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Sammanfattning  

Syftet med projektet var att studera förekomst av perfluoralkylerade ämnen (PFASs) samt relativt nya 

flamskyddsmedel (FRs) i svenska vattendrag. Vi provtog på 44 platser (totalt 41 vattendrag) och 

bestämde innehållet av PFASs (alla platser) och FRs (25 platser). 

Av de 12 utvalda FRs, kunde 3 kvantifieras. TCIPP var det klart dominerade ämnet med en halt 

på upp till 3900 ng L
-1 

(Fyrisån). 2,4,6-TBP uppvisade högre halter i åar i södra Sverige. Vattendragen 

med de högsta av ΣFRs var Fyrisån och Norrström. Den totala belastningen på Östersjön av ΣFRs 

uppskattades till 38 kg dag
-1
, där Ångermanlandsälven och Norrström stod för de största bidragen. Det 

ska noteras att i dessa belastningssiffror ingår inte äldre FRs med omfattande historisk användning, t.ex. 

PBDE.  

Totalt 13 av 25 de analyserade PFASs kunde kvantifieras. Medelvärdet av ΣPFASs i alla 

vattendrag var 9,5 ng L
-1
, och de högsta medelhalterna uppmättes för PFBS och PFHxS (~2 ng L

-1
). Det 

sammanlagda utflödet av ΣPFASs uppgick till 3,2 kg dag
-1
. PFOS överskred miljökvalitetsnormen på 

0,65 ng L
-1
 (årligt medelvärde; AA-EQS; 2013/39/EU) på 12 av 44 platser. 

Den här fältstudien baseras på en provtagningskampanj med ögonblicksprovtagning, och därför 

ska alla rapporterade värden tolkas med försiktighet. Verifikation av höga resultat och mer detaljerade 

studier på platser med förhöjda värden rekommenderas. Studien pekar också på att 

uppströmsmätningar är nödvändiga för att finna viktiga föroreningskällor. 
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Summary 

The occurrence and effects of ubiquitously present persistent organic pollutants (POPs) in the 

environment is one of the challenges the society is facing today. Two categories of chemicals that 

have gained increased public attention during the last decades are organic flame retardants (FRs) 

and perfluoroalkyl substances (PFASs). Many representatives from these compound groups have 

bioaccumulative, persistent and toxic properties. This has led to a ban of some of these compounds 

based on international agreements. 

 FRs and PFASs end up in surface waters and sometimes also in ground water due to their 

widespread distribution, disinclination of getting removed at wastewater treatment plants 

(WWTPs), and persistence. However, the knowledge of the occurrence, fate, and effect in the 

environment of FRs and PFASs is still in great need of research, especially for recently introduced 

compounds (such as novel FRs). The objective of this project was to provide a snapshot of the 

current pollution situation of PFASs and selected novel FRs in Swedish surface waters. We sampled 

at 44 sites (representing 41 rivers and streams) along the whole coastline of Sweden and analysed 

their content of PFASs (all sites) and FRs (25 sites representing 23 rivers). 

 Among the 12 target FRs, 3 could be quantified (2,4,6-TBP, TCIPP, and TPHP). TCIPP was 

the predominant compound with a level up to 3 900 ng L
-1

. The 2,4,6-TBP showed higher levels in 

southern rivers. The river with highest levels of ΣFRs was Fyrisån, and the total riverine input of 

the targeted FRs into the Baltic Sea was estimated to 38 kg day
-1

 with Ångermanlandsälven and 

Norrström as major contributors. It should be noted that these values only include the targeted, 

relatively novel FRs, while historically more important FRs such as the polybrominated diphenyl 

ethers (PBDEs), are not included. 

 In total 13 PFASs were detected (PFBA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, 

PFDoDA, PFTeDA, FOSA, PFBS, PFHxS, PFOS) among the 25 target compounds. The mean 

ΣPFAS level of all sampled rivers was 9.5 ng L
-1

 and the median 4.2 ng L
-1

,
 
and the highest

 
mean 

values were found for PFBS and PFHxS (~2 ng L
-1

 for each compound). Streams in the north (e.g. 

Alterälven, Öre älv, Gide älv, Lögde älv and Ljungan) showed generally higher fractions of the 

longer chained perfluoroalkyl carboxylic acids (PFCAs; i.e. PFNA, PFDA, PFUnDA, PFDoDA, 

PFTeDA) whereas in the south the fractions of PFHpA and PFOA were higher. The total riverine 

input of all PFASs into recipient seas was estimated to 3.2 kg day
-1

 (1150 kg yr
-1

).  

 PFOS exceeded the annual average Environmental Quality Standard (AA-EQS; 

2013/39/EU) of 0.65 ng L
-1 

at 12 of 44 sampling sites, which are located in all parts of Sweden 

(Ume älv at Gubböle, Ångermanälven, Delångersån, Fyrisån, Norrström, Nyköpingsån, Emån, 

Lyckebyån, Rönneån, Nissan, Viskan and Göta älv at Alelyckan).  

 As this study was a one-time grab sampling campaign for screening purposes, all values 

should be interpreted with care. A screening study like the current may, however, reveal hot spots. 

Verification and more detailed studies over a longer time period are recommended for sites with 

elevated levels. Our study also suggests that upstream monitoring is necessary to reveal important 

pollution sources. 
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Sammanfattning 

Förekomst och effekter av globalt spridda persistenta organiska miljöföroreningar (POPs) har blivit 

en mycket uppmärksammad fråga. Två kategorier av kemikalier som har fått ökad uppmärksamhet 

är organiska flamskyddsmedel (FRs) och perfluoroalkylerade substanser (PFASs). Det har visat sig 

att många av dessa är bioackumulerande, persistenta och giftiga, vilket har lett att flera av dem 

fasats ut eller förbjudits under de senaste årtiondena.  

 Eftersom FRs och PFASs är väl spridda i miljön och dessutom svåra att avlägsna från 

avloppsvatten, återfinns de regelbundet i ytvatten och i vissa fall även i grundvatten. Kunskap om 

FRs och PFASs i miljön är begränsad, både vad gäller förekomst, spridning och effekter, och 

särskilt då för ämnen som introducerats relativt nyligen (t.ex. nya FRs). Det finns alltså ett behov av 

att lära mer om dessa ämnen. Syftet med detta projekt var att studera förekomst av PFASs samt 

relativt nya FRs i vattendrag längs hela kusten. Vi provtog på 44 platser (totalt 41 vattendrag) och 

bestämde innehållet av PFASs (alla platser) och FRs (25 provtagningsplatser som representerar 23 

vattendrag). 

 Av de 12 utvalda FRs, kunde 3 kvantifieras (2,4,6-TBP, TCIPP och TPHP). TCIPP var det 

klart dominerade ämnet med en halt på upp till 3 900 ng L
-1 

(Fyrisån). 2,4,6-TBP uppvisade högre 

halter i åar i södra Sverige. Vattendraget med den högsta halten av FRs var Fyrisån, och den totala 

belastningen på Östersjön av FRs uppskattades till 38 kg dag
-1

, där Ångermanlandsälven och 

Norrström stod för de största bidragen. Det ska noteras att dessa i belastningssiffror ingår bara de 

utvalda, relativt nya FRs, medan äldre med omfattande historisk användning, t.ex. PBDE, inte 

ingår.  

 Totalt 13 av 25 de analyserade PFASs kunde kvantifieras (PFBA, PFHxA, PFHpA, PFOA, 

PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA FOSA, PFBS, PFHxS, PFOS). Medelvärdet av 

ΣPFASs i alla vattendrag var 9,5 ng L
-1

 (medianvärdet 4,2 ng L
-1

), och de högsta medelhalterna 

uppmättes för PFHxS och PFBS (~2 ng L
-1 

per ämne). Vattendrag i norr (t.ex. Alterälven, Öre älv, 

Gide älv, Lögde älv och Ljungan) uppvisade i regel en högre fraktion av perfluorerade karboxylater 

(PFCAs) med långa kolkedjor (dvs. PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), medan i söder 

var fraktionen av PFHpA och PFOA högre. Det sammanlagda utflödet av ΣPFASs uppskattades till 

3,2 kg dag
-1

 (1150 kg år
-1

). 

 PFOS överskred miljökvalitetsnormen på 0,65 ng L
-1

 (årligt medelvärde; AA-EQS; 

2013/39/EU) på 12 av 44 provtagningsplatser, och dessa återfinns i alla delar av Sverige (Ume älv 

vid Gubböle, Ångermanälven, Delångersån, Fyrisån, Norrström, Nyköpingsån, Emån, Lyckebyån, 

Rönneån, Nissan, Viskan och Göta älv vid Alelyckan).  

 Eftersom den här fältstudien baseras på en provtagningskampanj med 

ögonblicksprovtagning, ska alla värden som redovisas tolkas med försiktighet. En screening-studie 

som den här kan dock avslöja s.k. hotspots. Vi rekommenderar verifikation av höga resultat och 

mer detaljerade studier kring dessa provtagningsplatser för att säkerställa föroreningssituationen. 

Vår studie pekar också på att uppströmsmätningar är nödvändiga för att finna viktiga 

föroreningskällor. 
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1. Introduction 

This field study was carried out by the Department of Aquatic Sciences and Assessment 

(Institutionen för vatten och miljö, IVM) at the Swedish University of Agricultural Sciences (SLU). 

The overall objective was to screen for perfluoroalkyl substances (PFASs) and selected novel 

organic flame retardants (FRs) in Swedish streams and rivers. We also made estimates of the 

loadings of FRs and PFASs from these streams and rivers to their recipient seas and discuss sources 

and pollution patterns. 

