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Summary: The genotype main effects and genotype-by-environment interaction effects (GGE) model and the additive main
effects and multiplicative interaction (AMMI) model are two common models for analysis of genotype-by-environment data.
These models are frequently used by agronomists, plant breeders, geneticists and statisticians for analysis of multi-environment
trials. In such trials, a set of genotypes, e.g. crop cultivars, are compared across a range of environments, e.g. locations. The
GGE and AMMI models use singular value decomposition to partition genotype-by-environment interaction into an ordered
sum of multiplicative terms. This article deals with the problem of testing the significance of these multiplicative terms in order
to decide how many terms to retain in the final model. We propose parametric bootstrap methods for this problem. Models
with fixed main effects, fixed multiplicative terms and random normally distributed errors are considered. Two methods are
derived: a full and a simple parametric bootstrap method. These are compared with the alternatives of using approximate
F -tests and cross-validation. In a simulation study based on four multi-environment trials, both bootstrap methods performed
well with regard to Type I error rate and power. The simple parametric bootstrap method is particularly easy to use, since
it only involves repeated sampling of standard normally distributed values. This method is recommended for selecting the
number of multiplicative terms in GGE and AMMI models. The proposed methods can also be used for testing components
in principal component analysis.

Key words: AMMI; Genotype-environment interaction; GGE; Multi-environment trials, Principal component analysis;
Singular value decomposition.

1. Introduction

When differences between genotypes depend on environments,
genotype-by-environment interaction is present. Genotype-
by-environment interaction is studied in many branches of
biology, not least in agriculture. In plant breeding and crop
variety experimentation, cultivars or potential cultivars are
commonly investigated at several environmentally different
locations. For analysis of such data, two biadditive models
(Denis and Gower, 1994) are especially common: the genotype
main effects and genotype-by-environment interaction effects
(GGE) model (Yan et al. 2000, Yan and Kang, 2002), and the
additive main effects and multiplicative interaction (AMMI)
model (Gauch 1988, 1992).

Both GGE and AMMI explore a matrix of genotype-by-
environment means, using a combination of analysis of vari-
ance (ANOVA) and singular value decomposition. With GGE,
singular value decomposition is performed on the matrix
of residuals from a one-way ANOVA with fixed effects for
environments. With AMMI, singular value decomposition is
performed on residuals from a two-way ANOVA with fixed

effects of genotypes and environments. Cornelius, Crossa and
Seyedsadr (1996) called the GGE model a sites regression
model (SREG). For a discussion about the relative merits
of GGE and AMMI, see Gauch (2006), Yan et al. (2007) and
Gauch, Piepho and Annicchiarico (2008). The present paper
considers GGE and AMMI models with fixed main effects and
normally distributed errors, although extensions have been
made to mixed models (Piepho, 1997, 1998; Smith, Cullis
and Thompson, 2001), other distributions (Tsujitani, 1992;
van Eeuwijk, 1995) and three-way interactions (van Eeuwijk
and Kroonenberg, 1998).

The result of the singular value decomposition is often pre-
sented in a biplot illustrating the first two multiplicative terms
of the singular value decomposition. With GGE, such a biplot
presents a rank-two approximation of the sum of genotype ef-
fects and genotype-by-environment interaction effects, which
is a useful and popular tool for breeders (Yan and Tinker,
2006). With AMMI, genotype-by-environment interaction is
studied separately from main effects of genotypes. Figure 1 is
a biplot (see Section 3 for details) for an AMMI analysis of
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Figure 1. AMMI biplot for the CIMMYT maize data.

a dataset with nine maize genotypes (G1–G9) investigated
in 20 environments (E1–E20). Points near the origin have
small interaction effects, and points near each other have
similar interaction effects (Gauch, 1992). Yang et al. (2009)
discussed the validity of the biplot as a statistical method for
analysis of genotype-by-environment interaction. One of their
main concerns was the frequent lack of statistical hypothesis
testing for determining the number of multiplicative terms.
Figure 1 illustrates the first two multiplicative terms, but it
is possible that more or fewer terms give a better description
of the interaction. In practice, researchers would like to sepa-
rate fixed genotype-by-environment interaction from random
noise. This paper aims to develop a method for significance
testing of multiplicative terms in GGE and AMMI models.

Testing for interaction in non-replicated two-way layouts
goes back to Tukey (1949), who introduced the one-degree-of-
freedom test for additivity, and Mandel (1961), who proposed
row-specific regression on additive column effects. Yates and
Cochran (1938) and Finlay and Wilkinson (1963) proposed
genotype-specific regression of yield on site means. Such mod-
els can be fitted using nonlinear regression (Ng and Grunwald,
1997; Piepho, 1999). Mandel (1971) proposed the AMMI
model. Johnson and Graybill (1972) derived a likelihood ratio
test for the first multiplicateve term of the AMMI model.
Based on their work, Marasinghe (1985) and Schott (1986)
proposed a sequential testing procedure for all terms. This
procedure tests the (K+1)th multiplicative term as if it were
the first term in a problem with the numbers of rows and
columns reduced by K. Cornelius et al. (1996) presented the
approximately F -distributed JG/SM test statistic, which is
built on the contributions by Johnson and Graybill (1972),
Marashinge (1985) and Schott (1986). Cross-validation (Dias
and Krzanowski, 2003, 2006) is another option for selecting
the number of multiplicative terms.

