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Bioinformatic screening for candidate mutations underlying 
phenotypic traits in domestic animals 

Abstract 
Domestic animals represent excellent model organisms for gene mapping and 
identification of mutations underlying phenotypic traits. Humans have selected 
spontaneous mutations in farm and companion animals since they were domesticated 
and this has resulted in large phenotypic variation among different breeds. In this 
thesis, we evaluate the candidate mutations in domesticated animals from NGS and 
SNP genotype data using bioinformatic analysis. Functional significance of coding 
sequence polymorphisms was assessed using both available bioinformatics resources 
and in-house pipelines. In consequence, pig and rabbit sequencing revealed major 
sweeps for genes (NR6A1, LCORL and PLAG1) for body length and increased number 
of vertebrae in domestic pigs and genes (GRIK2 and SOX2) affecting brain and 
neuronal development in rabbit domestication.  Genome-wide association mapping for 
demodicosis disease in Staffordshire Bull Terrier dog shows several preliminary 
candidate risk loci (CFA17, 18, 28 and 29) containing interesting candidate genes 
providing a good basis for further evaluation. Additionally, we also highlight some 
opportunities and pitfalls of whole genome re-sequencing using the Ion Proton platform 
and developed a tool DevRO (using deviant read paired orientation) for detection of 
large structural variants for NGS data from paired-end sequencing or mate pair. This 
method will be useful when large numbers of populations are re-sequenced as 
compared to traditional methods that can detect the structural variants in a pair-wise 
manner.  
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1 Introduction 

1.1 Genetics through history 

The story of genetics started during the years 1856-1863 when the father of 
genetics Gregor Mendel studied “trait inheritance”. Since prehistoric times, 
Mendel’s observation that living things inherit traits from their parents has 
been used to improve crop plants and animals through selective breeding 
(Weiling, 1991). The importance of Mendel’s work did not gain wide 
understanding until the mid 19th century. After the rediscovery of Mendel’s 
work, several discoveries and findings have been made that contributed to the 
history of modern genetics, including the structure of DNA established as a 
double helix in 1953 (Watson & Crick 1953). 

The widespread use of markers to define genetic variation and development 
of new technologies made it possible to associate disease phenotypes with 
genetic loci. Monogenic diseases (i.e. when a mutation in a single gene is 
responsible for disease) provided an invaluable opportunity to learn about 
underlying molecular mechanisms. Single gene diseases run in families and 
can be sex-linked or autosomal dominant or recessive. The knowledge of 
pedigree analyses of large families and many affected individuals has been 
used to determine if the disease gene is sex-linked or autosomal and disease 
phenotype is recessive or dominant. Traditional linkage mapping, candidate 
gene approaches and Genome-Wide Association Studies (GWAS) have been 
used to identify mutations for Mendelian disorders. An alternative approach is 
to use whole-genome sequencing (WGS) with Next Generation Sequencing 
(NGS) technologies. This has been successfully explored in human diseases 
where single genes underlie rare Mendelian disease. A few examples of 
monogenic diseases in human that have an autosomal recessive mode of 
inheritance include Sickle-cell anemia, Cystic fibrosis and Albinism. 
Huntington’s disease (autosomal dominant mode), while Hemophilia A and 
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Rett’s syndrome are X-linked with recessive and dominant mode of 
inheritance, respectively. On the other hand, complex diseases do not follow 
standard Mendelian patterns of inheritance and are caused by a combination of 
multiple genetic and environmental factors. Alzheimer’s disease, diabetes, 
cancer, heart disease, asthma, Parkinson's disease, multiple sclerosis, 
osteoporosis, and autoimmune diseases are examples of complex diseases in 
humans (Hunter, 2005). 

Following extensive linkage mapping and physical mapping using 
polymorphic genetic markers and through genome sequencing using Sanger 
sequencing technology, a draft version of the human genome was made 
available in 2000 (Lander et al., 2001; Venter et al., 2001). With the 
completion of the Human Genome Project in 2003, researchers began to 
identify the areas in the genome that differ between individuals. Dramatic 
inroads have been made into the study of polygenic and complex human 
diseases. As part of these sequencing efforts, a large number of single 
nucleotide polymorphisms (SNPs) were identified and SNP chips were 
developed (Sachidanandam et al., 2001). The International Hapmap project 
mapped these SNPs along the length of every human chromosome 
(International HapMap et al., 2010; Sachidanandam et al., 2001). 

These technologies have allowed the researchers to efficiently map the 
disease to a gene and associate the phenotype to the genotype. Today, NGS 
technologies produce increasing amount of data that allows scientists to 
sequence the whole genome of mammals and many other species at a very low 
cost. This has become an attractive alternative to SNP chips where the disease 
is rare and only a few individuals are available.  

1.2 Domestic animals as models 

The phenotypic selection in farm and companion animals has resulted in a 
wide diversity of breeds of domestic animals since they were domesticated. In 
1859, Charles Darwin was the first to recognize this phenotypic diversity in 
crops and domestic animals that occurred due to breeding (Darwin, 1859). This 
artificial selection for certain traits beneficial for man over several thousand 
years has led to many changes in domestic animals such as external 
morphology (coat colour, fur type, body size, smaller skulls and legs), internal 
morphology (brain size, smaller intestines), physiological changes (endocrine 
response, reproductive cycle), developmental changes (earlier sexual maturity), 
behavioral changes (decrease in fear and anti-predator response, increase in 
sociability) etc. 
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Domestic animals therefore represent excellent model organisms for 
identifying the genes that control growth, reproduction, behavior, development 
and appetite and several other traits for which they are bred (Andersson, 2001; 
Figure 1).  

 
There are several reasons why domestic animals are good models (Andersson, 
2009; Georges, 2007):  

(i) Large pedigrees are easily accessible due to excellent record of 
pedigree information. 

(ii) Easier to collect tissue samples. 
(iii) Selection for desirable phenotypes  
(iv) Limited genetic variation within breed   
(v) Excellent record keeping of phenotypes 
(vi) Similarities between diseases of domestic animals and human (e.g. 

dogs and human have many identical diseases like cancer, epilepsy 
and allergies etc.) 

