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Impacts of stumps and roots on carbon storage and bioenergy 
use in a climate change context 

Abstract 

As a result of national and international greenhouse gas emissions reduction targets, 

economic incentives and political desires to be more independent regarding energy 

supplies, there is interest in substituting fossil fuels with renewable energy sources, 

such as forest fuels. Stump harvesting could be an option to further increase the 

bioenergy potential in forested countries; currently stump harvesting is carried out on a 

pilot basis in Sweden. In this thesis, the Swedish stump harvest potential is studied in a 

national and European climate change mitigation context.   

One main objective was to develop a general system for estimating and monitoring 

carbon stocks and carbon stock changes in stump and root systems on a national scale. 

A core part of this system was a decomposition function for Norway spruce stumps and 

roots that was developed as part of this thesis. The decomposition rate in Norway 

spruce stumps and roots was estimated to be 4.6% annually. Another objective included 

assessment of the carbon balance trade-offs between the use of stumps for either 

bioenergy or carbon sequestration. This was carried out over different time scales and 

harvest intensities and, further, the substitution effect of using stumps for bioenergy in 

comparison with coal was investigated. The risks of nutrient loss linked to stump 

harvesting were also studied and discussed. Data from the Swedish national forest 

inventory and from specifically designed studies on stumps and roots were used for the 

analyses. 

The results showed that it takes about nine years for a stump harvest scenario to 

become more climate-friendly than if coal were used i.e. there is a certain lag period 

during which the CO2 emissions from the stump harvest scheme exceed the emissions 

from utilizing coal as fuel; this is due to higher calorific value in fossil fuels. However, 

in the long-term, the CO2 emissions decrease if stumps and roots are used instead of 

coal. In the medium scenario studied, the CO2 emissions decreased by 5.0 Tg CO2 yr
-1

 - 

this corresponds to 8.6% of Sweden’s current greenhouse gas emissions. It was also 

shown that the Swedish carbon pool in stumps and roots would start to decrease if more 

than approximately 107 PJ were harvested annually. Without stump harvesting, the 

carbon pool in stumps and roots increased over the study period (1984 – 2003) by, on 

average, 6.9 Tg CO2 yr
-1

. Also, the nutrient pools would be at risk if intensive stump 

harvest schemes after stem and slash harvesting were implemented. However, from a 

nutrient perspective, depletion of forest soils would be at least risk if a proportion of 

slash rather than stumps and coarse roots were left after harvesting. 
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Inverkan av stubbar och rötter på kollagring och bioenergi i ett 
klimatsammanhang 

Sammanfatting (Swedish summary) 

Som ett resultat av nationella och internationella mål för minskade utsläpp av 

växthusgaser, ekonomiska incitament och politisk vilja att bli mer självförsörjande vad 

gäller energi, så finns ett intresse att använda förnyelsebara energikällor istället för  

fossila bränslen. Stubbskörd skulle kunna vara en möjlighet att öka 

skogsbränslepotentialen i skogsländer; idag är Finland det land som tillämpar 

stubbskörd i störst utsträckning medan man i Sverige endast skördar stubbar på 

försöksnivå. I avhandlingen studeras möjligheterna till stubbskörd i Sverige ur ett 

svenskt och europeiskt klimatperspektiv. 

Ett huvudsyfte var att utveckla ett system för att beräkna förändringar av kolförrådet 

i stubb- och rotsystem på nationell nivå. En central del av systemet är en 

nedbrytningsfunktion för stubbar och rötter av gran, som utvecklades inom ramen för 

avhandlingen; den genomsnittliga nedbrytningshastigheten beräknades till 4,6% per år. 

Ett annat syfte med avhandlingen var att göra avvägningar mellan användning av 

stubbar och rötter som bioenergi eller kolinlagring; avvägningarna gjordes över olika 

tidsskalor och skördenivåer. Dessutom undersöktes substitutionseffekten av att använda 

stubbar och rötter som bränsle istället för kol. Risken att utarma marken på 

näringsämnen vid stubbskörd undersöktes också. Data för analyserna hämtades från 

den svenska riksskogstaxeringen och från specifikt utformade stubb-rotstudier inom 

ramen för avhandlingen. 

Resultaten visar att om lika mängd energi produceras från stubbskörd eller 

kolförbränning tar det ungefär nio år innan  scenariot med stubbskörd blir mer 

klimatvänligt, d.v.s. under en inledande period överstiger CO2-utsläppen från 

stubbförbränning utsläppen från användning fossilt bränsle p.g.a ett högre energivärde 

hos fossila bränslen. På lång sikt minskar emellertid CO2-utsläppen om stubbar och 

rötter används istället för kol. För det stubbskördscenario som studerades minskade 

CO2-utsläppen med 5.0 Tg per år. Detta motsvarar 8.6% av Sveriges nuvarande årliga 

utsläpp av växthusgaser. Vidare visades att den svenska kolpoolen i stubbar och rötter 

skulle börja minska om mer än ca 30 TWh skördas årligen, vilket motsvarar ca hälften 

av alla stubbar som uppkom per år i Sverige under studieperioden 1984 – 2003. Utan 

stubbskörd ökade stubb- och rotkolpoolen under studieperioden med i genomsnitt 6,9 

Tg CO2 år
-1

. Vid studier av näringshalter i stubbar och rötter visade det sig att markens 

uthålliga produktionsförmåga skulle kunna äventyras om intensiv stubbskörd införs i 

kombination med uttag av grenar och toppar. På grund av lägre halter av näringsämnen 

i stubbar och rötter jämfört med grenar och toppar kan emellertid stubbskörd ha 

fördelar framför tillvaratagandet av grenar och toppar ur ett näringsämnesperspektiv. 

 

Författarens adress: Ylva Melin, SLU, Institutionen för skoglig resurshushållning,  

Skogsmarksgränd 1, 901 83 Umeå, Sverige. E-mail: Ylva.Melin@slu.se  

mailto:Ylva.Melin@slu.se


Dedication 

To Elsa & Emil 

Trees are made of air, primarily. When they are burned they go back to air, 

and in the flaming heat is released the flaming heat of the sun which was 

bound in to convert the air into tree, and in the ash is the small remnant of the 

part which did not come from air that came from the solid earth, instead. These 

are beautiful things, and the content of science is wonderfully full of them. 

Richard P. Feynman 
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1 Introduction 

1.1 Scope of this thesis 

This thesis describes the development of a general system for estimating and 

monitoring carbon stocks and carbon stock changes in stump systems at a 

national scale for reporting under the UNFCCC (United Nations Framework 

Convention on Climate Change) and the KP (Kyoto Protocol) (Paper I). In the 

estimates of carbon stock development over time, an empirical decomposition 

function for stumps and roots was needed, and so was developed as part of the 

thesis (Paper II). Furthermore, the general system developed was used to 

investigate the role of stumps as sources of bioenergy or sinks of carbon in 

Swedish forests in a climate change mitigation context. The carbon balance 

trade-offs between bioenergy and carbon sequestration were examined over 

varying time scales and harvest intensities, and special emphasis was given to 

comparisons of carbon emissions from combusting stumps from long-rotation 

forestry versus coal (Paper III). The positive and negative environmental 

effects of stump harvesting were investigated with a special focus on nutrient 

loss and its effects on future sustainability (Paper IV).  

1.2 Climate strategies and policies 

1.2.1 Global level 

Currently we know that it is “extremely likely that human influence has been 

the dominant cause of the observed global warming since the mid-20
th

 century” 

(IPCC, 2013). To keep global warming below 2°C, the world will need to 

reduce its emissions of carbon dioxide (CO2) and other greenhouse gases 

(GHG) by 50% before 2050 compared with 1990 levels (IPCC, 2013). 

Developed countries will need to reduce more – by 80 – 95% by 2050. There 

are multiple international responses to climate change in a climate strategy 

context; a major international attempt to coordinate climate change mitigation 
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is the foundation of the UNFCCC and the adoption of its supplementary Kyoto 

Protocol (KP) in 1997. The KP legally binds developed Annex I parties to cap 

their emissions, while parties in transition, which constitute major parts of 

South America, Africa and Asia (including the growing economies India and 

China), have no binding emission targets. Currently, there are 195 parties to the 

convention and 192 parties to the KP, with the second period of KP 2013 – 

2020 in operation. In the second period, Australia and the EU countries have 

binding emission reduction targets; however, important emitters such as 

Russia, Canada and USA have no binding targets. To achieve a significant 

reduction of emissions, binding targets are needed at a global level, and there 

are large expectations of a new international, legally-binding climate 

commitment, for all UNFCCC countries, scheduled to be agreed in 2015 and 

implemented in 2020 when the second KP period ends.  

1.2.2 EU level 

Outside the KP, the EU has committed itself to major emission reduction 

targets. The EU’s climate and energy strategy aims at a reduction of GHG 

emissions by 20% compared to the 1990 level and to increase the share of 

renewable energy to 20% by the year 2020. In the climate and energy policy 

framework for 2030, the European Commission has proposed that the EU 

should set a target of reducing emissions by 40% below 1990 levels. For 2050, 

EU leaders have endorsed the objective of reducing Europe’s GHG emissions 

by 80 – 95% compared to 1990 levels as part of an effort to convince 

developed countries, as a group, to reduce their emissions to a similar degree. 

Furthermore, the EU has adopted the Renewable Energy Directive 2009 (RED) 

(EC, 2009). Through the adoption of RED, each member state is obliged to 

have National Renewable Energy Action Plans (NREAP) that describe how the 

country will reach its binding 2020 targets for the proportion of their total 

energy consumption produced as renewable energy. Forest-based bioenergy is 

a source with large potential, and plays a central role in many NREAPs. 

Another important instrument for reducing emission and promoting bioenergy 

within the EU is the EU emission trading system (EU ETS) that was 

implemented in 2005 (Zetterberg, 2011).  

1.2.3 Swedish level 

Besides the international emissions reduction targets, Sweden also has 

emissions reduction targets at a national level. By 2020, 50% of energy should 

come from renewable energy sources, and the vision for 2050 is zero net 

emissions (SEA, 2012b). In 2013, 51% of energy came from renewable 

sources and, thus, this target has been reached seven years earlier than planned 
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(Regeringskansliet, 2013). At the beginning of the 1990s, Sweden introduced 

taxes on CO2 emissions and increased energy taxes, but bioenergy is exempt 

from both these taxes, thus promoting the use of bioenergy in Sweden. The 

introduction of electricity certificates in 2003, has also favored the use of 

bioenergy (SEA, 2013). 

1.3 Greenhouse gas emissions and reporting 

Parties are obliged to report annually under the UNFCCC and the KP (IPCC, 

2003). The developed countries (Annex 1)  should provide national GHG 

inventories covering emissions and removals of direct GHGs for six sectors 

(Energy, Industrial processes, Solvents, Agriculture, Waste, and Land-Use, 

Land-Use Change and Forestry (LULUCF)), from 1990 onwards. Within the 

LULUCF sector, removals and emissions arising from changes in carbon pools 

are reported separately for each land-use category (UNFCCC: Forest land, 

Grassland, Cropland, Settlements, Wetlands and Other land) or for each 

activity (KP: e.g. Afforestation, Deforestation and Forest management). The 

reported carbon pools are aboveground biomass, belowground biomass, dead 

wood, litter, and soil organic carbon. The EU has signed the UNFCCC/KP as a 

Party, and thus, all member states have to support the EU with national data in 

addition to a separate national report directly to the UNFCCC secretariat.  

The IPCC (e.g. 2003, 2006 and 2013) has reporting guidelines that state that 

stumps with corresponding roots should be reported and classified as either 

dead organic matter or dead wood – or, if living, as aboveground biomass 

(stump part) and belowground biomass (roots) (IPCC, 2006). However, so far, 

the IPCC has not produced a specific guideline for reporting stump wood.  