For replicated data, Gollob (1968) proposed an F -test for
selecting the number of multiplicative terms. According to
this method, the mean square of the multiplicative term is
divided by the error mean square and compared with an
F -distribution, similarly as with ANOVA. It is well-known
that this method is too liberal (Cornelius et al., 1996). Cor-
nelius, Seyedsadr and Crossa (1992), Cornelius (1993), and
Piepho (1995) proposed and investigated various other F -
tests for replicated data. In these tests, an error mean square
is calculated from replicates within genotype-by-environment
combinations. When there is only a single observation for each
cell of the genotype-by-environment table, these methods do
not apply.

The present paper considers using resampling for the prob-
lem of separating fixed genotype-by-environment interaction
from random noise. Following Mandel (1971), it is suggested
that the fixed interaction be modelled by the first K terms of
the singular value decomposition. Random noise is estimated
as the remainder when K is smaller than the maximum
possible number of terms. The proposed methods for selecting
K use the parametric bootstrap technique (Efron and Tibshi-
rani, 1993). With this approach, the distribution of the ob-
served data is assumed to belong to a parametric family, and
the expected value follows a statistical model, specifically the
GGE or AMMI models. The model parameters are estimated
from the observed data, and random samples are generated
from the estimated model. Based on these so-called bootstrap
samples, distributions of test statistics or other statistics can
be approximated. In the present application, the distribution
of a test statistic, T , for the significance of the (K + 1)th
multiplicative term is approximated and used as a reference
distribution for calculation of the p-value. When K = 0, this
test statistic is the same as the likelihood ratio statistic used
by Johnson and Graybill (1972), and when K > 0, the test
statistic is the same as the likelihood ratio statistic that was
derived by Yochmowitz and Cornell (1978) and advocated by
Schott (1986). When K > 1, an exact test based on T is not
possible, since the distribution of T depends upon unknown
singular values (Schott, 1986). In the context of hypothesis
testing, these singular values are nuisance parameters that
are not specified by the null hypothesis. The full parametric
bootstrap method of the present paper resolves this problem
by substituting estimates for unknown parameters. By this
means, simulation of the null distribution is made possible.
Utilizing an approxmate result for distributions of eigenvalues
(Muirhead, 1978), a simplified version of the full parametric
bootstrap method is derived. This simple parametric bootstrap
method is particularly easy to apply, because it uses standard
normally distributed values as bootstrap samples. Thus, with
this method it is not necessary to estimate the parameters;
it suffices to assume that errors are normally distributed.
The proposed bootstrap methods for GGE and AMMI can
with small adjustments also be used for the the completely
multiplicative model (COMM), and the genotypes regression
model (GREG) (Cornelius et al. 1996). Furthermore, the
methods may be used for testing components in principal
component analysis (PCA).
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2. Methods

2.1 Statistical Model

Assume that J genotypes have been investigated in I en-
vironments. Let yij denote the observed mean yield of the
jth genotype in the ith environment (i = 1, 2, . . . , I; j =
1, 2, . . . , J). Let Y denote the I × J matrix of observations
yij , , i.e. Y = {yij}. GGE and AMMI models can be written
in the form Y = A + E, where A denotes an additive part
and E denotes a matrix of interactions and residual errors.
Let α = (α1, α2, . . . , αI)

T be a vector of environment main
effects, and β = (β1, β2, . . . , βJ)

T a vector of genotype main
effects. Let 1I denote an I-vector of ones, 1J a J-vector of
ones, and JI×J = 1I1

T
J an I×J matrix of ones. Including an

overall mean, µ, the additive part of the GGE model is

A = µJI×J +α1T
J , (1)

and the additive part of the AMMI model is

A = µJI×J +α1T
J + 1Iβ

T. (2)

In this paper, it will be assumed that E can be written

E = Θ(κ) +R = U(κ)Λ(κ)V
T
(κ) +R, (3)

where Θ(κ) models interaction and R = {rij} is a ma-
trix of independent N(0, σ2) distributed errors rij . In (3),
U(κ)Λ(κ)V

T
(κ) is the singular value decomposition of Θ(κ).

