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Matching a changing world – the importance of habitat 
characteristics for farmland breeding Eurasian Curlew 

Abstract 
Where animals are and what they do, is the result of a continuous cost-benefit analysis 
of available alternatives. Choices have to be made, for example when settling in a 
breeding territory after migration, when foraging conditions change, when humans 
change the landscape, or when a predator approaches the nest. In this thesis, I used 
Eurasian curlew data to address these issues at the national, landscape and agricultural 
field level. 

The results show that farmland was the most important habitat for the species (appr. 
four times as important as mires), but that < 40 ha patches of farmland embedded in 
forest landscapes were seldom used. During the first part of the breeding season, the 
birds preferred to forage on leys, but later they shifted to cereal fields. No effect of the 
construction of the Bothnia Line railway on Eurasian curlew densities could be shown. 
Finally, experimental approaches of nests showed that the chances for hatching success 
were best when the incubating bird leaved the nest neither very soon nor very late. 

Albeit flexible in behaviour, Eurasian curlews seem to demand landscapes that 
contain sufficiently large patches of farmland, preferably with mixtures of fields under 
different management. 
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1 Introduction 

Outside the world of quantum physics, any material entity is at a certain place 
at a given time (Mehra & Rechenberg, 1982). The question is why there just 
then? The distribution of matter in time-space is fascinating in the abiotic 
world, but even more intriguing in the world of living organisms, due to their 
limited lifespan, their dependency of adequate environmental conditions, and 
their interactions with other organisms. 

1.1 Choice to move 

For mobile life forms, spatio-temporal positioning contains an element of 
choice. Being an immigrant myself, I’ve been confronted with the “Why did 
you move?” question many times (sometimes even by myself!). I doubt that 
people who did not migrate are asked the “Why did you stay?” question very 
often. Logically, these two questions are equally relevant. Consequently, the 
current position of any mobile organism always depends on the outcome of 
“Should I stay or should I go somewhere else?” decisions. These decisions and 
the spatial patterns their outcomes create are the topics of this thesis. 

The decision to leave its current position or not is made by the individual, 
and an underlying assumption is that the choice always falls on the best 
available option. As a result of natural selection (Darwin, 1859), this is a 
plausible assumption for individuals within a population in general, but given 
the complexity and the context dependency of real world decisions, this 
assumption is hard to test for specific choices made by specific individuals.  

At the population level, fitness measurements can be used to test possible 
mismatches between habitat selection and habitat quality (Gilroy et al., 2011). 
Such a mismatch can lead to an ecological trap situation (Robertson & Hutto, 
2006) and cause source-sink patterns at a landscape level (Battin, 2004; Remes, 
2000). Pärt et al. (2007) propose a two-step model focusing on individual 
decisions to analyse the presence of ecological traps. These decisions are the 
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sum of many decisions over a substantial timespan, typically a breeding 
season.  

If mismatches between habitat preference and habitat quality are frequent, 
the method of counting organisms to measure habitat quality could be 
misleading (van Horne, 1983). Despite this, the review by Bock and Jones 
(2004) showed that positive relationships between bird numbers and habitat 
quality prevail, and for the purpose of the studies in this thesis, it is assumed 
that birds make well-informed and wise decisions, as individuals as well as 
collectively. In this context, habitat quality refers to the overall fitness 
individuals can achieve while living in that particular piece of habitat. 

Once the association between habitat and species can be expressed in 
statistical models, we can use those models to predict the impact of future 
habitat changes or the occurrences in similar conditions elsewhere (Elith & 
Leathwick, 2009; Guisan & Thuiller, 2005). The models can also be used to 
describe historical conditions and developments (e.g.Tingley & Beissinger, 
2009). Habitat changes may have natural causes (e.g. floods or fires) or be 
anthropogenic (e.g. global warming or changed agriculture management). 
Especially predictions of effects of global warming have received much 
interest (Bellard et al., 2012; Pearson & Dawson, 2003). 

1.2 Changing world 

When habitat changes over time, organisms are forced to re-evaluate their 
former habitat preference decisions, in other words: consider moving. Given 
the complexity of habitats, some aspects can always be expected to change, 
regardless the time-frame in focus. For the organism, the challenge lies in 
staying on top of change, if possible even being ahead of change. At the 
population or species level this capacity is taken care of by random mutations 
and adaptive plasticity (Reed et al., 2011; Wolf & Weissing, 2010; Smith & 
Blumstein, 2008). At the individual level, information retrieval and experience 
are additional components (Schmidt et al., 2010). At both levels, overall fitness 
is the ultimate measure of success. As an example of how birds can react to 
seasonal changes in habitat quality, Gilroy et al. (2010) showed that farmland 
breeding yellow wagtails Motacilla flava bred in autumn-sown cereals first, 
and then moved to potato fields elsewhere in the region for a second breeding 
attempt. In habitat association models, temporal effects have to be accounted 
for; a) by thorough evaluation of the underlying datasets, b) through 
synchronisation of the species and habitat data, and c) by integrating temporal 
trends in the modelling process. 
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Ultimately, the place of ovoposition or birth is where the positioning 
process of an individual starts. Here, the individual inherits the habitat 
association from its parent(s). Later, the starting point is “Here” (the current 
position), and the available places to move to are constrained by distance-
speed-time-energy equations. Although the non-stop migration of bar-tailed 
godwits between Alaska and New Zealand (Gill et al., 2006) shows that some 
animals are amazing dispersers, there will always be limits. Also, the available 
information decreases with the distance to the possible endpoint of the move, 
and thus, biases decisions towards nearby endpoints. This makes spatial auto-
correlation a necessary component of habitat association models (e.g. Austin, 
2002). Social information, including tradition, is a way to extend the 
information retrieval of the individual, even across taxonomic borders 
(Seppanen et al., 2007). 