1.3 Accumulation of mutations 

Humans have performed selective breeding for thousands of years, with an 
increase in intensity during the recent years (Andersson, 2001). This artificial 
selection over several generations has resulted in the accumulation of both 
advantageous and deleterious mutations. Some of these mutations have very 
obvious phenotypic effect (e.g. coat color) while others have subtle effect on 
traits like disease resistance, production, fertility and behavior.  

The deleterious mutations are usually eliminated from the population due to 
purifying selection while advantageous mutations become more common in a 
population due to strong positive selection leading to favorable desired traits. 
Farm animals contain a wealth of mutations in genes that cause morphological, 
behavioral, reproductive and physiological changes. Research has been 
performed extensively on in particular reproduction and production traits in 
these animals (Online Mendelian Inheritance in Animals (OMIA)).  

 
A few examples of causative mutations in domestic animals that resulted in 
changed phenotype due to selections for these traits include: 

 RYR1 gene (g.1843C>T) for lean meat and muscularity in pigs and 10 
other species 

 PRKAG3 gene (R200Q) for increase in glycogen content in skeletal 
muscle in pigs 
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 IGF2 (intron-3 G>A) for increase in muscle growth, heart size and 
decrease in fat deposition in pigs. 

 MSTN (loss of function mutation in cattle) for double muscling.  
 DGAT1 (K232A) for effect on milk fat content in cattle. 
 BMPR-1B (Q249R) for increase in ovulation rate in sheep. 
 TSHR mutation and SH3RF2 deletion growth and food intake in 

chicken. 
 LCORL and NR6A1 gene mutations affecting body length traits in pigs. 

 
Some of these traits have monogenic basis while others have complex 

multifactorial basis. On the other hand, some disease-causing mutations are 
also unintentionally accumulated in domestic animals due to selective breeding 
of other traits. The white spotting locus in Boxer and Bull terrier and dorsal 
hair ridge in Rhodesian ridgebacks are the two first successful examples of 
monogenic traits mapped using GWAS in dogs (Karlsson et al., 2007; Salmon 
Hillbertz et al., 2007).  

On the other hand complex traits where not only several genetic factors are 
responsible for the disease but also several environmental factors are involved 
are more difficult to map. GWAS is one of the most efficient gene-mapping 
strategies available to map complex traits. The results presented in this thesis 
(paper III) describe an example of complex trait mapping of demodicosis 
disease (which is an inflammatory skin disease caused by D. canis parasite) in 
the dog breed Staffordshire Bull Terrier. Other examples of polygenic complex 
diseases include canine systemic lupus erythematosus (SLE)-related disease 
complex which is caused by multiple risk loci identified using GWAS (Wilbe 
et al., 2010) and atopic dermatitis in German shepherd dogs, which is caused 
partly by a regulatory mutation in PKP-2 gene encoding Plakophilin-2, a 
protein critical for maintaining an efficient skin barrier (Tengvall et al., 2013). 
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Figure1. The figure shows phenotypic diversity of different breeds of domestic chicken in 
comparison with wild ancestor Red Jungle Fowl (Artist: Staffan Ullström) 
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1.4 Genome-wide association mapping 

GWAS was used in paper III to perform an unbiased scan of the entire genome 
in healthy controls and cases affected by the demodicosis disease in 
Staffordshire Bull Terriers. The Canine Genome Project (Lindblad-Toh et al., 
2005) identified a large number of SNPs used to create canine SNP genotyping 
arrays that are used in GWAS (Karlsson et al., 2007) and currently the high 
density 173K-genotyping array (Vaysse et al., 2011) is also available, which 
was used in study III. In GWAS, the whole genome is scanned in all 
individuals from case and control population to identify the region of 
association. The associated haplotype contains regions where the healthy 
controls are genetically different from the affected individuals.  

In GWAS in dogs, fewer markers (>15,000 SNPs) are needed as compared 
to humans (300,000 to 1,000,000 SNPs) (Gabriel et al., 2002) due to the long 
haplotype blocks (Lindblad-Toh et al., 2005). 

1.5 Next Generation Sequencing methods 

 NGS also known as high-throughput sequencing, is a common term that 
describes several modern sequencing technologies. The most common 
techniques are Roche 454, Illumina (Solexa), Ion torrent, Ion Proton, PacBio 
and SOLiD. High-throughput sequencing technologies parallelize the 
sequencing process, producing thousands or millions of sequences at once. 
NGS technologies both in whole-genome sequencing (WGS) and whole-exome 
sequencing (WES) has not only lowered the cost of DNA sequencing as 
compared to standard Sanger sequencing methods but also provides unbiased 
approach for detecting large number of single nucleotide variants (SNV) which 
includes SNP and INDEL (insertions or deletions) and large structural 
variations (SV). 

The most popular sequencing platform of choice has been the Illumina 
HiSeq Platform, which uses reversible terminator chemistry and optical 
modules to detect the fluorescent signal (Bentley et al., 2008). However, there 
are other emerging technologies that provide an alternative choice for WGS 
and WES. One of those is the Ion Proton™ Platform (Merriman et al., 2012) 
which uses semiconductor technology to generate sufficient amount of high-
quality sequence data to cover large eukaryotic genomes in a relatively short 
time (paper IV). 
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1.6 Bioinformatic Methods  

With the emergence of NGS technologies, that are producing huge amount of 
data, bioinformatic tools and statistical methods are needed to manage and 
analyze this data. Although several tools are already available for analysis of 
NGS data from very basic steps of raw data quality check and preprocessing 
(FASTQC), alignment to the reference genome (BWA, Mosaik) to the more 
complex downstream analysis of variants calling tools like SAMtools (Li et al., 
2009b) and GATK (for calling SNPs and INDELs) and for large structural 
variants (Magi et al., 2010).  

1.6.1 SNV functional analysis  

Here I have summarized few methods and resources available to predict 
functional significance of SNPs and INDELs (paper I, II) detected using NGS 
methods. Figure 2 shows few standard tools that can be used to find functional 
significance of SNPs and INDELs in order to define causative mutations. The 
obtained SNVs from the GATK or SAMtools after quality filtering are used as 
an input to ANNOVAR software. ANNOVAR is a method that categorizes the 
SNVs into coding or non-coding variants using the gene models that the user 
provides (Figure 2). For examples in Paper I and Paper II, we used Ensembl 
gene models for annotation of the SNVs obtained from resequencing data of 
pigs and rabbits. The ANNOVAR software (Wang et al., 2010) provides 
several other functionalities for finding if the SNV is overlapping some known 
transcription factor binding sites, histone marks or conserved sites. 

