J.P., Holden, P.A., 2003. Variations in microbial community composition
 through two soil depth profiles. Soil Biol. Biochem. 35, 167-176.
- 416 Fierer, N., Jackson, R., 2006. The diversity and biogeography of soil bacterial communities.
- 417 Proc. Natl. Acad. Sci. USA 103, 626-631.
- Frostegård, Å., Bååth, E., 1996. The use of phosoholipid fatty acid analysis to estimate
 bacterial and fungal biomass in soil. Biol. Fertil. soils 22, 59-65.
- Frostegård, Å., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils.
 Soil Biol. Biochem. 43, 161-1625.
- 422 Gachene, C.K.K., Kimaru, G., 2003. Soil fertility and land productivity. Regional Land
- 423 Management Unit (RELMA) and Swedish International Development Agency (Sida),
- 424 Nairobi, Kenya.
- 425 Griffiths, B.S., Ritz, K., Wheatley, R., Kuan, H.L., Boag, B., Christensen, S., Ekelund, F.,
- 426 Sørensen, S.J., Muller, S., Bloem, J., 2001. An examination of the biodiversity-ecosystem
- 427 function relationship in arable soil microbial communities. Soil Biol. Biochem. 33, 1713428 1722.
- 429 Huising, J., Okoth P., 2011. Conservation and sustainable management of belowground
- 430 biodiversity in Kenyan agroecosystems. Trop. Subtrop. Agroecosyst. Special Issue 13, i-
- 431 iv .118 pp.

- 432 Insam, H. ,1997. A new set of substrates proposed for community characterization in
- 433 environmental samples. In: Insam, H., Rangger, A., (Eds.) Microbial Communities.

434 Springer, Berlin, pp. 259-260.

- Jasper, D.A., 2007. Beneficial soil microorganisms of the Jarrah forest and their recovery in
 bauxite mine restoration in Southwestern Australia. Restor. Ecol. 15,74-84.
- Jose, S., 2009. Agroforestry for ecosystem services and environmental benefits: an overview.
 Agroforest. Syst. 76, 1-10.
- 439 Ketterings, Q.M., van Noordwijk, M., Bigham, J.M., 2002. Soil phosphorus availability after
- slash-and-burn fires of different intensities in rubber agroforests in Sumatra, Indonesia.
- 441 Agric. Ecosyst. Environ. 92, 37-48.
- 442 Lacombe, S., Bradley, R., Hamel, C., Beaulieu, C., 2009. Do tree-based intercropping systems
- increase the diversity and stability of soil microbial communities? Agric. Ecosyst.Environ. 131, 25-31.
- Matson, P.A., Parton, A.G., Swifth, M.J., 1997. Agricultural intensification and ecosystem
 properties. Science 277, 504-509.
- 447 Maundu, P., Tengnäs, B. (Eds.), 2005. Useful trees and shrubs for Kenya. World Agroforestry
 448 Centre, Nairobi, Kenya.
- 449 Mutuo, P.K., Cadisch, G., Albrecht, A., Palm, C.A., Verchot, L., 2005. Potential of
- 450 agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from
- 451 soils in tropics. Nutr. Cycl. Agroecosyst. 71, 43-54.
- 452 Peacock, A.D., Mullen, M.D., Ringelberg, D.B., Tyler, D.D., Hedrick, D.B., Gale, P.M.,
- 453 White, D.C., 2001. Soil microbial community responses to dairy manure or ammonium
- 454 nitrate applications. Soil Biol. Biochem. 33, 1011-1019.

455	Preston-Mafham, J., Boddy, L., Randersson, P.F., 2002. Analysis of microbial community
456	functional diversity using sole-carbon-source utilisation profiles- a critique. FEMS
457	Microbiol. Ecol. 42, 1-14.

458 Ros, M., Goberna, M., Pascual, J.A., Klammer, S., Insam, H., 2008. 16S rDNA analysis

reveals low microbial diversity in community level physiological profile analysis. J.
Microbiol. Meth. 72, 221-226.