Biotic interactions are also part in the location decision-making process. 
Biotic interactions will often lead to negative density dependency, for example 
when individuals compete for the same resource or in predator-prey relations. 
Well known effects of positive interactions are flocking behaviour and colony 
breeding. Vepsäläinen et al. (2007) show the importance of breeding groups 
for territory occupancy in ortolan bunting Emberize hortulana, a less well 
known form of clustering in bird societies.  

Recent technological developments have enabled researchers to follow the 
movements of free living animals in great detail over long periods of time (e.g. 
Bunnefeld et al., 2011; Sahlsten et al., 2010), but until the continuous tracking 
of animals becomes commonplace, most ecological studies will be confined to 
snapshot descriptions of the distribution of mobile organisms. 

1.3 Farmland habitat 

Occupying 38% of the world’s land surface, agricultural land is a prevailing 
component in many landscapes and an important ecosystem. This is where 
most of our food is produced and where many people make their living and 
live their lives. Due to the social organisation of many rural societies, the term 
farmland is commonly used for agricultural land surrounding homes and 
villages. Arable (tilled) land makes up 28% of the global acreage of 
agricultural land, in Europe 59% and in Sweden even 86% 
(http://faostat.fao.org/). Tilling adds a high level of disturbance to the 
ecosystem, and has played an important role in the intensification of 
agriculture when large areas of natural grasslands, which were previously used 
as meadows or pastures, were turned into arable land (Antonsson & Jansson, 
2011). In the boreal landscape of northern Sweden, arable land is by far the 
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dominating form of agricultural land use (Statistics Sweden, 
http://www.scb.se/). 

1.4 Agriculture and loss of biodiversity 

In industrialised countries, the intensification of agriculture (Kleijn et al., 
2009), in combination with the abandonment of marginal farmland (Dirk, 
2005), has led to substantial loss of biodiversity (Gregory et al., 2004). This 
causes conservation concern, but also threatens productivity through the loss of 
ecological services delivered by animals and non-crop plants (Miguel A, 
1999). Studies of strategies to solve the agriculture-biodiversity conflict 
suggest multiple-stakeholder approaches (e.g. Aranzabal et al., 2008; Henle et 
al., 2008; Mattison & Norris, 2005), and in the meantime, large sums of public 
money are spent on agri-environment schemes (Whittingham, 2007). The 
efficiency of these agri-environment schemes has been questioned (Kleijn et 
al., 2011), but positive effects have been reported (e.g. O'Brien & Wilson, 
2011; Davey et al., 2010) and new designs are gradually evolving (e.g. 
Whittingham, 2011). A current trend is to integrate ecosystem services and 
conservation (e.g. Rhymer et al., 2010). The future will tell whether these 
improvements can keep up with economical, technical and political 
developments in the agricultural sector. In their horizon scan of global 
conservation issues for 2012 (n=15), Sutherland et al. (2012) point at three 
issues that potentially can have a large impact on agricultural landscapes: (1) 
sterile farming to increase food safety, (2) transferring nitrogen-fixing ability to 
cereals, and (3) increased cultivation of perennial cereals. Also mentioned in 
their list is electrochemical sea water desalination, which could drastically 
change where and how crops are grown. The development of agricultural 
practice will surely continue, and so will its influence on farmland biodiversity. 
Solid knowledge of the organisms and the ecological processes involved will 
be vital for current and future conservation of farmland biodiversity. 

1.5 Farmland bird decline 

Farmland birds and their recent decline are extensively studied (e.g. Voříšek et 
al., 2010). The Common Farmland Bird (CFB) index compiled by the 
European Bird Census Council (http://www.ebcc.info/index.php) has declined 
by 44% in period 1980-2005. Agricultural intensification is commonly seen as 
the main cause of farmland bird decline (Anderson et al., 2001). Newton 
(2004) described intensification as a multi-component process. On arable land, 
the main components are draining, the use of agro-chemicals, removal of 
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unproductive landscape elements, crops specialisation and changing 
management practices (e.g. time of ploughing or harvesting). On pastures, 
increased livestock densities reduce vegetation structure and increase the risk 
of trampling. One step in the intensification process may initiate a cascade of 
successive changes. For example drainage may lead to the use of new crops 
and more intensive management, which reduces the abundance of non-cropped 
plants and the invertebrates that depend on them, and finally, influences insect 
eating birds. 

Abandonment of marginal farmland is driven by the same overarching 
processes as intensification (Dirk, 2005). In the northern parts of Europa, 
including most of Sweden, abandonment is an important cause of farmland 
diversity loss. Land that was turned from forest into farmland by settlers 
hundreds of years ago returns to be forest within decades, and is lost as 
breeding habitat for, for example, Eurasian skylark Alauda arvensis, northern 
lapwing Vanellus vanellus and Eurasian curlew Numenius arquata. 