PolyPhen-2 v2.2.2 (Polymorphism Phenotyping) is one of the tools that is 
widely used for evaluating missense SNPs. It predicts possible impact of an 
amino acid substitution on the structure and function of proteins. PolyPhen-2 
predicts damaging or benign effects of non-synonymous variants based on 
eight sequence-based and three structure-based predictive features (Adzhubei 
et al., 2010). An alternative tool to PolyPhen-2 is SIFT v4.0.5 (Sim et al., 
2012). SIFT predicts whether an amino acid substitution affects protein 
function and is based on sequence similarity and the physical properties of 
amino acids.  

SIFT can be applied to naturally occurring non-synonymous 
polymorphisms and laboratory-induced missense mutations. The underlying 
SIFT algorithm is based on evolutionary conservation of the amino acids 
within protein families. 

Although the PolyPhen-2 and SIFT prediction scores are positively 
correlated overall, they can be substantially different from each other, 
quantitatively as well as qualitatively. As a result, the SIFT-based and the 
PolyPhen-2-based results can also differ. These tools have recently added the 
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functionality of predicting the effect of INDELs on protein function. SIFT and 
Polyphen-2 are the most widely used softwares due to their accuracy and 
sensitivity for prediction. Apart from SIFT and Polyphen-2 there are currently 
other programs also available that provide similar functionality e.g. HOPE, 
whereas PROVEAN and SIFT Indel are used for INDELs (Hu & Ng, 2013; 
Choi et al., 2012). 
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Figure2. Bioinformatics general pipeline for functional analysis of SNVs. 

1.6.2 Structural Variants 

Structural variants are the polymorphisms that change the structure of the 
genome either affecting the copy count of any genomic region, called copy 
number variants (CNVs), including insertions, deletions and duplications or 
variants that do not affect the copy count but alter the genomic region like 
inversions and translocations (paper V). The average size of structural variants 
(SV) is ~8 kb whereas the CNVs range from 50 bp to large structural events 
(Alkan et al., 2011). Together with SNP, copy number changes become an 
important source of genetic variations either contributing to Mendelian traits or 
some of the missing heritability for complex traits (Salmon Hillbertz et al., 
2007; Giuffra et al., 2002). In the past, several studies indicated that SVs have 
been associated with variety of human diseases (Yang et al., 2013; McCarroll 
& Altshuler, 2007; Stranger et al., 2007). Similar to in livestock genomes, 
research in genome-wide CNV identification of various domestic animals 
including dog (Axelsson et al., 2013; Alvarez & Akey, 2012; Olsson et al., 
2011; Chen et al., 2009), sheep (Fontanesi et al., 2011), rabbit (Carneiro et al., 
2014; Fontanesi et al., 2012), chicken (Jia et al., 2013; Imsland et al., 2012; 
Rubin et al., 2010) and cattle (Bickhart et al., 2012) showed their importance 
in genetic diversity and evolution (Molin et al., 2014; Berglund et al., 2012). 
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2 Aims of this Thesis 
The overall aim of this thesis was to screen for candidate causative mutations 
underlying phenotypic changes in domestic animals using bioinformatics 
pipelines and methods. The datasets used for bioinformatics analysis in the 
current thesis was either generated by NGS techniques of whole genome 
resequencing or by genome-wide SNP arrays. The specific aims were as 
follows: 

 
 Identify causative mutations for important phenotypic traits in domestic 

animals 
 

 Sorting intolerant from tolerant mutations and loss of function mutations 
 

 Building bioinformatics pipelines and using systems to manage and analyze 
NGS and GWAS data. 
 

 Building methodology for finding putative structural variants. 
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3 Present Studies 

3.1 Phenotypic changes during domestication (Papers I and II) 

3.1.1 Background 

Animal domestication not only results in significant changes in the 
morphology, reproduction, behavior and physiology of the animals but it also 
shapes their genome. Several of the main farm animals (cattle, sheep, goat and 
pig) were domesticated 9,000–11,000 years ago. Both European and Asian 
subspecies of wild boar have contributed to the European and Asian breeds of 
domestic pigs (Giuffra et al., 2000). Due to the strong selective breeding for 
thousand of years, it has resulted in accumulation of new mutations with 
favored phenotypic effects. These mutations that modify the gene function or 
gene expression dominate as compared to the ones with pathological 
consequences that are eliminated by purifying selection.  

For instance, at least for the last 200 years, breeders have selected for coat 
color diversity. It was shown in past that mutation in MC1R that encodes 
melanocortin receptor 1, controls the red and black pigment in many animal 
species including cattle, horse, pig and dog (Newton et al., 2000; Kijas et al., 
1998; Marklund et al., 1996; Klungland et al., 1995). The dominant white 
phenotype in domestic pigs is caused by two mutations in the KIT gene 
encoding the mast/stem cell growth factor receptor (Marklund et al., 1998). 
Similarly, strong selection for lean growth with high protein and low fat 
content was another trait that a breeder has selected for. In pigs and other 
species, a missense mutation (g.1843C>T) in Ryanodine receptor 1 (RYR1) is 
responsible for lean meat and muscularity (Fujii et al., 1991). A regulatory 
mutation in intron 3 of insulin-like growth factor 2 (IGF2) gene was 
responsible for the increase in muscle growth and heart size and decrease in fat 
deposition in pigs (Van Laere et al., 2003). 
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Rabbit domestication is a recent event which started ~1400 years ago in 

southern France. Iberian Peninsula and Southern France were populated with 
only two subtypes Oryctolagus cuniculus cuniculus and O. c. algirus. 
Interestingly, they are still populated with the same wild rabbit populations, 
making these the ancestors of domestic rabbits (Carneiro et al., 2011). These 
facts offered a major advantage to carry out this study (Paper II) to infer the 
genetic basis of animal domestication as compared to many other domesticated 
species. Generation of a high-quality rabbit genome sequence made it possible 
to compare the wild and domesticated rabbit populations.  