- 461 Smith, J., Pearce, B. D., Wolfe, M.S., 2012. Reconciling productivity with protection of the
 462 environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 28, 80-92.
- 463 Sharma, K.L., Ramachandra Raju, K., Das, S.K., Prasad Rao B.R.C., Kulkarni, B.S., Srinivas,
- 464 K., Kusuma Grace, J., Madhavi, M., Pravin Gajbhiye, N., 2009. Soil fertility and quality
- 465 assessment under tree-, crop-, and pasture-based land-use systems in a rainfed

466 environment. Commun. Soil Sci. Plan. 40, 1436-1461.

467 Steger, K., Jarvis, Å., Smårs, S., Sundh, I., 2003. Comparison of signature lipid methods to

determine microbial community structure in compost. J. Microbiol. Meth. 55, 371-382.

469 Susilo, F.X., Neutel, A.M., van Noordwijk, M., Hairiah, K., Brown, G., Swift, M.J., 2004.

470 Soil biodiversity and food webs in below-ground interactions in tropical agroecosystems.

471 CAB International, Wattingford.

472 Tornquist, C.G., Hons, F.M., Feagley, S.E., Haggar, J., 1999. Agroforestry system effects on

soil characteristics of the Sarapiquí region of Costa Rica. Agric. Ecosyst. Environ. 73, 1928.

- 475 Tscharntke, T., Clough, Y., Wanger, T.C., Jackson, L., Motzke, I., Perfecto, I., Vandermeer,
- J., Whitbread, A., 2012. Global food security, biodiversity conservation and the future of
 agricultural intensification. Biol. Conserve. 151, 53-59.
- 478 Vincenti, B., Termote, C., Ickowitz, A., Powell, B., Kehlenbeck, K., Hunter, D., 2013. The
- 479 contribution of forests and trees to sustainable diets. Sustainability 5, 4797-4824.

480	Waldrop, M.P., Firestone, M.K., 2004. Altered utilization patterns of young and old soil C by
481	microorganisms caused by temperature shifts and N addition. Biogeochemistry 67, 235-
482	248.
483	Yan, F., McBratney, A.B., Copeland, L., 2000. Functional substrate biodiversity of cultivated

484 and uncultivated A horizons of vertisols in NW New South Wales. Geoderma 96, 321-

485 343.

486

489	Text to figures
490	
491	Fig. 1
492	PCA multivariate analysis of functional capacity of the soil microorganism community
493	measured with Biolog EcoPlate TM analysis of decomposition of 31 substrates. Comparison of
494	five land uses. See Table 1 for explanation of land uses. Error bars are standard deviation; for
495	EL n=4, for others n=9. One AG sample was removed as an extreme outlier. PC 1 explains
496	58.9% and PC2 6.9 of the variation.
497	Fig. 2
498	PCA multivariate analysis of PLFA composition of the soil microorganism community.
499	Comparison of five land uses. See Table 1 for explanation of land uses. Two of the samples
500	were left out in the analysis, due to more than 14 of the PLFAs missing. Error bars are
501	standard deviation. PC 1 explains 90.5 % and PC2 3.8 % of the variation.
502	

504 Fig. 1

PCA multivariate analysis of functional capacity of the soil microorganism community measured with Biolog EcoPlateTM analysis of decomposition of 31 substrates. Comparison of five land uses. See Table 1 for explanation of land uses. Error bars are standard deviation; for EL n=4, for others n=9. One AG sample was removed as an extreme outlier. PC 1 explains 58.9% and PC2 6.9 of the variation.

513 Fig. 2

514 PCA multivariate analysis of PLFA composition of the soil microorganism community.

515 Comparison of five land uses. See Table 1 for explanation of land uses. Two of the samples

were left out in the analysis, due to more than 14 of the PLFAs missing. Error bars are

standard deviation. PC 1 explains 90.5 % and PC2 3.8 % of the variation.