1.6 Why Eurasian curlew? 

Currently, the agricultural landscapes in the north-eastern parts of Sweden 
are the stronghold of the Eurasian curlew in Sweden. Here, the species is 
widely appreciated as “the herald of spring” and functions as a flagship species 
in farmland biodiversity conservation. 

In Europe, the Eurasian curlew is not common enough to be included in the 
CFB index, but in Sweden the species is included in the index for the 
environmental target “a rich agricultural landscape” (from Swedish “Ett rikt 
odlingslandskap”, http://www.miljomal.se/). This index started in 2002 and has 
not shown any significant trend since (Lindström et al., 2012). Contrastingly, 
the numbers of Eurasian curlew have shown a negative trend: -2.5% year-1 for 
period 1998-2011, Swedish Bird Survey (Lindström et al., 2012). The Swedish 
conservation status is Vulnerable (www.artdata.se). Clearly, the Eurasian 
curlew is of conservation concern. 

The Eurasian curlew is an attractive study species because it is a large, 
long-lived (Fransson et al., 2008), highly mobile, migrating bird that breeds 
territorially in open, easily accessible landscapes. In addition, their size, 
display flights and calls make them easy to detect and count. The main 
disadvantage is that the sexes are not easily separated. Finally, in the eye of the 
farmer and the local community, a Eurasian curlew researcher earns immediate 
goodwill, and is allowed almost unlimited access to agricultural fields, private 
roads and even gardens. 
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Figure 1. Density distribution map of Eurasian curlew based on distance weight interpolated 
2000-2010 SBS route averages. Dots mark the location of the SBS routes, and the white-red 
colour scale depicts values 0-27 Eurasian curlews per SBS route. The white southern tip of the 
country is an artefact due to the location of the SBS routes and the external limits of the 
interpolation method. 
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2 Objectives 

This thesis aims to contribute to the knowledge of the distribution patterns and 
population trends of farmland birds, with particular focus on the Eurasian 
curlew; “why they are where they are and where they might be in the future”. 

More specifically, the following questions are addressed: 

1. What habitat and geographical characteristics do explain the numbers of 
Eurasian curlew and northern lapwing across Sweden? Paper I 

2. Can multiple land cover datasets be combined to produce better species-
habitat association models? Paper I 

3. What determines whether a farmland patch in a boreal landscape is 
occupied by Eurasian curlew or not? Paper II 

4. Do Eurasian curlews shift between foraging habitats during the breeding 
season? Paper III 

5. Are the populations of farmland breeding birds affected by the 
construction of a new railway? Paper IV 

6. Has incubation behaviour an effect on hatching success in Eurasian 
curlew? Paper V 
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3 Materials and methods 

In the first two studies, occurrences of Eurasian curlews were correlated to 
habitat characteristics, and in the next two, we studied the temporal aspects of 
abundances under the influence of habitat change. The last study is an 
experimental study of incubation behaviour. With the exception of the first 
study (Paper I), all studies are based on original data collected during 2002-
2010. 

In Paper I, we related Swedish Bird Survey Fixed Routes abundances of 
Eurasian curlew and northern lapwing to habitat variables in the CORINE 
Land Cover 2000. We developed optimal models for the two species in a 
mixed effects framework, and discussed the ecological interpretation of the 
variable composition of the models. We then tested the explanatory power of 
native and foreign models. Finally we tested if a combination of the two habitat 
data sets (CORINE Land Cover 2000 and the Block database) produced better 
models than each of the habitat datasets alone.  

In Paper II, we used logistic regression to analyse the determinants of the 
presences/absences of Eurasian curlews on patches of farmland in a boreal 
region. In total 518 farmland patches were scanned for the presence of 
Eurasian curlews. Models based on patch characteristics, isolation measures 
and a number of geographical parameters (e.g. distance to nearest river) were 
compared by their AICc values in an information theoretical approach. Large 
and small scale auto-correlation was accounted for. The optimal model was 
then used to predict the effect of possible future changes in patch size and crop 
diversity on patch occupancy. 

Paper III is based on numbers of foraging and non-foraging Eurasian 
curlews on 273 agricultural fields in northern Sweden during three periods of 
their breeding season. The observed distributions over agricultural treatment 
classes (ley, cereal, pasture and set-aside) were compared between periods and 
with random spatial distribution. 
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In Paper IV we analysed the effect of the construction of the Bothnia Line 
railway on the densities of Eurasian curlew and 12 other farmland breeding 
bird species. Nine years of 1823 ha territory mapping data from a before-
during-after control-impact design were modelled in a mixed effects frame 
following the Zuur et al. (2009) protocol. Site and year were the potentially 
random effect variables, and railway construction (levels: before, during and 
after) and year the fixed effect variables. 

For Paper V, we experimentally measured the flight initiation distances 
(FID) of incubating Eurasian curlews approached by a human observer. We 
tested the relation between FID and hatching success, and if FID was adjusted 
for date, time of the day and vegetation height. Finally, we analysed the 
consistency of FID measurements of individual nests. 
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4 Results 

4.1 Paper I 

Geographically, the Eurasian curlew had a more northern and eastern 
distribution than the northern lapwing. For both species, arable land was the 
CORINE Land Cover 2000 habitat class with the highest densities, followed by 
pastures (Table 1). Eurasian curlew densities on mires were 38% of those on 
arable land, but only 9% for northern lapwing. Northern lapwings were 
common in coastal habitats, but not near fresh water, while Eurasian curlew 
were strongly associated with human settlements and freshwater, but not with 
coastal habitat (Table 1). Based on the optimal habitat association models and 
the proportion of the habitats along SBS count transects, 17% of the Swedish 
Eurasian curlews were found on wetlands. The corresponding proportion for 
northern lapwing was 6%. 

