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Characterisation of Wood-Fibre–Based Materials using Image Ana-
lysis

Abstract
Wood fibres are the main constituent of paper and are also used to alter properties
of plastics in wood-fibre–based composite materials. The manufacturing of these
materials involves numerous parameters that determine the quality of the prod-
ucts. The link between the manufacturing parameters and the final products can
often be found in properties of the microstructure, which calls for advanced char-
acterisation methods of the materials.

Computerised image analysis is the discipline of using computers to automati-
cally extract information from digital images. Computerised image analysis can be
used to create automated methods suitable for the analysis of large data volumes.
Inherently these methods give reproducible results and are not biased by individual
analysts.

In this thesis, three-dimensional X-ray computed tomography (CT) at microme-
tre resolution is used to image paper and composites. Image analysis methods are
developed to characterise properties of individual fibres, properties of fibre–fibre
bonds, and properties of the whole fibre networks based on these CT images.

The main contributions of this thesis is the development of new automated
image-analysis methods for characterisation of wood-fibre–based materials. This
include the areas of fibre–fibre contacts and the free–fibre lengths. A method for
reduction of phase contrast in mixed mode CT images is presented. This method
retrieves absorption from images with both absorption and phase contrast. Curva-
ture calculations in volumetric images are discussed and a new method is proposed
that is suitable for three-dimensional images of materials with wood fibres, where
the surfaces of the objects are close together.

Keywords: image analysis, wood fibres, paper, wood-fibre–based composites, micro-
computed tomography, curvature, phase contrast, microstructure
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Notation and abbreviations
a, b , c lower case for scalars
a,b,c bold face for row vectors

A,B ,C upper case for matrices and sets

A⊗B Cartesian product
〈a,b〉 scalar product
a×b cross product
||a||N LN -norm of a
||a|| short for ||a||2

aT ,AT vector and matrix transpose
a∗,A∗ vector and matrix conjugate transpose
∠a angle of a

TrA trace of A
|a| absolute value of a
|M | determinant of M

A∪B union of set A and B
A∩B intersection of set A and B
; the empty set

f ∗ g N-dimensional convolution of f by g
F{ f } the Fourier transform of f
O (p) complexity, Ordo p

Z the set of integers
R the set of real numbers
1 the unit matrix

CT X-ray Computed Tomography
FFT Fast Fourier Transform
FST Fourier Slice Theorem
FBP Filtered Back Projection
KDE Kernel Density Estimator
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1 Introduction

The use of wood precedes most technology ever developed. Nowadays
wood is not only a source of energy and a construction material, wood
is also the primary source of fibres for paper making. Wood fibres are also
used to reinforce plastics in wood-fibre–plastic composites. This thesis fo-
cusses on these two applications: paper, and wood-fibre–based composite
materials.

The cultural impact of paper is vast and the use of paper has in a long
time been linked to economic growth. Since the Fourdrinier machine was
invented in the 19th century, most paper is made from wood fibres. Paper
is not just one material. There is an overwhelming number of formats and
qualities, ranging from toilet paper to glossy photo paper. Much of the
difference between these products can be found in the microstructure and
be characterised in terms of geometrical properties of fibres and in the way
that fibres organise in the paper sheets.

The motivation for the work presented in this thesis is to develop au-
tomated methods for characterisation of wood–fibre-based materials using
three-dimensional images calculated from X-ray projections. For most of
the methods that are presented, images with a resolution around 1 µm has
been used. At this resolution, individual fibres can be seen and much of the
individual fibre structure is revealed, including the hollow interior, lumen,
when it is not collapsed. Knowledge about overall configuration of wood
fibres can also be gained at this resolution since the images can have a side
length of up to 4 mm.

Information about fibres and their organisation can be used to give in-
sight about paper, composites and other wood-fibre based materials. This
thesis provides methods that extract information from paper and compos-
ites and with this information, mechanical models can be refined and man-
ufacturing techniques diagnosed and optimised. Hopefully, a whole array
of new ideas can spark off this thesis.

1.1 Summary of the chapters

Chapter 2 describes which properties of wood-fibre–based materials that
can be measured from CT images, using automatic and semi-automatic meth-
ods. This chapter constitutes the core of the thesis and motivates the other
chapters in the thesis as well as all the included publications.

Chapter 3 reviews the basis concepts of digital image analysis used in
this thesis.

Chapter 4 contains a brief review of electromagnetic waves and a dis-
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cussion on the relation between the imaged object and the digital image.
Then the main concepts X-ray computed tomography is introduced, which
are the Fourier Slice Theorem and the Filtered Back Projection. Last, phase
contrast is introduced and discussed in the context of absorption retrieval.

Chapter 5 reviews how local orientation in digital images can be esti-
mated. It also contains a discussion on how orientation can be averaged
over small regions. In particular, histograms, the structure tensor and ker-
nel density estimators are mentioned.

Chapter 6 starts from curvature of a line and then introduces curvature
concepts related to two-dimensional surfaces that can be found in three-
dimensional space. Focus is on curvature estimation for surfaces that are
sampled in volumetric images.

Chapter 7 is about minimal cuts that can be calculated from maximal
flows. Minimal cuts are formulated both for graphs and for continuous
domains and it is discussed how they can be used for image segmentation.

Chapter 8 contains a list of the included papers together with details on
each authors’s contributions.

Chapter 9 contains the conclusions that can be drawn from the work
in this thesis and the related publications. The chapter also contains some
ideas on how this work can be continued and extended.

The appendices contain details on specific issues that did not fit into the
chapters. Appendix A shows how to find parameters for the absorption
retrieval filter, Chapter 4, from image features. In Appendix B, the series
expansions for the kernel density estimators on circles and spheres, which
are used in Chapter 5, are discussed. In Appendix C I discuss how and why
Jacobi’s method should be used to find the eigenvalues and eigenvectors of
the structure tensor, (relates to Chapters 5 and 6).
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2 Characterisation of fibrous materials

In this chapter it will be discussed how to measure properties of materi-
als that contain wood fibres from CT images. More precisely, paper and
composite materials where fibres are mixed with a plastic material will be
discussed.

Paper is a material with a surprisingly complex structure. It consists of a
network of fibres, mostly from wood, which are to a large extent randomly
distributed. Properties of both individual fibres and the fibre network are
important to the final products. There are many parameters involved in
paper making. Some alter the overall fibre organisation while others change
properties of individual fibres. Most paper is made from softwood species,
and especially spruce. In the pulping stage, solid wood is decomposed into
its fibres. The fibres are later deposed, dispersed and dried before they can be
recognised as paper. Each of these steps has its own set of parameters, and
the production is even more complicated since fillers and coatings can be
applied as well. For optimization of yield and quality it is essential to know
how the manufacturing parameters affect the end product, and especially
why.

Three-dimensional CT images of wood-fibre–based materials can be used
to characterise both individual fibres and the fibre network. The first study
of paper using these premises was done by E. J. Samuelsen et. al in 1999
[94]. CT has, since then, become more accessible, as discussed in Chapter
4, and is nowadays commonly used in paper characterisation labs.

There are other imaging techniques, besides CT, which are used to study
fibre-based materials in situ. They involve light microscopy and scanning
electron microscopy (SEM) [27]. Fibres can also be studied ex situ. For
example, wood fibres can be dissolved in fluid and imaged as they pass a
thin tube in front of a microscope [60].

It is possible to make three-dimensional volumetric images of paper by
cutting paper sheets with a microtome and then imaging the slices with
scanning electron microscopy (SEM). The images of the slices are then dig-
itally assembled to a volumetric image. This was first done in 2002 [3] and
has since then been used again in a few studies [125]. CT imaging is very
time efficient compared to that procedure. The resolution in the images
cannot match that of SEM, however, the CT images are not distorted by
cutting. A comparison between imaging modalities can be found in [7].

Segmentation of wood fibre has much in common with segmentation
of blood vessels [72] and techniques designed for segmentation of arteries
have with some success been applied to wood fibres [3]. Both wood fibres
and blood vessels are hollow in a natural state and have varying diameters.
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Nevertheless, methods designed for blood vessels are likely to fail for many
wood fibres since blood vessels have a more regular structure and wood
fibres that have gone through the manufacturing steps involved to make
paper or wood-fibre–plastic composites.

This chapter contains a review of available image analysis algorithms
for characterisation of wood-fibre–based materials such as paper and com-
posites of plastics and wood fibres. My contributions to this research area
can be found in Papers IV, V, VI, VIII and, indirectly, in Paper IX, where
possible uses of helical-CT for wood analysis are developed. The chapter
begins with a section that describes wood and wood fibres. After that fol-
lows a classify of the approaches used to characterise fibrous materials from
CT images. Lastly, a few specific issues of imaging and characterisation are
discussed.

2.1 Wood fibres

The world production of paper was about 400 000 000 tonnes in 2012 [44],
which makes it an important trade product. Most paper is made from wood
fibres but also other plant fibres can be used including cotton, bamboo and
oil palm.

Wood fibres are cells in tree trunks and consist of cellulose (40–44%),
hemicellulose (15–32%) and lignin (18–35%). In softwood species, which
are most important for paper making, most of the volume is filled with
longitudinal tracheids. They are slender cells with an aspect ratio of about
1 to 100. The average diameter is 25–45 µm, and the average length 3–4
mm, see Fig. 1. The tracheids are hollow, and the inside is called lumen.
The cell walls have pits with thin membranes that connects them to the
neighbouring cells.

The growth rate of trees, and tree cells, follows the cycle of the year.
Since wood grows in the cambium, just below the bark, this give rise to
annual rings, which can be used for dating, or dendrochronology. In Paper
IX, we have investigated how densiometric profiling can benefit from helical
X-ray CT. We found that it can avoid biases inherent in two–dimensional
conventional imaging and it also requires less sample preparation.

To make paper from wood involves several processing steps. First of
all, the wood has to be converted to pulp, i.e., be fiberised, which is usually
done by the sulfate (Kraft) or sulphite process. The pulp is then washed to
remove impurities, and possibly bleached. To get strong bondings between
the fibres, it is beneficial if they are flattened and have a rough surface. These
properties are gained by beating and refinement. Lastly, the pulp is formed
into a sheet by deposition onto a screen before it is finally dried by pressing
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Figure 1: Microscopy image of wood cells from a cross section of pine (a
blue filter was used). Normal cells have a diameter of 25–45 µm. [image by
Bettina Selig]

and heating. For a more detailed description, see [58]. See also Fig. 2–a for
a tomogram of a paper.

Wood fibres can also be used to alter properties of polymers. When
wood fibres are mixed into plastic they make a composite material, see Fig. 2–
b. Composite materials can be made stronger and lighter than pure plastics
while also containing a larger portion of renewable material. The main
downside of using wood fibres in plastics is an increased sensitivity to mois-
ture. Uneven mixing of wood fibres is also a potential problem. In paper
VII, we have investigated how defects in terms of clusters of wood fibres
alters the strength of composites.

The processing steps, when making composite materials and paper, change
the shape of wood fibres, which makes subsequent analysis hard. Lumen
collapse and the pith membranes break. Fibres also break, flatten and de-
form into shapes that are hard to describe in words.

2.2 Approaches

When all individual fibres in a CT image of a paper or a composite are iden-
tified, most measurements are readily available. Unfortunately, it is not so
easy to separate the fibres. An ultimate goal of fibre and fibre network char-
acterisation from CT images could be stated as Find and label all individual
fibres. The modality itself makes this an unreachable goal. CT images are
records of X-ray absorption and hence it is not possible to see were one fi-
bre ends and another begins when they are bonded. Neither is it possible

15



(a)

(b)

Figure 2: a) A tomogram of a sheet of paper, slightly tilted. [image by
Joanna Hornatowska, Innventia, Stockholm] b) A tomogram of a compos-
ite material. [captured at the Swiss Light Source (SLS) at the Paul Scherrer
Institut (PSI)]
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to identify fines (split fibres or small cells), which adheres to fibres, based
on absorption solely. The resolution is simply too low and there is no dif-
ference in absorption between two fibres that are pressed together and two
fibres that bond.

The interest in these characterisation problems has resulted in several
theses [3, 7, 37, 106] and a growing number of publications. I’ve attempted
to classify their goals (implicitly or explicitly stated) and have come up with
the following categories:

1. Concentrate on overall properties: Overall properties that do not de-
pend on labelled fibres include the distribution of pores (the pore
network), measurements of individual pores [100], density, and ori-
entation [6]. Also surface location falls under this label; it is a prereq-
uisite for calculating density, see Fig. 3 for an example. In paper VIII
we have estimated the orientation of wood fibres in paper sheets, to
validate a novel theoretical model for light scattering in fibrous mate-
rials.

2. Find as many fibres as possible: All methods that start out with this
goal seem to miss a fraction (large or small). This is, or is not, impor-
tant for the following analysis depending on what is of interest. Work
with such starting point include [56, 61]. I would also like to add ref-
erence [113] under this label. It presents, what looks like, a complete
segmentation but not enough details are given for a reproduction of
the results.

3. Find the extension of seeded fibres: This approach is also known as
tracking. Starting from some location of a fibre such methods aim
to find the rest of the fibre. Most attempts use two-dimensional cross
sections [8, 38] but there is at least one approach that is fully three-
dimensional [5].

4. Measure properties of already segmented fibres: This an expedient prob-
lem since the hardest task is assumed solved. But it is of course vital
that such methods are available, developed and ready for segmented
fibres [30, 81, 105].

5. Measure properties from coarsely segmented fibres: This us our approach
described in Paper VI. Fully automatic segmentation seems unreach-
able and manual segmentation too time consuming. This approach
is based on a coarse but fast manual segmentation and then employs
automatic measurements.
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6. Separate coarsely segmented fibres: The underlying assumption is that
it is easier to find some approximations to the segmentation problem
first and later refine the segmentation. Lumen has e.g., been used as
a clue to where fibres are. This can never give a complete segmenta-
tion of fibres since the lumen do not remain in all fibres in paper and
composites. There are methods designed for 2-D cross sections [4] as
well as 3-D images [119, 120].

7. Manual measurements from images: Except for being time consuming,
error prone and non-repetitive, this approach makes a good use of the
human brain. Such an approach is used, e.g., in [87] where corners
of quadrilaterals are marked manually and the quadrilaterals are used
to approximate fibre bond areas.

8. Evaluation and simulations. A few papers focus on questions like:
How precise are the methods? Within what ranges should we expect
this parameter? How will noise effect this approach? and so on. A
little more will be said about that in section 2.4.

2.3 Acquisition and pre-processing

The goal of X-ray imaging and pre-processing is to get a faithful record of
the X-ray absorption within the sample. This representation, or volumet-
ric image, should be sampled according to the Nyquist rate to make use of
sub-pixel precision. It is however common that binary images are used in-
stead. This might be because some algorithm in the processing chain is only
defined for binary input or output.

If CT images are acquired in absorption mode, i.e., if the detector has
been close to the sample, relatively little preprocessing has to be done. If the
image is noisy, it has to filtered, for example with a low pass filter, which
is the most general approach. However, filters that make use of homogene-
ity have been found to be better alternatives [46, 73], including bilateral
filtering [108].