The subscript (κ) indicates that the rank of Θ(κ) is κ.
Thus, the singular value decomposition of Θ(κ) comprises
κ multiplicative terms that are not 0. It will be assumed
that the diagonal elements of Λ(κ) are sorted in decreasing
order. The singular values will be denoted by λ1, λ2, . . . , λκ,
i.e. Λ(κ) = diag(λ1, λ2, . . . , λκ). The I × κ matrix of left-
singular vectors is U(κ) = (γ1,γ2, . . . ,γκ), and the J × κ
matrix of right-singular vectors is V(κ) = (δ1, δ2, . . . , δκ).
In scalar form, GGE and AMMI models can be written
yij = µ+ αi + γi1λ1δj1 + γi2λ2δj2 + . . .+ γiκλκδjκ + rij and
yij = µ+αi + βj + γi1λ1δj1 + γi2λ2δj2 + . . .+ γiκλκδjκ + rij ,
respectively.

The general mean, µ, can be estimated as the average
µ̂ =

∑I
i=1

∑J
j=1 yij/(IJ), and the row and column effects as

α̂i =
∑J

j=1 yij/J − µ̂ and β̂j =
∑I

i=1 yij/I − µ̂, respectively.

Define Â as the least squares estimator of A in (1) or
(2), when µ̂, α̂i and β̂j is used in place of µ, αi and βj ,
respectively. Let Ê = Y − Â. Let M denote the rank of
Ê. Generally, M = min(I, J − 1) in GGE analysis, whereas
M = min(I − 1, J − 1) in AMMI analysis. Through singular

value decomposition, Ê can be written as Ê = ÛΛ̂V̂
T
, where

Û = (γ̂1, γ̂2, . . . , γ̂M ) is an I × M matrix of estimated left-
singular vectors, Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂M ) is an M × M
diagonal matrix of estimated singular values sorted from
largest to smallest, and V̂ = (δ̂1, δ̂2, . . . , δ̂M ) is a J × M
matrix of estimated right-singular vectors.

Consider testing the null hypothesisH0 : κ = K against the
alternative hypothesis H1 : κ > K. Note that κ is the actual
number of multiplicative terms, whereas K is the assumed
number under the current null hypothesis. The ratio

T =
λ̂2
K+1∑M

k=K+1 λ̂
2
k

(4)

can be used as a test statistic for H0. Large values of (4)

present evidence againstH0. ForK = 0, Johnson and Graybill
(1972) provided simulation-derived critical values for selected
rows and columns.

2.2 JG/SM-test

Yochmowitz and Cornell (1978) and Schott (1986) proposed
using the test statistic (4) for the problem of selecting the
number of multiplicative terms. In (4), the squared singular
values are distributed as eigenvalues of a Wishart matrix
(Johnson and Graybill, 1972). Cornelius et al. (1996) showed,
based on Johnson and Graybill (1972), Marasinghe (1985)
and Schott (1986), that (4) can be transformed into an
approximately F -distributed statistic G = (bQ)/(a(1 − Q)),
where a and b are defined as in Web Appendix A, and
Q = ((M − K)T − 1)/(M − K − 1). The values a and
b are functions of expressions that approximate the first
two moments, estimated through Monte Carlo simulation, of
eigenvalues of Wishart matrices (Liu and Cornelius, 2001).

2.3 Full parametric bootstrap method

We propose parametric bootstrapping for computation of the
p-value. According to this approach (Efron and Tibshirani,
1993), the null distribution is simulated using parameter
estimates under the null hypothesis. First, the model pa-
rameters, including the variance, are estimated, and then a
large number, B, of samples are drawn from the fitted model
using the estimates. For each sample, the test statistic, T ,
is calculated. The obtained distribution of simulated test
statistics approximates the true sampling distribution of T
under H0 and can be used for estimation of the p-value.

In this application, the firstK terms from the singular value
decomposition are taken to represent the true fixed interaction
Θ(κ) in all B bootstrap simulations. Thus, Θ(κ) in (3) is
estimated as

Θ̂(K) =

{
0 if K = 0,∑K

K=1 γ̂kλ̂kδ̂
T

k if K > 0.
(5)

To simulate residual error, random noise is added. Specifically,
a random matrix RB

b of independent N(0, σ̂2
(K)) distributed

errors is added to Θ̂(K). The superscript, B, indicates that
RB

b is a bootstrap version of R, whereas the subscript, b,
indicates that RB

b is the bth bootstrap sample. The variance,
σ̂2
(K), which is an estimate of σ2, can be derived as follows.
Consider an I-by-J two-way layout with additive main

effects of rows and columns, additive fixed effects of interac-
tions, and independent additive errors with variance σ2. When
there is no replication within cells, a two-way ANOVA without
interaction is commonly fitted. In this case, the expected
residual sum of squares equals the unknown interaction sum of
squares plus (I−1)(J−1)σ2 (Searle, Casella and McCulloch,
1992). Similarly, as relevant for GGE analysis, when a one-way
ANOVA with row effects is performed, the expected residual
sum of squares equals the unknown sum of squares due to
column and interaction effects plus I(J−1)σ2. Under H0, the
sum of squares of true interaction effects is 0 when K = 0
and

∑K
k=1 λ

2
k when 1 6 K 6 M − 2. We propose that the

observed error sum of squares from the additive model, i.e.
the model without multiplicative terms, be equated to the
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expected error sum of squares under H0, i.e.