Eurasian curlew models were poor predictors of the abundances of northern 
lapwing, and vice versa. Finally, combining two independent habitat datasets 
produced better species-habitat association models than each of the datasets 
alone (Table 2). 
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Table 1. Predicted relative densities (densityArable = 100) of Eurasian curlew and northern lapwing 
in CORINE Land Cover 2000 habitats included in the optimal models. 

 Eurasian curlew Northern lapwing 

Arable 100 100 

Pasture 61 51 

Settlement 50 NA 

Mire 38 9 

Wetland NA 4 

Water 37 8 

Sea NA 41 
 

Table 2. AICc values of the empty model (without fixed effect variables) and ΔAICc between the 
empty model and optimal models based on various habitat datasets (transect data for 1999-2008, 
distance = 200 m). 

Habitat dataset Eurasian curlew Northern lapwing 

Empty model (AICc) -24802 8217 

CORINE (ΔAICc) -466 -2284 

Block (ΔAICc) -390 -2389 

CORINE + Block (ΔAICc) -519 -2436 
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4.2 Paper II 

Patch size was the dominant predictor of presence of Eurasian curlew on 
farmland patches (Fig. 2), but crop heterogeneity and Easting + Easting2 added 
additional explanatory power. A simulation test showed that the low occupancy 
rate on small patches (<11.5 ha) was not the result of sampling bias, but 
reflected ecological relevant differences exceeding the effect of acreage per se. 

There was no difference between the river basins, and neither distances 
from the patch to the coast or the river, nor isolation measurements 
(proportions of non-farmland outside the patch within 0.5, 1, 2.5, 5 and 10 km 
respectively) added to model fit. No small scale spatial auto-correlation could 
be shown, but on a larger scale, occupancy rate increased towards the east, but 
peaked within the range of the study area.  

The optimal model predicted that a 50% reduction of patch size would lead 
to a near to complete loss of occupied patches, while Eurasian curlews would 
be present on >2.5 times as many patches when patch size doubled (Fig. 3). An 
increase of crop heterogeneity could not compensate for area loss, but 
substantially increased occupancy levels when patch size was stable or 
increased (Fig. 3). The results of this study show that hindering shrinkage of 
patch size is an effective means to prevent local extinctions within a farmland 
habitat archipelago in a boreal landscape. Increased patch size may be a way to 
facilitate the expansion of Eurasian curlews, and probably even other farmland 
breeding bird species, within this fragmented habitat. The role of crop 
heterogeneity is less powerful, but mixing different crops within a farmland 
patch increases the chances that the patch will be occupied by breeding 
Eurasian Curlews. 
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Figure 2. Area - presence relationship for medium sized (5 - 100 ha) farmland patches (N = 400) 
in the Ume and Vindel River drainage basins 2009. Circles mark observed presences and 
absences. The fitted incidence curve represents the predicted values according to the Area only 
generalized linear model. The 0.50 level of presence probability corresponds with an area of 31.4 
ha. 

 

 
Figure 3. Predicted responses to changes in patch area and crop heterogeneity on the presences of 
Eurasian Curlews on farmland patches. All patches are assumed to change in relation to their 
current state (0% change) between total loss of farmland area (-100%) and doubling of patch area 
(+100%). Crop heterogeneity response: current status = circles, +1 crop type = diamonds, +2 = 
triangles, -1 = plus sign and -2 = crosses. 
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4.3 Paper III 

More foraging Eurasian Curlews were observed on leys than expected from 
random spatial distribution during Period I (May 2-11) and II (May 26 – June 
2), but less so in Period III (June 14-22), while on cereal fields the numbers 
were lower than expected during the first two periods, but much larger during 
the last (Fig. 4). This means that foraging Eurasian Curlews shifted from leys 
to cereal fields between Period II and III. Among the non-foraging birds there 
was a similar tendency, but the magnitude was much smaller. The differences 
were not related to proportions of male and females (males/females ratios 1.0, 
1.3 and 1.5 for Period I-III respectively) and I argue that there was no 
significant exchange of the birds in the area during study period. Instead I 
suggest that the shift in foraging habitat was driven by prey accessibility, 
because soil living prey may have become harder to catch in untilled grassland 
soils compared to prey is loose soils of tilled cereal fields. For farmland bird 
conservation, my results imply that landscapes with leys and cereal fields are 
better breeding habitats than landscapes with only one of these treatment 
classes, because it allows the birds to choose the best foraging habitat when 
habitat quality changes over time. 

 
Figure 4. Observed numbers (dots) of foraging and non-foraging Eurasian Curlews over 
agricultural treatment classes and periods compared with 95% confidence intervals (CI’s) under 
random spatial (binomial) distribution (bars). Observed numbers outside the 95% CI’s indicate 
significantly (P<0.05) lower or higher numbers than could be expected from chance alone. 
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4.4 Paper IV 

For ten of the studied species, the treatment variable (coding for before, during 
and after railway construction) did not add significantly to model fit, and this 
means that no effect of railway construction could be demonstrated for these 
species (Table 3). Among the three species for which an effect of railway 
construction was found, the Eurasian skylark was affected negatively and little 
ringed plover and yellow wagtail positively. The densities of Eurasian curlew 
were not affected by railway construction, but showed a negative trend over the 
study period. The estimate of this trend corresponded with a 3% year-1 
decrease. 