518

- 520
- 521
- 522

523 Microbial community composition and functional capacity in Kenyan highland soil

524 under land-use intensification and agroforestry

- 525 Tables Lagerlöf et al. 2014
- 526 **Table 1**

Chemical, biological and physical soil parameters of habitats with different land uses in Mt 527 Elgon area, Kenya. The mean (±standard deviation) of pH, total soil nitrogen (N), total soil 528 carbon (C), plant available phosphorus (P), nitrate, microbial biomass carbon (MBC), 529 530 microbial biomass nitrogen (MBN), substrate utilisation capacity by Biolog EcoPlatesTM (AWCD, average absorbance at 590 nm after 96 h incubation), silt, sand, clay and moisture. 531 ER= Eroded land, AG=Agricultural fields, AF=Agroforestry fields, FO=Planted forest and 532 533 EL=Mt Elgon NP natural forest. n=9, except for EL where n=4. One-way ANOVA did not include EL. Different letters in the same row for the mean values indicate significant 534 differences at P<0.05 (Tukey's test). 535

ER	AG	AF	FO	ANOVA	EL
				P-values	
6.2 (0.6) b	6.0 (<i>0.4</i>) b	6.5 (0.5) ab	6.8 (0.5) a	0.006	6.7 (0.3)
0.09	0.37 (<i>0.09</i>) b	0.46 (0.27)	0.62 (0.28)	< 0.001	1.06 (0.49)
(0.07) c		ab	a		
1.27	2.34 (0.28)	3.41 (1.51)	3.80 <i>1.02</i>) a	< 0.001	5.93 (2.41)
(0.61) c	bc	ab			
8.53	19.6 (<i>11.0</i>) b	60.8 (45.2)	34.7 (40.3)	0.003	14.1 (9.7)
	ER 6.2 (0.6) b 0.09 (0.07) c 1.27 (0.61) c 8.53	ER AG 6.2 (0.6) b 6.0 (0.4) b 0.09 0.37 (0.09) b (0.07) c 2.34 (0.28) (0.61) c bc 8.53 19.6 (11.0) b	ERAGAF6.2 (0.6) b6.0 (0.4) b6.5 (0.5) ab0.090.37 (0.09) b0.46 (0.27)(0.07) cab1.272.34 (0.28)3.41 (1.51)(0.61) cbcab8.5319.6 (11.0) b60.8 (45.2)	ERAGAFFO6.2 (0.6) b6.0 (0.4) b6.5 (0.5) ab6.8 (0.5) a0.090.37 (0.09) b0.46 (0.27)0.62 (0.28)(0.07) caba1.272.34 (0.28)3.41 (1.51)3.80 1.02) a(0.61) cbcab8.5319.6 (11.0) b60.8 (45.2)34.7 (40.3)	ERAGAFFOANOVA

	(<i>10.8</i>) b		a	ab		
Nitrate (µg/kg)	8.9 (5.7)	9.2 (3.7)	6.3 (4.5)	4.9 (3.1)	0.126	7.6 (5.0)
MBC (mg	119(<i>30</i>) c	173 (<i>34</i>) b	212 (<i>33</i>) b	283 (52) a	< 0.001	656 (104)
C/kg)						
MBN (mg	6.6 (2.8) c	13.0 (4.5) bc	19.6 (9.9) b	34.6 (11.6)	< 0.001	114 (34.7)
N/kg)				a		
AWCD	0.48	0.85 (0.49)	1.26 (0.36)	1.25 (0.34)	0.002	1.23 (0.29)
	(<i>0.64</i>) b	ab	a	a		
Silt (%)	10.5 (3.1)	18.2 (9.2) a	15.6 (3.3)	12.8 (2.3)	0.031	13.5 (5.7)
	b		ab	ab		
Sand (%)	50.8 (9.6)	53.1 (<i>12.2</i>) b	61.5 (9.9)	70.8 (<i>6.3</i>) a	<0.001	78.0 (9.3)
	b		ab			
Clay (%)	38.5(9.4) a	28.7 (13.7)	22.7 (10.5)	16.2 (5.6) c	<0.001	8.25 (4.2)
		ab	bc			
Moisture (%)	20.0 (6.4)	23.8 (4.3)	25.8 (6.6)	26.5 (5.2)	0.083	45.3 (7.8)

538 **Table 2**

- 539 Correlation matrix on chemical, physical and biological soil properties for land uses (see tab. 1 for explanation of land uses) ER, AG, EF and FO:
- 540 pH, total soil nitrogen (N), plant available soil phosphorus (P), nitrates (Nitr.), total soil carbon (C), moisture, sand, clay, silt, Microbial Biomass
- 541 carbon (MBC), Microbial Biomass nitrogen (MBN), altitude (Alt), substrate utilization capacity by total Average Well Colour Development
- 542 from Biolog EcoPlates[™] (AWCD, 96 h) and total PLFA. The P-values are shown in italics.
- 543