If the image is acquired in mixed mode, i.e., if both absorption and phase
contrast is present, there are more pre-processing alternatives. To get a well
sampled image of the absorption, the phase contrast can be removed with
the technique of Paper I, but it can also be done prior to reconstruction
[15].

If the image is purely in phase contrast, conclusions about absorption
have to be drawn based on the interface bands or fringes. For wood fibres,
such procedure has been employed by C. Antoine et al. [1], but the best
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alternative is likely to be the approach by Malmberg et al. [85]. No com-
parison has been done between these two methods but the former processes
the image line by line while the later is fully 3-D.

2.4 Validation and simulations

There is no reference data set for wood fibre segmentation. Hence, there
is no good way to compare the performance of characterisation methods
against each other. There are several reasons why no such data set is avail-
able. 1) Someone has to create a ground truth segmentation, and that means
manual segmentation, which is very time consuming. 2) Fibres are differ-
ent; they are processed in different ways and the manufactured materials are
also different. 3) There are several pre-processing options and also different
imaging modalities.

Reason number (2) and (3) above implies that more than one reference
data set is required to cover all situations, but even just one would have
been very useful. We have simulated individual wood fibres with varied
morphology, including pores, to generate reference images in Paper IV, and
also packed them together. We have also studied some of the common arte-
facts, which are inherent to micro-meter–resolution CT imaging in Paper
IV, and can include them in simulations of CT images of wood-fibre based
materials. There are also other approaches to fibre network simulations,
using solid tubes [114] and based on theoretical predictions [47].

2.5 Area of fibre-fibre bonds

Paper is held together where fibres are bonded, and these bonds cannot be
seen in CT images. Based on CT images it is however possible to measure
the area of contact, not knowing if it is bonded or not. Since the exact
contact interface cannot be imaged, some educated guess has to be done.

We have defined the area of contact between two fibres as the surface of
minimal area between them. Minimal surfaces are calculated by continuous
graph cuts as described in Chapter 7. This work was initialised in Paper
V and further developed in paper VI. The approach has since been used
to study the effect of polyallylamine hydrochloride absorption onto the
surface of unbleached kraft pulp fibres [86]. The method requires seeding,
more specifically the area of the seeds has to be larger than the bond area.
This condition can be verified after the bond area has been calculated.

There is another alternative for fibre-fibre areas assessments, based on
ray casting [84]. It is, however, not invariant to the orientation of the vol-
umetric image. A fully manual approach has been suggested in [87], where
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(a) (b)

Figure 3: Two paper sheets of about 1 × 1 mm. A morphological closing
with a spherical structuring element of radius 30 µm has been applied to
define the surfaces.

the fibre-fibre areas are found by marking out corner points of a quadrilat-
eral.

2.6 Surface area, thickness and volume of paper sheets

To define the surface of paper sheets is necessary prior to any calculations
of area, thickness and volume. This is somewhat problematic since surfaces
(and surface areas) are fractal. Accordingly, surface localisation depends on
the resolution used. The fractal properties of surfaces can usually be ne-
glected, e.g., according to ISO 216, an A0 sheet is defined to have an area of
1 m2. In this case, the area is the area spanned by the corners of the sheet,
and the surface is assumed to be perfectly flat. At a smaller scale, the surface
is hilly, or uneven, as seen in Fig. 3.

Since the area depends on scale, precise measurements can only be given
with reference to a scale. Using morphological closing, scale can be de-
fined with reference to the size of a rotationally invariant 3-D structuring
element.
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2.7 Pulp-to-paper shrinkage

Volumetric images of paper only cover small parts of sheets and hence the
distribution of fibre lengths measured from such images does not corre-
spond to the true distribution of fibre lengths in the full paper sheets. In
this section, we describe how the distribution of the full-length fibres can
be estimated.

The tool for fibre selection presented in Paper VI can be used to calcu-
late the fibre length distribution in paper samples, which we call LM . We
require that there is an estimation of the fibre length distribution prior to
paper making. Such distributions can be sampled from dissolved fibres, as
discussed earlier. We will denote this distribution LW . Then we simulate
how fibres are dispersed onto a sheet, as they are when used in paper pro-
duction. Then we measure the distribution of lengths within in a ROI of
this (virtual) sheet, which we callLS .

If fibres did not shrink in the paper making process,LM andLW would
be identical. But paper is dry, and pulp is wet, so we expect that LW (x) =
c1LM (c2x), where c1 is a normalisation parameter, c1 > 1, and c2 is a scale
parameter, c2 < 1. By simulating paper deposition, using a range of shrink-
age, it is possible to find the actual shrinkage from pulp to paper by compar-
ing length distributions. The simulations can be made even more realistic
by including the orientation distribution of the fibres, which can be found
by several methods, see Paper VIII.

The simulation tool in this section is not previously published and hence
this description is quite detailed.

Forward simulation

Fibres in the simulated sheet are represented by their end points, a and b.
To avoid biases, fibres will be measured only within a region of interest
that is placed in the middle of a larger sheet such that the padding is larger
then the maximal fibre length. The fibre length distribution used in the
simulations is denoted L , and is a scaled version LW . The distribution of
fibre directions is denoted T .

Fibres, represented by their end points a and b, are placed in the sheet
by the following procedure:

1. The fibre end point a is picked randomly within the sheet.

2. The direction θ is picked randomly in the interval [0,2π] or sampled
from T , if supplied.

3. The fibre length, l , is sampled from the measured fibre length distri-
bution,L .

21



A

B

C

D

(a)

a

b

c

d

e

(b)

Figure 4: a) The different cases of fibre placement relative to the ROI. b)
Illustration for the intersection algorithm.

4. The other end point b= a+ l (cos θ, sin θ).

To find out the length of each fibre within the ROI, three cases have to
be considered, which are illustrated in Fig. 4-a:

1. The fibre intersects with two of the edges. The length is then deter-
mined as the distance between the intersections.

2. The fibre intersects with one of the edges. Then the length is defined
as the distance between the intersection and the end point within the
ROI.

3. No intersections. This means that the fibre is completely inside or
outside the ROI and that no length is obtained or that the length
between the end points should be used.

A graphical representation of a simulation is shown in Fig. 5.

Intersections

If the lines in Fig. 4-b are represented by constant vectors, p, and a direction,
t, then the intersection between the lines numbered 1 and 2 are:

p0+ k0t0 = p1+ k1t1, (1)

or in vector form
�

t0x −t1x
t0y −t1y

�
�

k0
k1

�

=
�

p1x − p0x
p1y − p0y

�

, (2)
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Figure 5: Example of how the simulation results can be visualised, showing
the ROI as a box and fibres as transparent bars.

and the point of intersection, e, is given by e = p0 + k0t0. If k0 > 0 and
k0 < ||c − d ||, the line segments intersects.

Inside or outside

To determine if a point, a, is inside a shape S or not, the following procedure
can be used. First, find a point, b, which is not in S. This can be done by
simply taking a point far away from S. Then the number of intersections of
the line ab and S are calculated with the algorithm described above. If the
number of intersections is odd, the point a is inside S.

Results

Simulation results (i.e., measured lengths,LS ) are compared to actual mea-
surements from CT images, LM , as shown in Fig. 6. The simulations are
based on a distribution of fibre lengths, LW , that was measured from the
pulp prior to paper making. The ROI is 1×1 mm and the domain is planar.
The plots indicate that the length of the fibres in the CT image is about 50%
to 75% of the length in dry state.

It seems that a rather simple procedure can be used for the simulation of
paper networks to get estimates of length, or at least shrinkage. The length
distribution from the simulations has a higher proportion of short fibres
than what is measured in the CT images. We do not know the reasons for
this, but it is known that the measurements from pulp have a high variation
[60]. It is also possible that very short fibres are hard to see and select
manually and thatLM is biased.
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(a) 50% (b) 75%

(c) 100% (d) 125%

Figure 6: Simulations with different scaling of the input length distribu-
tion. 250 000 fibres were used in the simulations and about 8 500 that fell
into the ROI were measured. Pulp: length distribution measured on wet
fibres. Measured CT: Using the method of Paper VI.
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3 Digital Images

In popular culture, digital images can be infinitely enhanced and are be-
lieved to contain small sharp-cornered squares. This chapter takes a more
technical standpoint and introduces some of the fundamental image pro-
cessing methods that are used in the later chapters. There are several text-
books that reviews the basics of digital image processing and image analysis,
e.g., [50, 102].

A digital image, I is a mapping from a finite and metric lattice D , to
a finite, ordered and possibly multi-dimensional set, R. The lattice points
will be called pixels, which is short for picture elements. If we let Fk =
{0,1, ..., k} denote the set of positive integers up to k, and form Cartesian
product by Fααα = Fα1

⊗ Fα2
· · · , ααα = [α1,α2, · · ·] then the mapping can be

expressed as
I : Fααα → Fβββ. (3)

The mapping in Eq. 3 includes gray scale images where βββ = [k], k
typically 28 or 216, RGB images where βββ = [β1,β2,β3] as well as two-
dimensional (2-D) images where ααα = [α1,α2] and 3-D images where ααα =
[α1,α2,α3]. In this work, most of the images are three-dimensional (3-D)
and usually of the type where ααα= [1024,1024,1024] andβββ= [212].

The range of a digital image is discrete but it is common practice to
extend it, or embed it, in the space of real numbers to get a comfortable
ring structure [55]. This is then approximated by floating point numbers
in our computers, with several consequences, which can not be neglected,
especially cancellation effects [57].

It is common to extend the domain of the image from the lattice to a
line, surface or volume by interpolation, i.e., define I ∗(x) = d (I ,x) where
x = (x1, x2, ..., xn) ∈ Rn and d is an interpolation function. The choice
of interpolation function is important and will influence most calculations.
Some of the most common interpolation types are:

• nearest neighbour,

• linear interpolation,

• cubic interpolation,

• spline interpolation, and

• Lanczos interpolation.
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Digital images often contains samples of a continuous signal, S, and
therefore it is quite natural to embed the domain. A sampled image is de-
scribed by

I (x ∈D) = (S ∗ p) (x), S : R|ααα|→R|βββ|, (4)

where ∗ denotes convolution and p is the sampling kernel. An imaging sys-
tem can often be described by a certain p, which can often is approximated
by either:

• δ, the Dirac impulse functional in the point sampling model,

• [−.5, .5]|βββ|, a unit box in the partial coverage model [101], or,

• Gσ , a Gaussian kernel in the signal processing model.

We will only use isotropic Gaussian kernels, Gσ located at 0, given by

Gσ (x) =
�

σ
p

2π
�−k

exp

�

−1

2σ2
〈x,x〉

�

, (5)

where σ denotes the standard deviation and 〈·, ·〉 denotes the scalar product.
The sampling function is usually dictated by the imaging system, and an

appropriate interpolation function can be selected based on that function.
The point sampling model has the important property that S is exactly

representable by I when the Nyquist sampling theorem is satisfied. This
means that given the right choice of d ,

I ∗(x) = S(x), (6)

if and only if S is band-limited and D is dense enough. From now on, we
drop the star notation and write simply I instead of I ∗ since there will al-
ways be, at least potentially, an interpolation function available. As we will
see, the interpolation function has consequences for low level operations,
which in turn are important for high level analysis.

3.1 Derivatives

With the usual definition of the right side derivative dI/dx of a one-dimensional
function,

dI

dx
= lim

h→0

I (x + h)− I (x)

h
, (7)

and using nearest neighbour interpolation, we see that the expressions in
Eq. 7 are zero on all grid points, where x is an integer. When linear interpo-
lation is used between the grid points, the image can locally be described by
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f (x) = a0+ a1x on [0,1], with the derivative, f ′(0) = a1 = I (x + 1)− I (x)
while higher order derivatives are zero. This result is also obtained by
setting h, the denominator of Eq. 7, to 1. Using quadratic interpolation,
f (x) = a0+ a1x + a2x2 on [−1,1], and f ′(0) = a1 = .5( f (1)− f (−1)). This
result can be derived from the following linear equation system







f (−1)
f (0)
f (1)






=







1 −1 1
1 0 0
1 1 1













a0
a1
a2






, (8)

with the solution






a0
a1
a2






=







0 1 0
−1/2 0 1/2
1/2 −1 1/2













f (−1)
f (0)
f (1)






.

A consequence of this is that images have to be interpolated by polynomial
of order two or higher for second order derivatives to be non-zero. Also
more points are needed for higher order derivatives. These results are also
valid for images of higher dimensions.

Derivatives enhance noise, or high frequency components of the Fourier
spectra. Hence it is often beneficial to low pass filter digital images before or
after the derivatives are calculated. This can be done by, for instance, con-
volving the image with a Gaussian kernel to get a low pass filtered image,
Iσ , by

Iσ (I ,σ) =Gσ ∗ I . (9)

As a result, the derivatives can be calculated by

∂ Iσ
∂ x
=
∂

∂ x

�

Gσ ∗ I
�

=
∂ Gσ

∂ x
∗ I , (10)

which means that the derivative operation can be applied to the Gaussian
kernel rather than to the sampled image.

The value of σ must small, to keep the filter support small. On the
other hand, it can not be too small since then the Gaussian kernel will be
badly sampled. It has been argued that σ should be at least 0.9 [111]. To
calculate derivatives, Eq. 10 is only one of several options. However, this
option is, separable into one-dimensional filters, which makes it fast and
also rotationally invariant. It is also optimal for detecting step edges in noisy
images [26].
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3.2 Segmentation and measurements

To delineate certain objects in images is called segmentation and is one of
the fundamental tasks of image analysis. That which is not the objects of
interest is usually called background when there is no other, application
specific, name available.

Segmentation by thresholding can be used when the objects of interest
have a distinct intensity, higher or lower than the background. When the
objects are distinguished by a high intensity, they can be defined by

O = {x, I (x)> t}, (11)

where t is the threshold value. The set O can then be analysed in several
ways to produce measurements of the image. It is common to separate it
into subsets or components by discrete connectedness.

Many methods do not only classify individual grid points as object or
background but are able to draw smooth boundaries, which partially cover
individual pixels. These methods are said to have sub-pixel precision and
among them are, continuous graph cuts [2] and level sets [98].

Graph cuts are used for segmentation in Paper V and VI and will be
described in Chapter 7.

3.3 Scales and resolution

It is often desirable to simplify images and remove small details. This is nat-
ural when the resolution or detail level of the image is such that the smallest
detail that can be resolved is smaller than the smallest object of interest.

The resolution of a microscope is an example of the scale at which details
can be resolved. A Gaussian filter can be used to digitally simulate the effect
of a lower resolution microscope This demonstrated in Fig. 7 and much is
written about this approach in the literature [69, 74, 126].

Mathematical morphology can also be used for image simplification,
besides a large range of other applications. It relies on non-linear filtering of
mainly two types: erosions and dilations, which do as the names suggests –
erode and dilate digital objects. The filters can be realised in many ways and
tailored to specific applications; they can also be combined sequentially to
form openings and closings, which visually open up holes and remove small
details or vice versa [97].

