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Abstract

Yingfu Xie. Maximum Likelihood Estimation and Forecasting for GARCH,
Markov Switching, and Locally Stationary Wavelet Processes. Doctoral
Thesis.

ISSN 1652-6880, ISBN 978-91-85913-06-0.

Financial time series are frequently met both in daily life and the scientific world. It is clearly of
importance to study the financial time series, to understand the mechanism giving rise to the data,
and/or predict the future values of a series. This thesis is dedicated to statistical inferences of a
number of models for financial time series.

Financial time series often exhibit time-varying and clustering volatility (conditional vari-
ance), which were not handled well by traditional models, until the development of the autore-
gressive conditionally heteroscedastic (ARCH) and the generalized ARCH (GARCH) models. We
prove the consistency and asymptotic normality of the quasi-maximum likelihood estimators for a
GARCH(1,2) model with dependent innovations, which extends the results for the GARCH(1,1)
model in the literature under weaker conditions.

The regime-switching GARCH (RS-GARCH) model extends the GARCH models by incor-
porating a Markov switching into the variance structure. The statistical inferences for the RS-
GARCH model are difficult due to the complex dependence structure. One alternative is to take
average over all regimes at every step, and adapt the integrated conditional variances. Another
one is to transform the GARCH into an ARCH model. The maximum likelihood (ML) estimation
of these two cases is considered. Consistency of the ML estimators is proved, and the asymptotic
normality is suggested by simulation studies. The results are further generalized to a general au-
toregressive model with Markov switching, in which the autoregression can be of infinite order.
Consistency of the ML estimators is obtained and the asymptotic normality is conjectured.

Time series analysis can also be conducted in frequency domain, i.e. to analyze their spectral
values obtained by e.g. Fourier or wavelet transforms. Locally stationary wavelet (LSW) pro-
cesses are a class of processes defined on a set of non-decimated wavelets. We first address the
problem on how to select a wavelet in practice, and some guidelines are suggested by simulation
studies. The existing forecasting algorithm for LSW processes is found vulnerable to outliers, and
a new forecasting algorithm is proposed to overcome this weakness. The new algorithm is shown
stable and outperforms the existing algorithm when applied to real financial data. The volatility
forecasting ability of LSW model based on our new algorithm is then discussed and is shown to
be competitive with GARCH models.

Algorithms and functions for data generation, calculation and maximization of the likelihoods
for RS-GARCH models and the new forecasting algorithm of LSW processes are appended.

Key words: Consistency; Financial time series; Forecasting; GARCH; LSW process;
Maximum likelihood estimation; Markov switching; Non-decimated wavelet; Volatility

forecasting
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1 Introduction

Financial time series, i.e. financial outputs collected at successive times, are frequently
met in daily life and the scientific world. It is clearly of interest for both practitioners and
researchers to study the financial time series, i.e. to understand the mechanism giving
rise to the data, and/or to make forecasts of the future values of the series. This thesis
is dedicated to statistical inferences of a number of models for financial time series.
The main interest in such series is the return series of certain financial instruments, e.g.
stock shares, derivatives, share indexes, or foreign exchange rates. There are a number
of properties common to such series that are already well known (see, e.g. Cont [18]),
including:

(P1) The mean of the return series is close to zero.

(P2) The marginal distribution is nearly symmetric, or slightly skewed, with a peak
around zero and usually a heavy tail.

(P3) The autocorrelation of the series itself is insignificant, while the autocorrelation
of squares or absolute values of the series is usually significant for a large number
of lags.

(P4) Volatility clustering: it is often observed that big changes (variations) in a series
are usually followed by big changes and small changes by small changes.