	CORRI	CORRELATION COEFFICIENT/ P-values											
	рН	Ν	Р	Nitr.	С	Moist	Sand	Clay	Silt	MBC	MBN	Alt	AWCD
	0.619												
1	0												
Р	0.362	0.705											
	0.03	0											
N 7 ° 4	-0.375	-0.385	-0.457										
INIU	0.024	0.02	0.005										
C	0.605	0.882	0.596	-0.4									
C	0	0	0	0.016									
	0.159	0.412	0.367	-0.25	0.54								
Moist	0.354	0.012	0.027	0.141	0.001								

Sand	0.499	0.636	0.219	-0.18	0.638	0.169						
Sanu	0.002	0	0.2	0.293	0	0.325						
Clay	-0.512	-0.7	-0.334	0.128	-0.696	-0.27	-0.893					
Clay	0.001	0	0.047	0.456	0	0.112	0					
Silf	0.079	0.205	0.276	0.097	0.192	0.239	-0.135	-0.325				
Sint	0.646	0.23	0.104	0.575	0.262	0.16	0.433	0.053				
MBC	0.349	0.566	0.121	-0.215	0.66	0.355	0.634	-0.57	-0.077			
MBC	0.037	0	0.48	0.208	0	0.033	0	0	0.657			
MRN	0.51	0.587	0.147	-0.187	0.697	0.382	0.615	-0.574	-0.027	0.895		
	0.001	0	0.393	0.274	0	0.021	0	0	0.875	0		
A] f	0.397	0.409	0.54	-0.241	0.278	0.304	0.167	-0.308	0.327	-0.149	-0.12	
Alt	0.016	0.013	0.001	0.156	0.101	0.072	0.329	0.067	0.051	0.386	0.485	
AWCD	0.248	0.305	0.328	0.096	1.237	-0.025	0.021	-0.111	0.199	0.137	0.162	0.148

	0.171	0.07	0.05	0.577	0.164	0.885	0.902	0.521	0.245	0.425	0.346	0.389	
DIFA	0.486	0.715	0.279	-0.223	0.717	0.366	0.599	-0.573	0.004	0.902	0.865	0.011	0.221
rlfa	0.003	0	0.099	0.19	0	0.028	0	0	0.982	0	0	0.948	0.195

545 **Table 3**

546 Total PLFA (EL n=4, others n=9) and relative abundance of markers for certain

547 microorganism groups in soil samples from different land uses in the Kitale area. See table 1

548 for explanation of land uses. EL not tested in ANOVA. Different letters in the same row for

the mean values indicate significant differences at P < 0.05 (Tukey's test).

550

551

	ER	AG	AF	FO	ANOVA	EL					
Total PLFA											
nmol per g soil	22.6 c	56.5 b	71.7 b	118.7 a	< 0.000	281.8					
nmol per g soil	1780.6b	2415.4ab	2101.4b	3125.8a	< 0.001	4752.7					
С											
Relative abund	Relative abundance of PLFA markers [*] (% of total PLFA)										
Sum Bacteria	49.5 b	58.2 a	56.6 a	56.7 a	< 0.000	59.8					
Sum G+	19.6 b	26.7 a	25.4 a	25.3 a	< 0.001	24.2					
Bact ^{**}											
Actinobact.	2.6 bc	3.3 a	3.0 ab	2.2 c	< 0.000	1.8					
Sum G- Bact	20.0 b	22.3 ab	21.8 ab	24.6 a	< 0.01	28.5					
Sum Fungi	8.3 a	6.8 a	7.2 a	7.6 a	0.306	8.0					
Sum Protozoa	6.6 a	2.1 b	1.8 b	1.5 b	< 0.000	2.4					

- *: Markers for certain organism groups: 553 Sum bacteria: i15:0, a15:0, i16:0, 16:1 1671, **10**Me16:0, i17:0, a17:0, Cy17, 17:0, 554 **T7**:010**M0**10/09:1 555 18:1 Sum G+ bacteria excl. Actinobacteria: i15:0, a15:0, i16:0, 10Me16:0 556 Actinobacteria: 10Me18:0 557 Sum G- bacteria: 16:1 □7, 16:□□ cy17, 17:0, 18:1□ 558 Sum fungi: 18:2+18:3, 18:1 559 9 Sum Protozoa: 20:4, 20:0, 22:0 560 561 **: Excluding Actinobacteria 562 563
- 564

566 **Table 4**

Relative abundance of individual PLFAs (EL n=4, others n=9) in soil samples from different
land uses in the Kitale area. See table 1 for explanation of land uses. EL not tested in
ANOVA. Different letters for mean values in the same row indicate significant differences at
P<0.05 (Tukey's test).