K∑
k=1

λ2
k + vσ2, 1 6 K 6 M − 2, (6)

where v = I(J − 1) for GGE, and v = (I − 1)(J − 1) for
AMMI. When fitting the additive model, the error sum of
squares always equals

∑M
k=1 λ̂

2
k. Hence, by substituting λ̂2

k for

λ2
k in (6), the estimating equation

∑M
k=1 λ̂

2
k =

∑K
k=1 λ̂

2
k +

vσ̂2
(K), 1 6 K 6 M − 2, is obtained. Solving for σ̂2

(K), the

error variance σ2 in (3) can be estimated as

σ̂2
(K) =

1

v

M∑
k=K+1

λ̂2
k, 0 6 K 6 M − 2, (7)

where v is defined as in (6).
In summary, to test H0 using the full parametric bootstrap

procedure for GGE and AMMI analysis, we suggest the
following:

1. Compute Θ̂(K) as specified by (5) and σ̂2
(K) as specified

by (7).
2. For b = 1, 2, . . . , B, where B is large, do the following:

i. Sample an I×J matrix RB
b of independent N(0, σ̂2

(K))
distributed errors

ii. Compute EB
b = Θ̂(K) +RB

b

iii. Let eBbij denote the element in the ith row and jth
column of EB

b . Let ēBbi· denote row (i.e. environ-
ment) means, ēBb·j column (i.e. genotype) means, and
ēBb·· the general mean of EB

b . For GGE analysis, let

Ê
B

b = {eBbij − ēBbi·}. For AMMI analysis, let Ê
B

b =
{eBbij − ēBbi· − ēBb·j + ēBb··}

3. Subject Ê
B

b to singular value decomposition and use
the obtained singular values for calculation of bootstrap
samples Tb according to the right hand side of (4)

4. Estimate the p-value as the observed frequency of Tb

larger than T computed from the data.

2.4 Simple parametric bootstrap method

An approximate version of the full parametric bootstrap
method can be derived as follows. Let LJ be a J × (J − 1)
matrix such that LJL

T
J = IJ − (1/J)JJ×J . Then Ê equals

YLJL
T
J and LIL

T
I YLJL

T
J in GGE and AMMI analysis, re-

spectively. For the AMMI model with J 6 I, Johnson and

Graybill (1972) showed that Ê
T
Ê/σ2 is noncentral Wishart

distributed with I − 1 degrees of freedom, scale matrix I,

and noncentrality matrix LT
JΘ

T
(κ)Θ(κ)LJ/σ

2, i.e. Ê
T
Ê/σ2 is

WJ−1(I − 1, I,LT
JΘ

T
(κ)Θ(κ)LJ/σ

2). When J > I, ÊÊ
T
/σ2 is

WI−1(J − 1, I,LT
I Θ(κ)Θ

T
(κ)LI/σ

2). The positive eigenvalues

of Ê
T
Ê/σ2 are the same as those of ÊÊ

T
/σ2 and equal

λ̂2
1/σ

2, λ̂2
2/σ

2, . . ., λ̂2
M/σ2. Provided that H0 is correct and

λ2
1/σ

2, λ2
2/σ

2, . . . , λ2
M/σ2 are large, the asymptotic joint dis-

tribution of these eigenvalues can be approximated by the
joint distribution of the eigenvalues of a central Wishart
matrix distributed as WJ−1−K(I−1−K, I) (Muirhead, 1978;
Marasinghe, 1985). As a result, the distribution of T in (4)
may be approximated by the distribution of the ratio of the
first eigenvalue to the sum of all eigenvalues of a central

Wishart matrix. Since the joint distribution of the eigenvalues
of a WJ−1−K(I − 1−K, I) distributed matrix is equal to the
joint distribution of the squared singular values of a random
(I−1−K)×(J−1−K) matrix of independent standard normal
values, the following simple parametric bootstrap method can
be proposed:

1. For b = 1, 2, . . . , B, where B is large, do the following:

i. Sample a (D−K)× (J − 1−K) matrix Ê
B

b of inde-
pendent N(0, 1) distributed errors, where D = I − 1
in AMMI analysis and D = I in GGE analysis.

ii. Subject Ê
B

b to singular value decomposition and use
the obtained singular values for calculation of boot-
strap samples Tb according to the right hand side of
(4), here using K = 0 (i.e. compute Tb as the ratio
of the first squared singular value to the sum of all
squared singular values).

2. Estimate the p-value as the observed frequency of Tb

larger than T computed from the data.

Web Appendix C and D provide R and SAS code, respec-
tively, for the simple parametric bootstrap method.