Almost all these properties can be clearly seen in Figure 1. Figure 1 (top left panel)
shows a typical financial return series, the log returns of the daily close Financial Times
Stock Exchange 100 Index (FTSE 100) for the London Stock Exchange, from which
can be seen volatility clustering. The histogram of this series (top right) reveals that
the (empirical marginal) density is almost symmetric, and with a peak around zero. The
autocorrelation of the series is insignificant (bottom left), while that of the squared series
is significant for at least 35 lags (bottom right). Evidence of heavy tails is more obvious
in marginal distributions of individual stock return series than in this index series. For
example, the average kurtosis of return series of 367 individual company stock shares
included in the Standard & Poor’s 500 (S&P500) index from year 1990 to 2001 is around
10.8; some is even as large as 165, compared with the kurtosis for the normal distribution
which is 3. This indicates heavy tails for these return series. Properties such as (P3) and
(P4) were not handled well by traditional econometric models, until the development of
the autoregressive conditionally heteroscedastic (ARCH) model by Engle [25] and the
generalized ARCH (GARCH) by Bollerslev [8]. See Section 2 and Cont [18] for more
descriptions of the properties of financial time series, and the analysis of these properties
using mathematical statistics.

Mathematical statistics is a subject concerned with collecting and gaining informa-
tion from data, in particular, gaining knowledge about a population by inference from a
sample. In practice, such data contain some randomness or uncertainty and mathemat-
ical statistics handles this using methods derived from probability theory. For example,
statisticians assume that a sample is just one set of the all possible realizations (the en-
semble or population) of the actual data generating mechanism, and this mechanism can
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Figure 1: Top left: The plot of the log returns series of the daily close FTSE 100 index
with zero line; Top right: The histogram of the series. Bottom left: The autocorrelation
function (ACF) of the series; Bottom right: The ACF of squares of the series, where the
dashed lines in the bottom figures indicate approximate 95% confidence intervals for the
ACF.



be described by a model. Here, a model is a mathematical formulation of a theory that
aims to describe the data generating mechanism. In parametric statistical inference, the
model usually specifies the probability distribution of the population. But, for this prob-
ability distribution, it is assumed that there are several unknown parameters, denoted by
0, the possible values of which are limited within a parameter space ©. One of the major
tasks of statistical inference is to estimate the parameters based on the observed data, so
as to more clearly understand the nature of the population, and/or make forecasts on
the future events within this population. For more descriptions and other ‘principles of
statistical inference’, see Cox [19].

There are various methods for estimating the model parameters. The first one that
deserves attention is the Least Squares (LS) estimation, also known as Ordinary Least
Squares (OLS) estimation. The main idea of the LS estimation, as its name indicates, is
to minimize the error impact, which has a quadratic form. In general, suppose we have
data {x;,y;},7 = 1,--- ,n, where x; may be a vector. We want to find a function of
x; with a vectorial parameter 3, f(x;, 3), such that f(x;, ) is “as close as possible” to
y; for all values of 4. The LS estimation, intuitively, treats x;, y;, and the form of f as
being fixed and estimates the parameter 3 (in values of x; and y;) such that

n

> (fxiB) — i) (1)

i=1
is minimized.

It is generally difficult, if not impossible, to obtain an analytical solution for 3 that
minimizes (1) when f is nonlinear and/or some constrains are imposed on (3. Instead,
we can use numerical optimization methods in such cases. Paper IV presents an exam-
ple with constrained ( that requires a numerical solution. The LS estimation is, how-
ever, probably better known in the linear regression analysis. In a regression analysis,
the relation between a dependent variable (response variable), Y;, and certain specified
independent variables (explanatory variables), say, X;1,--- , X;, (p fixed), is to be ex-
amined. The relation in a linear regression is assumed to be linear on the parameters (3,
ie.