3.4 The Discrete Fourier transform

The discrete Fourier transform (DFT) is a special case of the Fourier trans-
form [22] where the domain is finite and the signal is regarded as periodic.
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(a) (b) σ = 1 (c) σ = 3

Figure 7: A cross section of a wood fibre shown in (a). Low-pass filtered
with a Gaussian kernel determined by σ , according to Eq. 9, in (b) and (c).
This is just one out of many ways to alter the contents of an image.

The fast Fourier transform (FFT) is a clever method for calculating the DFT
components. It was first discovered by C. F. Gauss [59], but rediscovered
and made popular by J. W. Cooley and J. W. Tukey [32] who explained
how to implement it efficiently on a computer. For a one–dimensional im-
age with side length N , the cost to convolve with a filter with side length
M (M < N ) is O (M N ), if the convolution is performed directly. Using the
FFT, the cost is O (N logN ), which is cheaper, in terms of the number of op-
eration, for large M . For three-dimensional images, the direct convolution
cost is O (N 3M 3), which is reduced to O (N 3 logN ) using the FFT.

The fastest way to calculate linear filters is not always through the Fourier
transform. This is sometimes dictated by the desired boundary effects. Re-
cursive filters are preferential in some cases, see for example G. Farnebäck
and C.–F. Westin [43]. And sometimes direct convolutions are fastest, for
small M .
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4 X-ray computed tomography

Tomograms (ancient greek: tìmoc – tomos, "slice, section", grafw – graphō,
"to write") are two–dimensional images that depict the inside of matter and
can be computed from projection images of X-ray absorption; the term X-
ray computed tomography, or shortly CT, refers to this technique. Consec-
utive tomograms constitute volumetric images that map three-dimensional
coordinates to X-ray absorption. This technique is non-destructive but sam-
ples have to be small enough to fit in the field of view of the camera, and
usually have to be cut into small pieces for micro–metre resolution images.

Several inventions were crucial for the development of CT. Most of all
the discovery of X-rays by W. C. Röntgen in the 1890s. Then came the
development of the X-ray tube in the early 1900s, which creates radiation
without radioactive elements. Theoretical work on line integrals, including
an inversion formula was done by J. Radon in 1917 [92] and A. M. Cormack
developed the theoretical foundations of CT scanning in the 1960s [33, 34].
Another essential component is the development of integrated circuits and
the modern computer. Fast circuits are needed since CT is computationally
heavy. The first CT scanner was built by G. Hounsfield with medical uses
in mind, at Electric and Musical Industries Ltd (EMI) in the early 1970s. At
the time of writing, synchrotrons are the best X-ray sources; the quality of
their radiation makes it possible to create tomograms with sub-micrometre
resolution. Synchrotrons are enormous machines of which only a few exist
in the world. Table-top systems have appeared as an attractive alternative.
They can be bought from commercial manufacturers, are relatively small,
and can be operated by a single person. Nevertheless, X-ray beams in table-
top systems are less bright and have a much wider spectrum compared to
the beam of a synchrotron. Therefore, table-top systems produce lower
quality images, which makes subsequent image analysis more difficult.

Light propagation in matter is a complex phenomenon and analytic so-
lutions are only available for a few cases. For all other cases, Monte Carlo
methods [75] or simplifications are used. CT relies on the latter strategy and
employs a geometric view on optics. The inverse problem, where a tomo-
gram is created from projection data is usually called a tomographic recon-
struction. Most reconstructions are made with the filtered back projection
(FBP) algorithm and its spawns; which one depends on the geometry of the
source, object and detector. It has been shown that the mean square recon-
struction error for FBP is close to a theoretical minimal bound. The bond
was derived independently to the reconstruction method, which means that
no big improvements can be expected from any other method [65]. Nev-
ertheless, the image quality got better over time, which can be explained

31



Figure 8: The electromagnetic radiation in a vacuum. The light in X-ray
imaging is found between γ radiation and ultra violet. [© CC BY-SA 3.0 ]

by mainly three factors: The X-ray sources and detectors get better, which
lowers the noise levels, increases the resolution and possibly eliminates ring
artefacts. Second, we get better at the tomographic reconstructions, both
by incorporating information about the imaged objects, such as homogene-
ity, [104], and by better handling of incomplete and corrupted data, e.g.
compressive sensing has shown to outperform traditional reconstruction
techniques when the measurements are noisy and incomplete [28, 40]. Fi-
nally, more accurate physical models of the X-ray propagation are used.

The basics of X-ray imaging and computed tomography techniques will
be described in this chapter. Most of this material can also be found in
the references [18, 54, 65, 77]. This background is relevant to all included
papers, especially for Paper IV where we characterise and simulate noise in
synchrotron CT, and for Paper I where we retrieve absorption from CT
images with diffraction artefacts.

4.1 Geometric optics

X-rays are electromagnetic waves that principally behaves like ordinary vis-
ible light. However, the frequency is too high for human eyes to see, and
X-rays penetrate deeper into most materials than visible light (see Fig. 8 for
a comparison).

Visible light is commonly understood as travelling in straight paths.
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The straight-path model a good description when the wavelength is much
shorter than the size of imaged objects. Optical theory, in which light is
treated as straight lines is usually called geometrical optics. Equivalently,
light can be treated as small as small particles, in corpuscular theory [18].

The filtered back projection algorithm (FBP) is used for reconstruction
of parallel beam CT, and is the basis for other reconstruction algorithms
that correspond to other geometries, see Fig. 9. FBP takes projection images
as input and is used to calculate tomograms as well as volumetric images,
which can be seen as consecutive tomograms.

The FBP founded on geometrical optics where light is treated as straight
lines. To derive the FBP, we also need to know how these lines interact with
matter, which is described by the Beer–Lambert law, which again is a sim-
plification. No other physical laws are used and notably neither reflections
nor refraction.

The Beer–Lambert law states that when a ray that passes through some
material, with an attenuation coefficient, µ(x), along a straight path, p,
intensity the intensity changes from I0 to I by

I = I0 exp

 

−
∫

p
µ(x)

!

. (12)

The attenuation along p is found from Eq. 12 and is by
∫

p
µ(x) =− ln(I/I0). (13)

An average value along a path throughµ corresponds to a point ofF (µ)
since averages correspond to zero frequency. A straight X-ray that is sent
through an object will correspond to a single point and an array of straight
and parallel lines through an object gives a line in F (µ). This is also the
essence of the Fourier Slice Theorem (FST) [65] that says that the Fourier
transform of a one-dimensional projection of a two-dimensional function is
equivalent to a line of the Fourier transform of the two-dimensional func-
tion.

Since each projection image provides a line inF (µ), it can be populated
by multiple projections from different angles. When the object is rotated
and projected throughout 180 degrees by fine increments, the object is com-
pletely described, together with some interpolation. However, the sample
density is highest toward the centre of the Fourier domain so the samples
have to be weighed. To weight the samples according to the density and
then inversely transform them by the FFT, is the foundation of the FBP. In
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Object DetectorX-ray source

θ

(b)

Figure 9: Two possible geometries of CT machines are displayed by a few
X-ray paths from source to detector through a sample. a: Parallel beams.
b: Fan beam in two dimensions or a cross section of the three-dimensional
cone beam geometry.
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(a) (b)

Figure 10: Both amplitude and phase change when light traverses most
things but a vacuum. a: The amplitude is decreased according to the Beer–
Lambert law, when passing the object shown in grey. b: The phase is de-
layed; both delayed (solid line) and non delayed phase (dotted line) shown.

principle, this description is also valid for cone- and parallel beam CT if the
samples are re-arranged.

4.2 Physical optics and diffraction

Due to the model commonly used in CT, all variations in light are assumed
to be caused by absorption of X-rays; diffraction is not part of the model.
The wave nature of light has to be incorporated into the physical model of
the tomograph for a differentiation between these two phenomena. This
can be done by introducing phase into the calculations. In this section, we
will allow objects to both absorb intensity and change the phase of the light
that passes through; as illustrated in Fig. 10. We start the discussion with
what happens at an object, and directly after it. We proceed with how the
light field changes while it travels to the detector.

At the object

We assume that the sample is thin. It has to be thin since we will neglect any
scattering within the sample. An incoming, plane, coherent and monochro-
matic wave will be denoted U (x, y) where it meets the object. Then the
wave is transformed by the sample, which is described by a complex func-
tion S(x, y), to produce T (x, y) just after the sample. We write this as

T (x, y) = S(x, y)U (x, y), (14)

where S is a complex function S =M (x, y)P (x, y). It alters both amplitude,
by the real part M , and phase, by the complex part, P . M can be calculated
from the Beer–Lambert law as before. P can be calculated by integrating
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over the same paths, p. Without specifying the geometric conditions for
any specific configuration, it has the form

P (x, y) =
2π

λ
exp(iφ(x, y)), (15a)

where,

φ(x, y) =
∫

p
(1− n(x, y, z))d s , (15b)

and n is the refractive index of the sample.

At the detector

The next step is to decide how the wave changes as it leaves the object at the
so-called contact plane, and travels to the detector through air. Ultimately
we want to find the intensity that the detector perceives, it does not read the
phase.

The principle by C. Huygens, stated in the 17th century, says that, given
a wavefront, each point of the wavefront can be considered the source of a
spherical wave as illustrated in Fig. 11. This principle was put into equations
by A.–J. Fresnel and his formula was later slightly corrected when it was
derived from Maxwell’s equations by G. Kirchhoff [18].

The so-called Fresnel propagator can be derived from Kirchhoff’s results.
If we let the contact plane, located directly after the object, have z = 0, then
the intensity at the detector at z > 0 is given by

I (x, y, z > 0) = |hz ∗T |2, (16)

where

hz (x, y) =
exp(i k z)

iλz
exp
�

i
π

λz
(x2+ y2)

�

. (17)

Inevitably, z > 0, so the detector will register an intensity that has
changed in air, as described by the Fresnel propagator. To remove the phase
contrast effects, is the same as recover M (x, y) from I . We have simulated
how the detected intensity would vary at different distances z using Eq. 16,
shown in Fig. 12.

The last step before we have a suitable description that can be inverted
is to simplify the expression given by the Fresnel propagator. Such formulas
have been derived several times [23, 29] and the details will not be repeated
here. The simplifications involve truncation of series expansions, and also
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Figure 11: An illustration to Huygens’ principle. A wave enters a slit from
above. The propagation after passing the slit can be calculated from each
point of the slit, which is considered to emit a spherical wave. [Illustration:
A. Nordmann]

assume that φ(x, y) varies slowly. The resulting approximation for the im-
age at the detector, I , at a distance z is

I (x, y, z > 0)≈M (x, y)
�

1−
λz

2π
∇2φ(x, y)

�

. (18)

To retrieve the intensity at the contact plane where z = 0 is not di-
rectly achievable from here. Directly at the contact plane the irradiance is
independent of the phase shift and is given by Beer–Lambert’s law, hence
I (x, y, z = 0) is expected in conventional CT. If we add the assumption that
the phase change is proportional to the absorption we get

I (x, y, z > 0)≈M (x, y)
�

1− zk∇2M (x, y)
�

, (19)

where k is some constant. This equation is invertible. The last assumption
that we used is valid when the object consist of only one type of material.
This holds for paper that contain only air and wood fibres and also approx-
imately at the inside of composites that contain a plastic matrix and wood
fibres.

4.3 Absorption retrieval

For single image CT, phase retrieval can be done by inverting Eq. 19, but
there are other ways with different setups using images at different distances
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(a)

(b)

Figure 12: The intensity shown as a beam passes objects at distances (from
left to right): 0, 10, 50, 100, 200, 500, 1000, and 2000 mm. Black lines:
absorption at the contact plane. Gray lines: a: amplitude and phase changes.
b: only phase is delayed.
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or using gratings, see Ref. [16].
FBP commutes with the Laplace operator and most of the diffraction

fringes seen in micro-metre-resolution CT can be explained as an addition
of second order derivatives to the projection images. Hence, is should be
possible to remove the phase contribution or equivalently retrieve the ab-
sorption also in the CT images. These arguments were presented Paper I
where the main conclusions are:

• The processing is faster since the filtering does not have to be followed
by an FBP.

• The processing can be done for any region of interest, which saves
even more time and makes it possible to try many filter settings.

• The projection data does not have to be at hand, which saves storage.

• The quality is identical to state of the art methods, and can possibly
be even better since no low pass filtering has to be done simultaneous
to the absorption retrieval.

In [116] we have also explained how the parameters of this method can
be determined from the geometry of the imaged objects, summarised in
Appendix A. These results provide an objective and fast way to determine
the absorption retrieval parameters.

4.4 Image quality and artefacts

CT images of wood fibre composites and paper materials, which are ac-
quired at about 1 µm resolution, can be affected by several classes of degra-
dation. In Paper IV, we characterised and simulated the most typical ones
that we had found in synchrotron CT. They include:

• Blurring and smearing. This can be caused by motion of (or inside)
the sample. Motion can be caused by mechanical vibrations of the
stage and shrinkage due to drying during the scan.

• Reflection artefacts. X-ray scattering or reflecting inclusions can cause
star-like artefacts or shadows [95]. These are hard to get rid of with
a direct reconstruction algorithm, since they are non-linear, but can
sometimes be reduced by iterative methods.

• Ring artefacts. They appear as circles or half circles around the centre
of rotation in the tomograms. The causes are most likely defective or
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badly calibrated detector elements. There are methods to correct ring
artefacts before or after tomographic reconstructions.

• Fringes around edges. These appear as dark and bright bands at edges
that can not be explained by the X-ray absorption of the samples.
They are caused by refraction and can be removed prior to recon-
structions if the parameters of the tomograph are well known [23].

As shown Paper IV, most of these degradations can be modelled well.
That means that even if these artefacts can not be prevented, we can study
how automatic methods react to them.
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5 Directional data

A direction at a pixel in an image is a fundamental measurement and only
second to the actual pixel value in importance. Directions in digital images
can be given multiple meanings, in principle it could be any mapping from
the image to a vector field.

In this chapter, directions are calculated as gradients, but the represen-
tation methods work also for other definitions of directions. For scalar
images, the direction is a property that can be given to single pixels, but sev-
eral pixels are required to calculate it. Directions in N -dimensional images
will be described by unit length vectors inRN , i.e., for two-dimensional im-
ages as points on the circle S1 : {x, y; x2+ y2 = 1} and for three-dimensional
images as points on the sphere S2 : {x, y, z; x2+ y2+ z2 = 1}.

The smallest symmetric patch around a pixel in an image consist of the
pixel itself and the facing neighbours. For two-dimensional images that
gives five pixels, for three-dimensional images seven pixels, and so on. Such
patches are large enough for a rough direction estimation, which can be
obtained as the first order coefficients of a Taylor series expansion. Typi-
cally, larger patches are used to ensure rotational invariance, and that is a
consequence of the interpolation function as discussed in Chapter 3.

The local distribution of directions around a pixel is a texture property
and can be used to calculate higher order properties such as curvature. It can
also be used for tasks such as tracking and orientation space constructions.