For most Parties, LULUCF reporting is based on data from a National 

Forest Inventory (NFI) (Cienciala et al., 2008). Estimates are sometimes based 

on combinations of data from field inventories and remote sensing. One way of 

modeling carbon in stumps and roots is to estimate the input to the carbon pool 

from harvest statistics. The output from the pool is then estimated based on 

modeled decay. If the decomposition rate is assumed to be slow, it is important 

to use long time series to reflex fluxes in carbon originating from stumps from 

historical harvests. Reported carbon stock change in stumps has also been 

modeled using process-based model Yasso by Finland and Norway (Anon., 

2014; NEA, 2014).  

1.3.1 Swedish NFI and reporting  

The Swedish NFI has been monitoring permanent plots since 1983, when a 

systematic grid of approximately 30 000 permanents plots was implemented. 
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Among many variables measured on the plots, trees are callipered and 

positioned (Fridman et al., 2014). The permanent plots are repeatedly 

inventoried, normally over a five year inventory cycle. Thus, from 1983 

onwards, the possibilities to monitor carbon stock changes have improved due 

to the repeated measurements on the same plots. One advantage of the Swedish 

NFI-based system for carbon reporting is that the NFI covers all land-use 

categories and thus the carbon stock changes linked to land-use changes can be 

monitored. The trees are positioned and thus it is possible to match the biomass 

of trees and stump systems and to trace all kinds of changes back to the base 

year of KP (1990). 

Estimates are based on sampling theory and each sample unit represents a 

certain area; all sample units together represent the total area of Sweden 

(Fridman et al., 2014). On the sample units (a cluster or tract of sample plots, 

in total approximately 4000 tracts), the biomass of trees is estimated using 

allometric empirical regression models (Marklund, 1988). To be able to make 

estimates at a national scale for fresh stumps and roots, biomass functions have 

been developed and used for estimates of belowground biomass of Norway 

spruce and Scots pine stumps (Petersson & Ståhl, 2006); these species account 

for 40.9% and 39.2% of the standing volume on all land-use classes in Sweden, 

respectively (SLU, 2013). Species and stem diameter measured 1.3 m above 

the ground are the most important independent variables in the functions. Since 

approximately 80% of the standing volume is made up of Norway spruce and 

Scots pine and these species do not sprout from stumps, all stumps are 

considered dead and are assumed to have started decomposing in the same 

season as the harvest. A decomposition model for stump and roots systems 

only exist for Norway spruce and this model (Paper II) is applied to all species. 

Finally, biomass (dry weight) is converted to carbon by multiplying by 0.5 

(Sandström et al., 2007) and converted from carbon to carbon dioxide by 

multiplying by 44/12 (stoichiometric ratio C=12, O=16). 

1.4 Decomposition models and carbon modeling 

In order to study the development of carbon pools such as stumps and roots, 

there is a need to model the decomposition rate to investigate how long it takes 

for the carbon to decompose and either become part of the soil organic carbon 

pool, or leak into water or be emitted as CO2 into the atmosphere. Most studies 

of the decomposition process of wood are from the perspective of dead wood 

aboveground, and the decomposition of aboveground wood is affected by 

factors such as temperature and moisture and their effects on decomposers 

(Mackensen & Bauhus, 1999). Other factors that affect the decay rate are 
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related to substrate quality such as the ratio of bark to wood (Fahey et al., 

1988), proportion of sapwood and heartwood and tree species (Harmon et al., 

2000). Slope aspect (Harmon et al., 1986) and log diameter (MacMillan, 1988) 

may also influence decay rate. However, there are also studies that have shown 

no relationship between decay rate and the size of coarse woody debris 

(Shorohova & Kapitsa, 2014).  

The need for modeling decomposition of soil carbon arises from a need to 

understand general ecological soil processes, such as the nitrogen and carbon 

cycles in the ground and their importance for site productivity. The carbon and 

decomposition model Yasso is a dynamic process-based model applicable from 

stand level to national level (Liski et al., 2005). The Yasso model takes into 

consideration some aspects affecting decomposition, e.g. type of litter, 

temperature and drought index (Ibid). The Q model is also a process-based 

model and predicts the carbon and nitrogen levels in the forest litter layer and 

the humus layer for a defined time period (Ågren et al., 2008). These kinds of 

models are often complex, which means, in turn, that they are not easy to build, 

implement, interpret and update when needed. Thus, empirical decomposition 

models may sometimes be more suitable for deterministic predictive purposes.  

The modeling of tree growth has a longer history than that of modeling 

wood decomposition. Therefore, it would be convenient to draw some parallels 

between the advantages and disadvantages of different categories of tree 

growth models with decomposition models. Kimmins (1989) proposed 

dividing models into two categories: knowledge-based and experience-based. 

Knowledge-based models (also called process-based models) have either been 

too simplistic, or too complex with a large requirement for calibration data that 

has limited their usefulness in practical applications. Therefore, these models 

are best used for explaining the processes behind the focus of the modeling and 

to explain ‘how things work’. The experience-based models (also called 

empirical or deterministic models), on the other hand, are often preferred when 

predicting future outcomes, e.g. simulation of tree growth (Vanclay & 

Skovsgaard, 1997). These models are often more transparent and robust. The 

limitations of empirical-based models are that the growth model developed 

from the empirical dataset is limited to the actual area where the data were 

sampled, and also, it is not recommended to make predictions under changing 

conditions. If the model is extrapolated, one must carefully evaluate whether or 

not the extrapolation yields relevant predictions (Kimmins et al., 2008). One 

way of gaining from the advantages of both process-based and empirical-based 

models is to set up a hybrid combination of the two categories (Gustafson, 

2013; Kimmins, 1989). 
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The most commonly used model form used to estimate the decline of 

density or biomass of aboveground woody debris is the negative exponential 

model (Chen et al., 2005; Ganjegunte et al., 2004; Mackensen et al., 2003b; 

Mackensen & Bauhus, 2003a; Naesset, 1999; Harmon et al., 1987), but there 

are other options. The multiple-exponential model takes account of the fact that 

the substrate is not homogeneous, and that different components might 

decompose at different rates (Mackensen & Bauhus, 2003a). The lag-time 

model is based on the observation that decay is slow during the initial stage of 

decomposition until decomposers have become established within the substrate 

(Harmon et al., 1986). The choice of independent variables in deterministic 

models is restricted to easily measured and robust variables. Usually when 

using such models, the remaining biomass is modeled by a variable correlated 

to the initial size of the stump system, time since death and species (Shorohova 

et al., 2008; Yatskov et al., 2003; Harmon et al., 2000; Naesset, 1999; 

Krankina & Harmon, 1995).  

Decomposition models for belowground coarse wood are sparse and only 

very few examples can be found (Olajuyigbe et al., 2012); no models appear to 

be available for the entire stump-root system, i.e. including both aboveground 

and belowground parts. Thus, for practical applications linked to the reporting 

of LULUCF and CO2 emissions there was a need to develop an empirical 

model of that kind. Within the framework of this thesis, an empirical model for 

stump and root systems has been developed using the negative exponential 

model (Paper II). 

 

One thing that might be both convenient and important to remember for 

constructors of models: “Essentially, all models are wrong, but some are 

useful!”  (Box & Draper, 1987). 

1.5 The role of forests in climate change mitigation 

In 2007, IPCC reported that land-use change, mainly deforestation, is the cause 

of 20% of all anthropogenic emissions, while emissions from fossil fuels, 

agriculture, industrial processes, use of solvents, concrete production etc. make 

up the other 80%. However, in the last IPCC report, land-use change and 

deforestation were recognized as being responsible for the emission of less 

than 10% of the GHGs (IPCC, 2013). This trend shows that although the use of 

bioenergy has increased during 2007 – 2012 (Bowyer, 2012), the emissions 

from land-use change  have decreased. This corresponds to findings by FAO, 

in its global forest resources assessments  (FAO, 2010), and by Pan et al. 
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(2011), who showed that at a global level forests have functioned as a large 

carbon sink during 1990 – 2007.  

Forest and bioenergy strategies contribute to the reduction in the net flow of 

CO2 emissions to the atmosphere through four mechanisms: i) storage of 

carbon in the biosphere; ii) storage of carbon in harvested wood products 

(HWP); iii) use of biofuels e.g. slash (branches and crown mass) and stumps, 

to replace fossil fuels and iv) use of wood products instead of products that 

require more fossil fuels (or concrete) for their production (Schlamadinger & 

Marland, 1996). In this thesis, the mechanisms (i) and (iii) are studied, with a 

special focus on stump and root biomass. The storage of stump carbon in the 

biosphere and the substitution of fossil fuels by stump and root biomass 

originating from long-rotation forestry are studied, and also the trade-off 

between the two mechanisms. 

1.5.1 Forest as carbon storage in the biosphere or as bioenergy 

As many countries attempt to reduce GHG emissions to mitigate climate 

change, there is increasing interest in the use of forest biomass for bioenergy to 

offset energy from fossil fuels (Ximenes et al., 2012; IPCC, 2011; Berndes & 

Hansson, 2007; Björheden, 2006), particularly in countries with no or limited 

fossil fuel resources but large forest resources. It has been shown that 

management of forests for production has the potential to generate greater 

greenhouse mitigation benefits than managing for conservation alone (Ximenes 

et al., 2012; Lippke et al., 2011; Eriksson et al., 2007; Schlamadinger & 

Marland, 1996). At the same time, there are proposals to protect forest land as 

carbon reservoirs, also for mitigating climate change (Pan et al., 2011; 

Luyssaert et al., 2008; Carey et al., 2001; Harmon et al., 1990). Other studies 

show that young forest  grows faster and captures more carbon than old growth 

forest (Law et al., 2013), and old growth forest may even be a net source of 

carbon to the atmosphere (Chen et al., 2004), strengthening the arguments for 

the use of forest biomass for bioenergy.  

1.6 Bioenergy 

Bioenergy is energy derived from biomass. Biomass may either be directly 

converted into energy or processed into solids, liquids or gases. Biofuels are 

solid, liquid or gaseous fuel produced directly or indirectly from biomass. 

Wood fuels are all types of biofuels originating from woody biomass. An 

important sub-category of wood fuels is forest fuels, which are produced 

directly from tree biomass by mechanical processes; the raw material has not 

previously had any other use (ISO, 2014).  
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1.6.1 Global level 

GHG emissions associated with the provision of energy are a major cause of 

climate change (IPCC, 2011) and there are high expectations for the use of 

bioenergy from both climate and sustainability perspectives. Many projections 

at a global level imply at least a doubling of the total harvest of world plant 

material for bioenergy purposes. For example, the International Energy Agency 

has projected that the share of the bioenergy resource could supply over 20% 

of the world’s primary energy by 2050 (IEA, 2008). The IPCC Special Report 

on Renewable Energy suggests that the global bioenergy potential could be as 

high as 500 EJ y
-1 

(IPCC, 2011), comparable to the level of current fossil fuel 

use. This can also be compared with the global biomass harvest for food, feed, 

fiber, wood products, and traditional wood use for cooking and heat, which 

amounts to approximately 230 EJ yr
-1

 (Krausmann et al., 2008), around half of 

the projected bioenergy potential. On a global basis, it is estimated that 

renewable energy (RE) accounted for 12.9% of the primary energy supply in 

2008 and the largest RE contributor was biomass (10.2%) (IEA, 2010).  