Y = Bo+ 51X + -+ BpXip + €4, ()

where ¢; is a random error term with mean zero. Many problems may be formulated as
model (2). Note that capital letters such as X and Y are usually used to denote random
variables and lower case letters denote the values (realizations) of the random variables.
If the model (2) is accepted', a sample of size n, {y;, zi1, - JTiph, t=1,--- n,is
obtained, and we want to estimate the parameter 3 = (89, 81, , Bp)” (T denotes the
transposition of a matrix or vector), such that the sum of square of errors is minimized.
Let X be an X (p+1) matrix, the element of whichis z;, i =1,--- ,n,k=0,1,--- | p,
with ;o = 1 for all ¢. Y is the vector (Y7, - -, Yn)T. If the errors ¢; are not correlated
to each other, the LS estimation gives us the estimator B as

f=X"X)"'X"Y,

'Note that no model can really be true for real data except in a very general way. It would be wrong here
for us to state that "the model is true’. It is more appropriate to say "the model describes the data well’.



where —! denotes the matrix inverse, provided that this inverse exists.

In this thesis, the focus is on another popular statistical estimation method, Maxi-
mum Likelihood (ML) estimation, which has been mainly credited to Sir R. A. Fisher
(cf. Aldrich [1]). ML estimation selects the values of model parameters under which the
(given) data have a greater probability of being generated than under any other values
of the parameters. Suppose that observations {y, - - -,y } are recorded, the probability
densities of which depend on some (vectorial) parameter §. Suppose, in addition, that
the joint density of {y1,- -, yn} (the likelihood function) is

The ML estimator (MLE) is defined as any estimator én that maximizes the likelihood
function within some parameter space O, i.e.,

6, = argmaxycg Ly (6).

In time series analysis using ML estimation, there can be difficulties when deriving the
likelihood function, since observations of time series are usually dependent, and the
maximization of likelihood is often complex, see Papers II and III for examples.

In principal, any function of the sample data, including a constant function, can be
an estimator for the underlying model parameters. Consequently, an important issue to
be considered is the goodness of different estimators. Of the criteria commonly used to
evaluate estimators, unbiasedness is easy to understand. It requires that, on average, the
estimator, e.g., én, as a function of data (random variables) of size n, should be neither
bigger nor smaller than the true parameter 6y, i.e. the expectation of 0,, (with respect to
some measure), Eén = 0.

Consistency and asymptotic normality of estimators are two other common crite-
ria that concern the asymptotic properties of estimators, i.e. how the estimators be-
have themselves when more and more (until infinitely many) samples are obtained. A
(weakly) consistent estimator tends to the true one in probability when sample size goes
to infinity, formally

Jim Py (|én ~ G| < e) —1, @)

for any positive number e. The estimator is said to be strongly consistent if the conver-
gence in probability in the above equation is replaced by convergence with probability
one, or almost sure (a.s.) convergence,

Pr ( lim 6, = 90) —1. (5)
n—oo

With asymptotic normality, an estimator is not only consistent, but a clearer picture

can be obtained about how quickly (with respect to the number of observations) the

estimator will converge to the true parameter; the construction of a confidence interval

is also possible. In the usual form, it follows that

V0, — 60) 25 N(0,%), asn — oo, ©6)



where L, denotes convergence in distribution, or, informally, the random variables in
the left-hand side of (6) have the same distribution as the right-hand side when n is large
enough. Here, N (u, X) is the normal distribution with mean g and variance X.

Another important issue in statistical inferences, in particular for a financial time
series, is to make forecasts, i.e. to predict the future values of the series given its past and
present values. Suppose that we have observed the values of a series at a number of time
points up to and including time 7', say, Y17, Ys, - - - , Y7, and want to predict the value of
Y711 (b > 0). For example, for an autoregressive (AR) model, it is assumed that Y; is
a linear function of the previous p observations with some random error ¢, that has zero
mean and is uncorrelated. The model can be writtenas Y; = 1Y, _1+-- -+, Y, +e;.
Thus, after obtaining the estimates of the parameters, ¢;,¢ = 1,--- ,p, using certain
estimation methods, it is natural to predict the value of Y71 by @1 Y7+ - -+@p, Y7 _p 1.
This implies that we take the expectation of e (i.e. zero) in the forecasting, since
its value is not available. The forecast of Yr,; can be obtained by substituting the
unobserved Yr4;,% = 1,--- , h — 1, by their forecasts. See, e.g. Hamilton [39].

