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Biomass and Stem Volume Estimates for Valuable Timber
Species in Mozambique

Abstract

Accurate aboveground biomass and stem volume estimates are crucial for the
management of Mozambique’s forests. This study focused on the development of
aboveground biomass and stem volume equations for the three most valuable
commercial timber species in Mozambique, Afzelia quanzensis Welm. (Chanfuta),
Milletia stuhlmannii Taub. (Jambire) and Pterocarpus angolensis D.C. (Umbila). A
total of 57 plots were surveyed in three localities: Inhaminga, Mavume and Tome. The
diameter at breast height, commercial height, and total height was recorded for all tree
species in the surveyed plots. Fifty-eight trees were sampled (24 Chanfuta, 15 Jambire,
and 19 Umbila) and used to obtain biomass and volume data by means of destructive
methods. Felled trees were subdivided into 5 sections by cutting at 10, 30, 50, 70 and
90% of their total stem height. The recorded data included the top and bottom
diameters of each stem section, the length of each section, and the fresh weights of each
section as well as the other tree fractions (i.e. branches and leaves). Sub-samples for
dry weight and basic wood density determination in the lab were collected from each
stem section, at breast height, and from branches and leaves. Biomass values were
calculated from the ratios of the dry and fresh weights for each sub-sample. The stem
volumes of the sampled trees were estimated from the volumes of the stem sections,
which were in turn estimated using Smalian’s formula. Biomass and volume data were
fitted using non-linear power equations. Diameter at breast height was the best
predictor of the total and stem biomass (R*>0.89), while diameter and height best
explained the stem volume data (R>>0.94).

Jambire was found to have the highest biomass of the three species and Umbila the
lowest. The stems of Chanfuta and Jambire accounted for the majority of their total
biomass but the branches accounted for most of the biomass of Umbila. The
commercial stem length accounted for between 30% and 70% of the total length,
indicating that commercial logging could produce substantial quantities of biomass
residues that could be used for other purposes such as the generation of bioenergy.
This would reduce the need to fell forests for energy in Mozambique. Future studies
focusing on site-specific biomass and volume estimates as well as annual growth
estimates will be required to improve the quality of the estimates presented herein and
to support the planning and utilization of Mozambique’s forest resources.
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1 Introduction

1.1 Background

Forests provide over 9% of the total primary energy supply for cooking and/or
heating to more than two billion people worldwide (FAO, 2012). Wood is the
main source of fuel for about 80% of people in Africa (FAO, 2010). In
Mozambique, 80% of the population lives in rural areas and is heavily
dependent on forests for timber, non-timber products (NTFPs), construction
materials, medicinal plants, and diverse environmental services such as eco-
tourism, biodiversity conservation and carbon sequestration (Campbell et al.,
2007; Nhacale et al., 2009). However, the world’s tropical regions are
undergoing rapid deforestation due to the harvesting of fuel wood, the
reclamation of land for agricultural purposes, and timber logging (Campell et
al, 2007, FAO, 2012). Tropical deforestation is currently a major global
environmental concern (Geist and Lambin, 2002). Uncertainties regarding the
extent of deforestation (Hunter et al. 2013) and the amount of standing biomass
remaining (Houghton, 2005) make it difficult to assess tropical forests’ effects
on carbon stocks and other environmental parameters.

1.2 The Mozambican forest sector

Natural forests with the potential for timber production cover around 51% of
Mozambique’s land surface (Marzoli, 2007). Its forests contain 118 identified
commercial timber species (DNFFB, 2002), of which only 34 are currently
harvested and only 10 are well known in the domestic and international
markets. The most harvested species are Jambire (Milletia stuhlmannii),
Chanfuta (Afzelia quanzensis), Umbila (Pterocarpus angolensis), Pau-preto
(Dalbergia melanoxylon), Pau-ferro (Swartzia madagascariensis), Mecruse
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(Androstachys johnsonii), Pau-rosa (Berchemia zeyheri), Monzo (Combretum
imberbe), Umbaua (Khaya nyasica) and Tule (Milicia excelsa); more exotic
species include Eucalyptus sp. and Pinus sp.

The total commercial timber stock in Mozambique’s natural forests is about
1.74 billion m3, with an allowable annual cut of 516,000 - 640,000 m’
(Marzoli, 2007). National statistics from 2001-2012 (DNFFB, 2001-2007;
DNTF, 2010-2012) indicate that annual harvested volume is around 40%
below the allowable annual level, as shown in Figure 1.
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Figure 1. Licensed and harvested timber volumes in Mozambique between 1998 and 2012.

The Mozambican forestry sector is dominated by small-medium scale
processing industries that produce material for internal consumption and export
(Fath, 2002; DNTF, 2010). The industrial units are located in major cities that
provide access to existing markets and infrastructure such as roads and ports.
Forest products are among the country’s ten most important exports (Alberto,
2006): the forest sector’s contribution to Mozambique’s exports increased from
around 2.6% in 2002 ( Alberto, 2006) to 9% in 2007 (Nhancale et al., 2009).
The sector also provides direct formal and informal employment to around
600,000 people (Nhancale et al, 2009). Unfortunately, the scope for rigorous
analysis of its contribution is limited by a lack of data together with weak
control and recording systems (Alberto, 2000).

The country’s major timber products are logs or round wood, sawn timber,
railway sleepers, poles, parquet blanks (DNTF, 2011) furniture, boxes, doors
and window frames, and crafted products (Nhancale et al, 2009). The
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production of processed sawn timber as a proportion of the volume of logs
harvested has increased from 25% in 1998 to >120% in 2011 (DNFFB 1998-
2007; DNTF 2010-2011). Conversely, the volume of timber logs allocated for
export as a proportion of the total harvested volume has decreased from around
65% in 2004 to 18% in 2011(DNFFB 2004-2007; DNTF 2010-2012). This
increase in the production of processed timber and reduction in the proportion
of exported logs was partly due to changes in the regulations governing the
forest industry — taxes on log exports were increased and some tree species
were reclassified in a way that restricted the export of their logs. However, it
was also partially due to the limited technological capabilities of existing
sawmills and other industries (DNFFB, 2006).

Mozambique also has planted forests that cover around 62, 0000 ha (FAO,
2010a) and are dominated by the genera Pinus and Eucalyptus. The Central
and Northern regions of the country have the greatest potential for large-scale
industrial plantation in terms of soils and climate (DNTF, 2012; Nhantumbo et
al., 2013). Most of the existing plantations were established by private sector
actors for commercial and energy generation purposes; this is especially true in
cases where local communities were involved in the planning of the plantation
(DNTF, 2012). However, energy plantations established in the 70s and 80s by
the Food and Agriculture Organization (FAO) have collapsed due to high
production costs and management problems (Mangue, 2000) as well as the
impacts of the country’s civil war.

1.3 Energy supplies

Biomass, i.e. firewood and charcoal, accounts for 82% of Mozambique’s
energy consumption. Electricity accounts for another 13%; the remaining 5% is
due to hydrocarbons such as diesel, petroleum fuels, LPG, and natural gas
(ME, 2012). In addition, solar energy is used for food drying and conservation
as well as lighting. However, its contribution is too small to warrant estimation.