1.6.2 EU level 

The pressure on the bioenergy market is likely to increase due to major 

developments in the climate change policy field, e.g. the Europe 2020 strategy 

and EU’s RED. Forest biomass is currently the most important source of 

renewable energy and accounts for around half of the EU’s total renewable 

energy consumption (EC, 2013b). According to forecasts by UNECE/FAO 

(2011), the use of wood fuels is predicted to more than double in the period 

2010 to 2030 in the EU. Examining the forest growing stock at the EU level 

confirms a growing wood fuel potential: during 1980 – 2010, the stock 

increased (Figure 1), and many countries more than doubled their growing 

stock over this period (FAO, 1980-2010). The current potential for bioenergy 

varies from 800 and 6000 PJ yr
-1

 (1 PJ = 0.278 TWh) in different analyses 

(review by Bentsen and Felby (2012)). In 2010, the gross final energy 

consumption reached 50176 PJ (EC, 2013a). 
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Figure 1. Total growing forest stock in Europe, excluding former Soviet 

Union, from 1980 to 2010. For Sweden, the growing stock increased by 43% 

over this period (FAO, 1980-2010). 

1.6.3 Swedish level 

Currently, Sweden has 28.1 million hectares (69% of the land area) of forest 

land and 23.1 million hectares (57% of the land area) of productive forest land. 

This makes Sweden, together with Finland, two of the most forested countries 

in EU. The Swedish forest area constitutes 18% of the total forest area in EU27 

(SLU, 2013; Anon., 2011). This makes Sweden an important player with 

respect to wood fuel production within the EU.  

The most important sources for bioenergy in Sweden are traditional biofuels 

such as by-products from the forest industry, e.g. the so-called black liquor and 

slash. However, there is potential to utilize more (SFA, 2008), and focus has 

been turned to new assortments such as the use of stumps for bioenergy 

purposes (Björheden, 2006). The use of bioenergy (including peat and waste) 

was 10% of total energy use or 173 PJ in 1980. In 2011, the use of bioenergy 

increased to 23% of total use or 475 PJ (20% from forest, 3% from peat and 

waste). The projected stump wood potential was 75 PJ in 2010 (SFA, 2008), 

which is 3.6% of the total supply to the energy system in Sweden during 2011 

(2077 PJ) (SEA, 2013). In Sweden, the biofuel potential, primarily based on 

biomass, is expected to increase by 122 PJ over the period 2007 – 2030 (SEA, 

2012a). 

There is also forest fuel potential from young dense “clearing stands”, and it 

is an open question whether or not future first thinning stands will be harvested 

for pulp production (as at present) or bioenergy (Nordfjell, 2008). Thus, there 

is a need to further analyze the potential for increased use of bioenergy and 

also the consequences of such an increase. 
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1.6.4 Stump harvesting practices 

Historically, stumps have been harvested for tar production since the 1600s in 

Sweden and Finland. Especially during the 1800s, tar exports from Sweden and 

Finland were considerable (SFA, 2009). In the 1970s and 1980s, Sweden and 

Finland experimented in using stumps to obtain fiber for the pulp and paper 

industry. This practice stopped due to problems with excessive mineral 

concentrations in the substrate. Stump harvesting was revived in 2001 for the 

generation of power in paper mills in Finland (Kalliola, 2004).  

In British Columbia, Canada, stump harvesting has traditionally been 

carried out for root rot control with stump systems often being left exposed on-

site or moved to the road side and only occasionally burned (Berch et al., 

2012). Currently, there is an increased demand for forest biomass to use for 

energy. Those stumps already extracted to inhibit root rot might be an 

important feed stock for use as fiber for pulp and paper, and energy (Ibid). 

The United Kingdom has been investigating stump harvesting as an 

opportunity to reduce GHG emissions by using stumps as fuel in order to fulfill 

the requirements specified in the RED (Walmsley et al., 2011) and, at the same 

time, reduce root rot (Persson, 2013). 

In the northwestern United States, removal of infected stumps has been 

carried out for many years to eliminate root rot in Douglas fir and other conifer 

species forest. In so doing, the disease has been reduced in succeeding stands 

(Zabowski et al., 2008). 

In Finland, the government gives subsidies for stump harvesting (Walmsley 

& Godbold, 2010), which may be the main reason for the expansion of this 

field. In the early 2000s, Finland started stump harvesting on a large scale 

(5000 m
3
 stump forest chips consumed by heating and power plants); by 2010, 

1 million m
3
 stump forest chips were consumed in heating and power plants 

(Metla, 2013).  

In Sweden, stump harvesting has not yet evolved from the pilot level. In 

2009, the SFA concluded that stump harvesting will likely not exceed 10 000 – 

20 000 ha (5 – 10%) of the annual regeneration area (SFA, 2009). However, 

since then, stump harvesting has not expanded this much. Various aspects have 

affected the somewhat weak development of stump harvesting in Sweden. The 

Swedish Forest Stewardship Council (FSC) has a major influence on the future 

of stump harvesting, since almost all of it is carried out by FSC certified 

companies. From 2011 to 2013, the stump harvested area in Sweden decreased 

from approximately 1700 ha to 800 ha in FSC certified forest, although up to 

2500 ha yr
-1

 was allowed on such land. There are several reasons for this 

decline. FSC Sweden is cautious about approving the applications from FSC 

companies for stump harvesting (Kårén, 2014) and this reduces the companies’ 
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interest in stump harvesting since they simply do not know if it will be 

allowed. Also, during warm winters (such as in 2013/2014), the demand for 

forest fuel decreases, and as stumps are more expensive to harvest than other 

forest fuels (stems and slash), stumps will be the first resource not to be 

harvested. In 2014, heavy storms, snow and bark beetle pests in middle 

Norrland (central Sweden) caused lower quality wood to be produced which 

the pulp and timber industries were not interested in. Thus, the supply of 

relatively cheap aboveground wood increased and made harvesting stumps for 

forest fuel less attractive. The decreased demand for paper, especially 

newspaper, also has an impact on the wood market. First, pulpwood has been 

used as forest fuel, thus reducing the pressure on the forest sector to harvest 

more woody biomass. Second, an indirect effect has been the reduction in 

electricity demand from the pulp and paper industries, reducing the demand for 

forest fuel even more. The increased supply of recycled wood may also have 

affected the market (Hofsten, 2014). Generally, the stump resource has low 

value and a high cost of harvesting, making stumps less competitive than e.g. 

slash. Due to all these reasons, the future of stump harvesting in Sweden is, at 

the time of writing, uncertain.  

1.7 Environmental effects of stump harvest 

There are many environmental concerns to take into consideration before 

stump harvesting. In the following section, the focus is on how to maintain a 

sustainable wood yield whilst retaining the carbon capture capacity in the 

production forest by preserving soil carbon, carbon stock and nutrient 

concentrations in the ground. Some possible negative impacts for biodiversity, 

methyl mercury flow, soil compaction and erosion, are also briefly discussed, 

along with possible positive impacts on the survival of plants and regeneration. 

1.7.1 Evaluating the risks of loss of nutrients and carbon and its influence on 

sustainable yield 

Nitrogen: In the boreal forest, N is typically the growth-limiting nutrient 

(Hyvönen et al., 2007; Bonan & Shugart, 1989; Mälkönen, 1976), and thus 

also determines carbon sequestration abilities. External inputs of N arise from 

deposition and, to some extent, biological N fixation; fertilization is quite 

uncommon. In Sweden, the deposition of N varies, with more in the south than 

in the north (Pihl Karlsson et al., 2013). The availability of N for tree growth is 

also determined by the amount of N released and immobilized in 

decomposition of soil organic matter. The CN ratio of the decomposing litter or 

residue largely determines whether N is mineralized and becomes available for 
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uptake by vegetation (low CN ratio) or is immobilized by decomposers (high 

CN ratio) (Brady & Weil, 2008). Not only does the CN ratio have a large effect 

on the decomposition of soil organic matter and mineralization of N but so 

does the lignin (L) content or the LN ratio of litter (Prescott et al., 2000).  

It is often the case that, before stump harvesting, the harvesting of slash 

takes place (SFA, 2009). From a N perspective, there is a higher risk of loss of 

N after harvesting of slash since, for pine and spruce stumps, the N 

concentration (0.6 – 1.1 mg g
-1

) is very low compared to foliage (9 – 11 mg g
-

1
) or branches (3 – 4 mg g

-1
) (Persson, 2013; Palviainen et al., 2004). However, 

stump harvesting after whole tree harvest (WTH) did not affect the total 

amount of nitrogen in the soil organic layer (Karlsson & Tamminen, 2013) 

and, in the mineral soil layer, the amount of nitrogen increased after stump 

harvesting compared to stem-only harvesting (SOH) (Kataja-aho et al., 2012). 

These studies indicate that there is no severe risk of N loss from additional 

stump harvesting after harvesting slash. However, if the soil is low in N, it 

might be relevant to add N using fertilizers after harvesting of forest residues 

(SFA, 2002). 

Phosphorus and base cations: The supply of plant-available mineral 

nutrients, primarily Ca, K and Mg, is ultimately related to the weathering of 

soil minerals (Palviainen & Finer, 2012; Likens & Bormann, 1995), especially 

in areas with low atmospheric deposition such as the Nordic countries (Ruoho-

Airola et al., 2003). Ca and Mg are both relatively abundant in forest soil, both 

in minerals and in water soluble cation form, with only a small fraction of the 

base cations bound into the vegetation (Likens & Bormann, 1995). K is not 

incorporated into any structures within the soil complex but remains, instead, 

in ionic form in the plant material, thus making it a more mobile nutrient than 

Ca and Mg (Brady & Weil, 2008). P and K are rapidly released from the 

decomposing logging residues after clear-cutting (Fahey et al., 1991), whereas 

Ca is released relatively slowly (Olsson et al., 1996), especially from woody 

litter meaning that branches could serve as a long-term source of Ca to 

vegetation (Fahey et al., 1991). Few studies have investigated how the nutrient 

and base cation concentrations in the soil respond to stump harvesting. 

However, there are studies examining the effects of SOH and WTH. Several 

studies have shown that WTH has negative effects on soil base cation pools 

and P (Brandtberg & Olsson, 2012; Saarsalmi et al., 2010; Wall, 2008; 

Thiffault et al., 2006; Rosenberg & Jacobson, 2004), but there are also findings 

showing that after WTH, some base cation pools have increased at some sites 

(Karlsson & Tamminen, 2013; Saarsalmi et al., 2010; Thiffault et al., 2006). 

When harvesting forest residues rich in nutrients, there is also a potential risk 

of acidification of the soil. When removing base cations (Ca, Mg and K), the 
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buffering capacity of the soil is reduced and acidification may occur (Olsson et 

al., 1996). However, Karlsson and Tamminen (2013) showed that the pH did 

not change significantly in the soil organic layer after stump harvesting, which 

indicated that the buffer capacity of the base cations was not largely affected. 

However, another study by Iwald et al. (2013) indicated that stump harvesting 

was responsible for 13 – 24% of total excess base cation extraction, depending 

on harvesting intensity and tree species. Harvesting of logging residues made 

up as much as 27 – 45% of the total net base cation extraction, which can be 

explained by the higher content of base cations in needles and branches than in 

stumps. Thus, from a strict base cation perspective, stumps are better for use as 

bioenergy than logging residues (Iwald et al., 2013; Persson, 2013). It should 

be remembered that the nutrient concentration varies within the stump and root 

system harvested. Studies have shown that nutrient levels in coarse roots are 

higher than in stems and lower than in foliage. However, small roots have high 

nutrient concentrations (Helmisaari et al., 2009; Ingerslev, 1999; Thelin et al., 

1998; Rosengren-Brinck & Nihlgard, 1995), and should be avoided at stump 

harvesting.  