3.1.2 Results and discussion Paper I  

In paper I, we performed whole genome resequencing to search for selective 
sweeps and genetic variants that showed marked allele frequency differences 
between domestic pig and wild boar populations. Here we sequenced eight 
different pools of pigs and wild boars at an average coverage of ~5x/pool. We 
did whole genome resequencing of pools of European domestic pigs and wild 
boars using SOLiD mate pair library (average insert of 1.3kb). The reads were 
mapped to the reference genome assembly Sscrofa10.2. After initial quality 
control and filtering, about 6.7 million SNPs were retained, that were used in 
the downstream analysis. These SNPs were further used for sweep analysis 
(beneficial genetic variants increase in frequency due to positive selection 
together with linked neutral sequence variants) in European domestic pigs by 
searching the regions with excess homozygosity, in which we scanned along 
the reference genome sequence in windows of size 150 kb. For each window, 
pooled Heterozygosity (Hp) and its Z-score (ZHp) was calculated (Rubin et al., 
2010). Windows with ZHp < -4 were retained as candidate sweep loci. 

This approach revealed, 13 sweeps with ZHp<-5 and 64 loci with ZHp<-4. 
A major finding in this study was the striking correlation between putative 
sweep regions and well-established quantitative trait loci (QTL). 
Domestication leads to phenotypic changes (e.g. reproduction, physiology and 
morphology etc.), which was very well explained in this study. For example, a 
QTL for feed intake and growth lies in melanocortin 4 receptor (MC4R) gene 
locus (Kim et al., 2000). One of the most striking finding in this study was the 
colocalization of three of the most convincing selective sweep candidates with 
major QTL that explains the elongation of the back and an increased number of 
vertebrae in domestic pigs (vertebrae 21-23) as compared to wild boar 
(vertebrae 19) (King & Roberts, 1960). Three of these sweeps were in genes:  
(I) Nuclear Receptor 6 A1 (NR6A1) that also contained a missense mutation 
(Pro192Leu) previously proposed to be the causative mutation (Mikawa et al., 
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2007). (II) Pleomorphic adenoma gene 1 (PLAG1) that has been associated 
with variation in height in humans (Gudbjartsson et al., 2008) as well as with a 
major QTL for height in cattle (Karim et al., 2011). (III) Ligand-dependent 
nuclear receptor corepressor-like (LCORL) which has been associated with 
human stature and body size in dogs (Vaysse et al., 2011) cattle (Pryce et al., 
2011) and horses (Signer-Hasler et al., 2012). In order to verify some of these 
sweeps we overlapped them with extreme SNPs (allele frequency AF>0.9 and 
AF<0.1 in domestic pigs and wild boars, respectively) from individually 
sequenced (average coverage of 10x) domestic pigs (n=36) and wild boars 
(n=11).  

We also searched for the coding SNPs that showed a marked allele 
frequency difference between European domestic pigs and wild boars (AF 
>80% in one group and AF < 20 % in the other group). These SNPs were 
further annotated using Ensembl gene models in ANNOVAR software (Wang 
et al., 2010). Our results showed that gene inactivation did not play a 
prominent role during pig domestication, which was consistent with previous 
results in chickens (Rubin et al., 2010). A complicating factor in the analysis of 
finding non-sense mutations that have become fixed or nearly fixed in 
domestic pigs was that the reference genome was obtained from a domestic 
pig, which means that if a nonsense mutation has become fixed in the domestic 
pig it is likely that the corresponding gene model may be wrong. In order to 
remove this bias we developed an alternative approach (Figure 3).  

 
Figure 3. Pipeline for finding candidate nonsense SNPs. Blue and pink colors show general 
steps followed. Alternative approach (green and pink) for finding candidate nonsense mutations 
fixed in domestic pigs.  

We found significant excess of derived non-synonymous substitutions (P = 
0.00016) in domestic pigs. However, only 3 out of 72 missense SNPs 
overlapped sweeps showing that these SNPs have not increased in frequency 
due to recent sweeps. SIFT and Polyphen-2 (Sim et al., 2012) analysis showed 
that 32 out of 72 were potentially damaging. Similarly, missense mutations in 
the genes corticosteroid-binding globulin (CBG) also known as SERPINA6 
affecting cortisol-binding capacity, hexokinase 2 (HK2) a key enzyme for 
glucose matabolism and Semaphorin 3D (SEMA3D) important in neuronal 
development are of particular interest. 
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We further identified four duplications (three of these within a large 450 kb 
duplication) at the KIT locus that were exclusively present in white or white-
spotted pigs, carrying the Dominant white, Patch, or Belt alleles. We did not 
find a significant overlap of CNVs with our predicted sweeps showing that the 
majority of these behave as neutral markers. However, a duplication of 8 kb in 
the intron of Caspase 10 (CASP10) overlapped one of the major sweeps. 

3.1.3 Results and discussion Paper II 

The aim of this study was to understand how domestication leads to fixation of 
new mutations as compared to the selection of standing variations. Here we 
generated a female rabbit genome (OryCun2.0) assembly of size 2.66 Gb using 
Sanger sequencing. For annotation of the genome, we used Ensembl 73 gene 
models and RNA sequencing data for rabbit and human orthologs. To 
answering the domestication specific questions we performed whole genome 
resequencing of pooled samples (10x coverage) from domestic rabbits (6 
breeds), wild rabbits (3 southern France and 11 Iberian Peninsula) and an 
outgroup snowshoe hare (Lepus americanus) and aligned these to the reference 
sequence.  

Our results showed that rabbit is one of the most polymorphic mammals 
sequenced so far with approximately 50 million high quality SNPs and 5.6 
million INDELs. The results from identity scores analysis confirms that 
domestic rabbits are more closely related to French wild rabbits and that there 
has been two bottlenecks, i) when rabbits from the Iberian Peninsula colonized 
southern France and ii) during domestication in Southern France. Using 
selective sweep analysis, we identified 78 significant sweeps. One of the 
sweeps was observed near glutamate receptor gene (GRIK2), which is highly 
expressed in brain and two sweeps near SOX2 (SRY-BOX2) region, which 
encodes a transcription factor important for stem cell maintenance. 