 

2. Background 

2.1 Flame retardants (FRs) 

Flame retardants (FRs) are extensively used for protection of daily life products such carpets, 

furniture, textiles and IT products (Papachlimitzou et al. 2012). The use of FRs has led to 

significantly reduced incidents of fire- and smoke-related fatalities (Birnbaum and Staskal, 2004; 

Kolic et al. 2009). However, FRs are not free of disadvantages, with its unsolicited release to the 

environment as the key issue (Birnbaum and Staskal, 2004).  

 

FRs are chemicals that either inhibit, slow down or suppress the proliferation of fires (URL1). The 

FRs used today are of two different types: additive or reactive. Additive FRs are normally added to 

the product after polymerisation; thus they are not chemically bound to the plastic and can easily be 

released from the product (Schlabach et al. 2011). The reactive FRs, on the other hand, react 

chemically with the thermoplastic, and release to the environment is therefore less problematic 

(Schlabach et al. 2011; Papachlimitzou, 2012).   

  

Today, halogenated and phosphorous flame retardants are the most frequently used FRs (Bergman 

et al. 2012). Structurally, brominated FRs (BFRs) usually consist of one or two phenyl rings with 

some of the hydrogens substituted by bromine. For instance, polybrominated diphenyl ethers 

(PBDEs) consist of two phenyl rings with 1-10 bromine atoms (Birnbaum and Cohen Hubal, 2006). 

They were among the first additive organic FRs used, and the peak production and usage occurred 

in the 1960s and 1970s (Boon et al. 2002). However, also non-phenylic BFRs exist, with 

hexabromocyclododecane (HBCDD) and dibromoethyl-dibromocyclohexane (DBE-DBCH) as the 

most widely used (Bergman et al. 2012).  

 

Phosphorous FRs (PFRs) are compounds that includes phosphorous and different types of 

functional groups. They can also include covalent bounds to halogenated functional groups (e.g., 

tri(1-chloro-2-propyl) phosphate, TCIPP). PFRs can be found in lubricants, concrete and hydraulic 

fluids (Andresen et al. 2004; US EPA, 1985).  

 

BFRs have low water solubility (although for some it is pH-dependent) and high octanol-water 
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partition coefficients (log KOW>4.4) (Birnbaum and Staskal, 2004; Birnbaum and Cohen Hubal, 

2006) as shown in Table 1. The corresponding values for PFRs are distinctly lower (log KOW < 5) 

(Bergman et al. 2012) as shown in Table 2. 

 

Table 1: Structure and properties of BFRs analysed in this project
a
 

Compound Name Structure 
Molecular 

formula 
CAS no. MW log KOW KOC Vp (Pa) 

2,4,6-TBP 
2,4,6-Tribromo- 
phenol 

 

C6H3Br3O 118-79-6 330.8 4.4 pH-dep. 2.00E-01 

PBP Pentabromophenol 

 

C6HBr5O 608-71-9 488.59 5.2 pH-dep. 2.55E-03 

TBBPA 
Tetrabromo- 

bisphenol A 

 

C15H12Br4O2 79-94-7 543.87 9.7 4.47E+06 1.88E-05 

HBB Hexabromobenzene 

 

C6Br6 87-82-1 551.42 6.1 50300 1.14E-04 

BEHTBP 

Bis(2-ethyl-1-

hexyl)tetrabromophtha

late 

 

C24H34Br4O4 706.14 706.15 9.3 2.88E+06 1.55E-11 

DBDPE 
1,2-Bis(2,3,4,5,6-
pentabromophenyl)eth

ane 

 

C14H4Br10 84852-53-9 971.22 11 1.00E+07 n.a. 

EHTBB 
2-Ethylhexyl 2,3,4,5-

tetrabromobenzoate 

 

C15H18Br4O2 183658-27-7 549.92 7.7 3.82E+05 3.71E-07 

PBT Pentabromotoluene 

 

C7H3Br5 87-83-2 486.62 5.2 60 200 6.00E-04 

HBCDD 
Hexabromocyclo-

dodecane 

 

C12H18Br6 3194-55-6 641.73 7.9 4.86E+05 1.04E-07 

BTBPE 

Benzene 1,1’-[1,2-
ethanediylbis(oxy)]bis 

[2,4,6-tribromo-

phenoxy]ethane  

C14H8Br6O2 37853-59-1 687.64 8.3 7.92E+05 n.a. 

         

a
MW = molecular weight; KOW = octanol-water coefficient; Vp = vapour pressure; calculated from log pressure in liquid 

phase (log PL) values. KOC = organic carbon – water partition coefficient. The acid dissociation coefficient (pKa = –

log10 Ka; only relevant for phenolic FRs) for 2,4,6-TBP, PBP and TBBPA is 6.32±0.23, 4.43±0.33 and 7.7 or 8.5±0.10, 

respectively (values from Birnbaum and Staskal, 2004; Kolic et al. 2009; Schlabach et al. 2011; Bergman et al. 2012 

and URL2).  
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Table 2: Structure and properties of PFRs analysed in this project
a
 

Compound Name Structure 
Molecular 

formula 
CAS no. MW log KOW KOC Vp (Pa) 

TCIPP Tri(1-chloro-2-propyl) phosphate 

 

C9H12O4Cl3P 13674-84-5 327.56 2.59 275 2.69E-03 

TPHP Triphenyl phosphate 

 

C18H15O4P 115-86-6  326.28 4.59 2630 8.37E-04 

a
MW = molecular weight; KOW = octanol-water coefficient; Vp = vapour pressure; calculated from log pressure in liquid 

phase (log PL) values. KOC = organic carbon – water partition coefficient. Values from Bergman et al. (2012).  

Transport and fate of FRs in the environment: Highly brominated PBDEs have shown to 

degrade to lower brominated derivatives (Darnerud, 2003). The transformation of PBDEs in the 

atmosphere is an issue of concern, as less brominated PBDEs are known to be more toxic (de Wit, 

2002; Harju et al. 2009). PBDEs have been detected globally, both close to point sources as well as 

far from their production, demonstrating long-range transport (LRT) potential (Birnbaum and 

Staskal, 2004; Kolic et al. 2009). Studies have primarily been carried out in North America, Europe 

and Japan (de Wit, 2002; Harju et al. 2009).   

 

2.2 Perfluoroalkyl substances (PFASs) 

PFASs are anthropogenic substances that have been used widely since the early 1950s due to 

surfactant properties (both lipo- and hydrophobic). Because of their  unique properties (repelling 

both water and grease), PFASs are used in a variety of industry and consumer products, e.g. in 

paint, leather and textile coating, clothes, shoes and carpets, as lubricants in floor- and car waxes, 

and as aqueous fire-fighting foams (AFFFs) at airports and oil platforms (Kissa, 2001; Jensen and 

Leffers, 2008).  

  

PFASs are also known to be persistent, bioaccumulative and toxic, and they distribute in the 

environment through LRT and water currents (Jensen and Leffers, 2008; Vierke et al. 2012). They 

are ubiquitously present, and are detected in wildlife even in remote areas (Giesy and Kannan, 

2002; Kannan et al. 2002). The most studied PFASs, perfluorooctane sulfonate (PFOS) was 

classified as a substance of very high concern (SVHC) under REACH, and its use was prohibited in 

the EU in 2008 and added to the Stockholm Convention list in 2009 (KemI, 2009; Ahrens, 2010; 

Vierke et al. 2012).  

 

The general formula of per-FASs is CnF2n+1R; thus, they consist of a fully fluorinated carbon chain 

and a functional group (R). Common functional groups include carboxylic acids (-CO2H; 

perfluoroalkyl carboxylic acids; PFCAs) or sulfonic acids (-SO3H; perfluoroalkyl sulfonic acids; 

PFSAs). Poly-FASs have at least one C atom in the chain that is not fully fluorinated. Experiments 

have shown that both the number of F atoms as well as their location is important for the 

physiochemical properties of the individual substance (Kissa, 2001). The fluorine atoms (F) are 

attached to the carbon chain by a strong covalent bounds. As F has the highest electronegativity 
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(EN) in the whole periodic system (EN=3.98 on Pauling scale), PFASs are very persistent to natural 

degradation. It has been shown that PFASs resist to e.g. heat and hydrolysis, although some 

degradation from longer to shorter C-chains occur when exposed to UV light (Taniyasu et al. 2013).  

 

Despite long time of PFASs usage, little attention was paid to the environmental aspects prior to the 

last decade (Kannan, 2011). Since then, more than 2500 research articles on properties, fate and 

occurrence have been published (Kannan, 2011). Although numerous environmental studies of 

PFASs (e.g. Prevedouros et al. 2006; Loos et al. 2009; Ahrens et al. 2009a; Ahrens et al. 2009b; 

Ahrens, 2010; Loos et al. 2010; Filipovic et al., 2013), there is a need of more screening studies to 

increase the knowledge about point sources and related problems. The current study focuses on 

fully (per-)fluorinated compounds, including PFCAs (Table 3), perfluorooctane sulfonamides 

(FOSAs), perfluorooctane sulfonamidoethanols, perfluorooctane sulfonamidoacetic acid (FOSAAs) 

(Table 4), and PFSAs (Table 5).  

Table 3: PFCAs included in the current study 

Compound Name Structure Molecular formula CAS no. MW log Kow, dry Vp (Pa) 

PFBA 
Perfluoro- 

butanoic acid 

 

C3F7CO2H 45048-62-2 213.04 2.82 3890 

PFPeA 
Perfluoro-

pentanoic acid 

 

C4F9CO2H 2706-90-3 263.05 3.43 1349 

PFHxA 
Perfluoro- 

hexanoic acid 

 

C5F11CO2H 92612-52-7 313.06 4.06 457 

PFHpA 
Perfluoro- 

hepanoic acid 

 

C6F13CO2H 120885-29-2 363.07 4.67 158 

PFOA 
Perfluoro- 

octanoic acid 

 

C7F15CO2H 45285-51-6 413.08 5.30 53.7 

PFNA 
Perfluoro- 

nonanoic acid 

 

C8F17CO2H 72007-68-2 463.09 5.92 18.6 

PFDA 
Perfluoro-

decanoic acid 

 

C9F19CO2H 73829-36-4 513.10 6.50 6.61 

PFUnDA 
Perfluoro- 

undecanoic acid 
 

C10F21CO2H 196859-54-8 563.11 7.15 2.19 

PFDoDA 
Perfluoro- 

dodecanoic acid 
 

C11F23CO2H 171978-95-3 613.12 7.77 0.741 

PFTrDA 
Perfluoro-

tridecanoic acid 
 

C12F25CO2H 72629-94-8 663.13 –0.57 n.a. 