It is of interest to know the forecasting accuracy of, say, ?T-H as a predictor of
Y711, which consequently depends on the measure or criterion of the accuracy. The
most widely used measure may be the mean square prediction error (MSPE), defined
by E(YTH — Y7.1)%. A general result is that a predictor of Y7, that minimizes the
MSPE is the conditional expectation of Y7, given the previous observations, see, €.g.
Priestley [62]. The predictor of an AR model discussed above is a particular example of
this general result, when only linear predictors are considered. In practice, to evaluate
the usefulness of a forecasting methods or compare the forecasting abilities of different
methods, out-of-sample forecasting experiments are usually carried out. In such exper-
iments, while one part of the sample (in-sample) data is used for the model building
and parameter estimation, another part (out-of-sample) is deliberately reserved for eval-
uating the forecasting accuracy. Therefore, the sample MSPEs can be calculated, and
different forecasting methods can be compared based on the MSPEs. See Paper IV for
examples of forecasting and out-of-sample experiments.

This thesis will mainly address the asymptotic properties of the MLE for certain fi-
nancial time series models. The results for an ordinary GARCH model with order (1, 2)
are obtained under dependent innovations. ML estimations are investigated for two new
models: the regime-switching GARCH (RS-GARCH) and reduced RS-GARCH mod-
els. In both cases the dependent structures are rather complicated. Consistency of the
MLEs is obtained and asymptotic normality is discussed using simulation studies. These
results are further extended to a general autoregressive model with regime-switching.
The asymptotic results obtained enrich the theory of the GARCH and Markov switching
models, and the investigations into ML estimations for the RS-GARCH models facilitate
the empirical application of this type of model. In addition, another model, initiated from
spectral representations of stationary processes, the Locally Stationary Wavelet (LSW)
model is considered. A new forecasting algorithm of LSW processes is proposed. It
is applied to real financial data, and shown that it outperforms the existing forecasting
algorithm using out-of-sample experiments. Volatility forecasting using this algorithm
is also discussed.



These results are discussed in some details in Sections 2, 3, and 4, aiming to achieve
a balance between introductory materials and rigorous statistics. A brief summary of
the papers and possible future research are presented in Sections 5 and 6. For the re-
duced RS-GARCH and RS-GARCH models discussed in Section 3, algorithms for data
generation, calculation and maximization of the likelihoods were developed. Such a de-
velopment is not trivial and these algorithms are appended to the thesis. For the LSW
modeling, S-plus® codes were available (only) for the Haar wavelet, accompanying the
paper by FryZlewicz et al. [35]; this was valuable for our calculations in Paper IV and is
gratefully acknowledged. Algorithms for using other wavelets and the new forecasting
algorithm are also appended.

2 Heteroscedastic time series and GARCH models

A time series is a collection of values recorded at sequential time points. For discrete
time series, which this thesis focuses on, these time points are often uniformly spaced.
Examples of time series include: the daily closing values of stock prices or the index
of a stock market, the monthly unemployment reported by authorities, the yearly gross
national product (GNP) of a country, as well as the transformations of these data such as
log returns of stock shares or GNP growth rates. Random variables in a time series are
usually not independent since they are connected by sequential times.

Time series analysis comprises theories and methods for understanding the nature
of the underlying random variables, but probably more importantly, the relationships
between random variables at different time points and how they develop. For example
it is possible to specify a model for a time series, investigate the correlation structure
and other properties of the model, discuss estimation of the model’s parameters and
properties of the estimators, and/or predict future values based on the model and ob-
served values. Besides analysis within the time domain, time series can be analyzed
with respect to frequency domain by transforming the data into spectral values using,
e.g. Fourier or wavelet transforms.