Fuelwoods are mainly obtained by cutting secondary and sometimes
primary natural forests (Mangue, 2000; Argola, 2004; Cangela, 2008; Puna,
2008; Sitoe et al. 2012). The country’s annual fuelwood consumption is 27.8
million m® (Sitoe et al., 2007), which is 50 times greater than the average
annual allowable cut volume. Fuelwood harvesting and the expansion of
agricultural land are estimated to be responsible for the deforestation of
219,000 ha per year, corresponding to 0.58% of the country’s total forest cover
(Marzoli, 2007). Nhacale et al. (2009) estimated that around 96% of the
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country’s fuelwood is harvested informally without any licensing and goes
unrecorded. The impact of its use is therefore very difficult to estimate. The
low incomes and high population growth rates in Southern Africa (Abbot et al.,
1997; Abbot and Homewood, 1999; Williams et a/, 2008), and in Mozambique
in particular, mean that the pressure on forests to meet people’s needs for
agricultural land and energy will increase in future. These regions therefore
require alternative energy sources.

More than a third of the timber volume felled in Mozambique is left un-
utilized due to the use of inefficient logging techniques (Fath, 2001). Such
material represents potentially readily available biomass that should be
quantified and evaluated to determine its potential uses. This work focuses on
the country’s three most harvested species, Chanfuta, Jambire and Umbila, as
potential sources of residual biomass from logging operations that could be
mobilized for bioenergy use. While planted forests of fast-growing species also
have great potential for the production of energy wood, they are beyond the
scope of this investigation.

1.4 Major Mozambican tree species and their distribution

Chanfuta is a medium to large deciduous tree from the Fabaceae-
Caesalpinioideae family. It occurs in dry forests, lowland thickets and dry
woodlands at altitudes of 0 to 1,800 m a.s.l in regions with a mean annual
rainfall of around 1,000 mm (Wyk & Wyk, 1997; DFSC, 2000). In
Mozambique, it occurs mainly in the Southern and Central regions, with a total
available commercial stock of 2,514,000 m (Mackenzie, 2006; Marzoli,
2007). Chanfuta trees are usually up to 15 m tall with a short bole, a wide
umbrella shaped crown and large leaves. They prefer deep and well drained
sandy soils (Gérard, 2001). The tree provides good shade (DFSC, 2000),
produces high quality timber, and is moderately resistant to termites (Gomes e
Sousa, 1964). Its wood is hard, heavy, and durable, and is mainly used to
produce furniture, building materials and canoes as well as for crafting (Hines
& Eckman, 1993). Its basic density is reported to be between 0.692 and 0.781 g
cm ~(Bunster, 1995; Mate et al., 2014). The harvesting of Chanfuta trees is
permitted once their stem DBH exceeds 50 cm ob (DNFFB, 2002).

Jambire, from the Fabaceae family, is a medium to large deciduous tree that
reaches heights of 15 to 25 m with a spreading crown. It is locally dominant
(Lemmens, 2008) and is distributed across Mozambique and Eastern
Zimbabwe (ECCM, 2005; Marzoli, 2007), commonly growing in bushveld and
forests, often on rocky hillsides (Wyk & Wyk, 1997) at altitudes of up to 900m
a.s.l in areas with relatively high rainfall (Lemmens, 2008). Its timber is
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commonly used for furniture, flooring, the manufacture of musical instruments,
inlay work, and in railway sleepers. The unusual configuration of its annual
rings gives its flat sawn timber a delicate appearance that is highly appreciated.
Its harvesting is permitted once its DBH exceeds 40 cm ob (DNFFB, 2002).
The wood is moderately hard with basic densities ranging from 0.558 to 0.841
g cm” (Bunster, 1995; Mate et al., 2014). Moreover, it is durable and resistant
to fungi and termites (WAD, 2005; ECCM, 2005).

Umbila is a medium to large tree that is typically 10 — 20 m tall but may
reach heights of 28 m under ideal conditions (Wyk & Wyk, 1997). It belongs
to the subfamily Papilionoideae and is distributed over large areas in the
Miombo woodlands of central and southern Africa, which extend across
Malawi, Mozambique, Zambia, Zimbabwe and Botswana (Therrell et al., 2007,
Marzoli, 2007). It grows well on drained sandy soils and also on hillsides at
altitudes up to 1650 m a.s.l with 700 to 1500 mm precipitation per year (Orwa
et al., 2009). Its wood is used for timber and its reddish brown heartwood
makes it to one of the most valuable timber trees in southern tropical Africa
(Palgrave, 2002; Stahle et al., 1999). The minimum stem DBH (ob) for
harvesting is 40 cm (DNFFB, 2002) and its reported basic densities range from
0.640 to 0.636 g cm™ (Bunster, 1995; Mate et al., 2014). It is resistant to fire
and widely used for carving and traditional medicine (Fichtler et al., 2004).

1.4.1 Growth cycles of the studied species

Tropical tree species often produce false, irregular or unclear annual growth
rings. Consequently, the estimation of their age is challenging and has
occasioned some scientific controversy (Whitmore, 1990; Baker, 2003).
However, annual growth rings have been identified and reported in some
studies (Chambers et at., 1998; Worbes and Junk, 1999; Stahle et al., 1999;
Worbes, 2002; Therrell et al., 2007; Steenkamp et al., 2008; Syampungani et
al., 2010; Tshisikhawe et al., 2011 and Remane, 2013). Few age-estimation
studies have been conducted in Mozambique, and those that have been
reported (Table 1) all used different methodologies, which makes it difficult to
compare their results. Sitoe (1997) examined used permanent sample plots
(yielding indirect age estimates) whereas Therrell ef al. (2007), Syampungani
et al. (2010) and Remane (2013) performed annual growth ring analyses (a
direct method). The lack of data on tree age has limited the development of site
index curves for the studied species. Site indices are powerful tools for
estimating a site’s ability to produce high volumes in stands (Johansson, 2006).
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Table 1. Reported mean annual diameter increments for the studied species

Species Study area MATI' Author

(cm/year)
Chanfuta Mozambique 0.13-1.79 Schikowski et al. (2010)
Jambire Mozambique 0.51 Remane (2013)
Jambire Mozambique 0.38 Sitoe (1997)
Umbila Mozambique 0.27-1.86 Schikowski et al. (2010)
Umbila Zimbabwe 0.33-0.40 Therrell et al. (2007)
Umbila Zimbabwe 0.30-0.41 Stahle et al. (1999)

1.MAI stands for mean annual diameter increment

1.5 Biomass and Volume Estimation Methods

Established methods for biomass estimation include: i) destructive direct
measurement and ii) non-destructive measurement (indirect estimation).
Destructive methods involve tree harvesting, measuring the fresh weights of
the trees’ individual components (stem, branches, twigs, leaves and roots),
drying samples of each component, comparing the fresh and dry masses of the
samples, and using the resulting values to estimate the biomass of each
component, the tree as a whole, and the biomass per unit land area (GTOS,
2009). This approach is viable for small areas but is quite time-consuming and
impractical for larger areas because it makes it impossible to evaluate biomass
growth over longer periods of time (Stewart et al. 1992). In contrast, non-
destructive methods do not require tree felling (Montés et al., 2000). Based on
the sampled tree biomass, the stand biomass is calculated by multiplying the
biomass of sampled trees by the average number of trees per unit area
(Johansson, 1999). Using remote sensing techniques, stand-level biomass
estimates can be scaled up to the landscape level (Case and Hall, 2008; GTOS,
2009).