Table 3. Applied variance structures, included fixed and random effects, and random effect 
variance components in optimal mixed-effects models selected according Zuur et al. (2009). The 
treatment variable describes the conditions Before, During and After the construction of the 
Bothnia Line for the 19 studied sites. Response variable: yearly number of territories 100 ha-1 
(2002-2009). Mixed-effects models for common rosefinch did not converge 

 

Variance 
structure 
(varIdent) Included effects 

Random effect variance 
components (%) 

 
Species Treatm. Year Fixed Random Site Year Resid. 

Barn swallow + - - year,site 84 <1 16 

Common rosefinch + + - - - - - 

Common snipe - + - site 63 - 37 

Common starling + + - site 24 - 76 

Eurasian curlew - - year year,site 78 <1 21 

Eurasian skylark - - Treatm.*year year,site 92 <1 7 

Green sandpiper + + - site 2 - 98 

Little ringed plover + - Treatm. site 20 - 80 

Meadow pipit + - - year,site 84 <1 15 

Northern lapwing - - - year,site 86 <1 13 

Red-backed shrike + - - year,site 77 5 18 

Yellow wagtail - + Treatm.*year year,site 85 <1 14 

Whinchat - - - site 56 - 44 
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4.5 Paper V 

Nests where the incubation adult left at intermediate distances had a greater 
chance to hatch successfully compared with nests where the bird left at short or 
long distances (Fig. 5). Date and time of the evening correlated negatively with 
FID, which means that incubating parents let the intruder come closer before 
leaving the nest as the breeding season and the evening progressed. Finally, 
FID measurements from first, second and third nest visits were not correlated 
(Fig. 6). 

 
Figure 5. Ordered FID values at first provocation. Successfully hatched nest: + , failed nest: Δ. 
Vertical lines mark the borders between the three FID classes: short (n=13), medium (n=12) and 
long (n=13). 

 
Figure 6. FID measurements from nests with three provocations. All nests except one hatched 
successfully. 
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5 Discussion 

5.1 Eurasian curlew and northern lapwing habitat associations 

Productivity, ambient energy and hydrology are among the factors 
determining species abundances at continent scale (e.g. Stefanescu et al., 2011; 
Carnicer & Diaz-Delgado, 2008). The Species Temperature Index (average 
summer temperature of the European breeding range) for Eurasian curlew 
(12.0oC) and northern lapwing (13.6oC) are the result of such factors (Devictor 
et al., 2008) and could partially explain the different effects of Northing and 
Easting observed in Paper I.  

At the national level, the models in Paper I confirm the role of farmland and 
wetlands (including coastal habitats) for the abundances of both species (Table 
1), but the relative importance of these habitat types differed between the 
species. The coastal association in northern lapwing may be related to the 
westerly distribution of the species throughout the Western Palearctic (Cramp, 
1983) compared with the Eurasian curlew. This Eurasian curlew was not 
significantly associated with coastal habitats, but strongly so with freshwater 
and wetland habitats. The association with human settlements expressed in 
Eurasian curlew models is probably caused by the association between 
farmland and villages and towns in northern Sweden, where this species is 
most common (Svensson et al., 1999; Fig. 1). In these landscapes, farmland is 
seldom found far from villages and towns (Digital map of Sweden, 
http://www.lantmateriet.se). Thus, the association with settlements could be 
added to the farmland association aspect. 

The weak association with wetlands expressed in the northern lapwing 
models contrasts with the Swedish breeding habitat description in Svensson et 
al. (1999), while our findings correspond well with the European habitat 
description in del Hoyo et al. (1996). Contrastingly, this latter source stresses 
the importance of wet habitats for Eurasian curlews, while Svensson et al. 
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(1999) emphasizes the role of farmland. These examples seem to illustrate the 
spatio-temporal dynamics of habitat association. 

Despite the similarities between the optimal models for the two species 
(Paper I), models for one species were poor predictors of the abundances of the 
other species. In an era of meta-analyses (e.g. Benitez-Lopez et al., 2010; 
Riffell et al., 2011; Ibanez-Alamo et al., 2012) and multispecies indicators (e.g. 
Gregory et al., 2008; Gregory et al., 2009; Gregory & van Strien, 2010), there 
seems to be a risk for single species based models to be applied on data for 
other species or species-clusters (c.f. Jetz, 2012). Our results show that this 
could lead to faulty predictions, even when the species appear to be 
ecologically similar. 

5.2 Models based on multiple habitat data sets 

The major novelty of the Akaike Information Criterion (Akaike, 1974) was the 
introduction of a penalty for each added coefficient (variable) to counteract 
tendencies to over-parameterize explanatory models. Meanwhile, the complex 
nature of ecological systems makes adding more explanatory variables a 
tempting option in many modelling situations. The continuous increase in the 
number of large-scale systematic bird surveys (e.g. Gregory et al., 2005; 
Gregory et al., 2009), paralleled by an increased availability of large-scale 
high-quality habitat data (Guisan & Thuiller, 2005), provide ever increasing 
opportunities to model and evaluate the occurrence and fate of breeding birds 
in relation to their habitat requirements. The positive results of our test to 
combine two different land use datasets (Paper I) suggest that adding more 
explanatory information can be fruitful. 