Carbon: By harvesting stumps, there is a potential risk of decreased soil C 

and carbon in the ecosystem. There are many causes of such potential 

reductions in carbon. One reason is the immediate reduction of carbon at 

harvest time, and the loss of input from decomposing stumps. Another is soil 

disturbance and mixing which increase aeration and expose new surfaces 

which, in turn, lead to increased CO2 emissions. Furthermore, the non-tree 

vegetation input to the soil organic matter may also be affected by stump 

harvesting and thus affects the soil C over a rotation period (Eliasson et al., 

2013; Persson, 2013). At the same time, the CN ratio will be changed and this 

might influence decomposers of soil organic matter.  

Some studies of the effect on carbon stock after stump harvesting have been 

carried out. Predictions of carbon storage in growing stock over two simulated 

rotation periods showed no negative effect after stump harvesting (Alam et al., 

2013). Levels of soil carbon were unaffected by stump harvesting in the study 

by Karlsson & Tamminen (2013). However, Strömgren et al. (2013) found that 

stump harvesting resulted in a lower C stock in the soil organic layer, 

compared with conventional stem harvesting, 25 years after the harvest (no 

effect on the mineral soil layer was found). However, studies over an entire 

rotation period would be needed to determine whether or not this would be 

maintained as the remaining stumps and logging residues continued to 

decompose and the regenerated stand developed (Ibid). Another study showed 

that CO2 flux or soil decomposition processes two years after soil disturbance 

as a result of stump harvesting or harrowing (conventional scarification 
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method) was equal or 10% higher, respectively, compared to patch 

scarification (Strömgren & Mjöfors, 2012). However, from a short-term 

perspective, the effect of stump harvesting on CO2 flux or soil decomposition 

processes were small or absent compared to site preparation such as mounding 

(Strömgren et al., 2012). Neither of the studies found clear evidence of a major 

effect from stump harvesting on soil C or ecosystem carbon stock.  

Conventional soil preparation using mounding often results in a disturbance 

of 20 – 30% of the soil surface, whereas the corresponding figure for stump 

harvested areas is 40 – 90%. Naturally-regenerated seedlings have a 50% 

higher probability of surviving in a stump harvested area than after 

conventional soil preparation (Kardell, 1992). Also, the long-term effect (33 

years) was an improved survival of planted trees and an increase in natural 

regeneration after stump harvesting, compared to  conventional stem harvest 

with removal of logging residues (Karlsson & Tamminen, 2013). Few studies 

have been carried out into stump harvesting and soil compaction. One study 

argued that if stump harvesting is carried out carefully, it only disrupts the soil 

surface soil layers (Walmsley & Godbold, 2010; Hope, 2007).  

Another factor that influences forest growth and future sustainable yields in 

productive forests is root rot. Fungal pathogens residing in roots and stumps 

can remain viable for decades after final felling and put stands at an increasing 

risk of infection in subsequent rotations. Stump removal is one strategy that 

can be used to reduce the impact of root rot fungi in regenerating stands 

(Cleary et al., 2013; Persson, 2013; Vasaitis et al., 2008; Stenlid, 1987).  

1.7.2 Other environmental aspects of stump harvest 

Coarse woody debris is an important substrate for many species such as 

mosses, lichens and insects (Stokland et al., 2012). For instance, stump 

extraction has been shown to reduce the number of species of saproxylic 

beetles (Victorsson & Jonsell, 2013). Persson et al. (2013) identified six 

species of macro arthropods, highly dependent on the bark and wood of spruce 

and pine stumps, whose populations would therefore probably be reduced by 

stump harvesting. Furthermore, stumps are an essential habitat for certain 

lichens and bryophytes (Caruso, 2008; Rudolphi, 2007). One could also argue 

that, due to the extended forest management in forested countries such as 

Sweden, there is unlikely to be a lack of stumps. In 2011/12, 91.3 million m
3
sk 

were harvested in Sweden by thinning (364 000 ha), cleaning (262 000 ha) and 

final felling (186 000 ha) (SLU, 2013), which, in turn, resulted in a large 

number of stumps.  

Forest operations may increase the total mercury (THg) and methylmercury 

(MeHg) run-off in catchment streams and biota (Eklöf et al., 2014), however 
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little is known about the relative contribution of different forest practices 

(Ibid). A study by Eklöf et al. (2013) showed no difference in mercury 

concentrations between run-off water from stump harvested areas and areas 

treated with ordinary site preparation compared to reference areas. The study 

indicated that the mercury concentrations were more dependent on organic 

carbon, hydrology, temperature and initial logging rather than on the soil 

disturbance caused by either stump harvesting or site preparation (Eklöf et al., 

2013; Persson, 2013). 
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2 Objectives 

The overall objective of this thesis was to examine the potential for Swedish 

stump harvesting in a Swedish and European climate change mitigation 

context. Furthermore, this work aimed to develop a general system for 

estimating and monitoring carbon stocks and carbon stock changes in stump 

systems at a national scale. This system is used for evaluating the role of 

stumps as sources of bioenergy or sinks of carbon in Swedish forests in a 

climate change mitigation context. The carbon balance trade-offs between 

bioenergy and carbon sequestration over varying time scales and harvest 

intensities is analyzed, with special emphasis on comparing benefits from the 

long-term substitution of coal for energy with the combustion of stumps. The 

positive and negative environmental effects of stump harvesting are also 

investigated with a special focus on nutrient loss and its effects on future 

sustainable yield and carbon capture capacity. 

  

The specific objectives of papers I – IV were: 

 

Paper I: To develop a general system for estimating and monitoring carbon 

and carbon stock changes in stump systems at a national scale. 

Paper II: To develop an empirical decomposition model for Norway spruce 

stumps and roots.  

Paper III: To assess the carbon balance trade-off over time between the use 

of stumps for bioenergy at different harvest intensities, and the use of stumps 

for storing carbon. The substitution effects of using stumps rather than coal as 

an energy source were also investigated. 

Paper IV: To evaluate the concentration of nutrients in stumps and coarse roots 

of Norway spruce, Scots pine and Silver birch in Sweden, Finland and 

Denmark, and to assess how nutrient concentrations vary with site 

characteristics, stand age and root size.  
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3 Material and Methods 

3.1 Estimating the biomass and carbon pool of stump systems 
at a national scale (Paper I) 

Paper I describes a study of the influence of storing carbon in stumps and roots 

from a carbon budget perspective, and to what extent different assumptions in 

the modeling, such as length of historical harvesting records used, may affect 

the results. A sensitivity analysis of how the assumed decomposition rate of 

stumps and roots may affect the results was also carried out. The paper 

develops and evaluates a system for estimating and monitoring the carbon in 

stumps and roots at national scale.  

The biomass originating from the stump and root systems of dead or 

harvested trees before the start of inventorying permanent NFI plots (in 1983) 

also constitutes part of the current carbon pool and was predicted separately 

using two different data sources. The first source of data was the temporary 

plots of the NFI (sample plots inventoried only once, in our case utilizing plots 

from 1956 onwards). The second source was round-wood production statistics 

published by the SFA (from 1853 onwards, but with higher accuracy from 

1944 onwards).  For the first data source (temporary plots), no data at the level 

of individual trees were available (as for permanent plots). Instead, stem 

volume was converted to biomass of stump systems. Estimates were based on 

aboveground stem volumes (Näslund, 1947) of harvested trees, and trees that 

had died due to natural causes. We used NFI data in terms of five-year 

averages from 1956 onwards; to obtain the biomass of stump-root systems a 

conversion factor was applied to the aboveground volume estimates. The 

conversion factor was derived by applying the models by Marklund (1988) and 

Näslund (1947) on data from the Swedish NFI during the period 1998/2002. 

The result was that 1 m
3
 stem-wood corresponded to 166 kg stump and root 

system biomass. These historical stump-carbon estimates were then combined 
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with data from the permanent plots (established 1983 – 1987) to account for 

the decomposition of stumps from 1956 to 1983.  

For the second data source, the same conversion factor was used, with 

estimates of stem-volume carbon based on gross total cuttings, considering also 

natural mortality, using data from the SFA (2009). For both data sources, 

decomposition of stump and root systems was modeled by a function 

developed in paper II. Estimates of biomass (dry weight) were converted to C 

by the factor 0.5 and further to CO2-equivalents by the stoichiometric ratio 

44/12.  

For prediction of carbon in stump systems produced from 1983 and onward 

about 30 000 permanent sample plots from the Swedish NFI were used. The 

sample plots have been inventoried every 5 – 10 years, and consistently every 

5 years since 2003. Within each sample plot, among several parameters, stem 

diameter, species and spatial positions have been recorded. Stem diameters 

larger than 99 mm (measured 1.3 m above ground) were considered in the 

study. The stem diameters of harvested trees were estimated by extrapolating 

from their last known diameter recorded in a previous inventory, to the time of 

harvest, using data of incremental growth from permanent NFI sample plots. 

The biomass of the stump system at death or harvest was thereafter estimated 

from allometric biomass functions, using stem diameter and species as 

independent variables. In the calculations of biomass of a stump system, all 

roots >2 mm were included and the stump was assumed to be 1% of the tree 

height (Petersson & Ståhl, 2006). After trees were harvested, or had died 

naturally, the decay of the remaining biomass was modeled for all species with 

the decomposition function developed in paper II. 

To improve the estimates of core forest parameters, such as above- and 

belowground biomass, the Swedish NFI has divided the country into 31 strata. 

Within each stratum, the area has been divided into 16 national land-use 

categories, with the carbon stock and carbon stock change estimated for each 

relevant category. The Swedish 16 national land-use categories have been 

transformed into the six broad land-use categories of IPCC (2003).  

Statistical estimators corresponding to the NFI design (Fridman et al., 2014) 

were used to quantify the carbon stock and the change in carbon stock within 

each stratum and land-use category. The area-based sample design of the 

Swedish NFI is constructed as stratified systematic clusters. Area-based 

sampling implies that the biomass, in our case on a single sample unit (a 

cluster, or Tract, of sample plots), represents a certain area, and all sample 

units taken together give the biomass of the total land area of Sweden. Thus, by 

using area sampling and data from permanent sample plots, it was possible to 
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estimate both the total carbon pool of stump systems in Sweden, and changes 

in it. 

3.2 Decomposition of stump and root systems of Norway spruce 
in Sweden – A modeling approach (Paper II) 

Data set: To improve the predictions of stump decomposition in the system for 

estimating and monitoring carbon stocks and carbon stock changes, derived in 

papers I and III, the work of paper II aimed to develop a decomposition model 

for Norway spruce stumps and roots in Sweden. To do this, a sample of 

Norway spruce stumps and roots from southern (Asa) and northern Sweden 

(Vindeln), was analyzed. 71 stumps with roots, fresh and decomposed, were 

collected from 18 stands: nine in Asa and nine in Vindeln. At both locations, 

the stands were subjectively selected on the basis of the following criteria: the 

soil class had to be sandy to gravel moraine; before cutting, Norway spruce had 

to be the dominant species, and the variation in time since cutting had to be 1 – 

39 years. We assumed that our selected stumps constituted a random sample of 

all the original stumps, and also that all stumps up to 39 years old were still 

present. Our assessment was that it was possible to determine the original 

diameter of all stumps.  To complement the dataset, 28 fresh stumps with roots 

used previously in a study by Petersson and Ståhl (2006) were added. These 

stumps were sampled at the same locations, with the exception of 6 stumps 

sampled in central Sweden (Jädraås). Thus, in total 99 stump systems were 

used in the study.  

Field work: Within each stand, two single starting points were selected 

subjectively by the field team. From these points, a search direction was 

randomly selected; moving in this direction, the first Norway spruce stump 

found that had a perpendicular stump diameter of 20 – 50 cm, was sampled. 

Within each stand, up to eight samples were collected with the restriction that 

sampled stumps should be at least 20 m apart.  