This chapter is the basis for the following one on curvature, and is also
fundamental to Paper II and III. The techniques that will be presented are
also used in Paper VI, IX and VIII. The first section describes how to get the
local orientation at specific pixels in images, i.e., at the smallest scale. After
that follows a section that presents techniques for averaging orientations and
directions, i.e., that takes the discussion to larger regions. A closed form for
the coefficients of a kernel density estimator is derived in the accompanying
Appendix B; this is done both for directional data on the circle, S1 and on
the sphere S2. These series expansions allow for efficient computations.

5.1 Directions from images

Local gradients, rather than local pixel values, are used in many situations
to analyse image content. One reason is the invariance to absolute inten-
sity – gradients are invariant to constant additions to the image, that is
∇(I (x)+ c) =∇I (x), where c is a constant. Gradient directions are further-
more invariant to multiplications, i.e., ∠∇ (c1+ c2I ) (x) = ∠∇I (x), where
∠ denotes the angle to some arbitrary reference vector.
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We have used Gaussian derivatives to calculate direction vectors x j , j =
1...J , as motivated and introduced in Chapter 3. However, there are more
alternatives alternative. Quadrature filters have excellent properties, being
phase invariant and very compact [51, 52, 67, 68]. There is also the option
to calculate derivatives using morphological operations [97].

5.2 Representing directions and orientation

When directions are available at each pixel, we would like to find suitable
ways to summarise and visualise them for neighbourhoods, i.e., groups of
pixels. This problem is independent of the method that was used to obtain
the directions. The following properties are important:

1. Rotational invariance. To compare points from images that are ro-
tated differently.

2. Good localization of modes. I.e., localisation of maxima and minima
to distinguish fine rotations.

3. Averaging. An averaging method should be available, to reduce noise
and act as an interpolation function when only a few points are used,
e.g., for small neighbourhoods.

4. Computational efficiency. This is particularly important when the
method is applied to all pixels in an image.

Directional data is usually represented by histograms, for example in the
popular scale invariant feature transform (SIFT) by D. G. Lowe [78, 79].
Kernel density estimations (KDE) are not as common in the literature but
are an attractive alternative, especially for S2, as we will see. The structure
tensor is a symmetric representation, which can be seen as a special kind of
KDE, as will be demonstrated.

Histograms

To use histograms is more or less the default option when representing di-
rectional data – probably since they are simple to understand and imple-
ment. In histograms, N-dimensional directions are put into distinct bins,
b1, b2, ..., bB , each one corresponding to a part of SN−1 such that ∪bi = SN−1

and bi ∩ b j = ;, unless i = j .
If the range of the data is known, there is usually only one parameter to

choose: The number of bins, B , or, equivalently, the width of the bins. In
some situations, it can also be beneficial to have bins of varying width. In
relation to the list of properties above, we can say that:
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1. Histograms over S1 are in general not rotationally invariant, only for
angles that are integer multiples of 2π/B . For S2 the situation is even
less satisfactory since the surface can not be regularly divided in more
than five different ways, the Platonic solids [31]. There are also other
ways to divide the surface of the sphere that might be useful for his-
togram constructions [17, 41].

2. Extreme values are only found with precision±π/B on S1. However,
interpolation can be used to increase this in some situations [79].

3. Any discrete low pass filter can be used for S1, and the quality depends
on B .

4. The computational efficiency is best with small B . The properties
above do, on the other hand, benefit from large B so there is always a
compromise between these goals.

Kernel Density Estimators

The technique kernel density estimation (KDE) is common in statistics and
was introduced in the 1960s by E. Parzen [91]. It is used to estimate an
unknown, continuous distribution, based on samples from the distribution
which are weighed by a certain kernel.

A KDE of some distribution, K, is a linear combination of the samples
convolved with a weighting function w, according to:

K(x) =
J
∑

j=1

w(x − x j ), R→R. (20)

This estimate converges to the true distribution as the number of sam-
ples goes to infinity and the weighting function converges to the Dirac im-
pulse function. The estimate is also a good approximation in the case of
a finite number of samples, but then the weighting function needs a large
support, i.e., region where it is non-zero.

For this thesis, KDEs are used for S1 and S2. In Appendix B we find the
coefficients ck for the KDE K1 on S1 as

K1(θ) =
∞
∑

k=−∞
ck e i kθ, S1→R, (21)

and also the coefficients fl m for the KDE K2 on S2 as

K2(θ,φ) =
∞
∑

l=−∞

∑

|m|≤l

fl mYl m(θ,φ), S2→R, (22)
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where Yl m are the spherical harmonics. Efficient computations can be
achieved by truncating these series, which introduces smoothness. These
representations have the following properties:

1. K1 is rotationally invariant and can be rotated by simple formulas.
When the coefficients are calculated for K2, it can be rotated around
θ using simple formulas, but not around any other axis.

2. Modes can be located with numerical precision using steepest gradi-
ent descent or other optimisation methods.

3. Averaging can be understood through the diffusion equation [24].
The solution to the diffusion equation gives a one parameter formula,
which can be used to continuously change the KDE to its average.

4. The complexity is O (M J ) for K1 where M is the number of terms and
J the number of samples. For K2, it is O (J M 2). To find the coeffi-
cients also involves evaluation of trigonometric functions, which is
expensive if done naïvely [12].

The Structure Tensor

The structure tensor, Λ, sometimes called the second moment matrix [51,
74], is formed from J direction vectors, d j by

Λ=
J
∑

j=1

dT
j d j . (23)

The directions can also be weighted by scalars and the sum above may be
formulated as an integral over a neighbourhood in a digital image.
Λ can be seen as a mapping from SN ⊂ RN+1 to R in two ways. We let

x ∈ SN , θ = ∠x, then we define the following two functions (which give Λ
multiple meanings):

Λ(θ) = Λ(x) = xΛxT . (24)

Λ is symmetric and bimodal, the maxima being antipodal, which means
that Λ(θ) = Λ(θ+ nπ), n ∈ Z and that Λ(θ) has at most one distinct max-
ima in (0,π]. This makes Λ a coarse but robust orientation representation.
Other than that, it shares the properties of K1 except being very fast since
only (N + 1)N/2 coefficients are used. It might be interesting to know that
the structure tensor concept has been generalised [96] to encode multiple
antipodal modes.

Now we will show why Λ can be seen as a special KDE. We let d j be
vectors of S1 ∈ R2 and denote their angles, with respect to some reference
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direction, e, by θ j . Now, let these directional data be represented by a KDE
with weighting function, w(x) = cos2(x), then

K1(θ) =
J
∑

j=1

cos2(θ−θ j ). (25)

We can represent these directions using the structure tensor as well, then

Λ(d) = d







J
∑

j=1

dT
j d j






dT (26a)

=
J
∑

j=1

�

ddT
j d j d

T
�

(26b)

=
J
∑

j=1

�

ddT
j

�
�

d j d
T
�

(26c)

=
J
∑

j=1

cos2(θ−θ j ), (26d)

which shows that the representations K1 and Λ are equivalent.
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6 Surfaces and curvatures
.. the ratios between straight and curved lines are not known,
and I believe cannot be discovered by human minds ...

–Descartes

Differential geometry is the application of calculus to geometry. It pro-
vides fundamental concepts for understanding and describing surfaces, such
as mean and Gaussian curvature, geodesics and principal frames. The im-
portant classification of points on surfaces as convex, concave, flat or saddle
points also gets a precise meaning in terms of curvature by differential ge-
ometry. The field is relatively new, coordinates have only been used since
they were introduced in the seventeenth century by Descartes, and the de-
velopment of differential geometry could start only after the introduction
of calculus by Newton. The basic tools of differential geometry were de-
veloped in the eighteenth and nineteenth century by C. F. Gauss, J. B.
Meusnier, G. Monge and others.

A surface can often be described in many ways; it can be given by ex-
plicit formulas and implicit formulas and it may be sampled at a finite num-
ber of points. It can also be translated, rotated and scaled, which produce,
yet again, more possible descriptions of intrinsically the same object. In this
chapter we will see curvature properties that depend only on the shape of
objects and not on how they are represented. First, we will see how these
concepts applies to surfaces given by explicit formulas, and then for sampled
surfaces such as those found in CT images.

Curvature appeared in the digital image processing community in 1983
in a publication by R. Machuca and K. Philips, where curvature is calculated
for edges in 2-D gray scale images [82]. Nowadays curvature is used for a
wide range of applications, including level set propagation, visualization,
recognition and segmentation. Curvature properties are used not only for
digital images but also for meshes, the standard representation of digital
objects in computer graphics.

The standard method for curvature calculation of surfaces in 3-D volu-
metric images [66, 89, 107], is based on first and second order differentials
and is to a large extent a direct application of the formulas for parametric
surfaces. It is likely to be the best choice in most situations, at least when
objects are sampled according to the Nyquist rate, when they are not too
thin, and when individual objects are well separated from each other in the
images.

Our work in this area, which is found in Paper II and III, is motivated by
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volumetric images of fibre networks, in which the situation is far from op-
timal for the standard method. Fibre walls are thin, the material is densely
packed, and we are not interested in curvature of the smallest details, so ei-
ther the digital objects or the curvatures have to be averaged. Our method
can be seen as an extension of the work by B. Rieger et al. [93] and is some-
what related to the work by Y.–L. Yang [127] on meshes. In contrast to the
standard method, it has the following properties:

• No second order derivatives are used to find the principal curvature
directions; instead an integral formula is used. We will show that this
gives less disturbances due to noise.

• The structure tensor, not the gradient, is averaged, and therefore the
gradient is allowed to vanish completely at points of interest. This
means that curvature can be calculated for ridges, and not only for
edges.

• Averaging can be done in different ways. It shares Gaussian low pass
filtering of the image with the standard method, but there is the op-
tion to increase the integration region as well as to choose other meth-
ods to average the orientation representation, including non linear
filters.

The first two sections of this chapter summarises some of the classical
theory of curvature and is based on the book by E. Kreyzig [71]. Section 6.1
and 6.2 present the standard method for curvature calculation in volumetric
images and the last sections are devoted to our method.

6.1 Differential geometry of curves

To understand surface shape, we first need to understand how shape of
curves can be described in terms of curvature and torsion. Let c be a curve
in three-dimensional space, parameterised by t such that

c : t → (x, y, z), (27)

and, further, we let l (t ) be the arc length of the curve such that

l (t ) =
∫ t

0
||

dc(t )

dt
||dt . (28)

When the line is parameterised by l , we say that the curve is parameterised
by arc length or that it has a natural parameterisation. The derivative, t, of
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the curve with respect to the arc length,

t(l ) =
dc

dl
= ċ, (29)

is the unit length tangent vector at l . We have use arc length parameterisa-
tions of the contours of fibre cross sections in Paper V and of fibre centre
lines in Paper VI. From now on, derivatives with respect to l will be de-
noted with a dot as in Eq. 29. The tangent vector defines a one-dimensional
tangent space at each location, l , by

y(u) = c(l )+ ut(l ). (30)

The next object that is natural to introduce is the osculating (kissing) plane,
which contains both the tangent and the derivative of the tangent. The os-
culating plane can be described as the plane in which the curve lives. At a
point of interest, c(l ), it is formally defined as the z that satisfies the deter-
minant equation

|(z− c(l )) ċ(l ) c̈(l )|= 0. (31)

Curvature

The unit principal normal, p, is directed along the derivative of the normal

p(l ) =
ṫ(l )

||̇t(l )||
=

c̈(l )

||c̈(l )||
(32)

The curvature, c, of c at any location l is defined as the rate of change of the
tangent such that

|c(l )|= ||̇t||, or, |c(l )|= 〈̇t,p〉. (33)

Note that no sign is used in this definition of curvature since it is arbitrary
at the moment.

The reciprocal of the curvature, ρ, is given by

ρ(l ) =
1

c(l )
. (34)

Is called the radius of curvature since a circle of radius r has curvature |c|=
1/r everywhere.

Curvature of curves is used in Paper V to locate and close openings in
fibre walls. A discrete curvature estimator, with applications to wood fibres,
can be found in [30].
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Torsion

In a similar way as the change in the tangent vector along a curve gave rise
to the curvature, the change of the binormal, b,

b(l ) = t(l )×p(l ), (35)

gives rise to the torsion, τ, sometimes called the second curvature. It is
defined by the following relation

ḃ(l ) =−τp(l ) (36)

so,
τ(l ) =−〈p(l ), ḃ(l )〉. (37)

Torsion can be interpreted as rotation of the osculating plane and hence
a planar curve has zero torsion. A curve can be determined, up to position
and orientation, if c and τ are known by solving the Frenet-Serret formulas.
That means that knowing curvature and torsion, there is not very much
more to know about a curve. That implies that a curve can be described
without any reference to a specific coordinate system.

6.2 Differential geometry of surfaces

To derive expressions for curvatures of surfaces, we will use the definitions
that were introduced for curves. Let us begin with a surface, explicitly pa-
rameterised by

x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) (38)

and assume that the first derivatives

xu =
∂ x

∂ u
, xv =

∂ x

∂ v
, (39)

span a two-dimensional subspace, i.e., 〈xu ,xv〉 6= 0. Then the tangent plane
at x(u, v) can be described as

y(p, q) = x+ pxu + qxv , (40)

compare to Eq. 30. If there is an implicit representation of the surface avail-
able, G(x1, x2, x3) = 0, then the surface normal can be expressed as

�

∂ G

∂ x1
,
∂ G

∂ x2
,
∂ G

∂ x3

�

. (41)
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The first fundamental form

If we start with a surface like in Eq. 38, any curve in such surface can be
described by

u = u(s), v = v(s). (42)

The tangent to the curve on the surface, is readily found using the chain
rule

ẋ=
dx

ds
=
∂ x

du

du

ds
+
∂ x

dv

dv

ds
, (43)

which means that the element of arc, ds2, is

ds2 = 〈xudu + xvdv,xudu + xvdv〉, (44)

or
ds2 = 〈xu ,xu〉(du)2+ 2〈xu ,xv〉dudv + 〈xv ,xv〉(dv)2. (45)

When we introduce the notation

gαβ = 〈xα,xβ〉, α,β ∈ {u, v}, (46)

the element of arc is

ds2 = gu u (du)2+ 2guvdudv + gvv (dv)2. (47)

In vector notation it is

ds2 =
�

du dv
�

�

gu u guv
gv u gvv

��

du
dv

�

. (48)

The coefficients gαβ are the components of a tensor, which is called the first
fundamental form. We denote by G the matrix that contains the gαβ in the
equation above.