The main shortcoming of the CORINE Land Cover 2000 dataset was its 
invariability over time. In the future, regular updates of the Swedish CORINE 
Land Cover will be available, but no yearly updates are planned (Eionet 
EAGLE initiative, http://sia.eionet.europa.eu/EAGLE/#Description). The main 
strength of the Block habitat database was that the habitat information was 
updated yearly. Unfortunately, the data were basically prognoses for coming 
land-use under an imperfect update and control scheme. Ideally, the future 
Block database should also include time-stamped information about activities 
that change the ecological function of agricultural fields, e.g. tilling and 
harvesting. 

For the future, the habitat dataset of our choice would a) be yearly updated 
to describe the conditions during the breeding season, b) be based on a 
“smarter” classification system, c) have very high spatial resolution, and d) 
contain other ecologically relevant features than land cover. For studies of 
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farmland breeding bird species, non-polygon features (e.g. open ditches, 
hedgerows, agricultural buildings, stone walls, solitary trees) are likely to have 
high explanatory potential (e.g. Ståhl et al., 2011). Among other data sources 
for habitat association modelling, high resolution elevation data (e.g. the new 
LIDAR based digital elevation model of Sweden) appear to have special 
potential. In addition to being potentially explanatory (expressed in e.g. slope 
or exposition), elevation data may be used to adjust the bird data for 
detectability. In addition to the improvement of habitat data, future species 
distribution models will probably include species interactions (e.g. 
Campomizzi et al., 2008), soil physics, behaviour and personality (Sih et al., 
2012; Gordon, 2011), and could largely be based on long-term monitoring of 
individual animals (Bunnefeld et al., 2011). 

5.3 Importance of patch size 

For long-lived, highly mobile, migratory species, meta-population theory 
(Hanski, 1994; Gill, 1978) is unlikely to be a good predictor of patch 
occupancy at landscape scale. In these species, a breeding habitat patch is 
“immigrated” at the return of each migration (c.f. Bowman et al., 2002) as a 
result of an evaluation process, usually including a number of alternative 
patches. Available resources, perceived predation risk, interactions with con-
specifics and experience will be important components in this evaluation 
process (e.g. Campomizzi et al., 2008; Whittingham et al., 2006).  

If one or more of these factors relate to patch size, a “desertion threshold”, 
analogous to an extinction threshold (Fahrig, 2002), can be expected. For 
example, predation risk has been shown to correlate negatively with patch size 
(Reino et al., 2009; Morris & Gilroy, 2008). When a patch is too small to 
provide sufficient breeding habitat conditions, it will not be colonized for the 
season, and when unoccupied patches are available in the neighbourhood, these 
will be used instead. 

The Eurasian curlew is an interior species with respect to farmland patches 
in a boreal matrix, and according to the meta-analysis by Bender et al. (1998) a 
strong effect of patch size on occupancy rate can be predicted. The effect of 
patch size reduction shown for this species in Paper II is in line with this 
prediction. Also, the size effect in Paper II could not be attributed to sampling 
bias, because the simulation program produced a patch occupancy rate of 27 
for aggregations of small patches compared with a >50% rate for single 
patches of similar size. The additional effect of within-patch number of crops 
that we describe (Paper II) is in concordance with the positive effects of 
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agricultural landscape heterogeneity on species occurrence demonstrated by 
Benton et al. (2003) and Fahrig et al. (2011). 

Considering that the Ume and Vindel River basins are strongholds of the 
species in Sweden (de Jong & Berg, 2001), landscape transformations that 
cause the loss of relatively large patches could have regional conservation 
consequences. Responses to changes in patch area and crop diversity predicted 
by the optimal model in Paper II (Fig. 3) stress the importance of active 
agriculture in the boreal landscape for the distribution of the Eurasian Curlew. 
The model suggests that a further reduction of farming on marginal lands 
quickly reduces the number of patches occupied by the species, and that these 
local extinctions are likely to amalgamate to regional extinctions. The driving 
forces are reduced acreage of suitable habitat, and to a lesser degree, loss of 
crop heterogeneity. Agriculture is highly governed by central policy decisions 
and subsidies. For decades, these have driven farming towards specialization, 
intensification and concentration. In the county Västerbotten, where the study 
area is situated, total area of arable and fallow land decreased with 42% since 
1951 (Statistics Sweden, www.scb.se). According to the model of Paper II 
(Fig. 3), a reduction of that size would have caused a >80% reduction of 
occupied farmland patches within the region of our study. This level of 
reduction would occur if all patches were reduced proportional. If this 
reduction was applied on small patches only, the loss of occupancy would be 
less (these patches seldom had any Eurasian curlews to loose), but if the area 
reduction concentrated on the 20-50 ha sized patches, the losses would 
probably be substantially larger. Conservation of the Eurasian curlew, and 
probably several other farmland breeding species, would benefit greatly from 
redirecting support from users of small patches to users of larger 
(approximately >20 ha) patches. Special focus should be set on enlarging mid-
sized patches, while supporting farming of large (>100 ha) patches would be 
less cost-effective. 