2.5 Sequential F-test

Gollob (1968) and Wold (1978) defined degrees of freedom
associated with parameters in multiplicative models as the
number of parameters minus the number of constraints. With
this definition, the number of degrees of freedom, DFK ,
needed to estimate the Kth interaction term is I+J−2K and
I+J−2K−1 in GGE and AMMI analysis, respectively. Con-
sequently, the residual error degrees of freedom, DFResidual,
is I(J − 1) −

∑K
k=1(I + J − 2k) = (I − K)(J − 1 − K) and

(I−1)(J−1)−
∑K

k=1(I+J−2k−1) = (I−1−K)(J−1−K)
in GGE and AMMI analysis, respectively. Gollob (1968)
proposed an F -test with denominator mean squared error
calculated from replicates within genotype-by-environment
combinations. This test was not applicable to the examples of
the following section, since these examples used means or non-
replicated data. For this reason, sequential F -test statistics
were instead calculated as ratios between the mean square due
to fixed interaction, i.e. the multiplicative terms, and residual
mean square.

2.6 Cross-validation method

Dias and Krzanowski (2003, 2006) proposed cross-validation
for choosing the number of multiplicative interaction terms.
Based on their work, the present paper uses the following

method. Denote by Ê
(,−j)

the result of deleting the jth
column of Ê and after this subtracting row means. Denote by

Ê
(−i,)

the result of deleting the ith row of Ê and after this,
in case of AMMI-analysis, subtracting column means. Let

Û
(−i,)

and Û
(,−j)

denote the matrix of left-singular vectors,

Λ̂
(−i,)

and Λ̂
(,−j)

the matrix of singular values, and V̂
(−i,)

and V̂
(,−j)

the matrix of right-singular vectors, of Ê
(−i,)

and Ê
(,−j)

, respectively. Write Û
(−i,)

= {û(−i,)
st }, Û(,−j)

=

{û(,−j)
st }, V̂(−i,)

= {v̂(−i,)
st } and V̂

(,−j)
= {v̂(,−j)

st }. Denote by

λ̂
(−i,)
k and λ̂

(,−j)
k the kth diagonal element of the diagonal
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Table 1
AMMI analyses of the New York soybean, CIMMYT maize, Ontario wheat and Swedish pea datasets. Sum of squares, λ̂2

K+1,

and proportions (%) of the additive model error sum of squares,
∑M

k=1 λ̂
2
k. Test statistics for the cross-validation method

(W ), the sequential F -test (F ), the JG/SM-test (G) and the parametric bootstrap tests (T ). Probability values for the
sequential F -test, the JG/SM-test, and the full and simple parametric bootstrap tests. Bootstrap test p-values were computed

using B = 100 000 bootstrap samples. Under H0, the model has K terms

Term Sum of squares Test statistic Probability value

Bootstrap

K + 1 λ̂2
K+1 % W F G T F -test JG/SM Full Simple

New York soybean data

1 8 189 065 82.4 6.81 13.42 8.81 0.824 0.000 0.000 0.000 0.000
2 1 170 288 11.8 1.28 4.77 2.86 0.671 0.000 0.003 0.006 0.005
3 254 964 2.6 -0.11 1.44 0.57 0.445 0.239 0.862 0.864 0.865
4 200 449 2.0 0.13 2.13 1.01 0.631 0.130 0.484 0.466 0.470
5 107 532 1.1 0.15 7.26 4.27 0.916 0.038 0.109 0.095 0.096

CIMMYT maize data

1 35 078 698 56.2 1.82 6.22 4.56 0.562 0.000 0.000 0.000 0.000
2 9 426 035 15.1 0.15 2.24 1.29 0.345 0.003 0.156 0.154 0.156
3 6 515 627 10.4 0.00 2.08 1.17 0.364 0.010 0.278 0.264 0.272
4 5 383 947 8.6 0.47 2.68 1.74 0.472 0.002 0.041 0.047 0.046
5 3 091 503 5.0 0.41 2.47 1.59 0.514 0.008 0.106 0.108 0.111

Ontario wheat data

1 9.616 48.2 0.64 4.34 2.92 0.482 0.000 0.000 0.000 0.000
2 4.652 23.3 1.56 3.35 2.15 0.450 0.000 0.001 0.003 0.003
3 1.933 9.7 0.09 1.80 0.91 0.340 0.037 0.594 0.577 0.580
4 1.249 6.3 -0.02 1.44 0.61 0.333 0.151 0.896 0.905 0.905
5 1.083 5.4 0.20 1.72 0.86 0.433 0.088 0.618 0.606 0.610

Swedish pea data

1 69 259 73.7 0.47 2.80 1.30 0.737 0.118 0.366 0.363 0.362
2 20 720 22.0 0.23 2.59 1.05 0.838 0.297 0.554 0.542 0.544

matrix Λ̂
(−i,)

and Λ̂
(,−j)