The second fundamental form

Once again, the starting point is a curve on a surface. At any point, the
surface and the curve can be related by

cosγ = 〈p,n〉, (49)

where n is the surface normal and p is the unit principal vector to the curve,
i.e.,

p(l ) = ẍ(l )/c, (50)

so
ccosγ = 〈ẍ,n〉. (51)
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We introduce the coefficients of the second fundamental form, bαβ as

bαβ = 〈xαβ,n〉, α,β ∈ {u, v}, (52)

and collect the coefficients in a matrix, B . By expand and simplify (see
Ref. [71] for a detailed derivation) the second order derivative, ẍ, of x with
respect to the arc length and using the facts that 〈xu ,n〉= 0, and 〈xu ,n〉= 0
we can arrive at a much more useful representation of Eq. 51 as the quotient
of the first and second fundamental forms:

ccosγ =
uT B u

uT Gu
. (53)

The normal curvature, cn is the curvature of the plane curve that live in
the plane spanned by n and the tangent of the curve itself. For those curves,
γ = 0 and

cn(l ) =
uT B u

uT Gu
, (54)

i.e., the curvature at c(l ) when t(l ) = (d u, d v).

Principal curvatures

The principal curvature directions, d1 and d2, are the eigenvectors to Eq. 54
and the corresponding eigenvalues c1 > c2 are the principal curvatures,
sometimes defined |c1|> |c2|.

Since |u|= 1 and detG 6= 0

cn

�

uT Gu
�

= uT B u, (55)

which converts into
cn u = BG−1u. (56)

Now, this appears as the promised eigenvalue problem, where the eigenval-
ues are the solutions cn to

det(BG−1−cn I ) = 0. (57)

The matrix BG−1 is sometimes called the Weingarten curvature matrix and
the eigenvalues c1 and c2 form the Gaussian curvature, G = c1c2 and the
mean curvature H = (c1+c2)/2.
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t̄

n̄= ḡ
C(s)

Figure 13: A curve, C along an isocontour of an image, where I = k.

First forms of a polynomial surface

To give a practical example of the calculations involved to get the coeffi-
cients of the first two fundamental forms, we do so for a polynomial surface.
We start with the surface

x(u, v) =
�

u, v,a+ b u + cv + d uv + e u2+ f v2
�

, (58)

At the point (0,0) the first order derivatives are

xu = (1,0, b ), xv = (0,1, c), (59)

since only derivatives of second order terms remain. The second order
derivatives are

xu u = (0,0,2e) , xuv = x21 = (0,0, d ) , xvv = (0,0,2 f ) , (60)

and in this case, only terms of order two remain. That gives the following
coefficients, using Eqs. 46 and 52:

g11 = 1+ b 2, g12 = b c , g22 = 1+ c2 (61)

n=
(−b ,−c , 1)
p

1+ b 2+ c2
(62)

b11 =
2e

b 2+ c2+ 1
, b12 =

d

b 2+ c2+ 1
, b22 =

2 f

b 2+ c2+ 1
. (63)

6.3 Curvature in digital images from differentials

We will now present the standard method for curvature calculations, as can
be found in the work by Monga et al. [88] and Thirion and Gourdon [107].

We start with a Taylor expansion of the image I at the point x

I (x+δ) = I (x)+ J (x)δ +δT H (x)δ +O (δ3), (64)
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where J is the Jacobian matrix and H is the Hessian matrix, which contain
derivatives of order one and two, respectively. Then, we assume that there
is a two-dimensional curve c(s) = (x(s), y(s)), and that it is parameterised
by arc length. We let it follow an iso-level of a function so that it can be
expressed as c = {(x, y)|I (x, y) = k}, where k is a constant (this situation is
illustrated in Fig. 13).

At the point p, on c, we have

dc

d s
= t, and,

d t

d s
= n, (65)

and assuming that the gradient is non-zero,

g=
�

∂ I

∂ x
,
∂ I

∂ y

�

. (66)

The gradient and the derivative of the tangent have the same direction but
are not necessarily of the same magnitude, i.e.,

g

||g||
=

n

||n||
. (67)

From Eq. 33 we know that curvature can be expressed as

c=−〈
dg

d s
, t̄〉/||g||. (68)

By applying the chain rule, , Eq. 68 is simplified to

c=−
t̄H t̄T

||g||
. (69)

To generalise this result for 3-D curves, we have to consider that there
are infinitely many lines through each point in the tangent plane, i.e., the
space orthogonal to the image gradient. The curvature expression corre-
sponding to Eq. 69 becomes

c(θ) =−
t̄(θ)H t̄T (θ)

||g||
. (70)

The subspace spanned by the gradient does not contain the principal
directions so we can restrict the search to the tangent space. If we deflate H
with the gradient direction we get,

G = (1− ḡT ḡ)H (1− ḡT ḡ), (71)
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and then
c1+c2 =TrG, and,

q

c21+c
2
2 = FrG, (72)

so the principal curvatures can be found as

c1,2 =
TrG±

Æ

2(FrG)2− (TrG)2

2
. (73)

6.4 Curvature from orientation fields

We have just seen the derivation of the standard method for calculation
of curvatures in digital images, which is based on differentials of first and
second order.

Parallel to this is a group of methods that use an orientation represen-
tation to calculate and average the normal direction. The first method that
can be attributed to this group is by Bårman et al., in 1989 [9].

Their approach is based on quadrature filters [51], which are used to
get the local orientation from the image. Then the so-called double angle
technique is used for representation and averaging of the local orientation.
The curvature estimator is finally described in the Fourier domain. The
approach is for curves in 2-D images and was later extended to 3-D images,
where the double angle representation is functionally replaced by the struc-
ture tensor [10, 11]. These first methods do not arrive at any closed form
for the curvatures, only expressions that relate to the curvatures. In 2004,
Rieger et al. were able to continue this work, and found explicit formulas
for the curvatures [93].

Our contributions, extending that of Rieger et al. are several. The most
important are:

• The bias is considerably lowered for high curvature points.

• The relation between the principal curvature directions and the struc-
ture tensor is elucidated.

• The signs of the curvatures are included.

• Alternatives to low pass filtering for averaging the tensor components
are proposed and show to be useful.

Details of our approach can be found in Paper II and III, but we will give
an extended discussion on the relation between the principal curvature di-
rections and the eigenvalues to the structure tensor here. For completeness,
we also show how the principal curvatures are calculated.
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Principal curvature directions

The principal curvature directions are the directions with extremal curva-
ture. It has been proposed that they can be found as the eigenvectors to the
structure tensor [93], and also as eigenvectors to a similar matrix [127] in
addition to being the eigenvectors to the Weingarten curvature matrix. In
this section, we will study this assumption and try to pinpoint how strong
this relation is.

We start with the surface of Eq. 58 and discard the higher order terms,
which do not affect the curvature calculations. Let’s call it

L′′(u, v) = w = a+ b u + cv + d uv + e u2+ f v2. (74)

It should be obvious that this surface can be translated so that the con-
stant a disappears. Then the resulting surface can be rotated, for example by
two Euler rotations so that the normal is parallel to the w-axis, removing b
and c .

Lemma: Given a second order surface patch of the form

z = L′(x, y) = c0x2+ 2c1xy + c2y2 (75)

there is a rotation around the z-axis such that

L(u, v) = w =Au2+Bv2, A≥ B . (76)

Proof: Write L′ in matrix form,

L′ = xC xT = (x, y)
�

c0 c1
c1 c2

��

x
y

�

. (77)

The coefficient matrix C , is normal, i.e., C T C =C C T . That means that it
can be diagonalised by

C = RT DR, (78)

where R is a rotation matrix and D is a diagonal matrix, which contains
the eigenvalues to M , according to the spectral theorem [99]. To ensure
that A ≥ B , the upper left element of D should be chosen as the largest
eigenvalue. �

Lemma: The principal curvature directions of L are (1,0,0) and (0,1,0) in
the (u, v, w) coordinate system. To get the corresponding directions in the
(x, y, z) coordinate system, we simply need to rotate around the z-axis by
R.
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Proof: Since g11 = g22 = 1, g12 = b12 = 0, b11 = e and b22 = f , the Wein-
garten curvature matrix is diagonal and the principal curvature directions
coincide with the coordinate axes. �

To establish a relationship between the parametric surface patch and the
volumetric objects that are found in digital images, we need to specify what
we mean by a "surface" in the digital images.

We say that I is a realisation of L when

I (u, v, w) =
�

0, L(u, v)> 0,
1, L(u, v)≤ 0.

(79)

From that follows that ∇I is proportional to Lu × Lv when (u, v, w) ∈
{(u, v, L(u, v)} and 0 otherwise.

Lemma: The eigenvectors of
∫

Bε

(∇I )T (∇I )dxdydz, (80)

where the region of integration Bε is an infinite cylinder around the w-axis
of radius, ε, are







1
0
0






,







0
1
0






and







0
0
1






, (81)

in the (u, v, w) coordinate system, i.e., the same as the principal curvature
directions for L.

Proof: With a change to polar coordinates using r =
p

u2+ v2, u = r cosθ,
v = r sinθ, and the notation, N = ∇I , T := N T N , ||N (r,θ)||=||N (r,θ+
π)|| and Eq. 80 can be expressed as

(∗) =
∫ ε

0

∫ 2π

0
T (r,θ)||N ||r dθdr

=
∫ ε

0

∫ π

0
[T (r,θ)+T (r,θ+π)]
︸ ︷︷ ︸

2Γ

||N (r,θ)||r dθdr, (82)

Using N (u, v) = (−2Au,−2Bv, 1) or N (r,θ) =
(−2Ar cosθ,−2B r sinθ, 1), we get

Γ=
�

M 0
0 1

�

, (83)
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where

M= (2r )2
�

A2 cos2θ AB cosθ sinθ
AB cosθ sinθ B2 sin2θ

�

. (84)

Eq. 82 essentially contains up to four non-zero integrals when integra-
tion is carried out with respect to θ:

α= 4A2 r 3
∫ π

0
cos2θ||N ||dθ, (85)

and

0= 4AB r 3
∫ π

0
cosθ sinθ||N ||dθ, (86)

since the integrand is anti-symmetric around θ=π/2. The last integrals are

β= 4B2 r 3
∫ π

0
sin2θ||N ||dθ, (87)

and

γ = 2r
∫ π

0
||N ||dθ. (88)

All together, this gives a concise expression for Eq. 82:

(∗) =
∫ ε

0







r 2α 0 0
0 r 2β 0
0 0 γ






r dr, (89)

where α > β as long as |A| > |B | and α < γ > β as long as the surface is
relatively flat. �

Eq. 89 shows that the eigenvectors corresponding to the two smallest
eigenvalues point out the principal curvature directions. But when the in-
tegration region is large, it might happen that the directions get mixed up.

The relationship above is only approximate for digital images due to
these reasons:

• We can seldom use small enough surfaces patches (filters) to only in-
clude variations of second order from the digitized surfaces.

• The images are always band limited and do not have the sharp discon-
tinuity of I defined in Eq. 79.

• The proof uses a cylindrical integration region, whereas it only makes
sense to use filters with spherical integration region for any situation
that I can think of.
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Since we have not established a theoretical relation that corresponds
completely to the way in which we integrate the structure tensor – using
Gaussian filters – we are obliged to test the relationship numerically.

We set up an experiment by realising second order polynomial patches
as volumetric images of 17× 17× 17 voxels. The patches have the form

z = αx2+βy2, (90)

so that we always know the correct principal curvature directions. Visu-
alisations of a few such surfaces can be seen in Fig. 14. The parameters α
and β were varied between −.2 and .2 at discrete steps as seen in Fig. 15.
All σs were set to 1 and the experiments were run five times to present the
average. Note that the case when |α| = |β| was not considered since the
principal curvature directions have no preferential direction for that case.

My conclusions from this experiment are that the structure tensor in-
deed points out the principal curvature directions, and that it is more ac-
curate in the presence of noise than the Hessian for finding the principal
curvature directions.

Principal curvatures

Rieger et. al calculate the principal curvature values by the following pro-
cedure. First they calculate the structure tensor, M , from the volumetric
image,

M = S ∗Gσ (x), (91)

where Gσ is a Gaussian kernel with a standard deviation of σ pixels. If we
denote the eigenvectors of M , largest first, by v1,v2,v3 then the absolute
values of the principal curvatures values c1 and c2 are found by

�

�

�c1,2

�

�

�=
1
p

2
||∇v2,3

M (v1)||F , (92)

were ||·||F denotes Frobenius norm and∇vM denotes the directional deriva-
tive of M .

To calculate principal curvature values from Eq. 92 will introduce even
more low pass filtering since Gaussian derivatives are used. This is con-
firmed by the relatively high bias of the method.

In Paper III we instead propose that the curvature values should be
found by calculating the derivative of the tensor field using interpolation
at an offset from the position of interest. We also introduce a correction
term, which cancel out the negative effects of a non-vanishing distance be-
tween the interpolation points.
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(a) α=−.1, β=−.1 (b) α= 0, β=−.1 (c) α= .1, β=−.1

(d) α=−.1, β= 0 (e) α= 0, β=−0 (f) α= 1, β=−0

(g) α=−.1, β= .1 (h) α= 0, β= .1 (i) α= .1, β= .1

Figure 14: Second order polynomial surfaces defines the top of solid ob-
jects; implemented using erf clipping [111] on the vertical distance from the
analytic surface location. Visualization by marching cubes on the volumet-
ric data. In Fig. (a)–(i), the shape of the polynomial surfaces are visualised
for a few parameter values.
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(a) Hessian, σN = 10−9 (b) Structure Tensor, σN = 10−9

(c) Hessian, σN = 10−6 (d) Structure Tensor, σN = 10−6

(e) Hessian, σN = 10−3 (f ) Structure Tensor, σN = 10−3

Figure 15: Error in the first principal curvature direction estimation de-
fined as 1−|〈t,p〉|, where t is the true direction and p is the estimated direc-
tion, are shown in Fig. (a)–(f). Axes in the figures show the parameters of
the quadratic surface, i.e., a and b in Eq. 90. To get an idea of how these sur-
faces look, I’ve plotted a few in Fig. 14. The noise that is added is Gaussian,
with standard deviation σN .
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6.5 Curvature signature of shapes

We conclude this chapter with a few examples of how sampled digital sur-
faces in volumetric images can be classified by their curvature.

At our disposal we have the principal curvature, the Gaussian and the
mean curvature. There are also derived properties; for example J. J. Koen-
derink and A. J. van Doorn [70] propose that c1 and c2 are separated into
a shape and a size component. The shape index, s , is given by

s =
2

π
arctan

c2+c1
c2−c1

, c1 ≥ c2, (93)

and the curvedness, c that encodes scale

c =

 

c21+c
2
2

2

!1/2

. (94)

Rescaling an object changes c while s is invariant. Both measurements are
of course invariant to rotations and translations as already mentioned in the
beginning of this chapter.

See Fig. 16 for examples of curvature pairs from sample points at sur-
faces plotted. It should be seen that basic shapes are really distinguishable
from their set of curvature values.
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Figure 16: Shapes can be recognised by their curvature signature, i.e., set
of principal curvatures. Volumetric objects are rendered by the marching
cubes algorithm, they are, a: a sphere, c: a cylinder, e: a cylinder with oval
cross section, g: a torus. Their respective curvature signatures are rendered
in (b), (d), (f) and (h).
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7 Maximal flow algorithms

Optimisation methods that find maximal flows have an essential role in im-
age analysis and processing. There is an assortment of applications includ-
ing stereo matching [19], image reconstruction [19] and minimal surface
construction [2]. By re-stating problems into maximal flows these methods
can now solve problems that were previously solved by iterated conditional
modes and simulated annealing, and often much more efficiently.