5.4 Foraging habitat shift 

Based on the marginal value theorem (Charnov, 1976) and Oaten’s (1977) 
optimal foraging strategy under stochastic processes, Green (1980) proposed a 
Bayesian behaviour model, where the quality of the current location is 
evaluated continuously. McNamara (1982) applied this on stochastic 
environments distributed in well-defined patches, where the decision to 
continue foraging or to move to the next location is made on the patch level. 
Later McNamara and Houston (1985) added the process of learning (and thus 
experience) to these optimal foraging models. 
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The Eurasian curlews in Paper III were breeding birds within territories 
made up by an aggregation of agricultural fields. Although the land-use and 
location of these fields remained the same over the study period, their 
characteristics changed due to management, vegetation growth and climatic 
processes. I assumed that the same birds were present throughout the study, 
because the study period fell between migration periods. The lack of 
differences between periods in total numbers, the sex ratio and the proportion 
foraging birds support this assumption. Given the breeding site fidelity of 
adults (Cramp, 1983) and the long life-expectancy of the species (Fransson et 
al., 2008), most of the birds were non-naïve in respect of their breeding habitat. 
For the purpose of this study, I classified behaviour into “foraging” and “non-
foraging”, but each bird changes between these behavioural classes multiple 
times per day, and thus all birds belonged to the same sample. 

In this setting, I found that foraging birds reversed their preference of leys 
over cereal fields during the second half of June (Fig. 4). Non-foraging birds 
were distributed over field classes in a way that did not differ (P>0.05) from 
random spatial distribution. My conclusion is that the relative quality of leys 
and cereal fields as foraging habitat changed, while this change was not 
important for birds that were not busy foraging. It seems likely that 
experienced Eurasian curlews can recognize fields as a habitat patch unit, and 
use this entity in their foraging habitat decision (the omniscient strategy in 
Green, 1980), but the observed foraging habitat shift could also have arisen 
from naïve, but spatially auto-correlated sampling by the foraging birds. 

Changes in habitat quality for foraging may have been related to prey 
density (but see Berg, 1993), perceived predation risk (e.g. Whittingham & 
Evans, 2004), ease of locomotion, prey detectability (Devereux et al., 2004) or 
prey accessibility (Finn et al., 2008). I suggest that soil penetrability was an 
important driver of the foraging habitat shift, because the soils of cereal fields 
were loose as a result of tilling, so that soil-living prey could be reached more 
easily than in untilled soils. 

Landscape heterogeneity is increasingly recognized as an important factor 
in maintaining farmland biodiversity (Benton et al., 2003; Herzon & O’Hara, 
2007). Due to its multiple dimensions and scales, the concept of landscape 
heterogeneity is complex, and the links between heterogeneity components and 
biodiversity are only partially understood (Tscharntke et al., 2005; Fahrig et 
al., 2011). Nevertheless, various heterogeneity-based farmland bird 
conservation measures have already earned their merits (Wilson et al., 2005; 
Schekkerman et al., 2008), but these measures reduce crops and increase costs, 
and thus rely on financial compensation to farmers. My results indicate that 
mixing commercially managed crops in a medium grained agricultural 
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landscape may enhance choice and hence overall foraging habitat quality for 
Curlews. Conservation measures based on increasing heterogeneity by 
commercial management should be relatively cheap to implement and easily 
accepted by farmers. 

5.5 Railway construction and farmland birds 

Roads and railways are generally thought to have a negative impact on wildlife 
populations (Fahrig & Rytwinski, 2009), and in a recent meta-analysis Benitez-
Lopez et al. (2010) summarized the impact level in single models for mammals 
and birds. Most of the underlying studies compared densities near 
infrastructure with densities far enough to be considered unaffected, a control-
impact design (e.g. Reijnen et al., 1996; Forman et al., 2002). The major 
drawbacks of this design are that (a) the original state of the wildlife population 
is unknown, and (b) all possible mechanisms by which infrastructure could 
affect wildlife are integrated and summed up over time. Fahrig & Rytwinski 
(2009) proposed before-after control-impact studies to solve these two 
problems and Roedenbeck et al. (2007) extended the concept into a before-
during-after control-impact (BDACI) design. The BDACI study of the 
construction of the Bothnia Line and farmland breeding birds In Paper IV was 
started with a pilot study in 2000. 

The mechanisms by which roads and railways could affect wildlife can be 
grouped into (a) habitat alteration, (b) barrier effects, (c) mortality and (d) 
disturbance (Spellerberg, 1998; Trombulak & Frissell, 2000). Of these, 
mortality and disturbance are mainly associated with traffic. Disturbance by 
traffic noise has received much attention (Reijnen et al., 1997; Francis et al., 
2009; Parris & Schneider, 2009), but its importance has recently been by 
Summers et al. (2011). 

Multiple sites, multiple year BDACI studies produce data with potentially 
random effects of site (random intercept) and year (random slope). Such data 
are adequately handled in a mixed-effects framework (Pinheiro & Bates, 
2000). 

From the lack of negative impact observed in Paper IV (Table 4), we 
conclude that a general negative effect of infrastructure on birds (sensu 
Benítez-López et al., 2010) is related to traffic related mechanisms rather than 
to railway construction per se. For birds in open landscapes, it seems unlikely 
to expect a significant barrier effect of a railway. The positive effects signal 
that there is potential for deliberately create (and manage) favourable habitats 
for birds in connection with infrastructure construction. These findings can be 
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used to plan cost-effective mitigation and offset programs for large 
infrastructure project (McKenney et al., 2010). 