We also scanned for absolute allele frequency differences between domestic 
and wild rabbits (ΔAF= delta allele frequency), to find the extreme SNPs 
specific to each group “domestic or wild”. Only 20 SNPs were completely 
fixed in domestic rabbits. Significant overrepresentation of high ΔAF SNPs in 
conserved non-coding elements was observed. An important finding was the 
nullification of an assumption that rapid evolutionary changes in rabbit 
domestication resulted due to gene inactivation. No nonsense or frame-shift 
mutation was observed in coding SNPs with high ΔAF that differ in wild and 
domesticated rabbits consistent with data from chicken (Rubin et al., 2010) and 
pigs as in paper I (Rubin et al., 2012). We did not find any fixed missense 
mutations, but we identified 14 missense mutations with high ΔAF>0.90. We 
assume most of these missense mutations result from hitchhiking rather than 
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being functional based on the observation of poor sequence conservation and 
similar chemical properties of substituted amino acids, its derived state of the 
domestic allele. However, two of the missense mutations stand out which may 
be candidate causative mutations. This includes tetratricopeptide repeat domain 
21 B (TTC21B with a Q813R mutation) where all domestic rabbits shows 
amino acid Arginine while all wild rabbits were homozygous for the ancestral 
allele with amino acid Glutamine that was completely conserved in 55 
mammals. The second example is the lysine-specific demethylase 6B  
(KDM6B with R1627W) where all wild rabbits and 44 mammals were 
completely conserved for Arginine.  

Enrichment analysis showed that the most enriched biological process was 
“cell fate commitment” and statistical results supported brain and nervous 
system cell development, more than other categories suggesting brain and 
neuronal development have often been targeted during domestication. Extreme 
SNPs in non-coding regions overlapping conserved sites were associated with 
the following genes BMP4, CTNNB1, EYA2, KLF4, PAX2, SIX2 and SOX2. 
Electrophoretic mobility shift assay (EMSA) with double-stranded 
oligonucleotide probes for transcription factors and nuclear extracts from 
mouse embryonic stem cell–derived neural stem cells showed, 7 out of 17 
probes at SOX2, KLF4 and PAX2 with high ΔAF located at conserved sites 
showed differences in DNA-protein binding capacity between genotypes. 

Our results suggest that genes affecting brain and neuronal development 
have often been targeted during domestication. We observed shifts in allele 
frequencies rather than complete fixation of causative mutations. We also 
observed that changes in non-coding sequences are numerously much more 
important than changes in coding sequences during rabbit domestication. We 
also propose that a single specific “domestication gene” may not exist, because 
tameness has a highly polygenic background and evolved by shifts in allele 
frequencies at many loci, rather than by critical changes at only a few 
‘domestication loci’.

3.2 GWAS identifies candidate risk loci for demodicosis in 
Staffordshire Bull terrier (Paper III) 

3.2.1 Background 

Canine demodicosis is an inflammatory parasitic skin disease caused by 
acarine mites of Demodex canis that are present and proliferate in canine hair 
follicles causing cutaneous lesions (Chesney, 1999). The disease is prevelant in 
several breeds including American Staffordshire bull terrier, Staffordshire Bull 
Terrier and Chinese shar-pei (Plant et al., 2011). The Staffordshire Bull Terrier 
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is a high-risk breed for demodicosis with an odds ratio of 17.1 (Plant et al., 
2011). Previous studies have shown association of demodicosis to the canine 
MHC class II region (Dog Leukocyte Antigen, DLA) (It et al., 2010). The 
disease is sub-divided into juvenile and adult demodicosis based on age of 
onset. The juvenile form (onset prior to 18 months of age) is associated with a 
strong breed and family predilection and has been assumed to have a genetic 
background (Miller et al., 1992) whereas the adult form appears in old dogs 
(>18 months of age) often in association to an immune compromising disease 
or immune-suppressive treatment (Duclos et al., 1994; Miller et al., 1993) 

 The juvenile-onset demodicosis can further be sub-divided based on 
severity of the disease into localized (with less than 3-5 areas of body affected) 
and generalized (greater than 5 areas or whole body is affected). 

3.2.2 Results and discussion Paper III 

In this study we used 262 individuals (198 Swedish dogs and 64 Norwegian 
dogs) of which 113 were cases (affected by juvenile-onset demodicosis with 
either generalized type (n=61) or localized type (n=52)) and 149 were controls 
(unaffected). All individuals were genotyped using 170K Illumina HD canine 
SNP array. For each individual dog, the phenotype (case and control) was 
carefully characterized. Dogs with clinical signs compatible with demodicosis 
with an onset prior to 18 months age, and where the diagnosis was confirmed 
with direct microscopy were classified as cases.  

The cases were further sub-divided into localized (<3-5 small areas 
affected) versus generalized (>5 areas affected or widespread disease) in 
accordance to standard classification.  Healthy controls were >3 years old, 
never having had any evidence of alopecia. The Swedish dogs included as 
healthy controls, had skin scrapings and trichogram taken from three randomly 
chosen areas, revealing no Demodex mites at direct microscopy. For each dog, 
gender, the age of onset, and classification (case localized, case generalized or 
control) was recorded.  The relationship between the individuals was 
characterized and individuals with relatedness closer than at grandparental 
level were removed. However, for Norwegian dogs, we had either cases with 
whole body affected (n=8) or more than 6 spots affected (n=9). In the 
downstream analysis we merged whole body affected Norwegian dogs with the 
Swedish generalized dogs to prepare a dataset mainly having generalized cases. 
Similarly other datasets were also prepared by using the disease severity 
criteria. Each dataset was analyzed separately.  

After removal of outliers and quality control filtering we retained about 
99,232 SNPs (~58% of markers) for association analysis. Demodicosis-gender 
relationship was found non significant in each dataset using Fisher’s exact test. 
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Our initial association analysis showed population stratification with λ 
(genomic inflation factor) greater than 1.4 for each dataset. The demodicosis 
population showed two clusters when we performed the Kmean clustering. The 
stratification was due to the uneven distribution of cases and controls in two 
clusters. Population stratification and cryptic relatedness between the 
individuals (which is common in dog breeds) was successfully corrected for by 
using mixed model (with genomic kinship and binomial trait information) for 
each dataset with λ=0.99. 