PFTeDA 
Perfluoro-

tetradecanoic 

acid  
C13F27CO2H 376-06-7 713.14 –0.99 n.a. 
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Compound Name Structure Molecular formula CAS no. MW log Kow, dry Vp (Pa) 

PFHxDA 
Perfluoro-

hexadecanoic 

acid  
C15F31CO2H n.a. 813.16 n.a. n.a. 

PFOcDA 
Perfluoro-

octadecanoic 

acid  
C17F35CO2H n.a. 913.18 n.a. n.a. 

MW = Molecular weight; KOW = octanol-water coefficient; Vp = vapour pressure; calculated from log pressure in liquid 

phase (log PL) values. Values from Wang et al. (2011). 

 

 

Table 4: FOSAs, FOSEs, and FOSAAs included in the current study  

Compound Name Structure Molecular formula CAS no. MW log Kow Vp (Pa) 

FOSA 
Perfluorooctane 

sulfonamide 

 

C8F17SO2NH2 754-91-6 499.18 5.62 0.245 

FOSAA 
Perfluorooctane 

sulfonamidoacetic acid 

 
C8F17SO2NHCH2CO2 n.a. n.a. n.a. n.a. 

EtFOSA 
N-ethylperfluoro-1-

octanesulfonamide  

 
C8F17SO2NHCH2CH3 4151-50-2 527.20 n.a. 5.71E-05 

EtFOSAA 
N-ethylperfluoro-1-

octanesulfonamidoacetic 

acid  
 

C8F17SO2N(CH2)2CH3CO2 n.a. n.a. n.a. n.a. 

EtFOSE 
2-(N-ethylperfluoro-1-

octanesulfonamido)-

ethanol  
 

C8F17SO2N(CH2)3CH3OH 1691-99-2 571.25 n.a. n.a. 

MeFOSA 
N-methylperfluoro-1-

octansulfonamide 

 

C8F17SO2NHCH3 31506-32-8 n.a. n.a. n.a. 

MeFOSAA 
N-methylperfluoro-1-

octanesulfonamidoacetic 

acid 

 

C8F17SO2NCH3CH2CO2 n.a. n.a. n.a. n.a. 

MeFOSE 
2-(N-methylperfluoro-1-

octanesulfonamido)-

ethanol 
 

C8F17SO2N(CH2)2CH3OH 24448-09-7 557.22 n.a. n.a. 

 

MW = Molecular weight; KOW = octanol-water coefficient; Vp = vapour pressure; calculated from log pressure in liquid 

phase (log PL) values. Values from Wang et al. (2011). 

 

 

 

Table 5: PFSAs included in the study  

Compound Name Structure Molecular formula CAS no. MW log Kow Vp (Pa) 

PFBS 
Perfluorobutane 

sulfonic acid 

 

C4F9SO3H 
375-73-5 or 

59933-66-3 
300.12 3.90 631 

PFHxS 
Perfluorohexane 

sulfonic acid 

 

C6F13SO3H 355-46-4 400.14 5.17 58.9 
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Compound Name Structure Molecular formula CAS no. MW log Kow Vp (Pa) 

PFOS 
Perfluorooctane 

sulfonic acid 

 

C8F17SO3H 1763-23-1 500.16 6.43 6.76 

PFDS 
Perfluorodecane-

sulfonic acid 

 
C10F21SO3H 335-77-3 600.18 7.66 n.a. 

MW = Molecular weight; KOW = octanol-water coefficient; Vp = vapour pressure; calculated from log pressure in liquid 

phase (log PL) values. Values from Wang et al. (2011). 

 

 

Sources of PFASs: WWTPs have been found to be a major source of PFASs in the environment 

(Filipovic et al. 2013, Loos et al. 2010). Other important sources of PFASs are atmospheric 

deposition, contaminated soil/sediment and landfills (Llorca et al. 2012).   

 

Transport, fate and occurrence in the environment: PFASs distribute in the environment 

through LRT and water currents (Jensen and Leffers, 2008; Vierke et al. 2012). During transport, 

PFASs is partly bound to particles. Ahrens et al. (2009a) found that the northern part of the Atlantic 

ocean have moderate PFAS concentrations in the sub-surface water, whereas below-equator PFAS 

concentrations were below the detection limit. PFASs have been detected in >90% of the European 

rivers at concentrations between 3-1400 ng/L (Loos et al. 2009; Loos et al. 2010; Möller et al. 

2010). PFASs have also been found in treated wastewater, tap water, and bottled drinking water 

(Llorca et al. 2012) as well as in humans and wildlife (e.g. minks, otters, polar bears; Giesy and 

Kannan, 2002; Kannan et al. 2002; Roos et al. 2013, Persson et al. 2013).  

 

Exposure and health aspects: Drinking water, food packaging and food may contain PFASs 

(Boon et al. 2002; KemI, 2009; Thompson et al. 2011; Llorca et al. 2012). It has been estimated that 

80% of the PFCAs historically produced have been emitted to the environment, and as a 

consequence, trace levels of PFASs are ubiquitously detected in humans (Prevedouros et al. 2006; 

Loos et al. 2009; Ahrens et al. 2009b). PFASs have been suggested to be toxic to humans and 

wildlife, e.g. carcinogenic and endocrine disrupting (Jensen and Leffers, 2008; Ahrens, 2010; 

Kannan, 2011). The toxicity is known to be related to chain length (long chains are more toxic), and 

the sulfonates (PFSAs) have been found to be more toxic than the PFCAs (Ulhaq et al. 2013a; 

Ulhaq et al. 2013b). 

 

 

3. Materials and methods 

The overall goal of this project was to carry out a screening of selected novel FRs as well as a 

number of PFASs in Swedish rivers and streams. We also aimed for an estimation of loadings of 

FRs and PFASs to the sea through Swedish river and stream transport. The plan was to give a 

snapshot of the situation during a short period of time, and for this purpose, grab samples was 

considered as the best sampling method. The rivers and streams were sampled in October 2013, and 

then extracted and analysed for FRs and PFASs at the POPs laboratory at IVM, SLU (Uppsala).  
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3.1 Chemicals 

Solvents used were: Acetone (SupraSolv® for GC-ECD and FID), dichloromethane (DCM; 

SupraSolv®), isooctane (SupraSolv® for GC- ECD and FID), methanol (LiChrosolv® hypergrade 

for LC-MS) and toluene (SupraSolv® for GC), all purchased from Merck KGaA, Darmstadt, 

Germany. Acetic acid solution (>99.7%), ethyl acetate (for pesticide residue analysis), ammonium 

acetate and ammonium hydroxide solution 28-30% were purchased from Sigma-Aldrich, 

Steinheim, Germany. Ethanol (95%) was purchased from Solveco, Rosersberg, Sweden. MilliPore 

water was available at the laboratory and filtered with MilliPak® 0.22 µm filter. 

 

Other laboratory consumables used were: boiling chips granules (2-8 mm) and glass wool (Merck 

KGaA), and glass beads (diameter≈5 mm; Sigma-Aldrich). The FR sorbent XAD-2 was purchased 

from Supelco, Bellefonte, USA. 

 

The following laboratory equipment was used: Biotage TurboVap™ II, Branson 5500 sonication 

bath, centrifuge 5810 from Eppendorf (Hamburg, Germany), glass columns from Werner Glas 

(inner diameter 3.5 cm, length 26.5 cm, width at in- and outlet 1 cm), nitrogen evaporator N-

Evap™112 (from Organomation Associates, Inc., Berlin, USA), Oasis weak anion exchange 

(WAX) 6 cc cartridge 500 mg, 60 µm (Waters, Wexford, Ireland), peristaltic pump MasterFlex® 

(model 77800-62 Cole-Parmer easyload®3 from Barnant Company, Barrington, USA), pH-meter 

VWR pHenomenal™, rubber tubing from Saint Gobain (MasterFlex® 06404-15 Norprene®, 5 mm 

inner diameter), Shimadzu TOC-VCPH and ASI autosampler, silicone tubing from Saint Gobain 

(Platinum-curved silicone MasterFlex® 96420-15, 5 mm inner diameter) and Whatman™ glass 

microfibre filters (GF, 47 mm Ø, GE Healthcare UK Limited, Buckinghamshire, United Kingdom). 

 

References compounds used for FRs: Native compounds (n=12) used in the calibration samples 

were in the range of 0.25 pg µL
-1

 to 450 pg µL
-1

. The compounds included in the calibration were 

2,4,6-TBP, PBP, TBBPA, HBB, BEHTBP, DBDPE, EHTBB, PBT, α-HBCDD, TCIPP, TPHP, and 

BTBPE. More information on these compounds as well as chemical formulas and their full names 

can be found in Tables 1 and 2. The samples were spiked with the isotope labelled internal standard 

(IS) BDE99. This was done in order to be able to identify and correct for losses during sample 

processing. Lastly, the injection standard (InjS) Mirex was added to all samples prior to analysis. 

The ISs and Mirex were purchased from Wellington laboratories, Ontario, Canada. 