, respectively. Define êij through

Ê = {êij} and let êCij(K) =
∑K

k=1 û
(,−j)
ik

√
λ̂
(,−j)
k λ̂

(−i,)
k v̂

(−i,)
jk ,

where C indicates that êCij(K) is a cross-validation prediction
of êij . Following Eastment and Krzanowski (1982), when

calculating êCij(K), the sign of û
(,−j)
ik

√
λ̂
(,−j)
k λ̂

(−i,)
k v̂

(−i,)
jk was set

equal to the sign of γ̂kλ̂kδ̂
T

k . This is a cross-validation method,
because due to deletions of rows and columns before singular
value decompositions, êij is not used in êCij(K). With êCij(K)

as prediction of êij , the predicted residual sum of squares
is PRESSK = 1

IJ

∑I
i=1

∑J
j=1(ê

C
ij(K) − êij)

2, where êCij(0) =
0. Eastment and Krzanowski (1982), proposed using W =
((PRESSK−1−PRESSK)/DFK)/(PRESSK/DFResidual) as a
decision rule for model selection. According to their sugges-
tion, the optimum value for K is the largest value of K at
which W is greater than 1.

3. Examples

In this section, the full and simple parametric bootstrap
methods are compared with the cross-validation method, the
sequential F -test and the JG/SM -test, using three datasets

from the GGE and AMMI literature and a small dataset of
mean yields from four pea trials:

1. Gauch (1992, 2006) studied a dataset with seven soy-
bean genotypes in ten New York environments. The first
multiplicative term of the AMMI model sorts genotypes
with respect to time required for maturation, and envi-
ronments with regard to length of season (Gauch, 1992).
All trials comprised four replicates. We used the table of
genotype-by-environment means.

2. The international maize and wheat improvement center
(CIMMYT) trial EVT16B investigated nine maize culti-
vars at 20 international sites (Cornelius et al., 1996).

3. Yan and Tinker (2006), Yan et al. (2007) and Yang et al.
(2009) studied the Ontario winter wheat data of mean
yields from 18 cultivars at nine locations. Using this
example, Gauch et al. (2008) discussed interpretations
depending on the choices of model (GGE or AMMI) and
the number of multiplicative terms.

4. To investigate small-sample properties, a dataset with five
pea genotypes in four trials was analyzed (Web Table 1).
The trials were performed at locations in southern Sweden
during the three-year period 2004–2006.
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The two first multiplicative terms of the AMMI analysis of the
CIMMYT maize data are illustrated in Figure 1. Principal

component axis 1 (PC1) displays the values of γ̂1

√
λ̂1 and

δ̂1

√
λ̂1, whereas axis 2 (PC2) displays the values of γ̂2

√
λ̂2

and δ̂2

√
λ̂2. GGE and AMMI analysis can be used to deter-

mine which genotypes are performing similarly (e.g. G5 and
G6) or dissimilarly (e.g. G4 and G8) in varying environments,
and to classify environments into groups of environments that
are similar with regard to performance of genotypes.

Table 1 and Web Table 2 present results of AMMI and
GGE analyses, respectively. The tables show tests of the first
five multiplicative terms, except for the Swedish pea dataset,
for which only two terms were tested. The p-value of the
parametric bootstrap test was derived using B = 100 000
bootstrap samples.

The full and simple parametric bootstrap methods re-
sulted in very similar p-values. The parametric bootstrap
tests and the JG/SM -tests gave similar, but not identical, p-
values. The sequential F -test was generally much more liberal.
In some cases, the cross-validation W -statistic was smaller
than 1 although the parametric bootstrap and JG/SM -
tests indicated significant effects at level 0.05. Following the
Eastment and Krzanowski (1982) decision rule, the cross-
validation method agreed with the parametric bootstrap and
JG/SM -tests.

Using the bootstrap tests, an AMMI model with two terms
was appropriate for the New York soybean and the Ontario
winter wheat datasets. For the small Swedish pea dataset,
there were no significant patterns in the interaction.

For the CIMMYT maize dataset, AMMI PC1 and PC2
captures 56.2% and 15.1% of the genotype-by-environment
interaction, respectively (Table 1). The parametric bootstrap
methods indicate that the first term (PC1) is significant, but
the second term (PC2) is not. Since H0 : κ = 1 cannot be
rejected, the interaction pattern displayed by the vertical axis
in Figure 1 is not larger than one would expect by chance. For
example, the difference between genotypes G1 and G8 should
not be overemphasized. In this case, a biplot that illustrates
genotype and environment means on the horizontal axis and
PC1 on the vertical axis (Gauch, 1992) is appropriate. We
propose that terms are tested sequentially until a nonsignifi-
cant result is obtained (see the Discussion). With this decision
rule, the final model for the maize data contains a single
multiplicative term although Table 1 shows that the fourth
term is significant assuming a null model with three terms.