In the field, the decomposition class of the stump was determined using the 

decay class system developed within the Swedish NFI. Subsequently, one 

quarter of the stump cross-sectional area was randomly selected. This part of 

the stump was excavated together with one of the roots originating from this 

part of the stump; this root was also randomly selected and traced until its 

diameter was approximately 1 cm. All roots originating from the sampled 

stump section were revealed and the diameter of the base of each root was 

measured. The roots were assumed to have the same decomposition class as the 

stump. A chain saw or hand saw was used to remove the root from the stump 

and hand tools were used during the excavation of roots. 
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In the laboratory, the samples were dried at 85°C until they had constant dry 

weight for at least 48 hours. To calculate the total biomass of the stump and 

root systems, the dry weight and cross-sectional area of the sampled stump 

sector were measured, and the dry weight of each non-sampled stump sector 

was assumed to be proportional to its measured cross-sectional area. To 

estimate the dry weight of the remaining roots, which were not sampled and for 

which only diameters were measured, simple regression functions were 

developed, one for each decomposition class. The diameter over bark where 

the root was attached to the stump was used as an independent variable in the 

functions. As for the non-sampled stump sectors, the roots not sampled were 

assumed proportional to the cross-sectional area of the stump they originated 

from.  

3.2.1 The decomposition model  

The remaining dry weight, (DWt, [g]), was modeled by the negative 

exponential model using stump diameter and the number of years since cutting 

as independent variables (Eq. 1): 

 

DWt = β0 × dia
β1

 × e
β2t

 × ε,      (1) 

 

where dia is the stump diameter [cm], t is the number of years since cutting, 

and β0, β1 and β2 are parameters; ε is a random error assumed to be log-

normally distributed.  For linearization, the model was transformed using 

natural logarithms: 

 

ln DWt = lnβ0 + β1ln dia + β2t + ln ε    (2) 

 

This model (Eq. 2) was used in the regression analysis, using ordinary least 

squares regression. The statistical analyses were conducted using the Statistical 

Analysis Software (SAS Institute Inc. 2004).  

However, diameter measurements for individual stumps are not always 

available; in this case it might be convenient to develop a stump size 

independent decomposition model. Thus, we selected a model form where the 

decay rate is independent of stump diameter, i.e. if t=0 is inserted in Eq. 1, 

ignoring ε, it is seen that the model will provide the dry weight (DW0) for a 

newly cut stump as β0 dia
β1

. Thus, by dividing DWt by DW0 a simple relative 

model (Eq. 3) is obtained.  

 

DWt / DW0 = 
tβ2e       (3) 
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The validity of assuming that the decay rate is independent of diameter is 

assessed in Figure 6, where the residuals of the linearized model (Eq.2) are 

plotted versus diameter and other potential explanatory variables. No clear 

trends were found. Neither diameter, nor time since cutting or decomposition 

class showed any distinct trends when plotted against the residuals. No outliers 

had substantial effects on the result. The residuals suggested that there was 

high within-location variability.  

While the model in Eq.1 requires knowledge about diameter, the relative 

model (Eq. 3) can be applied on, for example, both the level of individual trees 

and stands. It also allows for the application of any kind of models (e.g. 

Petersson and Ståhl, 2006) for estimating the biomass of the stump and root 

system at t=0. This is important, since the limited material available for the 

study in paper II might provide less accurate estimates of the dry weight of the 

stump-root system compared to using other models.  

3.3 Assessing carbon balance trade-offs between bioenergy 
and using stumps for storing carbon (Paper III) 

The description of data and sampling design used in the Swedish NFI were the 

same for paper I and paper III, with the exception that SFA data were not used 

in paper III. Also, the estimation algorithm was similar with the exception that 

stump harvesting was only taken into consideration in the estimations in paper 

III. While paper I develops and evaluates a system for estimating and 

monitoring the carbon in stumps and roots at national scale, paper III applies 

this in practice after adding a tool handling stump harvesting. In this section, 

only methods and materials not used in paper I are described. 

The biomass of the harvested part of the stump and root system in paper III 

was calculated using biomass functions derived by Marklund (1988), which 

were developed to predict the biomass extracted using stump harvesting 

technology. To extract the stump systems, a winch was used to pull down each 

tree onto a fell bench. The remaining biomass after stump harvesting was 

estimated to be the biomass estimated according to Petersson and Ståhl (2006) 

minus the biomass estimated according to Marklund (1988). Furthermore, the 

decomposition of the remaining stump and root biomass after death or 

harvesting of trees was modeled using the function developed in paper II.  

Recommendations for stump harvesting in Sweden issued by SFA (2009) 

were used as the basis in the harvesting scenario analyses, and the 

environmental, technical and economical restrictions defined were based on 

these recommendations. The scenarios were called ‘High intensity’, ‘Medium 

intensity’, ‘Low intensity’, and ‘Max scenario’. The restrictions could be 
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implemented in our study since various site, stand and tree variables are 

collected for NFI plots, thus making it possible to simulate different 

restrictions on extracting stumps, such as distance to water and moisture class 

of land. The minimum distance to water required for stump harvesting was 

25m, and the soil moisture class required for harvest was mesic-moist, mesic 

and dry for the medium and low intensity scenarios. For the high intensity 

scenario, stump harvesting was also carried out on moist soils. The required 

standing volume before cutting was lower for the high intensity scenario than 

for the medium and low intensity scenario. In the high intensity scenario, 

stumps from all three species investigated (pine, spruce and birch) were 

harvested. In the medium intensity scenario pine and spruce stumps were 

harvested and in the low intensity scenarios only spruce stumps were 

harvested. A maximized scenario, to estimate the theoretical maximum of all 

stump and root biomass available for harvesting (including final felling, 

thinning and natural mortality), was also examined. It was assumed that stump 

harvesting would only be undertaken after final felling, whereas the remaining 

carbon in stump and root biomass included all stumps i.e. those originating 

from clear-felling, thinning and natural mortality. Biomass harvest potentials 

and retained carbon during 1984 – 2003 in Sweden were estimated for the 

scenarios. For a detailed description of the restrictions taken, see Table 1, 

Paper III. In addition, a ‘No harvest’ scenario was used to examine the full 

potential of stump and root carbon sequestration. 

3.4 Nutrient concentrations in stumps and coarse roots of 
Norway spruce, Scots pine and silver birch in Sweden, 
Finland and Denmark (Paper IV) 

The study based its analysis on nutrient concentrations in stumps and root 

samples from the species Norway spruce, Scots pine and birch. The sample 

sites were all unfertilized and located in Sweden, Finland and Denmark. 

Sampling design: In Sweden, the samples were collected from 24 

subjectively chosen stands at three different locations in southern (7 stands), 

central (8 stands) and northern (9 stands) Sweden. Within each stand, up to 

four samples trees were selected. Where available, the sampled trees 

represented the size classes: dbh 0 – 10 cm, 10 – 20 cm, 20 – 30 cm and >30 

cm. Each tree was felled using the methodology introduced by Marklund 

(1988). For each sample tree, up to three broken roots of different sizes (small, 

medium and large) were subjectively selected and excavated (Petersson & 

Ståhl, 2006). Roots were cut into fractions, >5mm diameter and <5mm 

diameter, and the content of carbon, nutrients (N, P and K) and base cations 
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(Ca, Mg and Na) was analyzed for each fraction. In total, 253 stump and root 

samples (109 spruce, 107 pine and 37 birch) were used for analyzing the 

nutrient concentration in the study. 

In Finland, at two of three sample sites, five sample trees were selected 

from each site, and the stump and root systems were excavated with the 

methodology described in Flower-Ellis (1996) and Iivonen et al. (2006). So, 

within a circle of 75 or 125 cm, coarse roots were excavated down to a depth of 

30 cm. Then, the stump and roots were lifted and washed carefully, and a 

sample 2 cm disc was extracted from each root. One randomly selected root for 

each sample tree was dug out manually. In the third sample site, five sample 

trees were selected and felled with an excavator so that roots smaller than 5 cm 

in diameter were cut off. However, some smaller roots were also present in the 

sampling process. Sample discs were taken from both stumps and roots. For all 

three sites, 15 stumps in total were selected. 

In Denmark, two stands from the study by Skovsgaard et al. (2011) were 

selected to represent Danish forests. Stump and root samples from ten 

randomly selected sample trees within each stand were used for this study; in 

total, 20 sample trees were selected. The extraction was carried out using a 

combination of machinery and manual labor. All roots with a diameter larger 

than 2 mm were included. Then, ten samples were taken from each stump and 

three roots were randomly selected. Root samples were taken 50 cm, 10 cm 

and 150 cm away from the stump center. 

Preparation, nutrient analysis and statistical analysis: The stump and root 

samples were dried in the oven at 85°C until they achieved constant weight. A 

pie slice from the root or stump disc was cut, ground and mixed in order to 

produce the right proportion of wood and bark. Nutrient concentrations from 

104 stumps, in total 443 stump and root samples, were analyzed for N, P, K, 

Ca, Mg and Na. IPC (Inductively Coupled Plasma) analysis was used to 

analyze the concentration of macronutrients (P, K, Ca, Mg and Na). 

A database with nutrient concentrations of stumps and roots from three 

subsets (Sweden, Finland and Denmark) was developed and assessed in the 

statistical analysis to evaluate how nutrient concentrations vary with tree 

species, root fraction, sample type and tree age. Statistical tests were carried 

out using ANOVA procedures (analysis of variance) (Statgraphics, 1991). The 

Swedish subset was the largest with 253 samples and also the only subset to 

include three species: spruce, pine and birch. To facilitate the ANOVA analysis 

of how nutrient concentrations vary with tree age at harvest, the samples were 

allocated to one of the following age classes: <20 years, 20 – 29 years, 30 – 39 

years, 40 – 49 years, 50 – 59 years, 60 – 79 years, 80 – 99 years and 100 – 120 

years. For the Swedish sub-sample, ANOVA was used to assess how nutrient 
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concentrations varied with root fraction and age. The Finnish subset was used 

to assess nutrient concentrations in wood and bark separately, and for this 

subset, ANOVA was used to assess how nutrient concentrations varied with 

root fraction, for wood and bark separately. To assess how nutrient 

concentration varied with root diameter, linear regression analysis was used 

with the Danish subset.   

Outside the framework of the analysis carried out in paper IV, data from 

that paper were analyzed to determine the amount of nutrients and base cations 

harvested per hectare. This was done in order to evaluate whether forest soils 

in long-rotation forestry are depleted after stump harvesting. To achieve this, 

the nutrient concentrations in the stump and coarse root parts were weighted in 

proportion to size (Norway spruce: stump part 32%, coarse root part 68%); 

Scots pine: stump part 53%, coarse root part 47%), as defined by Hakkila, 

2004. The analyzed samples were taken from wood and bark, in southern 

(Asa), central (Jädraås) and northern (Svartberget) Sweden (kg ha
-1

). The 

productivity of the stump harvest was assumed to be 20 – 29 ton dry weight 

biomass ha
-1

 (Kellomäki et al., 2013; Kärhä, 2012; Athanassiadis et al., 2011). 

In the analysis, roots >5mm were included in the coarse root category as 

defined by Hakkila (2004). Studies of nutrient loss in connection with stem and 

slash harvesting (Egnell, 2009; Björkroth & Rosén, 1977) were used for 

comparison purposes. 
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4 Results 

4.1 Estimating the biomass and carbon pool of stump systems 
at a national scale (Paper I) 

A system for estimating and monitoring carbon stock changes in stump 

systems, mainly at a national scale, was developed. The main components 

required for this system are the levels of stump system carbon stocks obtained 

from repeated field sampling or a time series of harvest data combined with 

conversion factors, usually relating stem volume to stump biomass at death. In 

addition, a decomposition model is needed. The model was used for estimating 

carbon and carbon stock changes in stumps and roots in Sweden.  