 

Reference compounds used for PFASs analysis: Native compounds (n=25) used in the calibration 

samples were in the range of 0.05 pg μL
-1

 to 40 pg μL
-1

 (i.e. PFBA, PFPeA, PFHxA, PFHpA, 

PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFOcDA, FOSA, 

FOSAA, EtFOSA, EtFOSAA, EtFOSE, MeFOSA, MeFOSAA, MeFOSE, PFBS, PFHxS, PFOS, 

PFDS). Mass-labelled (
13

C) IS (n=14) included PFBA, PFHxA, PFOA, PFNA, PFDA, PFUnDA, 

PFDoDA, FOSA, MeFOSAA, MeFOSE, EtFOSAA, N-EtFOSE, PFHxS, PFOS. All reference 

standards were purchased from Wellington laboratories, Ontario, Canada. More information on 

these compounds as well as chemical formulas and full names can be found in Tables 3, 4 and 5. 
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3.2 Sampling sites 

The goal was to screen a variety of different water bodies, including small and large streams/rivers 

as well as representatives of both urban and remote areas. Sampling sites were selected on the basis 

of the following criteria. Firstly, catchment size and riverine discharge was of vital importance. All 

rivers with a catchment size of 4000 km
2
 or more were included. Secondly, rivers of densely 

populated parts of Sweden were prioritized, as urban areas are supposed to have higher levels of 

both FRs and PFASs. Additionally, some rivers where high values could be expected (due to e.g., 

large-scale industrial activities) were added. An overview of the sampling sites is presented in 

Figure 1, and more details on the sites are given in Tables A1 and A2 (Appendix A). 

 

For the FRs, 25 sampling sites (representing 23 rivers) were chosen from Haparanda (Torne älv) in 

the north to Kristianstad (Helge å) in the south end of the east coast of Sweden. Three upstream 

sites were included (Vindelälven at Krycklan and at Rödånäs, and Ume älv at Gubböle) to screen 

for upstream variation.  

 

The screening of PFASs included 44 sites representing 41 rivers, from Haparanda (Torne älv) in the 

north to Kristianstad (Helge å) in the south of the Swedish east coast along with some samples from 

the west coast. Four upstream sites were included (Vindelälven at Krycklan and at Rödånäs, Ume 

älv at Gubböle and Göta älv near Trollhättan). All rivers screened for FRs were also included in the 

PFASs screening. All samples were taken by IVM (SLU) or by help from people involved in the 

national monitoring program ”Flodmynningar” (administrated by IVM, SLU).  
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Figure 1: Sampling sites for FRs (on the left) and PFASs (on the right). Rivers are displayed in blue, watersheds in 

grey. Details for the sampling and the sampling sites are given in Tables A1 and A2 (Appendix). 

 

 

3.3 Sample collection 

The FRs samples were collected in POP-cans (12 L) (3 US gallons/12 L; Sharpsville container/NSF 

Component®). Samples for PFASs and suspended particulate matter (SPM) were collected in 

polypropylene (PP) bottles (1 L; VWR International, Radnor, India). The sampling took place 

October 1-9, and October 25 (Fyrisån), 2013 (for more details see Table A1 in the Appendix). 

 

All samples were collected according to techniques used in previous screening (Loos et al., 2009; 

Loos et al., 2010). Prior to the sampling, all stainless steel sampling equipment was rinsed three 

times with ethanol, Millipore water, and acetone. In the field, buckets, sample bottles and POP-cans 

were rinsed three times with river water prior to the sampling. A stainless steel bucket connected to 

a 30 m PP rope was used for the water sampling. All sampling was performed in the middle of the 

stream (from the upstream side of a bridge), or from the shore when no bridges were available 

(Figure 2). However, where bridges with just one pillar were used while sampling, samples were 

taken in the middle between pillar and the shore. Sampling from shores was needed in only two 

cases (Ume älv near Gubböle and Indalsälven near Timrå), and then the sampling was performed 
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from a jetty. All FR sites were also sampled for total organic carbon (TOC) and SPM. After 

sampling, pH and water temperature were measured at each site. Bottles for PFASs, SPM and TOC 

were wrapped in aluminium foil after sampling in order to prevent exposure to direct sunlight. TOC 

bottles were stored in a cooling box. All samples were brought to the laboratory within 3 days and 

then stored at +4 °C. All FR extractions were performed within one month after sample collection, 

whereas the extractions for PFASs were done within two months.

 
Figure 2: Bucket sampling at Råne älv, Niemisel.  

 

3.4 Extraction of FRs and PFASs 

Solid-phase extraction (SPE) for FRs:  Amberlite XAD-2 was pre-cleaned in a Soxhlet apparatus 

in two steps (methanol 48 hours, ethyl acetate 48 hours), then dried using nitrogen gas (N2) and 

finally stored at -20 °C until analysis. Extraction glass columns were prepared as follows (from 

bottom and up): 0.5 g glass wool (GW), 20.0 g XAD-2, 0.5 g GW, and 34 g of glass beads. Each 

sample was spiked with 100 µL (80 pg µL
-1

) of IS, directly into the POP-can. After spiking, the 

POP-cans were manually shaken 3x30 seconds in order to effectively distribute the IS. Figure 3 

illustrates the SPE set up for the FRs. A peristaltic pump was used to pre-clean the tubing (2.5 L 

MilliPore water) prior to connection to the glass column. The sample was then pumped through the 

glass column at a speed of 10 (during start-up) to 25 rpm, which corresponds to a flow rate of 0.65 

mL s
-1

. This was followed by drying the XAD-2 adsorbent with N2-gas flow for 45 minutes and 

eluting the analytes using 2x70 mL DCM. The eluted extracts were collected in round-bottom 

flasks, which were sealed and stored at -20 °C until volume reduction. Elution was performed the 

same day as the extraction occurred. 

 

A Biotage TurboVap™ was used to reduce the volume to 1 mL (water temperature 40 °C; N2-

pressure 8 bar). To remove water residues, the extract was then passed through a column filled with 
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1 g Na2SO4 (pre-cleaned with DCM) and eluted with 6 mL DCM. Then, the extract was reduced to 

1 mL using a N2-stream (N-Evap™112) and transferred to a 1 mL amber glass vial. The injection 

standard (Mirex) was added, and the samples were stored at -20 °C until instrumental analysis. 

 

 

 
Figure 3a: Drawing of the extraction set up for the FRs. 1: glass beads; 2 and 4: GW; 3: XAD-2. Figure 3b: The SPE 

set up with four extractions running in parallel.  

 

Solid-phase extraction for PFASs: As PFASs are relatively water soluble, a filtration step was 

included prior to the SPE. Filtration was done using a glass fibre filter (GFF with the grade GF/C; 

diameter 47 mm, 1.2 µm pore size, Whatman), Werner Glass filtration equipment, and vacuum. All 

glass material was heated at 400 °C for four hours and carefully cleaned using methanol prior to 

use. After filtration, the GFF was packed in aluminium foil and stored in a desiccator in order to 

remove water. GFFs were weighted before and after drying, but not analysed for PFASs. After 

filtration, the samples were divided into 2 x 0.5 L and stored at +4 °C until SPE. 

 

The PFASs were extracted using Oasis weak anion exchange (WAX) 6cc cartridges (500 mg, 60 

µm) and a SPE workstation as described elsewhere (Ahrens et al. 2009a). The extraction set-up for 

PFASs is shown in Figure 4a and 4b. Prior to the SPE, each water sample was spiked with 100 µL 

IS (20 pg µL
-1

), and cartridges and extraction materials were preconditioned (three steps using 4 mL 

ammonium hydroxide buffer, 4 mL methanol, and 4 mL MilliPore water). The flow during the 

sample extraction step was low (one drop per second). 

 

After the extraction, the cartridges were washed with ammonium acetate buffer, and the cartridges 

were dried by centrifugation. The target analytes were eluted using 4 mL methanol (for FOSAs, 

FOSEs, FOSAAs) and 4 mL 0.1% ammonium hydroxide buffer (for PFCAs, PFSAs). The extracts 

were collected in 15 mL PP tubes and the volume was reduced to 1 mL using the nitrogen 

evaporator N-Evap™112. Then, 10 µL InjS was added (200 pg µL
-1

), and the samples were stored 

at -20
o
C until instrumental analysis. 

 

3a 3b 
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Figure 4a. Drawing of the SPE set-up of for PFASs. Figure 4b. Picture of the SPE for the PFASs. 

 

3.5 Instrumental analysis and quantification 

Gas chromatography tandem mass spectrometry (GC-MS/MS): All FR extracts were analysed 

for the FRs listed in Tables 1 and 2 using gas chromatography coupled with tandem mass 

spectrometry (GC-MS/MS) according to in-house methods (IVM, SLU). The GC-MS/MS was an 

Agilent Technologies system (GC 7890A coupled to a Triple Quad 7000). The calibration curve 

was set up using seven FR calibration solutions at concentrations of 0.25, 1.25, 6, 30, 150, 300 and 

450 ng mL
-1

. 

 

Liquid chromatography tandem mass spectrometry: All PFAS extracts were analysed for the 

compounds listed in Tables 3, 4 and 5, using high-performance liquid chromatography coupled to 

tandem mass spectrometry (HPLC-MS/MS) according to methods described by Ahrens et al. 

(2009a). The LC-MS/MS was an Agilent Technologies system (LC 1200 series and coupled to a 

6460 Triple Quad). A calibration curve was set up using six PFAS calibration solutions at 

concentrations 0.05, 0.25, 1.0, 4.0, 8.0 and 40 ng mL
-1

.  

 

Quantification: The quantification was done using the isotope dilution method and the software 

used was Agilent QQQ MassHunter and Oracle™ OpenOffice. For a positive identification, 

retention time agreement with calibration standard was required, quantifier/qualifier ratio should be 

within ± 20% of the ratio in the calibration standard, and the signal to noise (S/N) ratio had to be 

≥3.  