A basic model in time series analysis, which deserves special emphasis, is the Au-
toregressive Moving Average (ARMA) model, which models the observation at time ¢,
Y}, by past observations and moving averages of innovations &; as

p q
Vi=ei+Y oY+ 0iej,
i=1 =1

where {e;} is usually assumed to be independent and identically distributed (i.i.d.), or
a white noise, i.e. &; has zero mean and is uncorrelated to €5 (s # t), and ¢’s and
0’s are constant parameters. The ARMA model has been used intensively and is the
benchmark model for time series analysis. For more discussion about the ARMA model
and other time series methods, see the classic books by Box and Jenkins [14], Priestley
[62], and Brockwell and Davis [16]. For an introduction to the theory of wavelets and
their applications to time series analysis, see Daubechies [21] and Percival and Walden
[60].



For financial return series from real life, the volatility clustering property (see Figure
1 and (P4) in Section 1) and time varying variation, or heteroscedasticity, have been
observed and documented, see, e.g. Fama [28] and McNees [56]. However, traditional
time series models cannot explain these properties well and new models are therefore
required.

2.1 The GARCH model

For example, suppose Y; is a financial return series and follows the model
Yi =7 +eu, (7

where -y is a constant. In traditional time series analysis, it may be assumed that the
innovation {e;} is i.i.d. or a white noise. In order to handle the heteroscedasticity, one
conventional approach is to assume that this time varying variation comes from another
exogenous variable, say, Z;, i.e.

€t = N2t

where {7} is a white noise. This solution is unsatisfactory in that the cause of the time
varying variance has to be specified explicitly. Engle [25], instead, proposed the use of
previous information and defined the ARCH model with order g as

e = mehy?, ®)
and
q
he = ag + Z el )
i=1

where 7; has zero mean and unit variance, and the parameters a’s are nonnegative, where
«g is positive. Like the extension of a moving average (MA) to become the ARMA
model, the ARCH model was extended by Bollerslev [8] to become the GARCH model,
by allowing the conditional variance h, further depending on previous conditional vari-
ances {hs; s < t}. The conditional variance equation of a GARCH(p, ¢) model is given
by

q p
hi = ap + Z et + Z Bihi—j, (10)
=1 =1

where 3’s are also nonnegative. The GARCH model has a more flexible parameter
structure than ARCH. In empirical applications, while it is found that a relatively long
lag (large ¢ in (9)) is necessary for ARCH models, GARCH(1,1) is usually good enough
for describing a large number of financial series, cf. the review by Bollerslev et al.
[10]. In one of our experiments, the GARCH characters of daily log return series of
stock shares included in S&P500 index were examined. It was found that most series
can be modeled by GARCH(1,1), selected by the Akaike information criterion (AIC)
among GARCH models, although there are some series that require a more complicated
GARCH(1,2) model. The latter in one aspect motivated our study on GARCH(1,2)
model in Paper L.



One breakthrough linked to the GARCH model is the association of the observations
to the later (conditional) variances, which can be interpreted as returns and risks in finan-
cial return series analysis. Therefore, it is no surprise that GARCH-type models quickly
gained popularity in the Capital Asset Pricing Model (CAPM), options and derivatives
pricing, and other financial fields. At present, GARCH has become the benchmark
model for analyzing heteroscedastic time series, see Bollerslev et al. [10] for more in-
formation and applications.

2.2 Basic properties of the GARCH model

It is not difficult to check that the GARCH model captures the stylized features of finan-
cial time series (P1), (P3), and (P4) presented in Section 1, given that innovations &, are
uncorrelated. Bollerslev [8] also showed that a GARCH(1,1) process has a heavy tail,
i.e. the kurtosis E(Y;*)/E?(Y}?) is greater than 3, provided that the fourth moment of
e exists and 7, is Gaussian. Under analogous conditions, a general GARCH model has
also been shown to have a heavy tail, see, e.g. Fan [29, Proposition 4.2].