The results indicate a gradually increasing carbon pool in stumps and roots 

(Table 1), on average 6.9 Tg CO2 yr
-1

 over the period 1984 – 2003, with this 

trend explained by increasing harvests. As expected for Sweden, nearly all the 

carbon in stumps is found on forest land. 
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Table 1. Predicted biomass and CO2 -equivalents of stump systems in Sweden, based on data from 

approximately 30 000 sample plots 

Year Biomass (dry weight) CO2- equivalents 

 [Tg] [Tg·yr
-1

] [Tg CO2] [Tg CO2 ·yr
-1

] 

 Stock Change in Stock Stock Change in Stock 

1990 224 4.11 410 7.53 

1991 227 3.45 416 6.33 

1992 229 2.36 421 4.32 

1993 233 3.21 426 5.89 

1994 237 4.70 435 8.62 

1995 241 3.51 442 6.44 

1996 244 2.94 447 5.39 

1997 248 4.08 454 7.47 

1998 251 2.74 459 5.03 

1999 255 4.51 468 8.26 

2000 259 3.52 474 6.45 

2001 261 2.53 479 4.63 

2002 265 3.46 485 6.34 

2003 270 5.15 495 9.44 

 

4.2 Decomposition of stump and root systems of Norway spruce 
in Sweden – A modeling approach (Paper II) 

Primarily to improve the system for estimating stump carbon stocks in Paper I 

(but also for general use), an empirical decomposition model for Norway 

spruce was developed using the negative exponential model for estimation of 

the biomass remaining in stump and root systems. The model was derived from 

two chronosequences - one from southern Sweden and one from northern 

Sweden - using stump diameter at harvest and the number of years since 

cutting as independent variables, and dry weight as a dependent variable in the 

regression model.  

The relative decomposition of Norway spruce stumps in Sweden was 

modeled to be 4.6% per year (the model parameter β2). The decomposition 

model was applied to all species in Paper I and Paper III. This extrapolation 

was motivated by the fact that, before the present study, no model existed for 

predicting the decomposition of stump systems in Sweden.  

The model parameter estimates and other corresponding statistics – 

following ordinary least squares regression using Eq. 2 – are reported in Table 

2. 
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Table 2. Parameter estimates and test quantities for the stump and root system decomposition 

function (Norway spruce). RMSE=Root mean square error and R
2
= coefficient of determination 

Parameter Parameter 

estimate 

t-value 

lnβ0 2.7443 6.17 

β 1 2.3064 16.60 

β 2 -0.0460 -8.89 

RMSE=0.6389 R
2
=0.7542  

 

4.3 Assessing carbon balance trade-offs between bioenergy 
and using stumps for storing carbon at varying time scales 
and harvest intensities (Paper III) 

Given environmental, technical and, to some extent, economic restrictions, we 

predicted the annual bioenergy potential in stumps and roots in Sweden to be 

1.5, 2.7 and 4.1 Tg DW (~ 29, 51 and 79 PJ) in three scenarios with different 

harvest intensities. In 2011, the bioenergy sector contributed 475 PJ to the total 

energy supply which corresponds to 23% of the total energy supply in Sweden 

(SEA, 2013). Norway spruce was the dominant species utilized, followed by 

Scots pine, birch and “other deciduous” trees. As a reference, the biomass of 

all stumps from harvest and natural mortality was estimated to be 12.2 Tg DW 

(Max scenario) (Figure 2). 

Before harvesting stumps, the land owners need permission, granted by the 

SFA which has issued recommendations for stump harvesting. These 

recommendations take into account environmental factors and we wanted to 

analyze how these restrictions actually reduced the stump harvesting potential. 

One such restriction was harvest intensity, since too intensive stump harvesting 

was assumed to impact negatively on e.g. forest regrowth. In addition, we 

investigated some economic restrictions (no stump harvesting after thinning, 

minimum number of stumps per hectare and Norway spruce being the 

dominant tree species). It was shown that economic restrictions had most effect 

on the bioenergy potential, and also the environmental restriction “harvest 

intensity” (SFA recommend 15 – 25% of stump volume to be left). 

Environmental restrictions such as “distance to water”, “soil moisture class” 

and “high proportion of deciduous trees” had less impact (Figure 5 in paper 

III).  
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Figure 2. Harvest potential of the three stump harvest scenarios (High, 

Medium, Low) and the theoretical maximum biomass available in stumps and 

roots. Average over the period 1984 – 2003 (Tg DW yr
-1

). 

 

The results indicate that, for the medium scenario, if coal is substituted with 

stumps and roots for energy, it would take nine years before the emissions 

from stump combustion have accounted for less net CO2 production than coal. 

This is because the CO2 emitted per unit of energy is larger for burning wood 

(112 000 kg CO2 TJ
-1

) than for coal (96 920 kg CO2 TJ
-1

) (IPCC, 2006) and 

because stumps and roots will decay, although at a relatively slow rate, if left 

in the forest. However, in this specific scenario, after nine years, the 

accumulated emissions from the combustion of coal and the decomposing 

stumps will be larger than the accumulated CO2 emissions from stump and root 

combustion and will favor the use of stumps as bioenergy (Figure 3a+b). Using 

stumps and roots instead of coal would result in a long-term reduction of CO2 

emissions by 2.8, 5.0, and 7.7 Tg CO2 yr
-1

, respectively, for the three scenarios.  

The realizable potential of stump harvesting in Sweden was estimated to be 

12 – 34% of the total amount of stump and root systems. 
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Figure 3a. Energy utilization activity over 20 years (1984 – 2003) and 

consequences of the energy utilization activities over the decomposition period 

of stumps in the boreal forest (2004 – 2080). Black curves: Accumulated CO2 

emitted into the atmosphere if stump harvesting scenario medium is put into 

action (decay from stumps not harvested and combustion of stumps in the 

energy industry) and if coal is burnt instead of stumps (coal combustion in the 

energy industry equal to medium stump harvest scenario and decay from all 

stumps). Grey curves: Accumulated carbon stock with stump harvesting 

(stumps left in the ground after harvest in scenario medium, minus decay) and 

without stump harvesting (all stumps left and accumulated in the ground minus 

decay) during the activity period, plus decomposition of stumps and roots in 

the period 2004 – 2080.  
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Figure 3b. Based on 3a, relative net accumulation (net emission) of CO2 into 

the atmosphere (bioenergy emissions from the medium harvest scenario, 

divided by emissions from coal combustion, equal to combustion from the 

medium stump harvesting intensity). The figure shows a larger net emission 

from using bioenergy over the first nine years. Thereafter, using bioenergy is 

associated with a lower net emission than when using coal.  

 

When estimating the remaining carbon pool in the ground over the period 1984 

– 2003, the retained stump and root carbon pool increased for the harvest 

scenarios high, medium and low. However, in the theoretical scenario (Max 

scenario) including all stumps, and those not likely to be harvested, the carbon 

pool decreased (Figure 4). The Swedish carbon pool in stumps and roots would 

start to decrease if more than approximately 107 PJ (43% of the total physical 

amount of stump system biomass) were harvested annually. Without stump 

harvesting, the carbon pool in stumps and roots was a carbon sink in the study 

period (1984 – 2003) and accumulated 6.9 Tg CO2 yr
-1

. 
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Figure 4. Stump and root biomass retained in the ground on the basis of 

scenarios High, Medium, Low, the Max scenario and if there was no harvesting 

(accumulation of stumps during 1984 – 2003 plus retained biomass after 

decomposition of stumps harvested 1956 – 1983).  

4.4 Nutrient concentrations in stumps and coarse roots of 
Norway spruce, Scots pine and silver birch in Sweden, 
Finland and Denmark (Paper IV) 

In Swedish stumps, the nutrient concentrations were generally higher in birch 

stumps for all nutrients except for Ca, where the nutrient concentration in the 

spruce stand was at a similar level as the birch stand. For all nutrients (except 

Ca), the nutrient concentrations were at similar levels in the spruce and pine 

stands. The N concentrations in the stumps in the southern part of Sweden and 

Finland were higher than at the sites located further north. The P 

concentrations in the stumps were rather similar in Sweden and Finland, 

although somewhat higher in the sites located in the north of Sweden and 

Finland compared with the southern sites. Danish stumps had the highest Na 

concentration. 

The statistical analysis of the Swedish stumps showed that the nutrient 

concentration increased with decreasing root diameter for spruce, pine and 

birch, with the exception of Na concentration in birch. For the Finnish spruce 

stumps, the concentrations of N, P, K, Ca and Mg increased with decreasing 

wood root fraction but, for the bark fraction, this was only the case for N. 

Linear regression analysis of the Danish subset indicated that nutrient 

concentrations from one of the sample sites decreased significantly with 
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increasing root diameter for all nutrients except Na. When the mean root radius 

was plotted against nutrient concentration (N, P, K, Mg, Ca and Na) the results 

indicated that, for spruce at these sites and with these tree ages, there can be a 

threshold value at root radius <30 – 40 mm below which concentrations of N, 

Mg, Ca and P can become quite high. 

The statistical assessment of the Swedish stumps showed a correlation 

between N, P, K and Ca concentrations and stand age for spruce, where 

concentrations decreased with age up to 65 years. Older samples did not show 

this correlation. 

In addition to the analyses carried out in the paper IV, the loss of nutrients 

and cations by Norway spruce and Scots pine stump harvest per hectare was 

estimated for conventional stump harvesting (Table 3). 

Table 3. Estimated loss of nutrients and base cations in connection with Norway spruce and Scots 

pine stump and roots harvest when 20 – 29 ton dry weight ha
-1

 (Kellomäki et al., 2013; Kärhä, 

2012; Athanassiadis et al., 2011), was harvested. Nutrient and base cation concentrations in the 

stump part and in the coarse root part were weighted in proportion to size as defined by Hakkila, 

2004. The concentrations analyzed were based on samples from southern (Asa), central (Jädraås) 

and northern (Svartberget) Sweden (kg ha
-1

). The samples included bark. 

Spruce N P K Ca Mg 

Asa 25 – 37 2.4 – 3.5 17 – 24 28 – 40 4.6 – 6.7 

Jädraås 19 – 28 2.2 – 3.2 18 – 26 28 – 40 3.5 – 5.1 

Svartberget 24 – 35 3.0 – 4.4 19 – 27 32 – 46 3.4 – 4.9 

Pine      

Asa 18 – 26 1.4 – 2.0 11 – 16 10 – 14 3.5 – 5.1 

Jädraås 18 – 27 2.0 – 2.9 16 – 23 13 – 19 3.5 – 5.1 

Svartberget 16 – 23 2.5 – 3.6 16 – 24 13 – 19 3.6 – 5.2 

 

In current stump harvest schemes, slash is always harvested before stumps. 

The proportion of lost nutrients and base cations (N, P, K, Ca and Mg) of the 

whole tree (including stumps and roots) arising from slash and stem harvesting 

is 47 – 65% and 27 – 43% respectively, and the nutrient loss of stump 

harvesting amounts to 7 – 14% (Egnell, 2009; Björkroth & Rosén, 1977) paper 

IV) (Table 4).  
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Table 4. Estimated loss of nutrients and base cations (kg ha
-1

) connected with Norway spruce 

stump harvesting (20 – 29 ton dry weight ha
-1

 (Kellomäki et al., 2013; Kärhä, 2012; 

Athanassiadis et al., 2011)) compared to slash and stem harvesting. Data on stem and slash 

harvesting in northern Sweden come from a stand with growing stock 290 m
3
 ha

-1
 in Västerbotten, 

Sweden; data on stem and slash harvesting in southern Sweden come from a stand with growing 

stock 325 m
3
 ha

-1
 in Halland, Sweden (Egnell, 2009; Björkroth & Rosén, 1977). 