We identified four preliminary disease associated loci on CFA29, CFA28, 
CFA18 and CFA17. All four loci were candidates and none passed Bonferroni 
correction. For the dataset of generalized demodicosis only, we observed 
association on CFA29 with raw pvalue of 3.5x10-5. The total associated region 
on chromosome 29 with the top SNP at 17,150,595 bp was defined as 
approximately 2 Mb long containing the genes (MYBL1, VCPIP1, SGK3, 
MCMDC2, TCF24, PPP1R42, COPS5, CSPP1, ARFGEF1, CPA6, and 
prostaglandin reductase 1 pseudogene, PREX2). We defined the associated 
haplotype using LD clumping using r2 =0.8 (Purcell et al., 2007). The 
associated haplotype for CFA17 spanning 2 Mb contained the genes (LRRTM1, 
CTNNA2 and REG3A). Whereas the haplotypes identified on CFA28 and 
CFA18 contain the genes (GOT1, NKX2, SLC25A28, ENTPD7, COX15, and 
FGFR2-like) and genes (CCDC73, EIF3M, WT1, RCN1, ELP4, IMMP1L, 
DNAJC24, and DCDC1), respectively. The associated regions contain several 
interesting candidate genes that will be further investigated for their function. 
For example, on CFA17, the gene REG3A (regenerating islet-derived 3 alpha), 
which is bactericidal C-type lectin that acts against gram-positive bacteria and 
mediate their killing, it also regulates keratinocyte proliferation and 
differentiation after skin injury via activation of the EXTL3-AKT signaling 
pathway. Another candidate gene was Fibroblast growth factor receptor 
FGFR2-like locus on CFA28 which was about 100 kb downstream to top 
candidate SNP. The gene FGFR2 has been involved in controlling the 
epidermal barrier and cutaneous homeostasis in keratinocytes (Yang et al., 
2010).  

This study identified some preliminary candidate associated regions (where 
none of the loci passed through Bonferroni correction). Further evaluation of 
some of the associated regions containing interesting candidate genes will be of 
particular interest either by doing permutation testing using random sampling 
of phenotypes or by adding more samples to determine if that gains additional 
power to detect association and ultimately identify the candidate causative 
mutation and other genetic risk factors.  
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3.3 Methodologies for detection of SNV and large structural 
variants using whole genome resequencing (Papers IV and 
V) 

3.3.1 Background 

Whole genome sequencing (WGS) of individual genomes with NGS 
technologies has triggered numerous groundbreaking discoveries and ignited a 
revolution in genomic science. It has opened a new avenue for personalized 
healthcare and medicine based on the detection of genetic variations related to 
disease. These have not only reduced cost of sequencing individual genomes, 
but also provides powerful and unbiased (Boycott et al., 2013) approach for 
detecting larger proportion of genetic variation, from single base pair changes, 
INDELs, structural variants, chimeric transcripts and gene rearrangements 
affecting phenotype.  

Illumina HiSeq sequencing platform dominates the sequencing market 
today, which uses reversible terminator chemistry and optical modules to 
detect the fluorescent signal (Bentley et al., 2008). However, there are other 
emerging technologies that provide an alternative choice for WGS and WES. 
One of those is Ion Proton™ Platform (Merriman et al., 2012) which uses 
semiconductor technology to generate sufficient amount of data to cover large 
eukaryotic genomes in a relatively short time. 

Previously, the structural variants were discovered by either whole genome 
array comparative genome hybridization (aCGH) in which the relative 
frequencies of probe DNA segments between two genomes was compared 
(Pinkel et al., 1998) or using Hapmap available data and SNP arrays measuring 
the intensities of probe signals at known SNP loci (International HapMap et 
al., 2010). Multiple Ligation dependent Genome Amplification was also used 
for their detection (Salmon Hillbertz et al., 2007). Sanger sequencing of paired 
reads was used as an alternative to the above-mentioned methods to detect 
CNVs, inversions and translocations with high accuracy and resolution at the 
expense of time and cost. Today several methods have been developed using 
the NGS data to detect the SVs with each offering some limitations.  

 
 



 33 

 
 
Figure 4. Description of read signatures in paired end mapping (PEM) and mate pair (MP). 
Forward read market as F and reverse read marked as R. 

 
 

 
In general, there are four categories of methods to detect SVs using NGS data 
(Alkan et al., 2011);  
1. Depth of Coverage (DoC) methods  
2. Paired end mapping (PEM) methods  
3. Split read methods (SR) and  
4. Assembly (AS) based methods 
 

The assumption of DoC-based methods (e.g. CNVseq and CNVnator) is 
that the coverage is uniform i.e. the number of reads mapped to a region are 
assumed to follow the Poisson distribution, however there is bias due to GC-
content and mapability and these methods are unable to detect inversions and 
translocations (Xie et al., 2009; Abyzov et al., 2011). PEM methods (e.g. 
Breakdancer) use the information of paired reads and their orientation (Figure 
4, Paper V). The insert size is used to detect the insertions and deletions, 
although the size of CNVs detected is limited by the size of insert in this 
method (Xi et al., 2011; Chen et al., 2009; (Rausch et al., 2012). SR methods 
(e.g. Pindel) use the information of anchored reads to identify the breakpoint 
locations while AS methods (e.g. SOAPdenovo) are based on the de novo 
assembly (Ye et al., 2009; Li et al., 2010). Today, several tools have been 
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developed that use combination of methods like PEM and DoC information 
(GenomeSTRiP, SVDetect) to detect SVs (Handsaker et al., 2011; Zeitouni et 
al., 2010). 