The tree volume is generally estimated based on tree diameter and height
measurements by using specific formulas such as those of Smalian, Hubber,
and Newton (Husch ez al., 2003) or Hohenadl (da Cunha, 2004). Direct volume
measurements are usually made by sectioning a tree into smaller pieces, which
are assumed to be cylindrical (Husch ef al, 2003). The volume is then
expressed in cubic meters as a function of diameter or some combination of
diameter and height or commercial length (Husch et al., 2003; Gier, 1992).
Equations featuring additional variables such as tree form (Husch et al, 2003),
basal area, stem length, site quality or climate can also be used. No taper as
well as tree form have been documented for tropical species. In Mozambique,
arbitrary form factors of 0.80 and 0.65 have been used to estimate commercial
and total volumes, respectively (Marzoli, 2007).
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1.6 Challenges of Biomass and Volume Estimates

Accurate estimation of tree volume and biomass is essential for efficient forest
management (Gillespie et al, 1992; Navar-Chaidez, 2009, Nur Hajar et al,
2010) because it facilitates the estimation of forest stand productivity, carbon
stocks, and the flows of energy and nutrients (Gillespie et al, 1992, Adenkule,
2007, Guendehou et al, 2012) as well as the assessment of the forest’s structure
and condition (Chavé et al, 2003; Zianis and Mencuccini, 2004). Several
volume and biomass equations have been developed for major tree species in
Europe (Zianis et al, 2005), Asia and America (Brown 1997; Chavé et al.
2005). However, only a few studies have examined the full range of tropical
African species. Most published African studies have focused on tropical
rainforest species (Akindele & LeMay 2006; Onyekwelu 2004; Adekunle
2007; Mbaekwe and Mackenzie 2008) and so their results are not applicable to
the deciduous and semi-deciduous miombo forest species found in
Mozambique.

Miombo forests account for two thirds of Mozambique’s forest cover
(Marzoli, 2007) and occur in a wide range of climates. Most of the country’s
miombo forests are in moist tropical regions but they also exist in dry climates
and climates modified by altitude (FAO, 2005). The development of
appropriate allometric equations is a vital step (Mwakalukwa et al, 2014) in the
creation of reliable methods for estimating volume and biomass. Before this
work was conducted, no species-specific biomass and volume equations had
been reported for Chanfuta, Jambire and Umbila. However, generic biomass
and volume equations for forest vegetation of the types found in Central
Mozambique have been developed by Tchatque (2004) and Marzoli (Marzoli,
2007) respectively. Tchauque (2004) created a biomass equation, while
Marzoli (2007) reported a volume equation for forest stock estimates. In
addition, Machoco (2008) and Tomo (2012) published biomass expansion
factors and biomass and carbon estimates for different vegetation types in
Central Mozambique, although neither author presented any species-specific
data.

Despite the apparent validity of generic allometric equations, trees’
allometric relationships are expected to depend on environmental factors (e.g.,
soil and climate) and the functional characteristics of individual species such as
their wood density and crown architecture (Chavé et al., 2005, 2009; Henry et
al., 2010; Vieilledent et al, 2010). Moreover, existing biomass estimates for
Mozambique have been obtained by direct conversion of volume data due to
the limited availability of primary biomass data. Most tree volume estimates
are in turn obtained from forest inventories based on measurements of diameter
and height. Such measurements exclude the crown volume and the volume of
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the branches. This is a problem because woodland species allocate more than
50% of their woody biomass to branches (Geldenhuys and Goldings, 2008). As
such, biomass estimates based on stem volumes alone will substantially
underestimate the total tree biomass. It is therefore important to develop
equations that will provide improved estimates for the most heavily harvested
timber species to promote the efficient use of Mozambique’s forest resources.
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2 Objectives

The overall objective of this work was to provide improved estimates of the
standing volume and aboveground biomass stock of Chanfuta, Jambire and
Umbila species in Mozambique. Such data will provide a more accurate picture
of the country’s forest resources than is available at present. The specific
objectives were to:

e Develop species-specific total aboveground biomass equations (Paper I)

e Develop species-specific stem volume equations (Paper II)

e Evaluate the potential of logging residues from the studied species for use

in applications such as bioenergy generation (Papers [&II).

2.1 Structure of the Work

This thesis is based on two papers dealing with biomass equations (Paper I)
and stem volume equations (Paper II), respectively. The conceptual framework
of the thesis is outlined below:
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Focus area

Method

- Forest stand structure

- Species composition

- Stock stand and total tree
volume (Papers 1-2)

Forest inventory

- Total aboveground biomass;
- Biomass per tree fraction;

- Species biomass allocation;
- Biomass allometric
equations (Paper 1)

Output

- Characterized stand species
composition;

- Quantified Nr. Stem ha'per
stand, species and locality,
_Measured diameter and height of
1116 surveyed trees (Paper 1 &2)

Destructive biomass

field measurements

-

- Estimated the total aboveground
biomass: per tree fraction: stems,
branches and leaves for the studied
species (Kg and Kg ha!) (Paper 1)

- Tree volume per unit area;
- Total stem volume per
specie and unit area;

- Stem volume equations;

- Commercial stem volume
(Paper 2)

Stem volume
calculation

Secondary data —
Paper 2

- Quantified the total, merchantable
and non-merchantable stem volume
per specie (m?, m?ha'!)

Evaluated potential amount of
logging residues from branches
(Paper 1) and non-merchantable
stem part (Paper 2)

Paper 1 presents equations that enable accurate biomass estimates for
individual tree components (stems, branches and leaves) and describes the
quantification of biomass and biomass allocation within the studied species.
Paper II presents equations that enable accurate volume estimates for the
three studied species as well as estimates of the volumes of timber and residual
stock that could be obtained. Such estimates will make it possible to ensure
that Mozambique’s demands for energy and timber can be met in a way that

minimizes the need for further forest clearance.
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3 Material and methods

3.1 Study Areas and Data used for Equation Development

The study was carried out in the Southern and Central regions of Mozambique,
in the Inhambane and Sofala Provinces respectively (Papers I and II), Figure 1.
The studied stands in Sofala province were located within a ‘forest concession’
in Cheringoma District, Inhaminga locality, at 18°58 S and 34°10° E. The area
has an average rainfall of 1000-1100 mm/year (MAE, 2005a) and is dominated
by yellowish or reddish oxisols (Mafalacusser and Marques, 2000; MAE,
2005a; Mafalacusser, 2013). The studied stands in Inhambane province were
located at the Mavume and Tome localities in Funhalouro District, at 23°52° S
and 35°23” E (MAE, 2005b). This region has a tropical savannah climate with
an average annual rainfall of 500-800 mm and mainly has deep sandy soils
(MAE, 2005b). The studied stands at Mavume and Tome are located in public
forests managed by the Provincial Forestry Authority. The study areas were
chosen based on the occurrence of the species of interest (Chanfuta, Jambire
and Umbila) as reported by Marzoli (2007), and the accessibility of the sites
throughout the year.
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Figure 2. Geographic locations of the studied areas

A total of 58 trees were sampled to facilitate the development of aboveground
biomass (AGB) and stem volume equations for three targeted species. Table 2
provides details concerning the locations of the studied stands and the
characteristics of the species growing within them.
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Table 2. Location and characteristics of trees growing in the visited stands