North N P K Ca Mg 

Stem 107 12 54 202 18 

Slash 165 20 84 242 20 

Stump 24 – 35 3.0 – 4.4 19 – 27 32 – 46 3.4 – 4.9 

South      

Stem 120 10 54 98 21 

Slash 280 24 68 133 28 

Stump 25 – 37 2.4 – 3.5 17 – 24 28 – 40 4.6 – 6.7 
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5 Discussion 

There are great expectations about the world’s capacity to produce sufficient 

biomass for bioenergy as a substitute for fossil fuels. Between 2000 and 2008, 

the use of fossil fuel at a global level increased by approximately 9000 PJ 

annually (IEA, 2013), and the need to replace fossil fuels with more 

sustainable alternatives such as bioenergy is enormous. Examining the use of 

bioenergy at an EU level, it has increased significantly over the last few years 

and contributed 4115 PJ to the gross final energy consumption of 50 175 PJ in 

the EU in 2010 (EC, 2013a). This contribution of bioenergy to the total 

renewable energy system was 66%, corresponding to 8% of the gross final 

energy consumption within the EU27. With an additional 28.5 – 79.0 PJ from 

Swedish stumps (depending on harvest intensity), the share of renewables in 

the EU27 would increase by 0.06 – 0.16% (EC, 2013a; Melin et al., 2010). 

Sweden has been experiencing tremendous change in the energy production 

sector and, currently, 23% (475 PJ) of Sweden’s total energy supply comes 

from bioenergy (SEA, 2013). In 2012, Sweden reached the national 2020 goal 

set by the EU to have at least 49% of renewable energy in end use, a figure that 

reached 50.9% in 2014. If Sweden used the stump harvesting scenarios 

proposed in paper III (28 – 79 PJ yr
-1

), and substituted this wood for fossil 

fuels, the share of renewable energies in end use would increase from 51 to 53 

– 57%. The realizable potential of stump harvesting in Sweden is estimated to 

be 12 – 34% of the total potential of stump and roots systems. However, 

currently, stump harvesting is very limited in Sweden for several reasons. The 

market situation, with higher harvesting costs for stump biomass than slash and 

round wood, make slash and round wood more competitive, and a higher 

demand for biomass is needed before stumps become profitable. The exception 

is Finland were subsidies for stump harvesting makes this assortment 

profitable. If the demand for bioenergy continues to increase at a European 

level, Sweden could be a possible exporter of biomass to the EU and, with a 
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higher demand, stumps might become part of a new assortment. The market 

situation of other fuels such as coal and oil will also affect the use of forest 

fuels: high prices of coal and fossil fuels might possibly advantage the forest 

fuel market. Future trends in the bioenergy sector, e.g. the second generation of 

biofuels, where forest biomass is used in biorefineries (Söderholm & 

Lundmark, 2009), may also change the market and make biomass sources, 

such as stumps, profitable. 

From an environmental perspective, one could question the convenience for 

countries like Sweden, with an already high energy supply from renewable 

energy sources (51%), of extracting energy from stumps where there may be 

negative environmental consequences. However, Sweden could become a 

pioneer country by showing how the substitution of fossil fuels with renewable 

energy could be achieved, and stump harvesting could – if carried out in a 

sustainable way – be one such example to other countries that use fewer 

renewable sources in their energy mix. 

Another aspect of this thesis examined how countries can improve their 

carbon reporting system for stumps and roots under the UNFCCC and the 

supplementary Kyoto Protocol. The NFIs from most countries cover only 

forest land and cannot be used to monitor carbon in stump systems in other 

land-use classes. However, as shown in paper I, in forested countries such as 

Sweden, the great majority of carbon in stump systems is present on land that 

was, and still is, forest land and most stumps will therefore be monitored. 

However, if stumps are common on non-forest land not covered by the NFI, 

stumps may indirectly be estimated using conversion factors from harvested 

volume stem wood from consumption/productions statistics. The carbon stock 

changes in stumps may then be subjectively divided between land-use 

categories. It should be noted that there is a severe risk of introducing 

systematic errors when converting e.g. production statistics to belowground 

biomass (Satoo & Madgwick, 1982). To use the system developed at a national 

level, the main components required for this system are the levels of stump 

system carbon stocks obtained from repeated field sampling or a time series of 

harvest data combined with conversion factors, usually relating stem volume to 

stump biomass at death (Lehtonen et al., 2004). In addition a decomposition 

model is needed. The model developed in paper II is, to our knowledge, the 

first to model the relative decomposition rates for combined stump and root 

systems of Norway spruce and is, currently, one of the functions used in the 

carbon balance estimates in the Swedish carbon reporting to UNFCCC and its 

supplementary Kyoto protocol. In comparison with other decomposition 

models from the literature, the annual relative Norway spruce decomposition 

rate recorded was mainly for logs, but also for snags and stumps 
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(aboveground), and was in the range 3.2 – 5.2%. The value of 4.6% was in the 

upper quartile (Figure 5). 

 
Figure 5. Comparison of decomposition models of Norway spruce logs, 

stumps and roots.  

 

The advantage of the relative approach is that it is simple to apply without 

unduly compromising accuracy. However, there are some discrepancies with 

the decomposition model. The chronosequences used in paper II covered the 

first 39 years of decomposition, which means that from 40 years on, the model 

is only an extrapolation. However, according to the function developed, only 

about 15% of the initial biomass remains after 39 years, so the potential for 

incorrect asymptotic extrapolation has a limited influence on the results. To 

investigate whether the relative decomposition model was independent of the 

variables stump size, year since cutting, decomposition class according to 

Swedish NFI and location, residuals were plotted for these variables (Figure 6).  
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Figure 6. Standardised residuals from equation 2 plotted against: a) stump 

diameter; b) year since cutting; c) decomposition class; and d) location. 

 

Within the range of stump sizes studied, the relative decomposition rate was 

essentially independent of stump size. Previous studies have presented 

different results. Naesset (1999) and MacMillan (1988) showed that Norway 

spruce logs with a greater diameter had a significantly higher decay rate than 

logs with smaller diameters. However, Brown et al. (1996) measured a faster 

decay rate for small logs than for large logs. For roots, a study by Olajuyigbe et 

al. (2011) showed no correlation between diameter and decay rate. The 

residuals plotted against year since cutting did not indicate the need for 

including a lag phase in the model. Similarly, the residuals for the 

decomposition class did not indicate the need for separate functions for 

modeling heartwood and sapwood for Norway spruce. Only two locations were 

sampled for decayed stumps. However, within these locations, several 

conditions and types of stands and sites were present. The residual studies 

relating to location indicate greater within-location variation than that between 

the two locations (Figure 6). Although there are many variables that affect 

decomposition, it was possible to predict the remaining biomass quite 

accurately using just the independent variables stump diameter and time in the 

regression analysis. 

a) 

c) 

b) 

d) 
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Using one decomposition model for Norway spruce for all dominant tree 

species is also a crude simplification. There is a possibility that we 

underestimated the potential carbon pool in stump and root systems due to a 

decomposition rate that was too low, or if the decomposition was higher, the 

stump quantity would be less than in our estimates. To evaluate the influence 

of decomposition rate on the estimated carbon pool, three different decay rates 

were tested: 3%, 4.6% and 6%. The results indicate that the trend in changing 

stump system biomass is slightly dependent on the decay rate chosen, and that 

the level of the trend is indeed dependent on the decay rate (Figure 7). 

 
Figure 7. Predicted annual biomass of stump systems in Sweden using different 
decomposition rates. Underlying data are from 1956 to 2008. 

The strength of using historical data based on measurements of individual 

trees in permanent sample plots was that we achieved high accuracy in ranking 

the estimates of bioenergy potential and carbon sequestration in stumps for 

each scenario. A projection would probably introduce uncertainty but is useful 

for forecasting future potentials. A fundamental assumption of using historical 

data is that the choice of each selected stand for harvesting was assumed 

independent by the additional income from the harvested stumps. With the 

current low price for stump wood and relatively high extraction and harvesting 

costs, this might be considered as a reasonable assumption.  

When applying the system and model developed in papers I and II, it is 

important to use long time series to correctly model “historical stumps”. If not, 

and assuming a constant input of new stumps, the carbon pool of stumps will 

gradually increase until it reaches a steady state. Such an increase is artificial 

and neglects the decomposition of “historical stumps”. To avoid this problem, 
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a long time series should be used, particularly if the decomposition rate is 

assumed to be slow. 

In Sweden, the harvest levels have increased and the average net sink of 

stump systems was estimated to be 6.9 Tg CO2 yr
-1

 over the period 1984 – 

2003. This figure can be compared with the reported net removal of about 35 

Tg CO2 equiv. yr
-1 

(stumps included) for the entire Land-Use, Land-Use 

Change, and Forestry sector (SEPA, 2014). This means that, from a climate 

perspective, this relatively large carbon sink in stumps and roots is important. 

However, the Swedish stump sink potential is not credited within the current 

KP accounting framework. This is because under the KP, the LULUCF sector 

is accounted for differently from other sectors. Carbon stock changes, under 

the most important activity Forest management, are heavily discounted by a 

country-specific cap. This cap limits the value of increasing carbon pools at the 

expense of reducing emissions, which means that the accounting makes no 

consideration to whether carbon stored above the cap is used for forest fuel or 

carbon storage. This favors the use of biomass as a substitute for fossil fuels 

compared to storage of carbon in forests or in harvested wood products 

(Ellison et al., 2013), since no credits are given above the cap. In addition, after 

harvest, forest fuels are considered to be a decrease in ‘living biomass’ in the 

LULUCF sector, and are assumed to end up in the atmosphere directly. To 

avoid double accounting, the emissions from combustion of forest fuels are 

therefore counted as zero, which favors the use of bioenergy before storing 

carbon even further.  

The basis for promoting renewables, including bioenergy, rests on the 

assumption that the GHG emissions associated with their use are low, and 

significantly lower than from fossil fuels (Bowyer, 2012), so that the long-term 

net emissions are reduced. Bioenergy will always result in lower net emissions 

over a longer period, since some fossil fuels have been permanently offset by 

using the biomass that was going to decompose anyway. Therefore, in the long 

run, fossil fuels will have a stronger negative climate impact compared to 

forest fuel (Repo et al., 2011; Zetterberg, 2011; Lindholm et al., 2010; Melin et 

al., 2010).  

Another general important aspect to consider in any such discussion as to 

whether to choose bioenergy or fossil fuels, is that the carbon cycle absorbs 

carbon into the biosphere continuously, and thus into possible forest fuel 

sources, in contrast to the fossil carbon that is absorbed only to a negligible 

extent. Therefore, from a policy point of view, it is important to consider 

biomass for bioenergy as the most sustainable alternative. 

Regarding GHG emissions, using stumps and roots instead of coal would 

result in a long-term reduction of CO2 emissions by 2.8, 5.0, and 7.7 Tg CO2 yr
-
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1
, respectively, for the three scenarios. Comparing these figures to the current 

total CO2 emissions in Sweden (excl. the LULUCF sector) of 58 Tg CO2-

equivalents (SEPA, 2013), use of stumps and roots has a potential to reduce the 

CO2 emissions (long-term) by 4.8%, 8.6%, and 13.2%, respectively, of 

Sweden’s current emissions.  

The above figures concern the long-term effects of using stumps and roots 

instead of fossil fuels. With a long-term perspective (about 100 years) almost 

all the stump-root biomass that is not burned for energy will instead return to 

the atmosphere as CO2 through decomposition. This means that when coal is 

combusted, the decomposing stumps still emit their carbon content into the 

atmosphere as CO2.  