To find the maximal flow through a domain between a source node, s,
and a sink node, t, is equivalent to finding the smallest cut in the domain
that separates the source and sink nodes according to the max-flow min-cut
theorem. The solution is called the s-t minimal cut.

The first published solution to s-t minimal cut problem is known as
the Ford-Fulkerson algorithm [45], which today is used in modified forms
since it is known not to converge in some situations [129]. A small mod-
ification brings the Edmonds-Karp algorithm, which is based on repetitive
calculations of shortest paths [39]. These paths are found by Dijkstra’s al-
gorithm [36] or, to be more precise, by the solution to problem number
two in Dijkstra’s paper: "Find the path of minimum total length between two
given nodes P and Q".

Maximal flow algorithms emerged in image analysis in 1989 when D. M.
Grieg et al. [53] showed that a certain image restoration problem, posed
three years earlier [13], could be solved exactly by an s-t cut. In 1988 there
were at least fourteen different published algorithms that solved such prob-
lems [48]. These methods were made popular in image analysis in the be-
ginning of the 21th century when Y. Boykov and V. Kolmogorov published
a new, often faster method, based on the Goldberg-Tarjan algorithm, with
several application examples [19–21].

With this chapter I hope to share some insights about these methods.
It begins with a review of the Edmonds-Karp algorithm since it is probably
the easiest one to understand. Then, continuous graph cuts whose solutions
are less hampered by discretization artefacts, are reviewed. The chapter is
closed with a few implementation details and examples relevant to separa-
tion of fibres in paper sheets and composites, which is performed in Paper
V and VI.

7.1 Maximal flow in graphs

Images can be converted to a graph and back again without loss of informa-
tion. Usually each pixel in an image is represented by a vertex vi and neigh-
bouring pixel pairs (vi , v j ) are connected by an edge, ei j , with a certain pos-
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itive cost or capacity, ci j . In total that makes up the graph, G = {V , E ,C },
where V = {v j }, E = {e j k}, C = {ci j } and e j k ∈ E when v j and vk are
connected with a capacity ci j > 0.

A certain minimization problem will have a certain graph construction.
There are several options how to connect the vertices and the capacities are
assigned differently depending on the problem. The terms capacity and
flow are of course physical analogues, the equations are similar for those
of idealised liquid flow when there is neither viscosity nor compressibility.
The flow in the graph will be defined over the set of edges, for each edge,
e j k , we allow a flow, f j k . We say that a flow is valid when the net flow is
zero at each node and is constrained by the capacity at each edge, in other
words

∑

j

fi j = 0, ∀i , (95a)

fi j ≤ ci j . (95b)

s-t cuts and maximal flow

We add two special vertices to V , one source node, s , and one sink node, t
together with suitable edges, which connects them to the nodes already in
V . Then, we can define an s-t cut, which is a partition of V such that s ∈ S,
t ∈ T , V = S ∪T , and ∅= S ∩T . To each such cut we associate a cost, C ,
which is given by:

C (S,T ) =
∑

vi∈S,v j∈T

ci j . (96)

A minimal s-t cut has a minimal cost among all possible s-t cuts on a
graph. Such solutions do not readily match any of the sampling models dis-
cussed in Chapter 3 and do not give any further indication of what happens
between the pixels. A remedy could be to re-sample the image more densely
prior to the graph construction, but there are also other alternatives [83].

Edmonds-Karp algorithm

The heuristics behind the Edmonds-Karp algorithm, which finds maximal
flows, are rather simple. As long as there is a path from s to t with re-
maining capacity: find it, calculate its maximal capacity determined by the
minimal remaining edge capacity along the path, and subtract it from the
graph. This procedure is then repeated for the remaining graph also known
as the residual graph.

One edge will be saturated at each iteration using these steps. The max-
imal flow is found when there is no more paths from s to t . Then the graph
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is disjoint and split into the sets S and T . According to the max-flow min-
cut theorem, the min-cut is found at the same time. Starting from s and t
respectively, those two sets can be found by region growing. The minimal
cut is found as the set of edges with one node in S and the other in T . See
Algorithm 1 for the details.

Algorithm 1 The Edmonds-Karp algorithm for maximum flow from s to
t .
Require: G (V , E ,C ), s , t ∈V

f = 0, total flow
F = { fi j }, fi j = 0, flow for each edge
while ∃ shortest path, π, from s to t in G (V , E ,C ) do

m(π) =min ci j , ∀ (i , j ) ∈π, maximum flow of the path
fi j = fi j +m, ∀ (i , j ) ∈π, save the found flow
ci j = ci j −m, ∀ (i , j ) ∈π, residual capacity
f = f +m,

end while
return f , F

The shortest paths are found by some variety of Dijkstra’s algorithm,
which can be found in any textbook on basic algorithms, e.g., [115]. The
worst case complexity, using a naive implementation, is O (|V |2). Useful
implementations use priority queues and have a complexity of O (|E | +
|V |log(|V |)). See [80] for a recent comparison of priority queues that can
be used for implementations.

We can expect that a graph-cut solution has a complexity bound by
O (|E |2 + |E ||V |log(|V |)) since at least one edge is eliminated at each iter-
ation That is a good indication of the complexity, although there are cer-
tain algorithms designed to have peak performance for graphs with specific
characteristics [48].

7.2 Maximal flow in continuous domains

Continuous graph cuts are the counterpart to graph cuts in the continuous
domain. Properties of such systems and their solutions where first investi-
gated by G. Strang [103]. The domain is given a scalar metric, g , and the
flow F is defined everywhere. The following equations describe a valid flow
in this setting:

∇ ·F= 0, (97a)
||F|| ≤ g . (97b)
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For us, the most important difference between Eq. 97 and 95 is that
the L2-norm is used in the continuous formulation. That means that the
equation is isotropic and invariant to rotations, in contrast to Eq. 95.

The flow from source to sink, Fs t , is in this case calculated by a surface
integral around the source according to

Fs t =
∮

∂ S
F ·NSdS≤

∮

∂ S
gdS, (98)

where N is the outward normal to S and F is the flow defined by a vector
field. The minimal cut is also the minimal surface that separates the source
and sink.

The problem has been discretized, or rather adapted for digital images,
by B. Appleton and H. Talbot [2]. Their paper contains an algorithm that
finds maximal flows. The algorithm uses a scalar field P over the domain,
and evolve the following equations:

∂ P

∂ t
=−∇ ·F, (99a)

∂ F

∂ t
=−∇P, (99b)

||F|| ≤ g . (99c)

Details can be found in their paper, along with a proof that the maximal
flow is found at convergence. In Fig. 17 the pressure, P , is visualised before
convergence for a problem designed so that reflections at the boundaries can
be seen.

I’ve implemented their method and it is used in Paper VI. Some obser-
vations that I’ve made include:

• Exact convergence can usually not be achieved and the iterations have
to be cancelled before that, to maintain acceptable running times.
The method has especially slow convergence for problems where there
are several possible cuts with almost the same area, i.e., local minima
close to the global. This means that usually only an approximation of
the minimal surface is found.

• Even though the algorithm is run for a long time, there usually re-
mains a slight discrepancy between the flow from the source node
and the area of the cut.
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(a) (b)

Figure 17: Pressure evolves according to Eq. 99 in a planar problem with
hard constraints, see [2]. This is not how such systems usually is initialised
but the example reveals the wave nature of the system. a: white square: hard
constraint, P = 1, black square: hard constraint, P = 0. Gray area: initial
pressure, P = .5 and g = 1. b: After a 1000 iterations with time steps of .1.

• There are more recent studies, for example by J. Yuan et al. [128],
and possible better solution methods available now.

• The continuous problem is much harder to solve since it is non-linear.
Does the improved metric quality of the minimal cut really motivate
the extra computational cost? Yes, it should in most cases and the
example in Fig. 18 should be motivation enough. It can be seen in the
figure how the discrete graph cut solution prefers, or finds, straight
edges that are not in the original image.
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(a) (b) (c)

(d) (e) (f)

Figure 18: A characteristic difference between the continuous and discrete
graph cuts can be seen here. a: Input image, I , with a round disk where, I =
1, on a background where I = 0, immersed in Gaussian additive noise. b:
Thresholded at 0.5. c: Discrete cut, note the straight edges. d: Continuous
cut. e: average of 100 discrete cuts. f: average of 100 continuous cuts.
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8 Summary of the papers

Paper I Postprocessing method for reducing phase effects in recon-
structed microcomputed-tomography data
Journal of the Optical Society of America A (JOSA
A), 2013

Summary The standard methods for phase contrast removal are
applied prior to reconstruction. They are compared to
a new one that works on already reconstructed data.

Conclusions Our method is evaluated to have a performance almost
identical to previous methods. At the same time, it is
considerably faster and more versatile. No projection
images are needed, it can process also small regions of
interest and it is not limited to low pass filtering for
noise suppression.

Contributions Wernersson: Developed the method, implemented the
filter and wrote the paper.
Boone: Provided data sets, run the other methods, con-
tributed to writing.
Van den Bulcke and Van Hoorebeke and Luengo Hen-
driks: contributed to writing and discussions.

Paper II Accurate Estimation of Gaussian and Mean Curvature
in Volumetric Images,
3D Imaging Modeling Processing Visualization Trans-
mission (3DIMPVT), Hangzhou, China, 2011

Summary A new way to calculate curvature of surfaces in volu-
metric images is proposed.

Conclusions The method is more accurate where curvature is high
compared to the most similar alternative [93]. The
way that the sign of the curvature is calculated is bene-
ficial for separating inside from outside, of wood-fibre–
like structures.

Contributions Wernersson: Idea, implementation and writing.
Luengo Hendriks and Brun: Suggestions for evalua-
tion and detailed comments on the manuscript.
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Paper III Robust and Unbiased Curvature of Isophote Surfaces in
Volumetric Images,
Manuscript

Summary The work in Paper II is improved by introduction of a
correction factor. Non-Gaussian methods are used to
filter the tensor components of the orientation field,
including anisotropic diffusion and a novel bilateral fil-
ter.

Conclusions The correction factor does decrease the curvature bias.
The non-Gaussian filters are superior in regions where
surfaces are close to each other.

Contributions Wernersson: Idea, implementation and writing.
Luengo Hendriks & Brun: Suggestions for evaluation
and detailed comments on the manuscript.

Paper IV Generating synthetic µCT images of wood fibre materi-
als,
6th International Symposium on Image and Signal
Processing and Analysis (ISISPA), Salzburg, Austria,
2009

Summary It is hard to evaluate segmentation methods for wood
fibres in CT volumes due to the lack of ground truth.
In the paper, we simulate a range of wood-fibre mor-
phologies. We also simulate noise present in the CT
imaging setup and are able to reproduce characteristic
noise and artifacts in CT images.

Conclusions It is feasible to simulate wood fibres captured by CT
machines. Even though the packing of synthetic fibres
can be improved, this provides a useful tool for future
evaluations.

Contributions Wernersson: Idea for the paper. CT machine charac-
terisation and simulation. Wrote the manuscript.
Luengo Hendriks: Valuable comments on the
manuscript.
Brun: Wood fibre shape simulations and wood-fibre
packing.
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Paper V Segmentation of Wood Fibres in 3D CT Images Using
Graph Cuts,
International Conference on Image Analysis and Pro-
cessing (ICIAP), Vietri sul Mare, Italy, 2009

Summary Pores and cracks in fibre walls have been troublesome
for previous segmentation methods. Here we suggest a
method to identify these features and to close them. In-
dividual wood fibres are then segmented by first iden-
tifying the lumen and then separated with a graph cut
based method.

Conclusions The curvature of fibre cross sections seems to be a good
feature for detection of defects with the purpose of a
topographical closing of fibre cross sections. Graph
cuts can be used to refine the quality of the segmenta-
tion compared to a previous approach given that some
weighting is introduced on the edges.

Contributions Wernersson: Idea, writing and implementation.
Brun & Luengo Hendriks: Detailed comments on the
manuscript and suggestions on the implementations of
the algorithms.
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Paper VI Characterisations of fibre networks in paper using com-
puted tomography images,
Nordic Pulp & Paper research Journal (NPPRJ), 2014

Summary Instead of trying to automatically segment single wood
fibres in volumes, a semi-manual approach is suggested
where each fibre is marked by a few control points,
which are interpolated to a line. Automatic methods
can then be used with that line as input.

Conclusions The suggested methodology is a good balance between
low manual input and high quality output in terms
of measurements. The measurements of contact area
seems especially successful. Other methods require
more manual labour and are limited to flat contact ar-
eas. The manual input of this method is about one
minute per fibre.

Contributions Wernersson: Development of fibre characterisation
software and measurement methods. Writing most of
the paper.
Borodulina: Wrote most of the introduction section.
Did manually mark the fibres on which the method
was tested. Prepared the samples.
Kulachenko & Borgefors: Detailed comments on the
manuscript.
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Paper VII Effects of defects on the tensile strength of short-fibre com-
posite materials,
Mechanics of Materials, 2014

Summary Dog bone samples of plastic–wood-fibre composites
were scanned with a µCT machine to detect defects
due to imperfections in mixing. The same samples
were later on tested for Young’s modulus.

Conclusions The largest defect is likely to cause the breakage. The
strength at the interface between matrix and defects is
negligible.

Contributions Joffre: Wrote the paper. Mechanical testing and the-
ory.
Miettinen: Scanning of samples and ellipsoidal fitting.
Wernersson: Correction for beam hardening artifacts
in the images. Implementation of a MRF-based seg-
mentation method to detect the defects. Manual verifi-
cation of the segmentation results.
Isaksson: Mechanical theory.
Gamstedt: Planning and writing

Paper VIII Light scattering in fibrous media with different degrees of
in-plane fiber alignment,
Optics Express, 2014

Summary The direction of scatter from incoming light into
paper can be modelled based on Maxwell’s equa-
tions. Theoretical predictions are compared to mea-
surements of laser scatter patterns as well as orienta-
tions measured from CT images.

Conclusions A high correlation between the orientation measure-
ments based on laser and CT images was shown.

Contributions Linder: Wrote the paper. Performed the light diffu-
sions measurements and simulations.
Löfqvist: Writing and planning.
Wernersson: Suggested resolution for the CT images.
Estimated orientation in the CT images and wrote the
corresponding section.
Gren: Design of the experimental setup for the light
diffusion measurements.
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Paper IX 3D tree-ring analysis using helical X-ray tomography,
Dendrochronologia, 2014

Summary Densiometric profiling and ring width measurements
are usually done with flat bed scanners. In this paper,
the possibility to use high resolution helical CT imag-
ing is investigated.

Conclusions High resolution CT seems to be well suited for den-
drochronological investigations. Advantages over the
classical methodology are that the bias due to the
drilling- or cutting angles can be eliminated, and the
sample preparation simplified. The publicly released
software shows that very little manual work needs to
be added after the scanning.