 

Quality Assurance/Quality control (QA/QC): For the FRs, two field blanks were used for 

calculating the method detection limit (MDL) and method quantification limit (MQL). For the 

PFASs, a total of five laboratory blanks were used. 

 

MDLs and MQLs were determined as described by Simonsen (2005). The blank concentrations 

4b 4a 
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were used to calculate the MDL using eq. 1:  

 

MDL = meanblanks + 3 · SDblanks (1) 

where meanblanks is the mean value of the blanks, and SDblanks is their standard deviation. If the 

substance was not detected in the blanks, the MDL was calculated from the lowest calibration 

standard. MQL was calculated from the MDL, using eq. 2: 

 

 (2) 

Deviations from the contract: The following compounds were included in the contract but not 

analyzed for: 2,4-DBP, TPP, Declorane plus (syn and anti), PFPeS, PFHpS, and PFNS. On the 

other hand, we targeted for some bonus compounds: BEHTBP, BTBPE, DBDPE, ETHBB, PBT, 

TBBPA, and TCIPP. 

 

 

4. Results and discussion 

4.1 Quality assurance and quality control (QA/QC) 

Recoveries for the PFASs are compiled in Table 6. For FRs, the recovery (of BDE99) was 72 

±0.4%. The MDLs and MQLs for the FRs and PFASs are listed in Tables 7 and 8, respectively. 

 

Table 6: Recoveries of PFASs. 

Internal 

Standard: 

PFBA PFHxA PFOA PFNA PFDA PFUnDA PFDoDA 

Recovery (%) 105 ± 5 91 ± 19 110 ± 21 106 ± 20 106 ± 32 101 ± 32 89 ± 38 

        

Internal 

Standard: 

FOSA MeFOSAA MeFOSE EtFOSAA EtFOSE PFHxS PFOS 

Recovery (%) 94 ± 31 117 ± 28 59 ± 10 109 ± 28 53 ± 10 94 ± 3 110 ± 21 

 

 

Table 7: FRs: Method detection limits (MDLs), method quantification limits (MQLs) and mean amounts in blanks 

Substance Blank 

(ng) 

MDL 

(ng L
-1

) 

MQL 

(ng L
-1

) 

2,4,6-TBP n.d. 0.8 2.5 

PBP 0.6 0.2 0.8 

TBBPA n.d. 0.2 0.5 

HBB n.d. 0.03 0.1 

BEHTBP 3.9 2.0 6.8 

DBDPE 700 220 720 
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Substance Blank 

(ng) 

MDL 

(ng L
-1

) 

MQL 

(ng L
-1

) 

EHTBB 6.3 3.3 11 

PBT n.d. 0.03 0.1 

HBCDD 20 9.9 33 

TCIPP 504 142 476 

TPHP 117 37 124 

BTBPE n.d. 0.8 2.5 

n.d. = not detected. 

 

Table 8: PFASs: Method detection limits (MDLs), method quantification limits (MQLs) and mean amounts in blanks 

Substance Blank 

(ng) 

MDL (ng L
-1

) MQL (ng L
-1

) 

PFBA 0.029 0.20 0.77 

PFPeA n.d. 0.030 0.10 

PFHxA 0.058 0.64 2.1 

PFHpA n.d. 0.030 0.10 

PFOA 0.051 0.17 0.58 

PFNA n.d. 0.064 0.21 

PFDA n.d. 0.030 0.10 

PFUnDA n.d. 0.036 0.12 

PFDoDA n.d. 0.030 0.10 

PFTrDA n.d. 0.030 0.10 

PFTeDA 0.030 0.060 0.20 

PFHxDA n.d. 0.030 0.10 

PFOcDA n.d. 0.030 0.10 

FOSA n.d. 0.030 0.10 

FOSAA n.d. 0.030 0.10 

EtFOSA n.d. 0.030 0.10 

EtFOSAA n.d. 0.030 0.10 

EtFOSE 0.058 0.35 1.2 

MeFOSA n.d. 0.030 0.10 

MeFOSAA n.d. 0.060 0.20 

MeFOSE 0.061 0.31 1.0 

PFBS n.d. 0.030 0.10 

PFHxS n.d. 0.030 0.10 

PFOS n.d.  0.030 0.10 

PFDS n.d. 0.030 0.10 

n.d. = not detected. 
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Blanks: Levels in PFAS blanks were in general low (<1 ng L
-1

; Table 8). Levels in FR field blanks 

were occasionally high for several FRs (e.g. DBDPE, TCIPP and TPHP) resulting in high MDLs, 

while the elution blank showed lower values. A possible explanation for the high values in the field 

blanks is the presence of FRs in the Millipore water processed in the field blanks; however not in 

real samples.  

 

4.2 Flame retardants (FRs) 

Detectable levels of FRs were found at 11 out of 25 sampling sites. In total, levels of 3 FRs could 

be determined (2,4,6-TBP, TCIPP, and TPHP), while BEHTBP, EHTBB, HBCDD, PBP, PBT, 

BTBPE, DBDPE, HBB, and TBBPA were all below MDL or not quantified due to interfering 

chromatographic peaks (Table 7). The levels of FRs are shown in Figure 5, and the raw data are 

given in Table A3 (Appendix A). The mean ΣFRs level of all sampled rivers was 288 ng L
-1

. The 

main FR was TCIPP, which was detected at 40% of the sampling sites. The compound 2,4,6-TBP 

showed a spatial pattern with higher levels in river draining southern areas. 

 

The highest levels of ΣFRs were observed in Fyrisån (3993 ng L
-1

) followed by Norrström (647 ng 

L
-1

). Reference values for WWTP in Sweden and other countries can be found in Marklund et al., 

2005, Reemtsma et al., 2006; Martínez-Carballo et al., 2007, and levels of FRs in other European 

rivers are reported in van der Veen and de Boer, 2012, Martínez-Carballo et al., 2007, Andresen et 

al., 2004, Bacaloni et al., 2007, Regnery and Püttmann, 2010. Influence of wastewater is the likely 

explanation for the high FR levels in Fyrisån, as the sample was taken downstream the Uppsala 

municipality WWTP.  

 

Estimates of daily loads of FRs to the Baltic Sea were calculated using of the snapshot FR 

concentrations together with the daily average riverine water discharge (based on data from 2002 to 

2012 obtained from SMHI via Datavärdskapet för sjöar och vattendrag, IVM, SLU; Table 9 and 

Figure 6). As the sampling was a one-time snapshot for screening purposes, these values should be 

interpreted with great care. The total riverine input of the targeted FRs into the Baltic Sea was 38 kg 

day
-1

. The main FR was TCIPP, which accounted for around 89% of the total FR load. Among the 

rivers, Ångermanlandsälven and Norrström showed the highest loads of FRs to the Baltic Sea, with 

a daily amount of 11 and 9 kg day
-1

, respectively. It should be noted, that the targeted FRs represent 

only novel FRs and do not include e.g. historically more important FRs such as the PBDEs. 

Therefore, the reported loads of ΣFRs are not representative for all FRs emitted in Sweden.  
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Figure 5: Levels of FRs (ng L
-1

) at the different sampling stations, from north (upper) to south (lower). Absence of bar 

indicates that all FRs were <MDL. 

 

 

Table 9: Discharge of ΣFRs from Swedish rivers to the Baltic Sea (kg day
-1

) 

Kalix älv Ångerman-

älven 

Gavleån Norrström Nyköpingsån Motala 

ström 

Emån Helge å 

6.2 11.2 0.5 9.3 5.4 2.2 0.8 2.3 

        

ΣFRs to the 

Baltic Sea 

 Fyrisån      

38  3.5      
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Figure 6: Discharge of ΣFRs from Swedish rivers (kg day
-1

). Absence of bar indicates that all FRs were <MDL. 

 

 

4.3 Perfluoroalkylated substances (PFASs)  

All sites had detectable levels of PFASs (Figures 7 and 8; raw data in Table A4, Appendix A). The 

mean ΣPFAS levels of all sampled rivers was 9.5 ng L
-1

 and the median 4.2 ng L
-1

, and the highest
 

mean values were found for PFBS, PFHxS, and PFBA (2.1, 1.9, and 1.4 ng L
-1

, respectively). 

Approximately 80% of the sampled sites had concentrations of <10 ng L
-1

, and for 11% of the 

rivers, the levels were <1 ng L
-1

. The highest ΣPFAS levels were found in Ångermanälven, 

Delångersån, Fyrisån, and Emån with values ranging from 27 to 60 ng L
-1

. The levels in the 

Swedish rivers were in the lower end of those found in other European rivers (Ahrens et al., 2009b; 

McLachlan et al., 2007), where even single compounds occasionally exceed the ΣPFAS levels in 

Swedish rivers, e.g. Rhone (116 ng L
-1

 PFOA), Seine (97 ng L
-1

 PFOS) and Po (200 ng L
-1

 PFOA) 

(McLachlan et al., 2007; Loos et al., 2009).  

 

The nine rivers that showed ΣPFAS concentrations >10 ng L
-1

 (Ume älv at Gubböle, 

Ångermanälven, Delångersån, Gavleån, Fyrisån, Norrström, Emån, Helge å and Rönneån) have 

large variability in catchment size, population density and geographical location. Ångermanälven 

has the third largest watershed of all rivers screened, whereas Delångersån is one of the smallest 

catchments. The Norrström sampling site is located in the Stockholm municipality, whereas the 

Emån watershed is a sparsely populated area. Rönneån is the only river among these nine that is 

located in the western part of Sweden.  