						_
	ER	AG	AF	FO	ANOVA	EL
	-					
i14:0	0.30 c	0.47 bc	0.58 ab	0.74 a	<0.000	0.7
14:0	0.91 c	1.00 bc	1.08 ab	1.07 a	< 0.000	1.22
i15:0	6.32 b	9.63 a	9.27 a	9.47 a	< 0.000	8.66
a15:0	3.63 b	4.88 a	4.86 a	5.20 a	< 0.000	4.88
15:0	0.56	0.43	0.58	0.47	0.74	0.71
br16a	0.31 b	0.48 a	0.51 a	0.59 a	< 0.000	0.73
br16b	0.032 b	0.21 a	0.24 a	0.23 a	< 0.000	0.19
i16:0	5.19	4.78	4.45	4.47	0.264	5.21
16:1 ω 9	0.32 b	0.70 a	0.80 a	0.72 a	< 0.000	0.47
16:1 ω 7	3.88 b	4.87 ab	5.17 a	5.43 a	< 0.001	6.045
16: 1ω5	1.33 c	2.50 b	2.78 ab	3.20 a	< 0.000	3.29

571 PLFA Relative abundance – % of total PLFA

588	16:00	16.65	13.57	14.88	15.54	0.554	12.66
589	unk17a	1.60 a	1.20 ab	1.07 ab	1.01 b	< 0.05	0.9
590	br17	1.55 b	3.15 a	3.14 a	2.88 a	< 0.000	2.78
591	10Me16	4.55 b	7.46 a	6.87 ab	6.20 ab	< 0.05	5.56
592	unk17b	0.9	0.94	0.54	0.53	0.42	0.42
593	i17:0	3.62 a	2.75 b	2.74 b	2.60 b	0.001	2.57
594	a17:0	3.7	3.12	3.14	2.98	0.214	2.6
595	cy17	1.71 b	2.69 a	2.70 a	2.64 a	0	2.26
596	17:0	0.6	0.63	0.71	0.52	0.432	0.56
597	br18	4.15 a	2.78 ab	2.54 b	2.19 b	< 0.01	1.86
598	10Me17	1.22	1.67	1.48	1.17	0.06	1.2
599	18:2+18:3	3.14	2.04	2.15	2.57	0.307	2.64
600	18: 1ω9	5.2	4.77	5.03	5.02	0.508	5.33
601	18: 1ω7	4.34 c	5.32 bc	6.24 ab	7.86 a	0	9.78
602	18: 1ω6	0.28	0.42	0.37	0.28	0.577	0.2
603	18: 1ω5	1.63	1.53	1.93	1.92	0.736	1.69
604	18:0	3.85 a	3.13 ab	2.94 b	2.67 b	< 0.01	2.65
605	br19	0.00 b	0.08 ab	0.05 ab	0.13 a	< 0.05	0.55
606	10Me18:0	2.58 bc	3.35 a	3.03 ab	2.28 c	< 0.000	1.87
607	i19:0	3.32 a	2.07 ab	1.57 b	0.92 b	< 0.000	0.9
608	unk19a	1.08	0.63	0.55	0.58	0.05	0.8

609	unk19b	0	0.41	0.12	0.37	0.156	0.02
610	cy19:0/19:1	4.82 a	4.23 ab	3.14 b	4.06 ab	< 0.05	5.67
611	20:4	4.13 a	0.40 b	0.37 b	0.28 b	< 0.000	0.47
612	20:0	1.87 a	1.01 ab	0.99 ab	0.84 b	< 0.05	1.13
613	22:0	0.6	0.69	0.4	0.37	0.348	0.84
614							
615	Sum PLFA	100	100	100	100		100
616							