Plot no.  Locality Lat. S Long. E DBH, cm Height, m Dominant vegetation
Mean + SD Mean + SD
Chanfuta
6 Inhaminga 18°15° 35°15° 60.5+27.0 14.4+6.9 Dense deciduous
7 Inhaminga 18°01° 35°17 43.6+0 18.6+0 Dense deciduous
9 Inhaminga 17° 99 35°19° 61.1+0 2060 Dense deciduous
10 Inhaminga 18°74° 35°86° 60.0 9.0 17.5+2.1 Ticket
15 Inhaminga 17°99” 35°15° 3540 1500 Ticket
22 Inhaminga 18°08” 35°11° 223+158 9.6+3.7 Open deciduous
39 Inhaminga 18°23” 35°13° 4840 158+0 Open deciduous
43 Inhaminga 18°09” 35°25° 385+0 209+0 Open evergreen
202 Inhaminga 18°40° 35°14° 414+0 19.6 0 Open evergreen
501 Inhaminga 17°99” 35°15° 51.0+0 22.1+0 Open deciduous
502 Inhaminga 18°10” 35°08” 44.6+ 1.0 17.0+ 1.7 Open deciduous
503 Inhaminga 18°17° 35°05° 39.6£5.6 132+1.6 Dense evergreen
2 Mavume 22034’ 34°11° 21.0+0 9.0+ 0 Dry deciduous
22 Mavume 23°27° 34°31° 30.1+9.1 11.4+1.8 Dry deciduous
3 Tome 22°34° 34°11° 21.0+0 120+£0 Dry deciduous
4 Tome 22°34° 34°11° 185+0 75+0 Dry deciduous
5 Tome 22°34° 34°11° 20.8+10.5 750 Dry deciduous
6 Tome 22°35° 34°11° 21.0+0 9.5+0 Dry deciduous
7 Tome 22°35° 34°12° 29.0+11.5 11.5+1.8 Dry deciduous
8 Tome 22°35° 34°11° 21.6 £6.5 11£1.9 Dry deciduous
9 Tome 22°33° 34°11° 34.1+10.0 142+1.1 Dry deciduous
Jambire
1 Inhaminga 18°50° 35°08’ 252+0 140+0 Dense deciduous
4 Inhaminga 18°06° 35°15° 28.8+2.0 16.3+1.8 Dense deciduous
6 Inhaminga 18°09° 35°09° 41.2+55 21.8+6.2 Dense deciduous
8 Inhaminga 18°05° 35°09° 257+6.8 155+45 Dense deciduous
10 Inhaminga 18°07° 35°09” 35.0+0 16.0+0 Dense deciduous
11 Inhaminga 18°05° 35°16° 31.8+0 18.8+0 Dense deciduous
15 Inhaminga 17°99° 35°15° 382+0 13£0 Dense deciduous
27 Inhaminga 18°05” 35°06” 162+0 7.0+0 Ticket
29 Inhaminga 18°09” 3501 269+ 12.7 17.6 £2.8 Ticket
34 Inhaminga 18°14° 35°08” 341+1.4 13£1.4 Open deciduous
36 Inhaminga 18°20° 35°12° 325+0 129+0 Open deciduous
37 Inhaminga 1824 35°13” 4240 16.3+0 Open deciduous
38 Inhaminga 18°21° 35°10° 21.5+2 149+13 Open deciduous
39 Inhaminga 18°23° 35°13” 23.7+99 10.1 +4.8 Open deciduous
41 Inhaminga 18°13° 35°09° 65.0+£0 13+0 Open deciduous
42 Inhaminga 18°21° 35°11° 25.6+6.5 18.2+0.7 Open deciduous
43 Inhaminga 18°09° 35925° 55.1+0 19.5+0 Open evergreen
101 Inhaminga 18°01° 35°08’ 33.4+27.0 155+64 Dense deciduous
501 Inhaminga 17°59° 35°09” 343+89 17.3+£2.6 Open deciduous
502 Inhaminga 18°10° 35°08’ 36.5+5.1 16.9+6.8 Open deciduous
Umbila
1 Mavume 23°37 34°29° 20.6+7.3 103 +3.1 Open/dry deciduous
10 Mavume 23°37 34°30° 243+7.6 9.8+3.3 Open/dry deciduous
11 Mavume 23°37 34°30° 24.6+10.4 112425 Open/dry deciduous
12 Mavume 23°37 34°30° 28.0+13.2 8+3.1 Open/ dry deciduous
13 Mavume 23°37 34°30° 22.8+18.0 6.9+1.6 Open/dry deciduous
14 Mavume 23°37 34°37° 225+7.8 85+2.8 Open/dry deciduous
15 Mavume 23°37 34°30° 25.0+12.7 10.5+5.7 Open/dry deciduous
16 Mavume 23°37 34°30° 27.5+3.5 7.9+4.7 Open/dry deciduous
17 Mavume 23°37 34°30° 21.6+9.9 82+23 Open/dry deciduous
18 Mavume 23°37 34°30° 126+ 1.3 6.3+0.6 Open/dry deciduous
20 Mavume 23°37 34°30° 16.0+0.0 6.5+0 Open/dry deciduous
21 Mavume 23°37 35°30° 22.8+55 77+1.2 Open/dry deciduous
35 Inhaminga 18°25° 35°13° 25.5+0.0 120+0 Open deciduous
36 Inhaminga 18°20° 35°12° 143+0.0 85+0 Open deciduous
40 Inhaminga 18°14” 35°07” 46.5+ 0.0 12.0+0 Open deciduous
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3.2 Sampling Design and Sampling Units

To provide an accurate representation of the species diversity within the study
areas, a total of 90 plots were defined randomly. The limitations of the region’s
road infrastructure and heavy rain meant that only 57 of these plots could be
surveyed: 36 in Inhaminga, 14 in Mavume and 7 in Tome (Papers I and II).
Each plot covered 100 m x 20 m based on previous studies conducted in
Mozambique (Cuambe and Marzoli, 2006). Plots were demarcated using sticks
and ropes. The diameter at breast height (DBH) and height (total and
commercial) was recorded for all trees within the plots whose DBH was 10 cm
or more (Cuambe and Marzoli, 2006). Trees forked below 1.3 m were
excluded and those with forks above 1.3 m were measured separately. No
samples were collected for age determination due to the difficulty of
identifying annual rings and the need to use sophisticated methods to obtain
reliable age estimates. Therefore, to avoid errors, age was not used as a
variable.

3.3 Biomass and Stem Volume Measurements

A total of 58 trees were harvested to facilitate the development of biomass and
stem volume equations: 24 Chanfuta trees, 15 Jambire, and 19 Umbila. The
forest operators stipulated that no more than one sample tree from each plot
could be used for biomass and volume measurement. Sampled trees were
healthy, undamaged, and non-forked, with fairly straight stems. DBH was
measured using callipers while height was measured using Haglof Vertex 3 or
4 hypsometers. The commercial height was measured from the base of the stem
to the first living branch. After all of the necessary measurements had been
made in the field and recorded, Chanfuta, Jambire and Umbila stems were
identified and marked. The mean DBH per species per plot and stem quality
indicators (e.g. straightness, health) were systematically used to identify
sample trees to be felled. The stump height was defined at 20 cm above ground
before the tree was felled.

Most of the trees had umbrella-shaped crowns with no readily-identified
natural top, which made it difficult to unambiguously determine which branch
in the crown corresponded to the main stem. This problem was solved by
assuming that the crown branch whose direction of growth most closely
matched that of the main stem below the branching point represented the
continuation of the main stem (Figure 3).
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Figure 3. 1dentification of the main stem direction match

Having identified the main stem, all of the branches were numbered (Figure
4a) and removed from the stem. The total stem length was recorded and the
stem was divided into five sections by cutting it at 10%, 30%, 50%, 70% and
90% of its total length (Figure 4b). The length, top diameter, and bottom diameter
of each section was recorded and used to estimate its volume based on Smalian’s
formula (II:5). Additional diameter measurements were taken at the base of the
stem and at a height of 1.3 m. The volume of the top section (i.e. the part of the
tree above the 90% cutting point) was estimated using the formula for a cone
(II:6). The total over bark (ob) stem volume was obtained by summing the
volumes of each individual stem section (I1:7).