3.3.2 Results and discussion Paper IV 

In paper IV we describe results from resequencing of four Chinese Crested 
dogs using the Ion Proton platform and evaluated the platform for whole 
genome resequencing of the canine genome for coverage (genome and exome), 
genotype concordance with SNP array and number of variants detected. For 
each dog, we constructed a 200 bp fragment library that was sequenced on two 
Ion PITM Chips with 500 run flows. Each chip generated about 9.5 Gb sequence 
data having approximately 73.3 million single reads with mean read length of 
130 bp. The reads were aligned to the canine reference genome sequence 
(CanFam3.1). On average 98% of the reads could be aligned to the reference 
genome with 8x coverage. However, after removal of duplicates (21%), we 
obtained on average 6x coverage for the autosomal genome and 236x coverage 
for mitochondrial genome. Our results revealed that on average 80% of whole 
genome and 77% of exome (using Ensembl transcripts) were covered with at 
least 4 reads per base. The read coverage over the canine genome with respect 
to GC content showed normal coverage at approximately 40% GC content. 
However, we detected a gradual drop in coverage if the GC content was less 
than 20% or greater than 60%. We also observed fluctuation of the mean base 
quality at GC content greater than 80%.  

Variants (SNPs and INDELs) were called on all four dogs together 
(combined analysis) and each dog separately (individual dog) using both 
SAMtools (Li et al., 2009a) and GATK (Van der Auwera et al., 2002). After 
hard filtering, the combined analysis resulted in ~10 million filtered variants 
using SAMtools and ~7 million filtered variants using GATK 
UnifiedfiedGenotyper. However, the individual analysis generated about 3 
million variants per individual dog. Previous re-sequencing studies report 6.1 
to 7.4 million variants detected per dog (Drogemuller et al., 2014; Gilliam et 
al., 2014; Guo et al.) with depth of coverage from 20X to 34X. This indicates 
that there is a trade-off among number of individuals sequenced and 
sequencing depth in terms of detected variation. In terms of tool differences, 
number of detected INDELs using SAMtools almost two fold the number of 
UnifiedGenotyper detected INDELs, whereas the number did not increase 
when we did the overlap with known variants. This might be an indication of 
high false positive rate of SAMtools even after variant filtration. 

In order to quality control the genotype calls, we genotyped two of the 
sequenced individuals with Illumina HD Canine SNP array comprising 174 
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037 markers. Our results showed that with the existing coverage we could 
achieve more than 90% genotype concordance for both the individuals. 
However, the majority of the mismatches observed in discordant genotypes 
(7%) were due to SNP positions where the individual had been called as 
homozygous for the reference type allele by UnifiedGenotyper, but 
heterozygous by the SNP array.  

We further evaluated how increase in coverage and number of prepared 
libraries from the same sample could potentially increase sufficient coverage of 
regions. We did a library merging simulation, and our results showed that 
when we combined two libraries, the proportion of coverage increased up to 
94.6% genome-wide and up to 90.8 % exome-wide in comparison to coverage 
obtained using a single library. The results showed that decrease in uncovered 
area and low covered area of genome would be the highest when sequencing 
two libraries per individual each on two chips, However, even after merging all 
four available libraries, there was still around 1% of genome and almost 3% of 
exome that remained uncovered. We found that most of the uncovered regions 
were overlapping repeat regions with high GC content which is one of the 
common problem in PCR-based sequencing platforms (Aird et al., 2011). After 
eliminating these most common lack of coverage issues there was still a small 
fraction left that has no obvious explanation and might be interesting from a 
biological point of view.  

3.3.3 Results and discussion Paper V 

Here we have developed a tool based on deviant read and read orientation 
named as “DevRO” to identify candidate structural variants putatively in 
multiple populations. We have used paired-end mapping (PEM) method for 
identification of inversions and both paired-end mapping method followed by 
depth of coverage (DoC) approach to screen for candidate deletions and 
duplications. DevRO can detect SVs in multiple populations without doing 
pairwise comparisons and using combined approach (PEM and DoC) that gives 
power to the study as compared to traditional methods that are based either on 
PEM or DoC. DevRO is also able to detect deletions in the reference assembly, 
which is an added functionality as compared to the available methods.  

DevRO was implemented in perl, v5.10.0 and needs as an input raw binary 
alignment mapping files (BAM) from NGS technologies (paired end or mate 
pair data). There are three main modules of DevRO; 1) VariantCaller 2) 
VariantParser and 3) VariantAnnotate. 

DevRO Variantcaller was used to call the raw variants on multiple 
populations. Here we scanned whole genome for PEM signatures in windows 
of 1 kb. For each locus we stored the information of deviant reads in each 
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population. This information was further processed at the VariantParser to 
calculate the fraction of deviant reads in two groups in order to find SVs with 
significant frequency differences between the two groups (as test case we used 
data from domestic and wild Rabbits). We further used VariantAnnotate to 
score the variants using DoC for deletion and duplications, gene annotations. 

As a test case we have used Rabbit mate pair  (MP) data (3x coverage, and 
4.5 kb insert) generated from two wild and two domestic rabbits for PEM 
analysis and Rabbit paired-end sequencing data from pooled samples of wild 
and domestic rabbit populations with 10x coverage/population (Carneiro et al., 
2014; Paper II). The reads were preprocessed and aligned to the rabbit 
reference genome sequence (OryCun2.0) using BWA. 

To check for concordance we used SVDetect (Zeitouni et al., 2010) which 
is an already available method using both PEM and DoC information for 
detecting the SVs in multiple populations, Our results showed that number of 
inversions detected was 90 and 411 for SVDetect and DevRO, respectively, 
with 80 overlapping inversions using reciprocal fraction overlap of 0.7. One 
possible reason for detection of less number of inversions using SVDetect was 
the pairwise comparisons that are done between domestic and wild 
populations. The CNVs overlap between SVDetect and DevRO was 500 and 
391 for deletions and duplications, respectively. 
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4 General Discussion and Future 
Prospects 

 
Paper I and II have described some of the phenotypic changes that have 

occurred during the domestication process. Paper I highlights the changes in 
the body length and number of vertebrae in domestic pigs as compared to wild 
ancestors. This is very logical due to the strong selection in domestic pigs for 
meat production. Paper II sheds light on many genes affecting brain and 
neuronal development in domestic rabbits that have been under strong 
selection clearly showing that behavioral changes during the initial steps in 
animal domestication have allowed the domestic animals to live in the human 
environment. There are some main differences between the two studies that 
were of advantage. In rabbits the fairly recent history (~1400 years) and 
availability and well-defined origin of wild ancestors provides unique 
opportunity to study the domestication processes that allowed the animals to 
tolerate the human pressures as compared to pigs (10,000 years).  