Figure 2 shows the empirical distribution of Tb for the four
first terms of the AMMI analysis of the CIMMYT maize data
using the simple parametric bootstrap method. Notice that
Tb is not dependent on the data. Each Tb is computed from a
matrix of independent N(0, 1) distributed values. The p-values
(Table 1) correspond to the areas on the right hand side of
the dashed lines in Figure 2.

4. Simulation studies

For each dataset, Θ̂(κ) was calculated according to (5).
Repeatedly, matrices of random N(0, σ̂2

(κ)) distributed val-

ues were generated and added to Θ̂(κ), with σ̂2
(κ) calcu-

lated from the original data using (7). For the New York
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Figure 2. Bootstrap distribution of Tb in the AMMI anal-
ysis of the CIMMYT maize data using the simple parametric
bootstrap method. The dashed lines indicate the location of
the observed test statistic (4) on the Tb axis.

soybean data, the CIMMYT maize data and the Ontario
winter wheat data, H0 was tested for K = 0, 1, . . . , 4. For
the Swedish pea dataset, H0 was tested for K = 0, 1. For
each scenario, 100 000 random matrices were generated. For
each of these datasets, the sequential F statistic, the cross-
validation method W statistic, the JG/SM -test G statistic
and the parametric bootstrap T statistic were calculated.
With this large number of simulated datasets an approxi-
mate 0.95 tolerance interval for probability 0.05 can be writ-
ten ±1.96

√
0.05(1− 0.05)/100 000 = ±0.00135. In the inner

simulation loops, the p-values for the parametric bootstrap
methods were determined based on B = 1000 bootstrap
samples. For the cross-validation method, the Eastment and
Krzanowski (1982) decision rule was used.

For examination of Type I error rates, the actual model was
assumed to have κ = K terms. Thus, Θ̂(K) was computed
and random N(0, σ̂2

(K)) terms were repeatedly added. For
examination of power, the actual model was assumed to have
κ > K terms. When κ = K + 1, then Θ̂(K+1) was computed
and random N(0, σ̂2

(K+1)) terms were repeatedly added. The
null hypothesis was always H0 : κ = K.

The parametric bootstrap methods showed Type I error
rates that were very close to the nominal significance level
0.05 (Table 2 and Web Table 3 for AMMI and GGE, respec-
tively). The JG/SM -test usually produced significant results
slightly too often. With this test, Type I error rates were less
favorable for the New York soybean and Swedish pea data
than for the other datasets. This indicates that the JG/SM -
test might perform less well for small datasets than for large.
The sequential F -test was found to be much too liberal in
declaring multiplicative terms significant, and should for this
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Table 2
Type I error rates in AMMI analyses using cross-validation,
the sequential F -test, the JG/SM-test, and the full and

simple parametric bootstrap tests. Nominal significance level
0.05. Under H0, the model has K terms

Term Bootstrap

K + 1 Cross-valid F -test JG/SM Full Simple

New York soybean data

1 0.021 0.529 0.057 0.049 0.050
2 0.018 0.417 0.056 0.049 0.052
3 0.000 0.309 0.058 0.051 0.049
4 0.000 0.209 0.059 0.048 0.050
5 0.000 0.124 0.040 0.051 0.050

CIMMYT maize data

1 0.004 0.880 0.054 0.050 0.049
2 0.006 0.808 0.055 0.050 0.050
3 0.003 0.706 0.054 0.049 0.049
4 0.000 0.580 0.054 0.049 0.049
5 0.000 0.444 0.054 0.049 0.050

Ontario wheat data

1 0.005 0.854 0.055 0.050 0.049
2 0.011 0.776 0.054 0.050 0.049
3 0.002 0.672 0.055 0.050 0.050
4 0.000 0.551 0.055 0.049 0.049
5 0.000 0.416 0.054 0.049 0.048

Swedish pea data

1 0.068 0.168 0.064 0.050 0.050
2 0.000 0.098 0.017 0.050 0.049

reason not be used. The cross-validation method was very
conservative, but this method was not designed to control
Type I error.

Considering power, Table 3 and Web Table 4, for AMMI
and GGE, respectively, confirm the close agreement between
the parametric bootstrap method and the JG/SM -test. Web
Tables 5–10 include estimated power for the methods that
did not control the Type I error rate, i.e. the cross vali-
dation method and the sequential F -test. The JG/SM -test
rejected H0 more often than the parametric bootstrap test,
as expected considering the conclusion from Table 2 and Web
Table 3 that the JG/SM -test tends to be slightly too liberal.
When K+1 = κ, the parametric bootstrap tests showed very
high power (Tables 3 and Web Table 4). When K+1 < κ, all
tests encountered some cases with poor power, including the
very liberal sequential F -test (Web Tables 5–10).

With the exception the AMMI analysis of the small Swedish
pea dataset, the first multiplicative term was clearly signifi-
cant in all analyses (Table 1 and Web Table 2). An additional
simulation study was performed in order to investigate the
performance of the two bootstrap methods when the first term
is less distinct (Web Appendix B). The full and the simple
parametric bootstrap methods performed similarly.