(b)

305 0%

0%
10% S0%

Figure 4. Numbering of branches (a) and the cutting of the stem into sections (b)
The fresh weights of the stem and branch sections were then measured. Sample

disks (10-15 cm) were collected from the mid-point of each stem section and at
a height of 1.3 m for dry weight estimation. The average number of branches
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per tree was five; three from the middle of the crown of each tree were sampled
for dry weight determination. In addition, the total fresh weight of leaves was
recorded and samples of 30 to 50 leaves were taken from different levels of the
crown. The stumps were not accounted for in the AGB measurements because
it is recommended that they should be left in place for coppice management in
Mozambique. All collected subsamples were taken to a laboratory where their
dry weight, moisture content, and basic wood density (g cm”) were
determined. To this end, the sub-samples were oven dried to constant weight at
103 °C-105 °C (Brown and Lugo, 1992; Parresol, 1999; Pearson et al., 2005;
Johansson, 2011). Their basic density was then estimated using the standard
water-immersion method described by Andersson and Tuimala (1980). AGB,
moisture content (MC), and basic wood density were determined using
equations 1:2 and I:7. Table 3 lists the equations used to calculate the various
parameters discussed in the preceding paragraphs.

Table 3. Used formulas for the biomass and volume estimates

Parameters Formulas Paper and Equation
sdw .
Dry Mass, Kg Dry mass = —— X fwC L1
sfw
Moisture Content, % MC = fw—dw 1.2
fw
Basic Density, g cm™> Bd = M 1.7
%4
Basal Area, m* BA = (n/4) x D2 1I:4
Volume of Stem Sections, m’ V, = ( (BA;+BA 2)/2) <L 1I:5
. 3 .
Volume of the Top Section, m Viop = (BA /3) x L 11:6
3 .
Total Volume, m Viotal = Z(VS) + Viop 1.7

where:

Sdw = dry weight of sub-sample (g); Sfw = fresh weight of sub-sample (g); fwC
= fresh weight of component; fiv = fresh weight (g); dw = oven-dry weight
(g); M: Dry weight of stem or branch sample (g)-; B4 = cross-sectional area
of stem at base (m®); V: Fresh volume of stem or branch sample (cm’);
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D=diameter, cm at 0%, 10%, 1.3 m, 30%, 50%, 70% and 90%; L = length of
section, m.

3.3.1 Biomass and Stem Volume Equations

Linear, polynomial, exponential, logarithmic and power equations were fitted
to the measured and estimated data to characterize the relationship between the
aboveground biomass and the DBH, height, and basic density. The non-linear
power equation performed well and was therefore investigated further. Non-
linear equations have previously been shown to yield good results for
predictions of this sort (Kittredge, 1944; Navar, 2010; Navar-Chaidez et al.,
2013) and have also been used successfully to predict stem volumes (Cao et al.,
1980; Lumbres and Lee, 2013; Tewari et al., 2013). The stem volume was
modelled as a function of DBH alone and DBH with height. The biomass and
stem volume equations used for model fitting are presented in Table 4.

Table 4. Tested biomass and stem volume equations for the three studied species

Equations Paper and Equation
Biomass
AGB = B,D" I:3
AGB = B,DP18,Bd I:4
AGB = B,(BdDH)#1 L5
AGB = (B, + B,Bd)DF> I:6

Stem Volume

V = B,DF II:1
V = B,D*H 12
V = B,DF1HP: II:3
V = B,D?HP I:4
where:

AGB = Aboveground biomass, kg d.w. tree'; D = DBH over bark (ob),
mm; Bd = Basic density, gcmﬁ3; H = Tree height, m. By, B; and B, are
parameters.
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The most common procedure for validating biomass and stem volume
equations is to test them against an independent dataset (Kozak & Kozak,
2003). However, this was not possible for the biomass equation in this case due
to the limited number of available stands. The volume models were therefore
validated using a “leave-one-out cross-validation”. The entire dataset was
left out one at a time and the parameters were estimated for the
reduced dataset. Similar procedures for model validation in the context of
growth equations have been used by Zhang (1993), Nord-Larsen et al. (2009)
and Webb and Copsey (2011).

3.4 Merchantable Stem Volume Estimates

According to Burkhart (1977), Alemdag (1988), and Barrio Anta et al. (2007)
the merchantable volume ratio can be estimated based on a tree’s top diameter
and height limits. An alternative method is to use taper equations to predict the
diameter at any stem height. However, neither volume ratios nor taper
functions have been established for the native forest species of Mozambique
(Chanfuta, Jambire and Umbila). We therefore estimated merchantable
volumes using data on the dimensions of Chanfuta, Jambire and Umbila logs
harvested by forest operators working in two concession areas in Sofala
Province between 2004 and 2011 (Paper II). The average dimensions (diameter
and height) of the logs were compared to the field data gathered in the present
study to derive expressions for estimating merchantable stem volume and
potential residual volume, which is not calculated by most existing tools for
biomass estimation in Mozambican tree species.

3.5 Statistical Analysis for Biomass and Volume Equations

Statistical analysis was conducted using the non-linear regression procedure of
the SAS/STAT system for personal computers (SAS, 2006). Assessments of
best fit for biomass equations were performed using the coefficient of
determination (R*) (Zar, 1999), average bias, (AB), average absolute bias
(AAB), root mean square error (RMSE) and residual plots. AAB was used
because Parresol ef al. (1987) found that it clearly discriminated between a set
of similar equations. Some additional parameters were considered when
assessing the stem volume equations, namely the Residual Standard Error
(RSE) and Akaike Information Criterion (AIC) (Akaike, 1974; Burnham and
Anderson, 2002; Chavé et al., 2005). The formulas used to calculate these
statistical parameters are presented in Table 5.
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The calculation of the AIC depended on the maximum likelihood “L” value,
number of parameters (p) and sample size (II:11). The maximum likelihood
“L” was calculated based on the formula of Xiao et al. (2011), (II:10). An
overall ranking analysis was used to find the “best” stem volume equation (Cao
et al., 1980 and Figueiredo-Filho et al., 1996). In this analysis, the highest rank
of 1 was assigned to the models with the highest R* value and the lowest AB,
ABB and RMSE values. The quality of the stem volume equations was
estimated using the AIC and RSE; in both cases, lower values indicate a better
model fit and thus a higher rank (Chavé et al., 2005). The model with the best
fit was deemed to be that with the highest overall rank with respect to all of the
chosen statistical parameters.

Table 5. Parameters used for the statistical analysis of biomass and stem volume equations

Parameters Paper and equation
Coefficient of Determination R?=1— [SSE/SST (No. observations)] 1.8 & II:5
“ )
Sum of Square Errors SSEis 2. (wi - w, ) I:9
=1
1. 2 —
Sum of Total Squares SSTis — 3 (W, —~¥i.) 19
el
Root Mean Square Error 110 & II:8
Average Bias I:1 & IL:6
Average Absolute Bias 12 & II:7
Residual Standard Error RSE = *:; gv,l(V, -V )2/ Jn 1I:9
Likelihood L= Z[” V@ Exr-sE/20%) 11:10
Akaike Information Criterion AIC = 2k—2*Log(L)+2k(k+1)/(n—k—-1) I:11
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4 Results

4 1 Stand Characteristics in the studied Localities

In total, 1,116 different trees were found in the study area and measured to
determine their DBH, total height, and commercial height. Species
identification was possible for 762 of these but the remaining 354 could not be
identified by local people or botanists. The 11.4 ha sampled area (57 plots)
contained at least 48 different tree species, 34 of which belonged to the
Fabaceae family. The most abundant species, Brachystegia spiciformis, is a
typical miombo species and was present at a density of 725 stems ha™ (Papers I
and II).