 

Among the PFASs screened for in this project, PFOS is the only one that is banned from usage in 

the EU. The maximal average concentration (European quality standards; AA-EQS) for inland 

surface waters on an annual basis is 0.65 ng L
-1

 (Directive 2013/39/EU). This value was exceeded 

at 12 out of 44 screened sites (representing 41 rivers), both draining small and large watersheds 

(Figure 9). The maximum allowable concentration environmental quality standard (MAC-EQS) for 

PFOS in inland surface waters is 36 000 ng L
-1

. 
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Daily discharges of PFASs: Estimates of daily loads of PFASs using the snapshot PFAS 

concentrations and river water discharges (SMHI) are shown in Figure 10. In these calculations, 

upstream sampling sites (e.g. Vindelälven, Fyrisån and Göta älv near Trollhättan) are not included. 

Ångermanälven showed the highest loads with >1 kg PFASs per day. Sites with higher PFAS 

concentrations, such as Delångersån and Emån, showed lower loads due to their lower water 

discharge. The total riverine input of all PFASs into recipient seas was calculated to 3.2 kg day
-1

 in 

the current study (1150 kg yr
-1

).  

 

PFASs composition: Streams in the north (e.g. Alterälven, Öre älv, Gide älv, Lögde älv and 

Ljungan) showed in general higher fractions of the longer chained PFCAs (i.e. PFNA, PFDA, 

PFUnDA, PFDoDA, PFTeDA) whereas in the south the fractions of PFHpA and PFOA were 

higher. Almost all sites on the west coast had a contribution of PFOA and PFOS that was >20% and 

>30% of the ΣPFASs, respectively, whereas corresponding values on the east coast were both 

<20%. 

 

Sources of PFASs: The rivers with the highest ΣPFAS levels were Ume älv at Gubböle, 

Ångermanälven, Delångersån, Fyrisån and Emån. All of these except Fyrisån showed close 

resemblance in PFASs composition (Figure 11) indicating a common source type. The fraction of 

PFOS was ~10%, PFHxS ~30%, PFOA ~8%, and the sum of long-chained PFCAs (PFNA, PFDA, 

PFUnDA and PFDoDA) ~20%, whereas the fraction of short-chained PFCAs also was similar but 

increased towards the south.  

 

The reasons for these similarities and dissimilarities are not fully understood. It could be due to 

influence by a common type of point source, such as a WWTP. Ume älv (Gubböle) and 

Delångersån were sampled downstream a nearby WWTPs, although the WWTP just upstream 

Gubböle is a small plant (Figure 12). For the other two rivers, WWTPs cannot explain the high 

levels and similar patterns. Moreover, Fyrisån that was sampled just downstream the Uppsala 

WWTP, showed a different PFAS composition than the others (Figure 11) with higher fractions of 

short-chained PFCAs and longer-chained PFSAs (high fractions of PFHxA, PFOA, PFHxS and 

PFOS) than the other sites. Emån has had several issues with its water quality. Upstream the 

sampling site, the former paper mill of Emsfors (closed down in 1989) and a military training area 

are located. However, no ongoing industrial activities are found on-site today. In summary, the 

explanation for the similarities and dissimilarities seen among the rivers with high levels is complex 

and need more detailed studies to get further insight. 
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Figure 7: Levels of PFASs at the 44 sampling sites (ng L

-1
; representing 41 rivers) from north (upper) to south (lower) 

until Helge å, then going to the west coast from south to north.  
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Figure 8: Composition of the detected PFASs at the various sampling sites (%) 
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Figure 9: Levels of PFOS in Swedish rivers (ng L

-1
) from north (upper) to south (lower) until Helge å, then going to the 

west coast from south to north. The EQS of 0.65 ng L
-1

 is indicated with a dashed line.  
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Figure 10: Discharge of ΣPFASs from Swedish rivers (g day
-1

) 
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Figure 11: Composition of PFASs (%) in the five rivers with highest levels of ΣPFASs 

 

 
Figure 12: Sampling site in Ume älv (indicated with red arrow) and the location of the WWTP (blue circle) 

 

 

In the Ume älv/Vindelälven river system, samples were taken at four different sites in order to 

check for variation of PFASs levels following a water path approaching more densely populated 

areas downstream (Figure 13). The two most remote sites (C and D) showed low levels of ΣPFASs, 

well below the average value obtained for Sweden and with PFOA below the MDL. As the river 

was approaching slightly more urbanised areas (C), longer-chained PFCAs and PFSAs were 

detected at increasing concentrations, along with detectable levels of PFOA. Continuing 

downstream, the sample from Gubböle (B) showed unexpectedly high values representing the 

second highest PFAS levels of all samples. As the Umeå sample (A) again showed low values even 
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though it was downstream the city of Umeå and its main WWPT, the high values near Gubböle 

need verification. 

 
Figure 13: Sampling sites (A-D) in the Ume älv/Vindeln älv river system 

 

 

 

5. Conclusions and future perspectives 

From the current study, it can be concluded that FRs and PFASs are ubiquitously present in 

Swedish rivers, and that some rivers have elevated pollution. A screening study like the current may 

reveal hot spots. However, as it provides a snapshot of the current situation with few sampling 

replicates, some results may need verification. For example, in the Vindelälven/Ume älv river 

system, two of three upstream (i.e. remote area) samples showed low PFAS levels, while the third 

was elevated for PFASs as well as for FRs. The reason for the extreme values may be one or several 

point sources near the sampling site, but repeated and detailed studies are needed to confirm and 

further explore the situation.  

 

Some general pollution patterns of the FRs and PFASs in the Swedish rivers were found. For the 

FRs, 2,4,6-TBP was frequently detected in rivers draining southern areas. Streams in the north (e.g. 

Alterälven, Öre älv, Gide älv, Lögde älv and Ljungan) showed generally higher fractions of the 

longer chained PFCAs (i.e. PFNA, PFDA, PFUnDA, PFDoDA) whereas in the south, the fractions 

of PFHpA and PFOA were distinctly higher. Almost all sites on the west coast had a contribution of 

PFOA and PFOS that was >20% and >30% of the ΣPFASs, respectively, whereas corresponding 

values on the east coast were both <20%. 

 

Four of the five sites with the highest concentrations showed similar PFASs composition although 

they were collected at sites from very different regions of Sweden (Ume älv at Gubböle, 

Ångermanälven in central Sollefteå, Delångersån in Iggesund and Emån near Emsfors), indicating a 

common source type. The results from the current study could not reveal which source type(s) are 
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the most important. 

 

For PFOS, an annual average EQS of 0.65 ng L
-1

 is set in the priority substance directive 

(2013/39/EU). In total, 12 out of 44 sampling sites located in all parts of the country exceeded this 

value (Ume älv at Gubböle, Ångermanälven, Delångersån, Fyrisån, Norrström, Nyköpingsån, 

Emån, Lyckebyån, Rönneån, Nissan, Viskan and Göta älv at Alelyckan).  

 

The calculated fluxes of PFASs into recipient seas showed that the Swedish rivers contributed with 

approx. 3.2 kg day
-1

, and there appear to be needs for reducing high concentrations on a local and 

regional scale. The daily total load of FRs into the Baltic Sea was estimated to 38 kg day
-1

. It should 

be noted, that the targeted FRs represent novel FRs and do not include e.g. the historically heavily 

used PBDEs. Therefore, these values are not representative for all FRs emitted in Sweden. 

 

As this study was a one-time grab sampling campaign for screening purposes, all values should be 

interpreted with great care. Verification and more detailed studies are recommended for sites with 

elevated levels. Our study also suggests that upstream monitoring is necessary to reveal hotspots. 
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Table A1: Sampling details for the FR sampling sites. The ID numbers correspond to the locations given in Figure 1. 

   

ID no. Site  Date Time POP-

can no. 

TOC-

bottle 

TOC (mg/L) T(air) 

(°C) 

T(water) 

(°C) 

pH U (mV) Coordinates (RT90) 

           X                        Y 

FR01 Torne älv 2013-10-01 10:15 6 8 4.1 3.0 5.7 7.0 −0.8 7 330 503 1 880 556 

FR02 Kalix älv  2013-10-01 11:15 1 10 5.8 6.0 7.6 7.2 −7.6 7 325 285 1 833 885 

FR03 Råne älv  2013-10-01 14:00 5 4 8.1 5.0 10.2 7.1 −5.5 7 338 361 1 779 226 

FR04 Lule älv  2013-10-01 16:30 3 21 3.1 6.0 9.4 7.3 −16.2 7 290 561 1 786 921 

FR05 Pite älv  2013-10-02 09:30 4 3 4.4 8.0 6.8 6.5 12.3 7 264 163 1 755 232 

FR06 Skellefte älv  2013-10-02 12:11 8 22 3.8 10.0 10.3 7.1 −5.2 7 190 964 1 736 256 

FR06 Skellefte älv DUPL 2013-10-02 12:11 9 23 3.8 10.0 10.3 7.1 −3.4 7 190 964 1 736 256 

FR07 Ume älv 2013-10-03 08:02 7 19 4.7 2.0 7.9 7.9 −3.4 7 087 353 1 718 699 

FR07B Ume älv [Gubböle]  2013-10-02 18:50 15 9 4.5 8.0 8.2 8.2 −3.4 7 092 989 1 701 914 

FR07C Vindelälven [Rödånäs]  2013-10-02 16:15 11 12 4.2 11.0 9.1 9.1 −18 7 115 827 1 701 376 

FR07D 
Vindelälven 

[Krycklan, 16] 
 2013-10-02 15:23 14 11 13.4 11.0 7.2 7.2 −11.8 7 127 639  1 697 343 

FR08 Öre älv  2013-10-03 09:30 10 25 16.3 3.0 8.5 6.4 26.2 7 061 011 1 691 347 

FR09 Ångermanälven 2013-10-03 13:55 2 13 6.5 13.0 9.6 6.7 4.2 7 007 585 1 573 842 

FR010 Indalsälven  2013-10-03 16:55 12 2 5.9 12.0 10.3 7.3 −13.2 6 934 786 1 580 851 