However, in the short-term the emissions from stump combustion will be 

larger compared to using coal as an energy source because of greater emissions 

from burning wood (112 000 kg CO2 TJ
-1

) compared to coal (96 920 kg CO2 

TJ
-1

) (IPCC, 2006) per produced energy unit (Figure 3a). The break-even point 

in the medium scenario was nine years after the initiation of stump harvesting; 

use of a larger portion of biofuels and/or a lower decomposition rate would 

delay the break-even point, and vice-versa. However, Figure 3a should be seen 

as an analysis with narrow system boundaries that points to the principal 

difference between combustion of bioenergy (stumps) and fossil fuel (coal). 

The system boundaries were limited to the combustion of coal combined with 

decomposition of stumps and roots and using stumps for bioenergy (thus 

substituting fossil coal). Other stages of the carbon cycle, such as absorption to 

oceans and sedimentation on oceans floors were not considered. For an entire 

picture of the net accumulation of CO2 in the combustion examples, a complete 

LCA would have been required to take account of all emissions emitted over 

the life cycle of both the bio-based and the fossil fuels (Eriksson et al., 2007). 

However, the results from LCAs vary considerably due to the use of different 

approaches (Helin et al., 2013; Cherubini & Strømman, 2011) and, thus, the 

LCA concept seldom yields the ‘entire picture’ of all emissions emitted over 

the life cycle of the fuel (Cherubini & Strømman, 2011; Cherubini et al., 

2009).  

The analysis in paper I and III assumes that all decomposed biomass is 

emitted into the atmosphere. This is likely a simplification, since using 

process-based decomposition models indicates long retention times for some  

fractions of soil carbon (Manzoni et al., 2009; Wutzler & Reichstein, 2007).  

Stump and root harvesting could contribute to future CO2 emission 

reduction targets and have positive effects from a climate change mitigation 

perspective. However, not only climate concerns should be considered, but also 

other environmental concerns should be taken into account along with an 
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examination of cost efficiency. Therefore, some important concerns were taken 

into account when defining the harvest intensities scenarios in paper III. In the 

three harvest scenarios, stump harvesting at the time of thinning was not 

allowed, because its cost efficiency was too low, and also because of the risks 

of damaging the remaining stand. Stumps less than 10 cm in stem diameter 

(before cutting) were also excluded as they were not considered economically 

feasible to extract with current harvesting technology, and a threshold  level of 

standing stock before cutting was specified for the same reason. In the 

scenarios, 20 – 40% of the stump biomass was retained in order to sustain 

biodiversity (Brin et al., 2009; Caruso et al., 2008; Jonsson et al., 2005), and 

minimize loss of nutrients and base cations from the soil. For biodiversity and 

economic reasons, only the most common tree species – Norway spruce, Scots 

pine and birch species – were allowed to be harvested in the scenarios. Buffer 

zones along streams, lakes, coasts and ditches were specified and taken into 

account due to the increased risk of erosion and leakage of heavy metals, 

nutrients and humus in these zones (SFA, 2009; Page-Dumroese et al., 1998). 

Paper III does not include all potentially appropriate restrictions. For example, 

the distances to roads and power plants, which affects cost efficiency, were not 

included (SLU, 2009).  

After considering environmental and economic efficiency concerns, we 

suggest that the potential bioenergy yielded from high intensity harvesting of 

stumps would be 79.0 PJ, 51.3 PJ for medium intensity harvesting and 28.5 PJ 

for low intensity harvesting, i.e. about 34%, 22% and 12%, respectively, of the 

total amount of stump and root systems (Max scenario). However, in a scenario 

analysis carried out by SKA-08, the potential was estimated to be 75.6 – 122.4 

PJ (2010 – 2019) (SFA, 2008). However, paper III showed that if more than 

approximately 107 PJ had been harvested from 1984 to 2003, the overall stump 

carbon stock would start to decrease. It should be noted that this study 

explicitly examined the carbon pool in stumps and roots and took no account of 

other effects on carbon storage in soil organic matter or the total carbon in the 

ecosystem after stump harvesting, e.g. the effect of increased aeration and the 

effects on plant growth.  

From a sustainable nutrient perspective, it is important to consider the 

nutrient loss of the forest soil if stump harvesting is carried out. It has been 

shown that increased biomass harvest of stumps and slash depletes the pool of 

base cations significantly, particularly in spruce forest (IVL, 2010). 

Furthermore, it has been shown to be better to extract stumps and coarse roots 

than slash, with associated needles, due to the higher concentrations of 

nutrients in the latter (Persson, 2013; Palviainen et al., 2004). However, 

extraction of small roots should be avoided due to their higher nutrient 
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concentrations. In paper IV, it was shown that nutrient concentrations 

increased significantly with decreasing root diameter. Also, coarse roots have 

higher concentrations compared to the stump part. To avoid harvesting of 

roots, special techniques where the roots are left in the ground may be applied 

(Nordfjell et al., 2011). Furthermore, it may be unsuitable to remove stumps 

from certain tree species (birch), and also to remove stumps at thinning of 

young stands, since the results indicated higher nutrient concentrations in 

stumps from younger trees. The location may also be interesting to consider, as 

nutrient levels in stumps, as well as the nutrient status of the soil, varies within 

the country (Hellsten et al., 2013). In boreal coniferous forests, inputs of N by 

deposition would be able to replace the export of N caused by conventional 

SOH in final cutting (Merilä et al., 2014), but the sustainability of the site 

productivity will be challenged when more intense WTH regimes including 

stump and coarse roots are utilized, as the loss of N may result in the 

degradation of long-term site productivity (Merilä et al., 2014; Helmisaari et 

al., 2011; Jacobson et al., 2000). Decomposing roots can form an important 

source of nutrients and thereby make a direct contribution to the growth of new 

trees in regenerations (Weatherall et al., 2006). Stump harvesting of Norway 

spruce approximately corresponds to a loss of 24 – 37 kg ha
-1

 N (Table 3) from 

a clear- cut area. This would correspond to <10% of the total N loss during a 

whole tree harvest (including stump and coarse roots). N in stem would be 

approximately 30% of the N in the whole tree with most of the N (>50%) 

being in the slash part (Table 4). The proportion of all lost nutrients and base 

cations (N, P, K, Ca and Mg) arising from slash and stem harvesting is 47 – 

65% and 27 – 43% respectively, and the nutrient loss of stump harvesting 

amounts to 7 – 14% (Egnell, 2009; Björkroth & Rosén, 1977) paper IV) (Table 

4). From a nutrient perspective, the risk of depletion would be lower if a 

proportion of slash was left after harvesting than if stump and coarse roots 

were harvested. However, in current stump harvesting schemes, slash is always 

harvested before stumps, and this might create a complication. 

The deposition of N in Sweden alters over time and along a north-south 

gradient, with higher deposition in the south than in the north. Many 

environmental aspects such as biodiversity, acidification, leakage and 

eutrophication etc. are negatively affected by high N deposition. Sweden has 

reported <5 kg N ha
-1

 yr
-1

 as a critical threshold for a negative impact on 

ground vegetation in coniferous forests (Moldan, 2011). In northern Sweden, 

the deposition of N is relatively low (< 3 kg N ha
-1

 yr
-1

), and if stump 

harvesting is preceded by slash and stem harvesting, N deposition will not 

likely compensate for all N harvested in stems, slash and stumps over a 

rotation period of 100 years. For southern Sweden, the annual deposition is 
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approximately 2 – 10 kg N ha
-1

 yr
-1

. If the deposition is in the upper part of that 

range (5 – 10 kg N ha
-1

 yr
-1

), deposition of N will likely compensate for both 

stump and slash harvesting over the rotation period (80 years) (Pihl Karlsson et 

al., 2013). However, with deposition at the lower end of that range (which is 

also desired for the other environmental aspects mentioned), stem, slash and 

stump harvesting will likely not be totally compensated for by N deposition.  

From a biomass harvest perspective, the deposition can be seen as 

compensation for the harvested N, but it is important also to consider the other 

environmental issues. Fertilizing the forest is one way to compensate for lost N 

but has also negative side effects on e.g. ground vegetation (Moldan, 2011). 

5.1 Future research 

Monitoring, controlling and measuring biomass for sustainable bioenergy 

production and carbon storage is an area that needs further research. Accurate 

figures are needed for decision makers to plan the future use of biomass in 

order to achieve low net emissions into the atmosphere. This decision making 

is complicated by the trade-offs between different uses of wood, i.e. reduced 

emissions may be obtained both by using wood-fuels in order to substitute 

fossil fuels and by storing carbon in harvested wood products.  

To improve estimates in the reporting to KP, a first step is to develop stump 

decay models for major species. In Sweden, this refers to Scots pine and birch 

species. The current model for Norway spruce is quite crude and might also be 

improved. 

Another step would be to carry out scenario analyses of the future of stump 

harvesting in Sweden using the Heureka forest decision support system 

(Wikström et al., 2011). This system can predict carbon development in 

stumps and roots as well as bioenergy potential of stump harvesting at a 

national level based on National Forest Inventory data. The study could also 

show how the carbon balances are affected by the different silvicultural 

systems in use, and also how the use of different decomposition models would 

affect the carbon balance. Other questions to be answered include how 

different price levels affect the output volume of stump harvesting and thus a 

forest owner’s response to market opportunities. The scenario analyses should 

also include other forest fuels such as slash. 
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6 Conclusions 

Without stump harvesting, the carbon pool in stumps and roots is currently 

increasing. Based on NFI data for the period 1984 – 2003 the average increase 

corresponded to 6.9 Tg CO2 yr
-1

. To facilitate the estimation of carbon pool 

changes in stump-root systems a decomposition model for Norway spruce 

stumps and roots was developed. The average annual decomposition rate was 

found to be 4.6%.   

If Sweden would apply any of the stump harvesting scenarios ‘low’, 

‘medium’ or ‘high’, as proposed in paper III (28, 51 and 79 PJ yr
-1

), and 

substituted fossil fuels by biofuels from stumps and roots, the share of 

renewable energy sources would increase from 51% to 53 – 57%. Regarding 

GHG emissions, using stumps and roots instead of coal would result in a long-

term reduction of CO2 emissions by 2.8, 5.0, and 7.7 Tg CO2 yr
-1

, respectively, 

for the three scenarios. Comparing these figures to the current total CO2 

emissions in Sweden (excl. the LULUCF sector) of 58 Tg CO2-equivalents 

(SEPA, 2013), use of stumps and roots has a potential to reduce the CO2 

emissions (long-term) by 4.8%, 8.6%, and 13.2%, respectively, of Sweden’s 

current emissions. The realizable potential of stump harvesting in Sweden was 

estimated to be 12 – 34% of the total amount of stump and root systems. 

The above figures concern the long-term effects of using stumps and roots 

instead of fossil fuels. With a long time perspective (about 100 years) almost 

all the stump-root biomass that is not burned for energy will instead return to 

the atmosphere as CO2 through decomposition. However, in the short-term the 

emissions from stump combustion will be larger compared to using coal as an 

energy source because of greater emissions from burning wood compared to 

coal per produced energy unit. The break-even point in the medium scenario 

was nine years after the initiation of stump harvesting; use of a larger portion 

of biofuels would delay the break-even time point.  
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The Swedish carbon pool in stumps and roots would start to decrease if 

more than 107 PJ (43% of the total amount of stumps) were harvested annually 

over the study period 1984 – 2003.  

The nutrient loss as a result of stump harvesting accounts for only 7 – 14% 

of the total loss from harvesting all parts of a tree, i.e. stem, slash and stump. 

Therefore, from a nutrient perspective, it would be more efficient to leave slash 

instead of stumps and roots in order to minimize loss of nutrients and base 

cations. 
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