Contributions Van den Bulcke: Wrote and planned the paper, imple-
mented the manual method, performed and analysed
the scans.
Wernersson: Wrote the mathematical parts of the pa-
per. Implemented and suggested the image based mea-
surement methods.
Dierick: comments and suggestions on the
manuscript, suggestions on density calculations
Van Loo: comments and suggestions on the
manuscript, suggestions on scan procedure and scan
time.
Brabant: comments and suggestions on the
manuscript, suggestions on the usage of Morpho+ for
calculations of vessel-free density.
Haneca: comments and suggestions on the
manuscript, specifically focusing on dendrochronol-
ogy.
Boone, Van Hoorebeke, Masschaele, Brun, Luengo
Hendriks, Van Acker: comments and suggestions on
the manuscript.
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9 Conclusions and future work
You observe that in the life of the intellect there is also a law of
inertia.

–Felix Klein

The theme of this thesis is characterisation of wood-fibre–based materi-
als. There are many problems associated with this, which need specific
approaches and tools. I have worked throughout the whole process, from
pre-processing of CT images to representations of fibre directions for whole
images by just a few coefficients.

The range of wood–fibre shapes is wide. These shape variations are in-
teresting in themselves, but unfortunately, make general approaches hard to
pursue. X-ray computed tomography at micrometre resolution has turned
out to be a good tool for characterisation of wood fibres and wood-fibre
organisation in materials. However, CT is not the universal answer to all
measurements. It is natural to assume that all fibres could be segmented
automatically but that is impossible due to fundamental reasons. This is
because the boundaries between individual fibres look the same both when
they are bonded and when they are only pressed against each since there is
no difference in X-ray absorption.

There is, however, numerous properties that can be measured from
CT images of wood–fibre based methods. These properties include fibre
length distributions, fibre orientation, fibre bonds, fibre dimensions as well
as properties that can be derived from these. The quality of the extracted
parameters depends on the quality of the image acquisition and the status
of the fibres and fibre network.

As the quality of CT images increases and images become cheaper to
acquire, it is my hope and belief that automated methods can play a role
in online measurements, besides being a valuable tool in scientific studies.
An effort to collect the best methods into a unified software framework
could accelerate this goal. There is also a need for reference data sets in
the community. Without such images it is simply not possible to assess the
quality of a new method compared to previous approaches.

This chapter continues with a summary of the contributions from this
thesis and the included papers. After that follows suggestions for future
work.

9.1 Summary of contributions

I believe that the main contributions of this thesis are these:
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• New ways to characterise paper samples. The contributions are mainly
due to Paper VI, in which a complete software tool is presented. It is
based on the assumption that manual interactions are necessary (until
fully automated methods are developed), but should be minimal. We
have proposed a very fast manual fibre-selection methodology; only
a few seconds per fibre are needed by the operator because only one
curve that approximately follows each fibre is used and can be defined
by a handful of points. Based on that line, many measurements can
be performed automatically.

These characterisation algorithms can be used to create reference vol-
umes needed in the development of fully automated methods. The
software is published as open source, to initiate more collaboration
in the field.

• A new method for fibre–fibre bond analysis. Among the included mea-
surement algorithms in the software tool mentioned above is an algo-
rithm that analyses fibre–fibre bonds. It can be seen as an extension
of the work in Paper V. A fibre–fibre bond region is defined as the
surface with minimal area between two marked fibres. This allows
for more complex bond regions than the previously most accurate
method [87], while it requires less manual effort. It is also fully three-
dimensional, in contrast to a previous approach [84].

The increased precision and the viability of this method makes bond
analysis much more available than previously.

• Tools for simulation of CT images of wood-fibre–based materials. In
Paper IV, tools were developed both for the simulation of wood-
fibre–shapes and for simulation of realistic noise. The noise model
is based on measurements of images from the TOMCAT beamline at
the Swiss Light Source (SLS).

This work makes it possible to generate noise that is characteristic for
micrometre resolution images of wood-fibre–based materials. With
this tool it is possible to study how this noise affects algorithms de-
signed for wood-fibre–based materials. The modelling of wood-fibres
can also be used to create realistic synthetic images of composites and
paper sheets.

• Absorption retrieval in CT images. For the first time, in Paper I, we
have demonstrated that phase contrast can be removed from CT im-
ages to retrieve absorption from mixed mode images. Previous meth-
ods are applied prior to the tomographic reconstruction, which in
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many ways is a more complicated procedure. With our method, the
correction can be applied to small regions. There is no need for large
projection data sets and the imaging parameters do not need to be
known. The idea behind this solution appeared while working on
simulations of the noise in µCT images in Paper IV. Since the publi-
cation of Paper I, we also derived formulas, which are found in Ap-
pendix A, for how the two parameters can be calculated. The param-
eters can be calculated from the shape of imaged edges, which is more
precise than the heuristic method that we used at first.

The impact of this study could be that phase contrast artefacts will be
removed routinely. This is especially important when working with
cross sections, since the phase contrast artefacts due to objects outside
the cross sections can cause strange patterns.

• A new method for calculation of curvature in volumetric images. This
work was presented in Paper II. It can be seen as an extension of the
work by B. Rieger in [93], in which the sign of the principal cur-
vatures is also included. The bias of our approach is lower, and the
method is further improved in Paper III. Furthermore, a bilateral fil-
ter was introduced that makes the calculations less sensitive to sur-
faces nearby.

We hope that this method will be appreciated and used for analysis
of volumetric images, especially in the analysis of wood–fibre based
materials, where our experiments in Paper II indicate that this is a
good tool for lumen segmentation.

• We have shown that helical CT is an ideal tool for dendrochronology.
Methods for high precision measurements of annual ring density in
wood from helical µCT images were presented in Paper IX. This
work shows the potential of this relatively new scanning method.
The image analysis in the study is based on directional estimators,
something that was learned during the work on Paper II.

We hope that this approach will increase the precision of wood-ring-
based dating and that it can decrease the costs, since the sample prepa-
ration is simplified.

• Tailored image analysis solutions. In Paper VIII, fibre orientations are
measured and compared with simulations and light scattering pat-
terns to relate these techniques. In Paper VII, clusters of fibres, ag-
glomerates or defects are segmented and measured.
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The main importance of these contributions are that they introduce
computerised image analysis to fields where it is not so commonly
used.

9.2 Future work

During my work with this thesis I continuously found interesting things
that could have been investigated further. Unfortunately, a lot of them were
lost in the moment of inspiration. Nevertheless, here is a list of topics that
I think are worthwhile to investigate:

• As previously mentioned, reference data sets would be highly useful
for further developments within this research field.

• Further automatisations of the fibre-characterisation tools presented
in Paper VI should be pursued. Verification based on reference images
should be an integral part of that work.

• Most methods developed for fibre segmentation rely on heuristic meth-
ods. I think it is time to take a more formal approach, and investigate
how the fibre segmentation problems can be stated as minimisation
problems. It is natural to start with the question: What constitutes
a good segmentation? As discussed before, there is an ambiguity in-
volved in this problem statement since it is not possible to exactly
locate boundaries between fibres in CT images. With a well-defined
goal, it is a matter of finding suitable optimization tools, to get the
segmentation. I have touched upon this approach slightly and tried,
among other things, the image foresting transform [42] using differ-
ent metrics formulated on orientation fields, but so far I have not
found any fruitful formulation. It should be natural to include curva-
ture in one way or another into such formulas, and that was the main
motivation for the work in Paper II and III.

• The fibre–fibre bond analysis method should be studied in more de-
tail. To do so, fibres could be imaged individually and then lightly
pressed together and imaged again. That would yield morphologies
for the fibres both individually and pairwise, which could be used to
evaluate our fibre–fibre bond analysis method, as well as the other
published methods.
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Sammanfattning (Summary in Swedish)

Datoriserad bildanalys är att låta datorer analysera digitala bilder och räkna
fram olika egenskaper från dem. Användningen av datoriserad bildanalys
har fullständigt exploderat de senaste årtiondena och man finner nu avance-
rade automatiska matematiska metoder, i allt från mobiltelefoner och kom-
paktkameror till medicinsk utrustning.

Att låta datorer analysera bilder är praktiskt i många sammanhang – inte
minst när man har stora mängder bilddata, eller när det finns krav på objek-
tivitet och reproducerbarhet. Den bärande frågar är dock, hur konstruerar
man dessa automatiska metoder?

Syftet med denna avhandling är att ta fram automatiska bildanalysme-
toder för att karaktärisera enstaka träfiber och fiberstruktur i papper och
kompositmaterial. Träfibrer är de avlånga cellerna i trädens stammar. De-
ras mekaniska egenskaper och dess längd- till bredd-förhållande på upp till
100 till 1 gör att de passar till många olika ändamål. Framförallt används de
till att tillverka papper men även till att förstärka plaster i så kallade plast-
träfiberkompositer. Papper tillverkas i många olika kvalitéer, allt från to-
alettpapper till högglansigt fotopapper. Skillnaden mellan dessa produkter
kan till stor del beskrivas genom egenskaper hos träfibrerna och dess fiber-
struktur i pappret. Dessa beror i sin tur på vilken råvara som har använts
och hur den har processerats.

Bildmaterialet som används är datortomografiska bilder (CT), eller snitt,
som beräknats fram från multipla röntgenprojektioner. I de flesta fall har
bildserier används som tillsammans bildar volymetriska bilder, tredimen-
sionella bilder av en volym. Upplösningen i bilderna är omkring en mikro-
meter, vilket är tillräckligt högt för att formvariationer hos enskilda fibrer
ska kunna ses, inklusive dess längsgånde hålrum, kallat lumen. Samtidigt
är upplösningen sådan att tillräckligt stora områden kan avbildas för att ge
kunskap även om fiberstrukturen hos material.

Arbetet sträcker sig över ett stort område. Det innehåller metoder för
att simulera det brus eller de störningar som är vanligt förekommande hos
bildtagningsutrustningen. Med hjälp av simuleringarna går det att uppskat-
ta hur stora fel dessa störningar skapar i mätningarna. Faskontrast är ett vik-
tigt fenomen som gör att man kan avbilda material som är helt eller delvis
transparenta för ljus genom att utnyttja diffraktion. Högupplösta röntgen-
bilder av papper och kompositer innehåller som regel både absorptions- och
faskontrast. En del av arbetet har bestått i att reducera faskontrasten i bil-
derna för att kunna få fram absorptionen. Detta är viktigt dels för att kunna
använda bildanalysmetoder som är designade utifrån modeller som inte tar
hänsyn till fastkontrast, dels när man ska analysera enskilda snitt, eftersom
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utbredningen av faskontrasteffekterna kan påverka flera närliggande snitt.
Det faskontrastreducerande filter som presenteras baserar sig på avfaltning
av volymetriska tomogram.

Avhandlingen innehåller också metoder för att karaktärisera tvärsnitt
av fibrer och fördelningen av fiberorienteringar i material. Dessa kan an-
vändas för att analysera tillverkningsprocesser och för att förfina mekaniska
modeller av papper. En viktig komponent i detta är en metod för att mäta
kontaktytorna mellan enstaka fibrer. Problemet är egentligen inte exakt lös-
bart eftersom kontaktytan inte har någon distinkt röntgenabsorption, men
genom att definiera kontaktområdet med hjälp av en yta med minimal area
mellan fibrerna så erhålls en mycket hög precision.

Kurvaturer hos ytor är rotations- och translationsinvarianta egenskaper.
I avhandlingen presenteras en grupp av metoder som är mycket lämpliga att
använda på fiberbaserade material. De här metoderna störs mycket litet av
det faktum att fibrer ligger nära varandra, till skillnad från standardmetoder-
na för att beräkna kurvatur i volymsbilder. Detta är viktigt framförallt när
man vill filtrera bort små variationer hos ytor som inte är viktiga. Träfibrer
har oundvikligen mycket variationer i ytan, som de får i de olika processte-
gen: från stam till papper. CT-bilder har dessutom en del brus som ger ytor
ytterligare geometriska störningar. Det visas också att kurvaturegenskaper
är mycket användbara för att finna lumen som i sin tur kan användas för att
segmentera individuella fibrer.

En metod för att ta fram densitetsprofiler från borrkärnor av trä har
också utvecklats. Den baseras på tredimensionella bilder tagna med spiral-
CT i kontrast till tvådimensionella bilder som är den nuvarande standarden.
Avhandlingen innehåller också arbete kring att detektera fiberkluster i bil-
der av kompositmaterial samt en jämförelse mellan olika metoder för att
jämföra fiberorientering i pappersark.

Den här avhandlingen visar att datoriserad bildanalys redan är ett an-
vändbart verktyg för att karaktärisera enskilda fibrer och fibernätverk i pap-
per och kompositmaterial. En stor utmaning kvarstår i att ta fram material
för att verifiera nuvarande och framtida metoder och några förslag för hur
det kan göras diskuteras i avhandlingen.
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A Parameters in the phase contrast filter
The filter for absorption retrieval, which we introduced in Paper I, has two
parameters, σ and ε, which relate the amplitude and width of the fringes
in CT images to the mix of absorption and phase contrast. In Paper I it
is proposed that these parameters are determined by a heuristic method.
It is however easier to find the parameters directly from the shape of step
edges in images, and this also allows for automated parameter selection. The
content of this appendix can also be found in our conference contribution
in Ref. [116]with the main difference that this presentation is more concise.

A.1 Derivation

If we apply the phase contrast model of Paper I to a three-dimensional step
edge we get a function Rσ ,ε, i.e.,

Rσ ,ε(x) = θ(x1)+ ε∆G(x)σ ∗θ(x1), ε < 0, (100)

where θ is a Heaviside step function, Gσ is a three-dimensional isotropic
normal distribution with standard deviation σ , see Eq. 5. We will now
derive two functions in a forward manner: amplitude, A(σ ,ε), and width,
W (σ ,ε), according to Fig. 19. These functions can then be inverted to get
σ and ε.

The amplitude can be expressed as the maximum of the integral

A(σ ,ε) =max Rσ ,ε(x)− 1=max Rσ ,ε(x1, x2 = 0, x3 = 0)− 1 (101)

=max ε
∫ w

0

∫ ∞

−∞

∫ ∞

−∞
∆G(x1, x2, x3)dx2dx3dx1, w > 0, (102)

A

2W

Figure 19: Eq. 100 plotted along r to illustrate the variables, A= 1−max R
and W , half the distance between min R and max R. Compare with exper-
imental data in Fig. 20
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which is the maximum of the convolution ε∆G∗θ(x1). Similarly, the width
of the fringes is

W (σ ,ε) = argmax
x1

Rσ ,ε(x1, x2 = 0, x3 = 0). (103)

First we find the x1 value that maximises R by integrating x2 and x3
over R2, then integrating x1 from 0 to w. Then we find the location of the
maximum, W , of the obtained expression by derivation. A is then found
by insertion and we arrive at:

A(σ ,ε) =
ε

σ2 exp(1/2)
p

2π
, (104a)

W (σ ,ε) = σ , (104b)

and in the other direction,

σ(W ,A) =W , (105a)

ε(W ,A) =AW 2
p

2π exp(1/2). (105b)

Note that a step edge of height 1 was used and that scaling will be re-
quired for most CT images.