One of the complexities that arise in domestic animals, when we have a 
reference assembly from the domestic individual, and which makes it difficult 
to identify events like fixed deletions in domestic animals, is that we do not 
have the complete sequence for wild individuals. This could possibly be 
improved by making a second genome assembly available for a wild ancestor 
of each domestic animal. Better gene models are very important in functional 
annotation of the variants, as the Broad annotations are now being available for 
most of the species, with support from RNAseq data, it will be useful to adopt 
available softwares for these annotations which will enable better predictions 
of functions as compared to Ensembl annotations with many erroneous gene 
models. 

In paper I and II we identified few candidate causative mutations using 
SIFT and Polyphen-2 softwares. These software predicts, if the amino acid 
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substitution affect the protein function, by sorting the candidates into benign or 
possibly damaging or probably damaging categories. One of the candidate 
identified was KDM6B (lysine-specific demethylase 6B) in rabbits and 
hexokinase 2 (HK2) in pigs that showed marked allele frequency difference 
between domestic and wild rabbits and pigs, respectively. In future, the 
functional effect of missense SNPs specially those overlapping the selective 
sweep regions could be studied using cell culture methods by overexpressing 
the genes with the mutation and study the functional consequences. 

Paper III shows the complexity of disease when dealing with a common 
disease where both environmental factors and several risk loci could 
potentially be involved in disease association and development. Our 
preliminary results show lack of significant association at the candidate loci in 
all of our analysis for the demodicosis disease. We believe, this could be due to 
several factors that could influence our results. Here are some of the possible 
reasons; (i) The lack of significant association in many GWAS of complex 
traits may be due to the Fisher’s infinitesimal model that assumes a very large 
number of loci with each of them having small effects. (ii) We believe that the 
Bonferroni threshold using the number of SNPs, is a too conservative approach 
since many of the SNPs are linked to at least one neighbouring SNP and are 
not independent. An alternative to this approach in future for the current study 
would be to use permutation test using random sampling of phenotypes 
(Karlsson et al., 2013). (iii) Population stratification is another factor that 
might contribute to the identification of false positives. We observed inflation 
factor λ >=1.4, this was explained by the non-homogeneous distribution of 
cases and controls in subpopulations identified using Kmeans clustering. This 
might have contributed to the population substructures. The association 
analysis for each of the subpopulations would be of particular interest to see if 
there is significant difference between the subpopulations for the prevalence of 
disease. (iv) Small mutation effect size could possibly be improved by 
increasing the number of subjects. (v) Density of informative markers, the 
degree of LD and the number of genotyped markers are some of the factors 
that might affect the results from GWAS. However, increasing the number of 
subjects if the mutation effect size is small could control several of these 
factors.  

In the future, another interesting scenario would be to perform whole 
genome resequencing of few generalized cases and few controls at a higher 
depth. In order to focus on the associated regions obtained from GWAS results.  

Currently, in this study we have used Staffordshire Bull Terriers (odds ratio 
for the demodicosis is 17.1). It would be interesting to add more samples from 
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other high-risk breeds like American Staffordshire bull terrier (odds ratio for 
disease is 35.6) and Chinese shar-pei (7.2) (Plant et al., 2011).   

As the NGS technologies are becoming more and more common with low 
costs and less time for sequencing, in the future one could perform whole 
genome resequencing of a few cases and controls if only a few cases are 
available if one can assume a monogenic origin of the disease.  

For detection of SNV and SV there is already a large number of online and 
standalone bioinformatics tools available (Paper IV and V). In the future, these 
tools could be further improved to make them species and platform 
independent. In Paper V we developed a tool DevRO for detection of structural 
variations using mate pair and paired-end sequencing data in multiple 
populations. DevRO uses combination of available methods (PEM and DoC) 
and predicts the SVs with significant frequency differences between the two 
groups. It also provides a unique feature for detecting deletions present in the 
reference assembly. Such deletions may be due to assembly errors or because 
the individual used for the assembly carry one or more deletions. In future, the 
precise detection of breakpoints using base quality of deviant reads and 
supplement to some routines with the de novo assembly might improve its 
prediction. A better visualization tool (user interface) for SV could be one 
option to improve DevRO and many other available tools.  
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5 Conclusion 
The results of this thesis highlight some of the candidate causative mutations 
using bioinformatics pipelines, NGS and GWAS data. The main conclusions 
were as follows: 
 

 Highlights phenotypic changes during domestication, by revealing sweeps 
in NR6A1, LCORL and PLAG1 genes that underlie a major QTL for body 
length and increased number of vertebrae in domestic pigs. It also sheds 
light on the understanding of how alleles in domestic animals evolve by 
accumulation of multiple causative mutations.  
 

 Gene inactivation has not contributed to the rapid evolution of domestic 
pigs and rabbits. Most of the derived mutations are regulatory influencing 
gene expression. 
 

 Genes affecting brain and neuronal development (like SOX2 and GRIK2) 
have often been targeted during domestication. We proposed that “single 
domestication genes” may not exist, and that tameness evolved by shifts in 
allele frequencies at many loci, rather than by critical changes at only a few 
‘domestication loci’. 
 

 Genome-wide association mapping identified preliminary associated 
regions on CFA17, 18, 28 and 29 containing several interesting candidate 
genes that may increase knowledge about risk factors contributing to 
juvenile-onset demodicosis disease in Staffordshire Bull Terriers. As an 
example, the REG3A and FGFR2l genes are of particular interest.  
 

 The thesis also highlights some opportunities and pitfalls of Ion Proton™ 
Platform in whole genome re-sequencing of the dog genome. An alternative 
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approach for genome-wide association studies when monogenic diseases 
with autosomal recessive inheritance are investigated and small sample 
sizes are available. 
 

 The bioinformatics pipeline “DevRO” for detection of structural variants 
(deletions, duplications, inversions and deletions in the reference genome) 
will be useful when large numbers of populations are re-sequenced as 
compared to traditional methods for detection of structural variants in a 
pairwise manner. 
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