Table 3
Estimated power in AMMI analyses when using the

JG/SM-test and the full and simple parametric bootstrap
tests. Nominal significance level 0.05. Under H0, the model

has K terms. The actual model has κ = K + 1 terms

Term Bootstrap

K + 1 JG/SM Full Simple

New York soybean data

1 1.000 1.000 1.000
2 1.000 1.000 1.000
3 0.825 0.803 0.804
4 0.984 0.978 0.978
5 1.000 1.000 1.000

CIMMYT maize data

1 1.000 1.000 1.000
2 0.992 0.991 0.991
3 0.996 0.996 0.995
4 1.000 1.000 1.000
5 1.000 1.000 1.000

Ontario wheat data

1 1.000 1.000 1.000
2 1.000 1.000 1.000
3 0.980 0.979 0.977
4 0.971 0.967 0.967
5 0.999 0.999 0.999

Swedish pea data

1 0.563 0.500 0.499
2 0.139 0.346 0.342

5. Discussion

The problem of testing multiplicative terms in GGE and
AMMI analysis is complicated, because estimated squared
singular values are not chi-square distributed (Schott, 1986).
The F -distribution has been proposed as reference distribu-
tion for various approximate test statistics based on ratios
of mean squares (Cornelius et al., 1996), and the question
has been how to calculate numbers of degrees of freedom
(Mandel, 1971; Gauch, 1992). Using resampling methods, the
degrees-of-freedom problem of identifying the actual reference
distribution can be circumvented. The reference distribution
is simulated, which enables approximate inference. This paper
proposed parametric bootstrap methods for testing multi-
plicative terms in GGE and AMMI models. The results of the
simulation study indicated that these methods can be used to
select the number of multiplicative terms to be retained in
the model.

According to Bradley (1978), the empirical level should not
deviate from the nominal level by more than 10 %. Under this
rule, the Type I error rate should, at nominal level 0.05, not
exceed 0.055. The parametric bootstrap methods fulfil this
requirement, but the JG/SM -test does in general not.

The JG/SM -test was proposed together with a sequen-
tial testing procedure (Schott, 1986), under which terms are
tested sequentially, beginning with K = 0 and continuing
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with K = 1, 2, . . .M − 2 as long as H0 is rejected. The
(K + 1)th term should not be tested unless the Kth term
is significant. Through this procedure, the requirement that
the first K singular values be large is expected to be fulfilled.
Since the simple parametric bootstrap method makes use of
the same approximation, a sequential testing procedure can
be recommended for this method as well. Equivalently, if all
multiplicative terms are tested and the results compiled in a
table similar to Table 1, a forward selection procedure may be
applied when deciding on which terms to retain in the final
model.

If models are tested sequentially until a non-significant
result is obtained, then computed p-values are not strictly
correct provided they have not taken into account the proba-
bilities that the tests are performed at all. A Type I error in
the test of the (K + 1)th term can occur only if the first
K terms were declared significant. The probability of this
event is smaller than 1. As a consequence, the probabilities
of Type I error that were estimated through simulation are
upper bounds for family-wise error rates. If α0 is the proba-
bility of Type I error when testing the (K + 1)th term, then
the probability of selecting more than K terms is smaller
than α0. Provided that α0 is close to the nominal significance
level α, the sequential testing procedure gives protection
against overfitting. To maintain the family-wise error rate,
we recommend that the number of terms is increased only as
long as H0 is rejected.

The parametric bootstrap methods of the present paper
can be used for the problem of selecting principal components
in PCA. Let X be a data matrix with I rows (observations)
and J columns (variables). Let X̄ denote the matrix when
each column in X has been standardized to have zero means,
and Z the matrix when each column has been standardized
to have zero means and unit standard deviations. PCA uses
the sample covariance matrix of either X̄ or Z. The variances
of the computed principal components are proportional to
the squared singular values of X̄ or Z, depending on whether
X̄ or Z was used for the PCA. Thus, large singular values
indicate important principal components, and the proposed
parametric bootstrap methods can be applied to test their
significance. Performance of the proposed methods in PCA
deserves further study.

Due to the demonstrated fine performance with regard to
power and probability of Type I errors, we recommend the
parametric bootstrap methods for testing multiplicative terms
in GGE and AMMI analyses. Since no important differences
in performance between the two parametric bootstrap meth-
ods could be detected, we specifically advocate the use of the
simple parametric bootstrap method, which is easier to pro-
gram and computationally more effective. With this method,
it is advisable to determine the number of multiplicative terms
to retain in the model through a forward-selection procedure.

Supplementary Materials

Web Appendices A–D and the Web Tables referenced in
Sections 2–4 are available with this paper at the Biometrics
website on Wiley Online Library.
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