A.2 Experiments

In Fig. 20 we have used this method to determine the filter parameters. A
step edge was located and the signal orthogonal to the edge was interpolated.
Then the signal was slightly averaged in the directions of the tangent plane
to the edge. A and W were then identified according to their definition in
Fig. 19. The filter parameters were calculated by Eq. 105 and the absorption
retrieved by the method of Paper I.
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(a) (b)

(c) (d)

Figure 20: Absorption retrieval with the method presented in Paper I us-
ing the method of this appendix for parameter selection. For the visuali-
sations, images are low pass filtered with a Gaussian kernel, with σ = 1,
and stretched maximally. a: A tomogram with both absorption and phase
contrast. The box at the edge indicates where a 1-D signal is extracted by
averaging across the length direction. b: The extracted edge profile. c: After
absorption retrieval, with parameters extracted from the edge profile in (b).
d: The profile extracted from (c), i.e., after the absorption retrieval.
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B Series for KDEs on S1 and S2

In Chapter 5 we saw that kernel density estimation (KDE) of directional
data on the circle, S1, and sphere S2 is useful for representing the distribu-
tion of gradients around a point in an image. In this appendix we will show
the details on how to express them as truncated series, which allows effi-
cient computation. This way of representing KDEs is already used in Paper
VIII and VI but we also show application for scale space construction at the
end of this appendix.

The starting point is the same for S1, and S2. Let there be N observa-
tions of angles. We will determine the distribution of these using a KDE,
[91]. The KDE is a linear combination of weighting functions w centered
at the observations

K(x) =
N
∑

i=1

w(x− xi ), D(K)→R, (106)

where the domain, D of the KDE is first S1 and then S2 in the following.

B.1 S1

The functions exp(i kθ) form an orthonormal basis on [−π,π] with the
scalar product 〈a, b 〉=

∫

ab ∗. A KDE on S1 will be called K1 and using the
exponentials it can be expressed as

K1 =
∞
∑

k=−∞
ck e i kθ, S1→R. (107)

Taking the scalar product with the basis functions on both sides, we get

ck = 〈K , e−i kθ〉=
1

2π

∫ π

−π
Ke−i kθdθ=

1

2π

∫ π

−π

N
∑

i=1

{w(θ−θi )} e−i kθdθ.

(108)
Since the domain is cyclic, we can change the integration bounds to

(−∞,∞) as long as w ∈ L2, the space of square integrable functions overR.
Changing the order of summation get:

ck =
1

2π

N
∑

i=1

¨
∫ ∞

−∞
w(θ−θi )e

−i kθdθ
«

. (109)
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If we consider one term at a time and set ck =
∑N

i=1 cki , the addition
from each individual θi is

cki =
1

2π

∫ ∞

−∞
w(θ−θi )e

−i kθdθ. (110)

We choose to use a Gaussian weighting function, one that also was proposed
by Parzen, which has the form

w(θ) =
1

Æ

2πσ2
w

e
− θ2

2σ2
w . (111)

When Eq. 109 is integrated we find the coefficients as:

ck =
1

2π
e−

k2σ2
w

2

N
∑

i=1

e−i kθi . (112)

The smoothing that is controlled by σw has multiple effects. First, it in-
terpolates when the data is sparse. Also, the weighting function acts as a low
pass filter, which effectively removes any traces of Gibb’s phenomenon, and
the smoother the function, the faster it converges as a Fourier series. Note
that since the density estimator is real, c−k = c∗k so only the coefficients for
k ≥ 0 have to be calculated. Also, the first exponential of ck in Eq. 112
needs to be computed only once and can then be reused.

Truncation is done by keeping only the first 2M − 1 terms of

K1 =
∞
∑

k=−∞
ck e i kθ =

∑

|k|<M

ck e i kθ

︸ ︷︷ ︸

K1T

+
∑

|k|≥M

ck e i kθ, (113)

or rather by not calculating the other terms at all. The amount of terms to
keep is a function of the number samples and the desired smoothing.

Implementation as a local image descriptor

When we like to use the KDE in an image, the distribution should most
likely be calculated for each position, x, in that image. To ensure rotational
invariance and smoothness, a Gaussian weighting function of the distance
to x is used.

Furthermore, it is usually desired to weight the samples according to the
Gradient magnitude, to give details with high contrast more importance. In
the experiments, we used p = 1 all the time.
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With the before mentioned additions and based on Eq. 106 we get the
following

KL(x,θ) =
∑

xi∈Nx

||∇I (xi )||Gσs
(|x− xi |)w(θ−θi ), (114)

whereNx denotes the neighbourhood of x.
Usually a certain detail level or smoothness of the representation is de-

sired and then σw should be set correspondingly. We refer to [91] for a
more detailed discussion of this parameter.

The local descriptor KL given by Eq. 114 has the following properties:

– Invariance to the addition of a constant, C ,

KL(I (x)) =KL(I (x)+C ). (115)

– Invariance to multiplication can be achieved by normalisation of the
first coefficient, c0, since all coefficients in the Fourier series depend
linearly on the image intensity

KL

c0
(C1I (x)+C2) =

KL

c0
(I (x)). (116)

– Rotations of the image equal rotations of the representation, i.e.,
KL(RθI ) = RθKL(I ) holds. This suggests that lossless alignment of
two different representations is possible. That is important when, for
example, matching points from different views.

– Group–like behaviour under rotations. For arbitrarily rotation with
an angle θ, denoted by Rθ, that means

Rα(RβKL) = Rα+βKL. (117)

In Fig. 21 some of the benefits of KDEs is shown, where three different
representations are used and visualised for the same data set with K1, K1T
and a histogram.

Detection of extremal directions

Extremal directions can locally be found using steepest gradient descent on
the density estimator with

θk+1 = θk +δ
d

dθ
KL(θk ), (118)
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where δ is the step length. When the number of coefficients are low or σw
high, all extremal directions can quickly be found by using multiple initial
angles.

Alignment

When two distributions are to be compared, rotational invariance is often
desired. This can be achieved in multiple ways, the representation can be
aligned by rotation of the angle to the maximal mode for example.

Another approach is to first find the opposing nodes from c2 only, which
is best done analytically. KL(θ) can then be evaluated at those directions to
find the maximal among them.

B.2 S2

Spherical harmonics are the counterparts to Fourier series on the sphere.
They constitute an orthonormal basis for the space of square integrable
functions on S2 under the norm, 〈a, b 〉 =

∫

S2 ab ∗. If we parameterise the
unit vector by

x= (cos θ sin φ, sin θ sin φ, cos φ) , (119)

then the spherical harmonics are

Yl m(θ,φ) = Ll m P m
l (cos φ) e i mθ, l ∈N , |m| ≤ l , (120)

where Ll m are normalisation constants,

Ll m =
�

2l + 1

4π

(l −m)!

(l +m)!

�1/2

, (121)

and P m
l

are the associated Legendre functions (be aware, there are several
definitions with different normalisation)

P m
l (x) =

(−1)m(1− x2)m/2

2l l !

d l+m

d x l+m
(x2− 1)l . (122)

We define K2 as a KDE on S2 by

K2(θ,φ) =
∑

l

∑

m
cl mYl m , S2→R. (123)

The coefficients are once again found by applying the scalar product with
the basis functions on both sides. This time we use a Dirac impulse func-
tion, δ as weighting function. That makes a pretty bad estimation of the
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distribution of the directions but we will fix that a little later. For a sample
with direction (θ,φ), we find the coefficients by:

cl m = 〈δ(θ,φ),Yl m〉= Y ∗l m(θ,φ). (124)

B.3 Averaging and the diffusions equation

There are several definitions of convolution on spheres and those convo-
lutions are in general non-commutative. Averaging is better solved by a
diffusion approach instead.

Such approach is described in [25] where it is used for smoothing of
three-dimensional shapes but in this subsection it is modified to represent
directional data.

On regular grids, the Gaussian function is the Green’s solution to the
Laplace equation, i.e., the diffusion or heat equation,

d

d t
f =−∆ f . (125)

For example, for the interval [−π,π], we have

d

d t
f =−∆e−i k x =−k2e−i k x , (126)

and we find that f = e−t k2
e−i k x , which is in correspondence with Eq. 112.

On the Sphere, we have

∆S2Yl m =−l (l + 1)Yl m , (127)

so the solution to the diffusion equation is

Yl m(θ,φ, t ) = e−t l (l+1)Yl m . (128)

One could argue that locally and for small t , the solution to this diffu-
sion equation is similar to the diffusion equation in the plane. And since the
diffusion equation in the plane can be expressed in terms of Fourier coeffi-
cients as well, we could find an approximate relation between t in Eq. 128
and σ for a 2-D Gaussian distribution.

For both S1 and S2, the diffusion preserves the total probability or the
integral over the domain. This is clear since the average is the same as taking
the scalar product with Y00 and hence the other basis functions does not
contribute to the average. Also, c00 is not affected by the diffusion.

95



Figure 21: Figure showing three different representations of an angular
distribution. Kernel density estimator, the first 14 coefficients of the KDE
and also a histogram with 14 bins.

(a) (b) (c)

Figure 22: K2 calculated from five symmetric sample pairs chosen randomly
in S2. Hence, the samples are represented by spherical harmonics. Here the
order is 5 and k t = .18. a: Shown with an equirectangular projection. b:
Shown on a sphere. c: Shown as a glyph, i.e., as deformations of a sphere.
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B.4 Orientation space construction

Orientation space or ρ-space as it was called originally by Deborah Walters
[112] is the extension of a two-dimensional image into a three–dimensional
one, where the third dimension represents local orientation. This method
is thoroughly discussed especially on the filter side in the very readable PhD
thesis of Michael van Ginkel [110].

In contrast to van Ginkel’s approach, we have in Fig. 23 constructed an
orientation space for a planar image using K1, while he uses the structure
tensor with quadrature filters.

For each pixel I’ve used seven coefficients of K1, σs = 6, σw = 0.25. The
modes where calculated using steepest descent in Eq. 118 starting from six
uniformly distributed angles. The maxima where then discretised and put
into a volumetric image. Isosurfaces where then extracted and rendered.
Since K1 can have several maxima, there can also be several orientation val-
ues per pixel. One desirable property of the mapping to the orientation
space that can be seen in Fig. 23 is that overlapping objects are completely
separated while they are still individually connected.

97



(a)

(b)

Figure 23: An orientation space representation of the figure in (a) is shown
in (b). Notice that multiple directions are detected at the intersections.
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C Jacobi’s method

A problem that occurs when working with the structure tensor is to find
eigenvectors and eigenvalues to symmetric matrices with real entries. For
example, to get the orientation at each pixel in a slice of size N ×N pixels,
as in Paper VIII the eigenvector problem has to be solved N 2 times. To
calculate curvature in a volumetric image with the method of Paper III;
eigenvalues and eigenvectors have to be calculated three times for each pixel.

M. van Ginkel [110] proposed that the eigenvalues to symmetric and
real 3× 3 matrices, A, should be found from the characteristic equation,
det(Ax −λ1), with Cardano’s formula. Such approach is conceptually sim-
ple but not well suited for numerical computations [49].

Jacobi’s method is an alternative to Cardano’s formula for these prob-
lems. It has lower error bounds for both eigenvalue and eigenvector than
any other known method [35]. Here follows an algorithmic presentation
of Jacobi’s method, which is based on my implementation.

C.1 Algorithm and implementation

Before discussing 3× 3 matrices we say a few words about 2× 2 matrices.
Such matrices can be expressed as

M =
�

α γ
γ β

�

, (129)

and can be diagonalised by a plane rotation matrix

R(θ) =
�

cosθ − sinθ
sinθ cosθ

�

, (130)

so that

R−1M R=D . (131)

D and M are similar after the rotation, that is they have the same eigenval-
ues. The eigenvalues are on the diagonal of D and the eigenvectors are in
the columns of R.

R is described by the rotation angle θ. There are different ways to find
θ, and, for fast implementation on current CPUs, trigonometric functions
should be avoided. The following well known [90] formulas seem to be a
good alternative:
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ε=
α−β

2γ
, (132a)

t =
signε

|ε|+
p

1+ ε2
, (132b)

c := cosθ= (1+ t 2)−1/2, and, s := sinθ= c t . (132c)

When Eq. 131 is written out explicitly with the formulas above,
�

c −s
s c

��

α γ
γ β

��

c s
−s c

�

=
�

α− γ t 0
0 β+ γ t

�

.

From the plane rotation matrix, rotation matrices for 3 × 3 matrices
can be constructed, called Jacobi rotations (note the relationship to Euler
angles, and the similarity to Given’s rotations). There are three of them to
be used with 3× 3 matrices, which will be denoted

R12 =







c1 −s1 0
s1 c1 0
0 0 1






, R13 =







c2 0 −s2
0 1 0
s2 0 c2






, R23 =







1 0 0
0 c3 −s3
0 s3 c3






.

(133)
The core of the Jacobi method is to use these matrices iteratively to di-

agonalise A. In theory A can be diagonalised by R12R13R23A(R12R13R23)
−1,

that is by three rotations only. But to find the corresponding angles directly
is harder than to diagonalise A iteratively.

With the Jacobi method A is rotated so that one off-diagonal element
is eliminated at each step. Other off-diagonal elements might grow at each
iteration but the method can be shown to have quadratic convergence [90].

Here is an outline of the algorithm that is implemented:

1. n = 0. Input: An := A. Initialise En := 1, which will contain the
eigenvectors at convergence. Set the tolerances value t = 10−14.

2. Find the location of the largest off-diagonal element in An(i , j ),

(i , j ) = argmax |An(i , j )|, i < j . (134)

3. Find c and s of Eq. 132 using

α=An(i , i), β=An( j , j ), γ =An(i , j ). (135)
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4. Rotate A, An := Ri j An−1RT
i j .

5. Rotate E , En := RT
i j En−1.

6. If maxi 6= j |An(i , j )|,< t end, else: n = n+ 1, repeat from step 2.

C.2 Discussion

It might not be obvious that the eigenvalues will be stored in E at the end,
but if we denote the applied rotations by J1, J2, ..., Jn then at the final step n

An =
�∏

Ji

�

A0

�∏

J T
i

�

. (136)

Since An is diagonal its eigenvectors are V1 = (1,0,0)T , V2 = (0,1,0)T and
V3 = (0,0,1)T . That gives,

AnVi = λiVi , (137)

or
�∏

Ji

�

A0

�∏

J T
i

�

= λiVi , (138)

so,
A0

�∏

J T
i

�

Vi = λi

�∏

Ji

�−1
Vi = λi

�∏

J T
i

�

Vi , (139)

and hence
�

∏

J T
i

�

Vi is an eigenvector to A0 with eigenvalue λi .
Taking into account symmetries and explicitly writing out the matrix

multiplications the number of multiplications can be kept low. We have
compared our implementation to the one found in DIPimage (http://www.
diplib.org/), called dip_symmetriceigensystem3, based on Cardano’s
formula. Our implementation of Jacobi’s method is 30% faster than the
implementation in DIPimage while the precision is at least the same.
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