FR011 Ljungan  2013-10-09 13:45 25 317 7.2 12.0 10.7 6.9 −4.2 6 917 403 1 559 911 

 Ljungan BLANK 2013-10-09 13:45 30 N/A N/A 12.0 N/A N/A N/A 6 917 403 1 559 911 

FR012 Delångersån  2013-10-04 11:45 13 1 6.7 11.0 10.2 6.8 3.2 6 836 677 1 567 893 

FR013 Ljusnan  2013-10-09 17:45 26 337 7.4 13.0 11.6 6.9 1.5 6 789 337 1 568 698 

FR014 Gavleån  2013-10-09 19:50 28 333 11.8 12.0 9.8 6.8 −2.6 6 729 091 1 572 721 

FR015 Dalälven  2013-10-09 21:10 29 334 6.3 10.0 10.3 6.8 8.3 6 717 372 1 589 704 

FR016 Norrström  2013-10-06 18:50 22 15 9.5 12.0 13.1 7.4 −28.0 6 580 773 1 628 741 

FR016A Fyrisån  2013-10-25 11:00 31 340 10.5 10.0 11.1 7.0 −0.3 6 636 135  1 604 086 

FR016A Fyrisån DUPL 2013-10-25 11:00 32 441 10.4 10.0 11.1 7.0 −0.3 6 636 135  1 604 086 

FR017 Nyköpingsån  2013-10-06 17:00 21 5 13.6 14.0 9.9 7.5 −32.2 6 523 002 1 564 896 

FR018 Motala Ström  2013-10-06 15:35 20 18 8.0 14.0 11.8 7.4 −27.2 6 496 919 1 518 441 
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ID no. Site  Date Time POP-

can no. 

TOC-

bottle 

TOC (mg/L) T(air) 

(°C) 

T(water) 

(°C) 

pH U (mV) Coordinates (RT90) 

           X                        Y 

 Motala Ström BLANK 2013-10-06 15:35 17 N/A N/A 14.0 N/A N/A N/A 6 496 919 1 518 441 

FR019 Emån  2013-10-06 12:30 23 14 11.0 13.0 11.0 7.3 −15.3 6 335 205 1 539 225 

FR019 Emån DUPL  2013-10-06 12:30 24 24 10.8 13.0 11.0 7.3 −15.3 6 335 205 1 539 225 

FR020 Mörrumsån  2013-10-06 09:50 19 6 12.0 13.0 10.6 7.1 −7.2 6 230 020 1 434 417 

FR021 Helge å  2013-10-06 07:20 18 7 11.2 11.0 11.2 7.6 −32.2 6 202 819 1 400 869 

 Helge å BLANK 2013-10-06 07:20 16 N/A N/A 11.0 N/A N/A N/A 6 202 819 1 400 869 

N/A: Data not available or not applicable 
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Table A2: Sampling details for the PFASs sampling sites. The ID numbers correspond to the locations given in Figure 1. 

ID no. Site Date Coordinates (RT90) Flow T(air) °C pH TOC mg/l 

SLU site 

code Sampler no.  

   X Y       

           

PF01 Torne älv Mattila 2013-10-17 7334720 1878815  2.0 7.3 4.6 BD0001 122 

PF02 Kalix älv Karlsborg 2013-10-14 7324070 1836040  5.2 6.9 5.0 BD0004 37 

PF03 Råne älv Niemisel 2013-10-12 7338356 1779202 Normal 7.2 6.8 8.6 BD0006 83 

PF04 Lule älv Luleå 2013-10-21 7291860 1785750  7.1 7.0 2.8 BD1008 54 

PF05 Alterälven Norrfjärden 2013-10-12 7269363 1763502 Low 6.0 7.0 10.5 BD0009 46 

PF06 Pite älv Bölebyn 2013-10-12 7264178 1755197 Low 6.0 6.9 3.3 BD1010 46 

PF07 Skellefte älv. Kvistforsen 2013-10-23 7190950 1736220 Normal 3.4 7.0 3.4 AC0012 55 

PF08 Rickleån Utl 2013-10-14 7119026 1750187 Normal 6.7 6.8 12.3 AC1015 90 

PF09A Ume älv [Stornorrfors] 2013-10-14 7089729 1708725 Normal 6.7 7.1 3.8 AC1017 66 

PF09B Ume älv [Gubböle] 2013-10-02 7092989 1701914  8.0 8.2 4.5 N/A N/A 

PF09C Videlälven [Rödånäs] 2013-10-02 7115827 1701376  11.0 9.1 4.2 N/A N/A 

PF09D Videlälven [Krycklan] 2013-10-02 7127639  1 697343  11.0 7.2 13.4 N/A N/A 

PF10 Öre älv Torrböle 2013-10-14 7071637 1687280 Normal 7.5 6.7 15.2 AC0019 133 

PF11 Lögde älv Lögdeå 2013-10-16 7054406 1679440 Low 6.1 6.7 9.8 AC0020 59 

PF12 Gide älv Gideåbacka 2013-10-14 7031312 1665106  N/A 6.5 12.6 Y0021 91 

PF13 Ångermanälven Sollefteå 2013-10-15 7007746 1573568 Normal 8.61 6.9 6.0 Y0022 40 

PF14 Indalsälven Bergeforsen 2013-10-15 6935369 1581644 Normal 8.8 7.4 5.2 Y0023 33 

PF15 Ljungan Skallböleforsen 2013-10-14 6917356 1559809 Normal 9.5 7.3 6.5 Y0026 39 

PF16 Delångersån Iggesund 2013-10-14 6836610 1567930 Normal 9.9 7.1 6.4 X0027 50 

PF17 Ljusnan Ljusne Strömmar 2013-10-15 6789328 1568670  10.1 7.0 7.0 X0028 58 

PF18 Gavleån Gävle 2013-10-15 6729240 1572240 Low 8.5 7.1 11.6 X0030 5 

PF19 Dalälven Älvkarleby 2013-10-16 6717115 1589769 Low 8.9 7.2 5.6 C0031 31 

PF20 Norrström Stockholm 2013-10-14 6580657 1628573  12.1 7.5 8.9 AB0037 65 

PF20A Fyrisån 2013-10-25 6636135  1604086  10.0 7.0 10.5 N/A N/A 

PF21 Nyköpingsån Spånga 2013-10-15 6521803 1565424 Low 10.1 7.3 13.2 D0040 15 

PF22 Motala Ström Norrköping 2013-10-17 6496730 1518380  12.3 7.5 7.1 E0041 67 

PF23 Botorpström Brunnsö 2013-10-15 6393358 1541228 Low 10.9 7.2 11.4 H0043 94 

PF24 Emån Emsfors 2013-10-14 6335434 1539139  9.0 7.3 10.3 H0044 93 

PF25 Alsterån 2013-10-13 6320320 1521687  10.2 6.9 13.0 H0070 92 

PF26 Ljungbyån Ljungbyholm 2013-10-15 6278353 1522508 Low 9.5 6.9 11.1 H0045 107 
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ID no. Site Date Coordinates (RT90) Flow T(air) °C pH TOC mg/l 

SLU site 

code Sampler no.  

   X Y       

           

PF27 Lyckebyån Lyckeby 2013-10-14 6229911 1491022 Low 11.2 6.8 14.1 K0046 52 

PF28 Mörrumsån Mörrum 2013-10-17 6229702 1434540 Low 11.3 7.2 11.2 K0047 72 

PF29 Helgeån Hammarsjön 2013-10-17 6202532 1400797 Normal 10.7 7.6 9.0 M0048 53 

PF30 Kävlingeån Högsmölla 2013-10-21 6186780 1328810 Normal 9.7 7.8 8.6 M0073 56 

PF31 Rönneån Klippan 2013-10-17 6224672 1334520 Normal 10.6 7.5 10.1 M0053 53 

PF32 Lagan Laholm 2013-10-15 6268702 1330473 Low 10.2 7.0 10.0 N0054 6 

PF33 Nissan Halmstad 2013-10-14 6288723 1320412 Low 10.6 7.2 10.4 N0056 6 

PF34 Ätran Falkenberg 2013-10-14 6313335 1298307 Low 11.7 7.3 9.2 N0057 6 

PF35 Viskan Åsbro 2013-10-21 6351360 1288950 Normal 7.9 7.1 7.3 N0059 38 

PF36 Nordre älv. Ormo Skärmarna 2013-10-15 6420229 1268735  11.2 7.4 4.7 O0075 42 

PF37A Göta älv. Alelyckan 2013-10-15 6410965 1273888  11.5 7.2 4.7 O0069 42 

PF37B Göta Älv Trollhättan 2013-10-15 6467704 1293498  11.0 7.3 4.9 O0060 42 

PF38 Örekilsälven Munkedal 2013-10-08 6489459 1259609 Low 12.0 7.0 11.7 O0063 47 

PF39 Enningdalsälv N.Bullaren 2013-10-14 6536199 1253913  11.5 6.8 9.0 O0064 73 

N/A: Data not available or not applicable  
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Table A3: Levels of targeted flame retardants (FRs) in Swedish rivers (ng L
-1

)
a 

 
 

aMDL = method detection limit, levels for MDL and MQL are given in Table 7; Levels of BEHTBP, 
EHTBB, HBCDD BTBPE, PBP, PBT, DBDPE, HBB, and TBBPA were also targeted, but were all 

<MDL (or not quantified due to interfering chromatographic peak); The mean of targeted ΣFRs of all 

rivers was 288 ng L-1. 