The studied stands contained 155 trees belonging to the chosen species: 48
Chanfuta, 55 Jambire and 52 Umbila. The stem densities at the Tome,
Inhaminga and Mavume localities were 147 stems haﬁl, 119 stems haﬁl, and
104 stems ha ', respectively. Other species accounted for 89 %, 79 %, and 67
%, respectively, of the total tree count in the stands at these three localities.
The somewhat haphazard species distribution within the studied area and the
use of randomly allocated plots may have influenced the recorded species
types. The sites exhibited considerable species variability — while Chanfuta
was found at all three sites, Jambire and Umbila were not. The Inhaminga site
tended to have larger trees than Mavume and Tome. Table 6 lists the
abundance and characteristics of the 3 studied species at the Inhaminga,
Mavume and Tome sites.
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Table 6. Characteristics of trees species growing in stands at Inhaminga, Mavume and Tome,
expressed as average values + standard deviation (SD) and ranges.

Specics Stems ha™' DBIL cm Height, m Commercial height, m Basal area,

m?ha!

Mean+SD  Mean+SD Range  Mean+ SD Range Mean + SD Range Mean + SD

Inhaminga
Chanfuta 8+4 44.4+137 11.1-79.6 163+4.1 7.0-22.1 5.8+1.6 30-90 1324087
Jambire 13412 312+114 13.4-650 158+44 6.0-289 49433 0.8-188 1.13£0093
Umbila 5+0 28.8 +16.3 143465 108+2.0 85-120 3.6%1.5 20-5.0 0.39+040
Others 93 +55 23.0+£143  7.6-129.6 10.1+3.7 3.0-251 3.0+£1.5 0.0-10.5 535+3.98
Mavume
Chanfuta 15+14  28.6+9.0 172425 109+1.9 88-132 7.0+34 40-124 1.04+1.23
Umbila 20+14  228+£96 100445 88+29 38-162 4.0+17 05-85 098+0.84
Others 69+73 19.8 + 8.1 10.049.0 6.6+2.0 20-140 19=%12 0.0-55 2.58+2.06
Tome
Chanfuta 1716 259+9.6 13.5480 11.5+26 7.5-55 6.1+52 1.0-148 3.42+1.22
Others 130 £ 83 17486 10.0-54.0 72+28 3.0-150 22 1.1 0.0-6.0 3.83+147

4.2 Biomass and Stem Volume Estimates

The total biomass per unit area was 11.8, 9.9, and 4.1 tons ha™' for Chanfuta,
Jambire and Umbila, respectively. The studied species varied in their total
AGB and their allocation of biomass across different tree fractions. Jambire
trees had the highest mean dry weight (1016 + 438 kg tree”, range 411-2086),
followed by Chanfuta (864 + 548, range 107-2018) and Umbila (321 = 240,
range 52—1121) (Tables 3 and 4, Paper I). The three species also differed with
respect to their allocation of biomass to different components: the stem
accounted for 74% of the total biomass for Jambire but only 54% for Chanfuta.
Conversely, the bulk of the biomass of Umbila trees was allocated to the
branches, which accounted for 51% of the total ABG, compared to only 46%
for the stems. Leaves accounted for a small proportion of the biomass of the
studied species — around 3%, 1%, and 3% for Chanfuta, Jambire and Umbila
respectively.

The moisture content of the species varied from 52 to 56% for stems, 46 to
51% for branches, and 29 to 50% for leaves. The species also differed with
respect to basic wood density: Jambire had the highest mean (0.850 g cm™)
followed by Chanfuta and Umbila at 0.781 and 0.643 g cm™, respectively. In
general the total AGB and the biomass of stems and branches tended to
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increase with the DBH. Figure 5 shows the biomass distributions of the studied
tree species.
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Figure 5. Biomass (kg tree) plotted as a function of DBH for whole trees (—— @), stems (
- = =0), branches (-----. A) and leaves (== - — A) based on samples of Chanfuta (a),
Jambire (b), and Umbila (c)

Based on the sampled trees, the mean estimated stem volumes for Chanfuta,
Jambire, and Umbila were 0.827 m’ , 0.626 m3, and 0.372 m3, respectively
(Table 2, Paper II). Interestingly, this is not the same as the DBH order:
Jambire had the greatest DBH but Chanfuta had a higher stem volume. The
estimated commercial stem lengths for each species as a proportion of the total
tree length ranged from 30 - 70%, corresponding to mean commercial stem
lengths of 6, 4 and 4 m for Chanfuta, Jambire and Umbila, respectively. The
proportions of trees whose commercial lengths were less than or equal to 30%,
50%, and 70% of their total stem height were 63%, 21% and 12%,
respectively, for Chanfuta; 60%, 27% and 13% for Jambire; and 32%, 58% and
11% for Umbila (Paper II). Based on those findings it was assumed that 50%
of the stem will be of commercial value. The potential residual stem volumes
for Chanfuta, Jambire and Umbila were estimated to: 0.414, 0.313 and 0.186
m’ tree”’, respectively. By combining these values with the biomasses of the
branches and leaves, total residual biomass values of 3.5, 3.8 and 1.6 dry tons
ha were estimated for the three species, respectively.

We also analysed the diameters and lengths of Chanfuta, Jambire and
Umbila logs harvested in two concessions: “Indlstria Madeireira de
Mogambique, IMM” and “Inchope Madeiras”. The average lengths of logs
from all three species were around 3 meters and thus differed from the average
commercial lengths estimated in this work. The average measured diameters,
lengths, and volumes for each species are listed in Table 7.
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Table 7. Characterization of harvested logs from two concession areas in Mozambique

Species Diameter, cm Length, m Observed log volume, w

Base Top

MeantSD  Range  MeantSD  Range Mean £ SD Range Mean + SD Range

Chanfuta 46+0.1 20-112 4101 16-105 3.1=x1.1 14-76 0500+£0372 0.052-2.147
Jambire 39.£1 15-77 3520 19-72 3:7x1.1 14-80 0424+0.224 0.063 -2.010
Umbila 44£2 30-70 40+3 27-87 3006 2.1-44 0402+0.154 0.181-0.920

4.3 Data Fitting and Selection of Best Fit Equations

The power equation (I:3) fitted the AGB data best and was thus most capable
of explaining the relationship between AGB and DBH. Power equations also
yielded the highest coefficients of determination for the three tree species,
especially for total AGB and stem volume (R*> 0.89), indicating that these
models fitted the data well. Their R* values for branch biomass were slightly
lower, ranging from 0.69 to 0.79. While the equation for the leaf biomass of
Chanfuta trees had a comparatively low R*value (0.40), those for Jambire and
Umbila leaf biomass performed quite well (R*=0.72 and 0.71, respectively).
These models had positive bias (AB) values, indicating underestimation of the
chosen predictors, especially for Jambire and Umbila.

There was a large difference between the AAB and RMSE values for the
Chanfuta equations but not for Jambire and Umbila. This indicates that there
was substantial variation in the error values for the sample trees. Summary
statistics for the fitting of the power equation to the AGB data for Chanfuta,
Jambire and Umbila are presented in Table 8.