For a new time series model, one basic question is whether or not the process is sta-
tionary (and ergodic). A weakly stationary process has time-invariant mean and covari-
ance, while strict stationarity requires the joint distribution to be same with any shift in
time. Ergodicity is relatively subtler. Recall that usually only one realization (a sample)
of a population is observed in statistical inferences, but the properties of the population
are to be inferred from the sample. A process is ergodic if and only if the averages over
time (over a single realization) converge with probability one to the corresponding ‘en-
semble’ averages over many realizations of the process (Priestley [62]). For a stationary
Gaussian process {Y; }+ez, a sufficient condition for the ergodicity of this process is that
its covariance function Cov (Y%, Yy 1) tends to zero, as the lag h goes to infinity.

Bollerslev [8] showed that the necessary and sufficient condition for weak stationar-
ity of the GARCH model ((8) and (10)) is

q P
dai+d i<l (11)
i=1 j=1

For strict stationarity, Nelson [58] found the necessary and sufficient condition for the
GARCH(1,1) model to be

E(log(c1n; + 1)) < 0. (12)

Note that (11) is sufficient for (12), while (12) allows a1 + 1 to be equal to 1 or slightly
larger than 1. For the general GARCH model, let » = max(p, ¢) and, by convention,
the oy;, 3; are equal to zero for ¢ > g and j > p. Define

Tt = (/81 + O‘lnf—l? "'7ﬂ7‘—1 + O‘T—lrr]?_r-i,-l) € RT?17

and the square matrix A; of size r in block form as

_ Tt /67“ + a’l"r]tgfr
At - < I’r—l 0 ’

where I,._q is the identity matrix of size r — 1.



Let
B, = (ap,0,...,00T ¢ R"

and
X = (htyhi—1oy hy—ry1) T R

Then ¢, is a solution of (8) and (10) if and only if X, is a solution of

Xt:AtXt,1 +Bt (13)

Bougerol and Picard [12] studied the stationarity conditions for general autoregres-
sive processes in the form (13). They proved that the necessary and sufficient condition
for strict stationarity is that the so-called top Lyapunov exponent associated with (A;)
is negative, or in mathematical notation

1
= inf { ——FE(log||Ag---A_ 14
p tnelN{Hl (log [[Ag tll)}<0, (14)
where || - || is any matrix operator norm. Intuitively, this condition (14) requires that the

autoregression of (13) should converge in some sense and the norm of A; should be less
than 1 “on average”. See also a recent lecture note by Straumann [65] about this result.

Remark 1. In a slightly more general framework, Straumann [65, Proposition 3.3.3]
also gave some conditions under which the sign of the Lyapunov exponent p can be
determined. Among those conditions, a clear conclusion is that the condition for weak
stationarity (11) is sufficient for (14) and hence for strict stationarity of the GARCH
model. As already seen before, it is true for GARCH(1,1). In fact, Fan [29, Theorem
4.4] showed that condition (11) is not only necessary but also sufficient for a GARCH
model to be strictly stationary with finite unconditional variance.

Bollerslev [8] gave the necessary and sufficient conditions for the existence of the
even order moments of GARCH(1,1) and for the fourth moments of GARCH(1,2) and
GARCH(2,1), provided that ¢, is Gaussian (the odd-order moments are zero). He and
Terdsvirta [42] presented a condition for the existence of the fourth moment of a general
GARCH model. However, Ling and McAleer [51] pointed out that He and Terésvirta’s
condition was incomplete and derived the necessary and sufficient condition for the ex-
istence of all the moments. In general, those conditions are not easy to verify in practice
except for small order moments. Hence they are not cited here and only referred to the
aforementioned works and the review by Li et al. [49].