ID   2,4,6-TBP TCIPP TPHP ΣFRs 

FR01 Torne älv <MDL <MDL <MDL <MDL 

FR02 Kalix älv <MDL 231 <MDL 231 

FR03 Råne älv <MDL <MDL <MDL <MDL 

FR04 Lule älv <MDL <MDL <MDL <MDL 

FR05 Pite älv <MDL <MDL <MDL <MDL 

FR06 Skellefte älv <MDL <MDL <MDL <MDL 

FR07 Ume älv [Umeå] <MDL <MDL <MDL <MDL 

FR07B Ume älv [Gubböle] <MDL 287 <MDL 287 

FR07C Vindelälven [Rödånäs] <MDL <MDL <MDL <MDL 

FR07D Vindelälven [Krycklan] <MDL <MDL <MDL <MDL 

FR08 Öre älv <MDL <MDL <MDL <MDL 

FR09 Ångermanälven <MDL 267 <MDL 267 

FR010 Indalsälven <MDL <MDL <MDL <MDL 

FR011 Ljungan <MDL <MDL <MDL <MDL 

FR012 Delångersån <MDL <MDL <MDL <MDL 

FR013 Ljusnan <MDL <MDL <MDL <MDL 

FR014 Gavleån <MDL 307 <MDL 307 

FR015 Dalälven <MDL <MDL <MDL <MDL 

FR016A Fyrisån 19 3909 66 3993 

FR016 Norrström 18 629 <MDL 647 

FR017 Nyköpingsån 12 250 <MDL 262 

FR018 Motala ström 13 240 <MDL 253 

FR019 Emån 16 267 <MDL 283 

FR020 Mörrumsån 16 <MDL <MDL 16 

FR021 Helge å 20 621 <MDL 641 
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Table A4: Levels of targeted PFASs in Swedish rivers (ng L
-1

)
a
 

 

ID   PFBA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTeDA FOSA PFBS PFHxS PFOS ΣPFASs 

PF01 Torne älv 0.94 <MDL <MDL 0.26 0.15 0.13 0.077 0.053 <MDL 0.15 0.39 0.069 0.082 2.3 

PF02 Kalix älv 0.76 <MDL <MDL 0.22 0.23 <MDL 0.098 0.10 0.14 <MDL <MDL <MDL 0.053 1.6 

PF03 Råne älv 1.2 <MDL <MDL 0.21 1.3 0.28 0.16 0.19 0.15 <MDL <MDL 0.15 0.34 4.0 

PF04 Lule älv 0.60 <MDL <MDL 0.39 0.23 0.15 0.073 0.033 <MDL 0.12 <MDL 0.051 0.058 1.7 

PF05 Alterälven 0.60 <MDL 0.61 <MDL 0.18 0.11 0.044 <MDL <MDL <MDL <MDL <MDL 0.12 1.7 

PF06 Pite älv 0.97 <MDL 0.54 0.44 0.40 0.22 0.081 0.069 <MDL 0.056 4.1 0.31 0.28 7.5 

PF07 Skellefte älv 0.79 <MDL <MDL 0.39 0.37 0.27 0.17 0.12 <MDL 0.37 5.2 0.19 0.30 8.1 

PF08 Rickleån 0.72 <MDL <MDL <MDL 0.091 <MDL 0.041 <MDL <MDL 0.075 0.030 <MDL 0.042 1.0 

PF09 Ume älv [Umeå] 1.1 <MDL <MDL 0.39 0.36 0.14 0.084 0.043 0.094 0.064 0.17 0.12 0.18 2.0 

PF09B Ume älv [Gubböle] 0.99 <MDL 1.0 3.3 5.8 4.4 1.6 0.77 <MDL <MDL 16 18 6.9 60 

PF09C Vindelälven [Rödånäs] 0.62 <MDL <MDL 0.26 0.32 0.064 0.058 <MDL 0.46 0.093 0.048 0.14 0.25 2.2 

PF09D Vindelälven [Krycklan] 0.47 <MDL <MDL <MDL 0.26 <MDL 0.074 0.067 <MDL <MDL <MDL <MDL 0.074 1.7 

PF10 Öre älv 0.63 <MDL <MDL <MDL 0.16 <MDL <MDL <MDL <MDL 0.18 <MDL <MDL 0.060 1.0 

PF11 Lögde älv 0.57 <MDL <MDL <MDL 0.12 <MDL <MDL <MDL <MDL 0.052 <MDL <MDL <MDL 0.7 

PF12 Gide älv 0.96 <MDL <MDL <MDL 0.40 0.12 0.10 <MDL <MDL <MDL <MDL <MDL 0.16 1.8 

PF13 Ångermanälven 0.79 <MDL 0.36 1.5 2.8 1.9 0.84 0.40 0.84 <MDL 6.9 7.63 3.1 27 

PF14 Indalsälven 0.96 <MDL <MDL <MDL 0.14 <MDL 0.068 0.077 0.07 <MDL <MDL 0.081 0.091 1.5 

PF15 Ljungan 0.77 <MDL <MDL <MDL 0.21 0.024 0.044 <MDL <MDL 0.032 <MDL <MDL 0.12 1.2 

PF16 Delångersån 1.3 0.82 1.4 3.6 5.6 4.3 1.8 0.82 0.41 <MDL 17 16 6.8 60 

PF17 Ljusnan 0.74 <MDL 0.19 0.34 0.33 0.092 0.087 0.035 <MDL 0.061 0.44 0.10 0.046 2.5 

PF18 Gavleån 1.1 1.1 0.82 0.92 0.41 0.17 0.078 <MDL <MDL 0.052 4.9 0.38 0.29 10 

PF19 Dalälven 1.2 1.1 0.56 0.40 0.37 0.15 0.162 0.046 0.42 0.053 0.42 0.13 0.61 5.6 

PF20 Norrström 1.9 1.9 1.3 1.6 0.51 0.22 0.075 0.061 <MDL 0.46 0.83 1.2 2.4 33 

PF20A Fyrisån 1.1 4.2 1.4 4.2 0.63 0.34 0.092 0.034 <MDL 0.094 2.2 12 5.3 12 

PF21 Nyköpingsån 0.89 1.5 1.4 1.1 0.44 0.18 0.093 <MDL 0.09 0.076 0.61 0.64 0.71 7.7 

PF22 Motala ström 1.3 <MDL <MDL 0.61 0.32 <MDL 0.047 <MDL <MDL 0.070 <MDL 0.29 0.63 3.2 
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ID   PFBA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTeDA FOSA PFBS PFHxS PFOS ΣPFASs 

PF23 Botorpsström 1.1 <MDL <MDL 0.22 0.19 <MDL 0.057 <MDL <MDL <MDL <MDL <MDL 0.11 1.7 

PF24 Emån 2.1 1.0 1.7 3.8 5.4 3.7 1.5 0.70 <MDL <MDL 12 14 5.1 52 

PF25 Alsterån 1.2 <MDL <MDL 0.42 0.38 0.038 0.097 <MDL <MDL <MDL <MDL <MDL 0.25 2.3 

PF26 Ljungbyån 2.5 1.3 0.74 0.91 0.19 0.065 0.051 <MDL <MDL <MDL 0.042 0.46 0.29 6.6 

PF27 Lyckebyån 2.9 0.64 0.89 0.64 0.45 0.17 0.12 0.031 <MDL <MDL <MDL 0.47 1.1 7.4 

PF28 Mörrumsån 3.7 0.76 0.85 0.98 0.60 0.22 0.14 0.080 <MDL 0.20 0.51 0.42 0.60 9.1 

PF29 Helge å 3.4 1.5 1.0 1.2 0.61 0.30 0.18 0.095 <MDL 0.10 <MDL 1.9 0.54 11 

PF30 Kävlingeån 2.0 2.6 0.96 1.1 0.12 0.088 0.037 <MDL <MDL 0.16 0.15 0.73 0.50 8.5 

PF31 Rönneån 2.1 1.6 0.93 1.3 0.26 <MDL <MDL <MDL <MDL 0.072 0.87 3.0 3.9 14 

PF32 Lagan 2.0 <MDL <MDL 1.0 0.36 0.058 0.018 0.016 <MDL <MDL 0.083 0.35 0.56 4.4 

PF33 Nissan 2.7 1.1 0.85 1.2 0.53 0.11 0.050 0.030 <MDL 0.072 0.440 0.41 0.81 8.3 

PF34 Ätran 1.8 <MDL <MDL 0.69 0.33 0.045 <MDL <MDL <MDL <MDL <MDL 0.20 0.36 3.4 

PF35 Viskan 1.6 1.3 0.95 1.6 0.54 0.20 0.081 <MDL <MDL 0.079 <MDL 0.39 0.79 7.5 

PF36 Nordre älv 1.5 <MDL <MDL 0.98 0.38 0.060 <MDL <MDL <MDL 0.14 0.098 0.26 0.58 3.3 

PF37 Göta älv [Alelyckan] 1.9 <MDL 0.55 1.1 0.41 0.11 0.039 <MDL <MDL 0.037 0.041 0.34 0.79 5.3 

PF37A Göta älv [Trollhättan] 1.8 <MDL <MDL 0.75 0.26 0.047 0.062 <MDL <MDL <MDL 0.035 0.28 0.35 4.3 

PF38 Örekilsälven 2.3 <MDL <MDL 0.87 0.27 0.049 <MDL <MDL <MDL 0.041 <MDL 0.11 0.41 4.0 

PF39 Enningdalsälven 1.4 <MDL <MDL 0.90 0.36 0.042 0.046 <MDL <MDL <MDL <MDL 0.24 0.25 3.2 

aMDL = method detection limit; levels for MDL and MQL are given in Table 8; Levels of  PFPeA, PFTrDA, PFHxDA, PFOcDA, FOSAA, EtFOSA, EtFOSAA, EtFOSE, MeFOSA, MeFOSAA, MeFOSE, and PFDS were also targeted, but 
were all <MDL. The mean of targeted ΣPFASs of all rivers was 9.5 ng L-1 and median 4.2 ng L-1. 

 

 

 

 

 