Table 8. Statistical parameters of the fitted aboveground biomass equations for Chanfuta,

Jambire, and Umbila

Components Parameters AB AAB R? RMSE
Chanfuta
Total 3.1256 x D15833 -10.6 159.8 0.97 194.37
Stem 0.4369 x D20033 -20.0 171.6 0.91 227.90
Branches 22.7577 x D0.7335 -0.1 15.0 0.79 168.19
Leaves 19.9625 x D-0.0836 21 132 040 19.14
Jambire
Total 5.7332 x D14567 49.5 250.0 0.95 256.83
Stem 4.8782 x D14266 43.5 217.6 0.94 220.25
Branches 0.3587 x D1.8091 10.3 90.7 0.78 142.48
Leaves 77.0114 x D-0.5511 -0.7 6.3 0.72  4.09
Umbila
Total 0.2201 x D21574 9.6 103.8 0.89 140.69
Stem 0.0083 x D28923 -1.6 231 095 5143
Branches 2.3596 x D1.2690 3.7 96.0 0.69 120.68
Leaves 4.0400 x DO0.1680 0.0 33 071 471

Four different stem volume power equations were fitted to the volume data,
using either DBH alone or DBH and height as explanatory variables. All four
equations yielded good statistical fits to the data, with R* values of > 0.81.
However, the equations differed with respect to their RSE, RSME, bias (AB
and AAB) and AIC values. The difference between AAB and RSME was large
for Chanfuta, indicating substantial variation in the errors for the sample tree
volume estimates. The bias (AB) was generally low and positive for all
species, indicating that the predictor equations may slightly underestimate the
biomass of Umbila and slightly overestimate that for Chanfuta and Jambire.
After computing the various statistical parameters and weighing them against
one-another using an overall rank approach, it was found that the observed
variation in stem volumes was best explained by treating stem volume as a
function of both DBH and height (Paper II: Equation 3) (Table 9).
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Table 9. Statistical parameters for the four tested volume equations for Chanfuta, Jambire and

Umbila
Parameters SE R’ RSE  RMSE AB AAB RMSE' AIC Overall
(m*) m»)  (m?) (m®) rank
Chanfuta
Equation (1)
By 0.001270 0.001180 0.93 0.053 0.265 0.020 0.208 0.265 4.97 4
By 1.807100 0.241800
Equation (2)
By 0.000036 0.0000015 0.96 0.038 0.193 0.056 0.147 0.194 4.64 2
Equation (3)
By 0.000101 0.000084 0.97 0.035 0.183 -0.001 0.118 0.182 5.51 1
i 1.655500 0.142000
B, 1.107900 0.233300
Equation (4)
By 0.000033 0.000024 0.96 0.038 0.193 0.050 0.144 0,198 5.03 3
By 1.0338 0.2580
Jambire
Egquation (1)
By 0.006440 0.015000 0.81 0.085 0.343 -0.001 0.237 0.344 4.39 4
By 1.287800 0.637700
Equation (2)
By 0.000036 0.0000027 0.92 0.053 0.207 0.033 0.154 0.207 4.30 2
Equation (3)
By 0.000353 0.000555 0.94 0.049 0.205 -0.002 0.131 0.206 6.05 1
B, 1.429100 0.380700
[ 0.937100 0.199900
Equation (4)
By 0.000898 0.000500 0.93 0.043 0.209 0.030 0.159 0.209 5.00 3
B, 09114 0.1990
Umbila
Equation (1)
By 0.000037 0.000053 0.91 0.033 0.148 0.018 0.108 0.149 4.52 4
By 2.706900 0.394900
Equation (2)
8y 0.000045 0.0000013 0.99 0.013 0.058 -0.011 0.036 0.058 3.95 3
Equation (3)
By 0.000009 0.000004 0.99 0.009 0.045 0.009 0.033 0.044 5.39 1
B, 2.262900 0.097800
By 1.256500 0.117900
Equation (4)
By 0.000022 0.000007 0.99 0.012 0.052 -0.012 0.034 0.052 4.50 2
By 1.3012 0.1352

1 Cross validation “Leave-one-out” procedure
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5 Discussion

The visited stands were found to contain Chanfuta, Jambire, and Umbila even
though an earlier forest inventory report indicated that some of them did not
contain these species (Marzoli, 2007). This may be due to the low sampling
intensity of earlier forest inventories, the use of different sampling methods
and strategies, the examination of different sampling sites, or the haphazard
distribution of the studied species. Regardless of the cause, the results
presented herein suggest that earlier inventories are more useful as generalized
descriptions of species distributions rather than sources of site- and species-
specific data. In addition, the density of the three targeted species in the studied
areas was low. This is consistent with the findings of Fath (2001), who pointed
out that Mozambican natural forests are rich in biodiversity but are dominated
by low stock levels of commercial species and low increment wood biomass.

Tree age data are not generally available in Mozambique. Therefore, no site
productivity index values could be calculated for the studied localities. Based
on reference growth rates (Table 1), the applied cutting cycle of 40 years seems
to be somewhat short because the studied species may need 75-100 years of
growth to reach the minimum allowable cut diameter. Small wood biomass
increments in Mozambican forests were previously reported by Fath (2001). It
will therefore be necessary to obtain more reliable age estimates for
Mozambican trees in order to support sustainable forest management in this
country.

The present study showed that the studied species allocated biomass
differently among their various tree fractions. While stems accounted for the
bulk of the AGB in Chanfuta and Jambire, the branches accounted for the
majority in Umbila. Branches accounted for 43% and 22% of the total biomass
in Chanfuta and Jambire, but 51% in Umbila. This allocation was unexpected
for miombo woodland tree species. Geldenhuys and Goldings (2008) argued that
branch biomass normally accounts for more than 50% of the timber of trees
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growing on forest land. Moreover, it has been suggested that site conditions
influence the distribution of biomass between tree fractions (Segura and
Kanninen, 2005; Chamshama et al., 2004; Abbot et al., 1997; Nelson et al.,
1999). The localities differed with respect to tree sizes: trees at Inhaminga
tended to have larger DBH values than those in Tome and Mavume. Inhaminga
is located in a region with a growth rate of 1.2 m’ ha™ year” whereas Mavume
and Tome are in drier regions with growth rates of 0.6 m’ ha™ year” (Marzoli
2007). Competition for light and space in dense forests limits the development of
large branches more than in open forests (Segura and Kanninen, 2005; Murali et
al., 2005). The average annual rainfall at Inhaminga is 1000 mm whereas that at
Mavume and Tome is below 800mm; this difference is associated with a change in
the dominant vegetation (Table 2). Site conditions may also have influenced the
trees’ growth rates, sizes, and biomass distributions, causing differences both
between and within species. Anthropogenic activities, harvesting and forest fires
have all been identified as driving forces of changes in the structure and
composition of miombo forests (Ribeiro et al., 2008). In this context, it is
noteworthy that all of the sampled areas had been subject to timber harvesting in
the past. Further studies will be needed to identify driving factors that influence
biomass distribution in different forest types with different environmental
factors.

The species-specific volume estimation methods developed in this work
provided more accurate estimates than were obtained using the generic formula
recommended by Marzoli (2007). The three entry variable equation of Marzoli
(2007) overestimated stem volumes by 37%, 13% and 9% for Chanfuta,
Jambire and Umbila, respectively. The stem volume estimation method
developed in this work proved to be suitable for tropical tree species with
multi-branched crowns, although gathering the data needed to use the
equations is somewhat laborious and time-consuming. However, the formula of
Marzoli (2007) has a major drawback in that it uses an arbitrary form factor; no
such form factors have been determined for Mozambique and there are no
established methods for their estimation in this country.