5.6 FID and hatching success 

Nests of waders are subject for high predation pressure (Berg, 1992; Currie et 
al., 2001; MacDonald & Bolton, 2008) and consequently, parent behaviour that 
reduces predation risk are likely to have a major impact on overall fitness 
(Montgomerie & Weatherhead, 1988); Lima, 2009). Eurasian curlews, like 
most waders, are ground-nesting and unable to cover their eggs at nest 
departure. Consequently the only behavioural options for nest defence are (a) 
nest site selection, (b) vigilance (c.f. Cooper, 2008), (c) flight initiation 
distance (FID), and (d) distractive or aggressive behaviour versus the predator. 

A trade-off between the survival of the parent and the protection of the eggs 
may not fully describe the components of the FID cost-benefit analysis. For 
example, if the eggs are better camouflaged than the adult or the smell of the 
adult guides the predator to the nest, leaving the nest early may be 
advantageous for the eggs. The optimal FID models proposed by Cooper & 
Frederick (2007) can incorporate such additional factors, but by doing so, the 
graphical approach to predict FID (Ydenberg & Dill, 1986) collapses. The 
complexity of the cost-benefit decision may explain why the observed FID’s in 
Paper V showed substantial variation (Fig. 5). In the light of this variation, the 
effects of date and time of the evening (2.4 m day-1 and 0.5 m h-1) were 
moderate. The effect of date is likely to be related to the increasing relative 
value of the current clutch as the breeding season progresses (Biermann & 
Robertson, 1981), while the effect of time may be related to the increasing 
need to brood the eggs (Camfield & Martin, 2009) when ambient temperatures 
drop during the course of the evening. 

Evolutionary stable strategy theory (Maynard Smith & Price, 1973) could 
explain why the results of Paper V show that nests with medium long FID had 
higher hatching success than nests where the incubating parent left early or late 
(Fig. 5). If fleeing immediately came at no costs, natural selection would have 
favoured this behaviour, and if staying came at no costs, selection would 
favour birds that stayed on the nest “until the bitter end”. With costs and 
benefits for both staying and leaving, intermediate FID would develop into the 
evolutionary stable strategy. 

The tests for consistency in FID between provocations (Fig. 6) indicated 
that there is no individuality in the response to the approaching observer, 
neither at a stable level, nor as a consistent trend. We propose a “surprise” 
strategy to explain this lack in consistency in FID, and suggest that this 
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strategy can be beneficial for the adult, the eggs or both, because it prevents 
predators from learning how to interpret the behaviour of incubating birds. 

5.7 Conclusions and applications 

In times when Western world citizens are swamped by decisions about healthy 
food (Grunert & Wills, 2007), care for the environment (D’Souza et al., 2007) 
or pocket-money (Xavier, 2008), it can be wise to reflect upon the decision-
making environment of animals. For humans, suboptimal choices may be 
punished by an extra BMI score, bad conscience or getting less rich. For 
animals an empty stomach, loss of offspring or life may be at stake. Maybe we 
should care less about consumption and more about how we influence the 
options of the fellow inhabitants of the world. We have the choice! 

Predictive models can help us make wise choices. Modelling techniques can 
and must be taken much further than the ones presented in this thesis, but it is 
crucial to keep focused on the quality of the data on which the models are built. 
Here I would like to pay homage to all those field-ornithologist who spend 
their time (often unpaid for) systematically collecting the data that allow us to 
make informed decisions for our common future.  

For a next step in the development of habitat association models based on 
the national bird survey data, I suggest repeated models based on matching 
time periods for the bird and habitat data. The parameters of these models 
could then be averaged or analysed for trends. Preferably, these models are 
made on a yearly basis (e.g. for SBS and Block data), but even models based 
on multiple year periods could be fruitful. Additional environmental data 
would also help to improve the models. 

The design of data collection schemes and the interpretation of modelling 
results are highly dependent on thorough autecological knowledge of the 
species involved. This knowledge can seldom be achieved without long-term 
studies of various aspects of the life of the species. The current trend to 
concentrate scientific effort on a small number of model species should not 
come at the cost of a serious lack of knowledge of other species. In depth 
species-specific knowledge will also enable us to integrate behavioural ecology 
(e.g. Gordon, 2011) and individual variation (e.g. Sih et al., 2012) into the 
predictive models. This effort will be aided by the results of large scale, long-
term tracking of individual animals (c.f. Bunnefeld et al., 2011). 
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Conservation of the declining Eurasian curlew population has been an 
important motive behind the studies in this thesis. The results suggest the 
following applications: 

 Sufficiently large farmland patches in boreal landscapes should be 
conserved or created, especially in the core areas of the distribution of 
Eurasian curlew. Subsidies to farmers could be used to reach this goal. 

 Eurasian curlews seem to benefit from having access to both 
grasslands and cereal (tillage) fields within their home range during 
the breeding season. Again, subsidies could be used to deliver these 
conditions. 

 
The home of farmland breeding birds was shaped by humans, and can be made 
hostile or hospitable by the choice of humans. When given adequate options to 
choose from, Eurasian curlews are likely be able to match their changing 
world. 
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