5.1 Biomass and Stem Volume Equations

While DBH alone was the best predictor variable for AGB estimation (Paper
1), it did not yield good results for the stem volume. However, the inclusion of
height as an additional variable greatly improved the performance of the stem
volume models (Paper II). The fitted AGB and stem volume equations
exhibited determination coefficients (R”) in excess of 0.70, indicating that the
fitted models fitted the data well. Predictions of the total AGB and stem
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fraction biomass are more stable than those of more short-lived branches and
leaves (Navar 2009). While attempts were made to gather all of the leaves from
the felled trees that were measured in this work, the trees’ large crowns made it
difficult to find leaves that landed some distance from the felling site. The
observation that the predictions of the stem volume were improved by
including height as a variable in the model is consistent with previous findings
(Brown et al., 1989; Abbot et al., 1997; Chave¢ et al., 2005; Berhe, 2009; Mni
and 0O.2010; Fonweban et al., 2012). However, the accurate indirect
measurement of height is challenging and this may limit the general
applicability of models in which it appears as a variable (Kanime and
Laamanen, 2002; Dorado et al., 2006; Sharma and Parton; 2007).

The inclusion of the basic density as a variable in the equations for total
AGB and the biomass of other tree fractions only yielded predictive
improvements for the total AGB of Umbila (R2 =0.95-0.97, RMSE = 88-147).
However, it also increased the average bias of the model and was therefore
excluded from further consideration. Biomass models that use basic density as
a variable have been reported by Vieilledent et al. (2012) and Navar-Chaidez et
al. (2013).

This work presents the first specie-specific equations for predicting the AGB
and stem volume of Chanfuta, Jambire and Umbila trees. Because all of the studied
Jambire samples were collected from the same locality, the equations for this
species should be considered to be site-specific for the time being. The
development of both biomass and stem volume equations is useful because it
avoids the limitations associated with biomass prediction on the basis of stem
volumes alone. The equations presented herein should help Mozambican forest
planners to accurately estimate the potential of their resources and to use them
efficiently. Miombo tree species of the same DBH class do not vary greatly in
height (Mugasha et al., 2013). Based on the range of sample trees examined in
this work, the developed equations are suitable for trees with DBH values
ranging from 10 to 70 cm and total heights of 5 — 30 m.

The models for total AGB and the biomasses of individual tree fractions
that best fit the experimental data were selected based on their R?, RMSE and
bias (AB, AAB) values (Table 5). According to Parresol et al. (1987), AAB
values are particularly useful for this purpose. Because several different types
of power equation were tested for predicting stem volume, multiple statistical
criteria were used to identify that with the best fit, including RSE, AIC and an
overall rank test. Chavé et al (2005) recommended a combination of R* and
RSE while Burnham & Anderson (2002) recommended AIC for model
selection. In this work, an overall rank assessment based on every calculated
statistical parameter (Rz, RMSE, RSE, AAB, AB, AIC) was adopted. This

39



approach proved to be robust. It is possible that models with superior fits could
be developed by including other locale-specific variables such as precipitation,
climate, or soil type (Chavé et al., 2005 and Henry et al., 2010). In addition,
further research will be required to develop equations that can describe
variation in miombo species that have not been extensively studied or
documented.

5.2 Forest Residues Estimates

The developed biomass and stem volume equations were used to estimate
the theoretical potential of forest residues that could be obtained from logging
operations involving Chanfuta, Jambire and Umbila species. It was determined
that 50% these species’ stem volumes are not commercially valued and are
thus available as residues. Similar results for other species in Mozambique
were reported by Fath (2001). If we assume that 50% of the wood biomass of
tropical species is allocated to branches (Geldenhuys and Goldings, 2008) and
depending on biomass allocation due to environmental factors (Abbot et al.,
1997; Nelson et al., 1999; Segura and Kanninen, 2005; Murali et al., 2005), it
is clear that the amount of residual biomass will vary between species.

The estimated commercial stem lengths generated during this work were
greater than the log dimensions listed in local forest companies’ records.
However, direct comparisons between the two datasets are not necessarily
meaningful because the companies’ records did not state how many logs were
derived from individual trees, how many logs were obtained from thick
branches, or the number of missing records. The findings of this study indicate
that the Mozambican forest industry produces large quantities of unutilized
residual biomass that is not well accounted for.

Historical data show that the three studied species dominated
Mozambique’s harvested volumes over the last 13 years. The models and
findings presented herein should thus be useful for the management of
country’s existing commercial stock. However, further research on the
availability of logging residues in terms of stand stock, market demand and
logistical issues is needed. Moreover, little is known about the potential
environmental consequences of harvesting forest residues because they are
currently regarded as unwanted by-products of harvesting operations and left in
place. This deficiency should be addressed. However, the negative
environmental impacts of cutting natural forests in Mozambique to harvest
fuelwood have been documented (Sitoe et al., 2012). Fuelwood harvesting and
the clearing of forest land for agricultural use are the major causes of
deforestation in Mozambique today (Marzoli, 2007; Sitoe et al., 2012). The
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results presented herein suggest that residual material from the harvesting of
the studied tree species could represent a viable source of bioenergy whose
exploitation could address the country’s demand for fuelwood and thus
alleviate some of the pressure on its primary and secondary forests.
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6 Conclusions

The first equations that predict the aboveground biomass and stem volume for
three of Mozambique’s most valuable native trees species - Chanfuta, Jambire
and Umbila — have been developed. The biomass equation can estimate the
biomass of individual tree fractions and woody biomass residues derived from
logging activity that could potentially be used to generate bioenergy. The stem
volume study was the first attempt to develop species-specific volume
equations for native commercial tree species in Mozambique. The equations
presented herein represent valuable contributions because they will enable the
creation of tools that will allow Mozambican forest planners to predict
merchantable volumes with greater accuracy than was previously possible,
estimate forest resource stocks, and define appropriate management strategies.
However, tropical Miombo forests exhibit high species diversity, and further
work will be required to develop species-specific volume and taper equations
that will complement the models presented herein by accounting for
geographical and ecological variability in regions harbouring miombo species.
The main conclusions of this thesis are:

e The studied species differed with respect to the mean total biomass
per standing tree, which was 0.9 tons for Chanfuta, 1 ton for
Jambire and 0.3 tons for Umbila.

e The studied species allocated their biomass across their various
fractions in different ways: Chanfuta and Jambire allocated most of
their woody biomass to their stems while Umbila allocated more to
the branches.

e The biomass of the studied species is best predicted as a function of
the diameter (DBH) alone using a non-linear power equation,
AGB=B,D"".

e The stem volume of the studied species is best predicted as a
function of both the DBH and stem height, V= BODBIHBZ.
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The total merchantable stem length was between 30 and 70% of the
total stem length for the studied species.

At the individual species level, the bulk of the logging residues
would derive from Umbila because it allocates most of its biomass
to its branches, which are not used commercially by Mozambican
forest companies.

The developed biomass and volume equations are suitable for use
in Mozambique and provide accurate estimates of biomass and
stem volume at the stand and landscape levels that can be used to
support forest resource use planning.



7 Further work

Future studies for the PhD should aim to:

Use the developed biomass and volume equations to assess the
potential of raw material from native and planted forests for energy
generation and assess the associated logistical issues;

Determine relevant fuel quality parameters for the residual material
left behind after timber harvesting of the studied species, e.g. its
heating value and ash content;

Perform a life cycle assessment for the use of whole tree biomass
(Eucalyptus) as an energy source (on-going work in collaboration with
other PhD student at the Department).
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