2.3 Quasi-MLE

The estimation of GARCH models is usually carried out using ML estimation. However,
obtaining a handleable likelihood function is not straightforward. The following simple
fact,

p(Xla"' 7Xn) :p(Xn‘anlv 7X1) 'p(Xn71|Xn727"' 7Xl)"'p(X1)v (15)

often helps to determine the joint density of dependent random variables in time series
analysis, where p(-) is used to denote joint, marginal, or conditional density according
to the context, assuming this does not cause confusion.



The distribution of 7, has also to be specified to derive a likelihood. Note that even
when {n;} is assumed to be i.i.d. and Gaussian, the distribution of ¢; is still unknown
since the distribution of h; is not known. A common practice in estimation of the
GARCH models is to assume 7; to be Gaussian when deriving the likelihood, making
use of (15), and then to discard this assumption later. This method is called Quasi Max-
imum Likelihood (QML) estimation and is now a basic estimation method for classic
GARCH models. To the author’s knowledge, the idea is related to the work by Wedder-
burn [71], in which Wedderburn defined a Quasi Likelihood function for linear models,
based only on the mean and the variance structure of observations. He proved that this
quasi likelihood had properties similar to the log likelihood and they were the same for
a one-parameter exponential family. Another common practice in QML estimation for
GARCH models is just to obtain the (conditional) mean and variance of observations
and then insert them into a Gaussian density. It is worth noting that in a slightly dif-
ferent context, there is a related method called Quasi-likelihood estimating function. It
aims to find an optimal (with some criteria) estimating function (instead of the estimates
of parameters) for diversified models under predetermined functional space. Readers
who are interested in this topic are referred to the monograph by Heyde [43].

To the GARCH model (8) and (10), apply the hypothesis that {r,} is i.i.d. N(0,1).
Under this synthetic assumption, e¢|e;_1, - - - is conditionally normally distributed with
zero mean and conditional variance h;. Suppose now we are given observations {y;,

-, Yn}. Observe that for some conditional densities, for instance, p(e1), the initial
observations, i.e. Yo, - - - , Y1—4 are unavailable and ho, - - - , h1_,, are unobservable. The
likelihood has to be conditional on these initial values, which in practice can be set to,
say, zero for yo,- -+ ,y1—q and ag/(1 — (B1 + - - + 3,)) for hg,- -, h1_, (recall that
B1 + -+ -+ Bp < 1is necessary for strict stationarity of the GARCH model according to
Bougerol and Picard [13]). Straumann [65] showed that these initial values would not
affect the asymptotic properties of the ML estimation, see also Straumann and Mikosch
[66].

Following on from the above points, use (15) and the Gaussian hypothesis of ;. The
log QML function of the GARCH model ((7)-(8) and (10)) is (ignoring some constant)
a function of 6 (with y1, - - - , y,, fixed),

2
Ln(0) = L(y, - ,yn;9)=—;;<w+bght>7 (16)
where the parameter 0 = {~, ag, 01, -+ , 04,01, , Bp}. The QML estimator (QMLE)
0,, is defined as any maximizer of L, (#) within some parameter space ©, which will be
specified later. Note that in many cases, the GARCH models focus only on the variance
structure and {e; } are assumed to be the observations, or equivalently v = 0 in (7); this
changes the parameters slightly.

2.4 Asymptotic properties

The asymptotic properties of QMLEs for the ARCH and GARCH(1,1) models have been
studied by, amongst others, Weiss [72] and Lumsdaine [53], respectively. The results for
the general GARCH(p, ¢) model were completed by the work of Berkes et al. [5] and
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Francq ad Zakoian [31]. See the review by Li et al. [49] and references therein for more
results.
2.4.1 Asymptotics for i.i.d. n;

Assume {n;} is ii.d. and v = 0. The parameter space ©; is a compact subset of
0 x (0,00) x [0,00)" x B, where B := {(f1,---,8,)" € [0,1)?| 27_, 8; < 1}. The
QMLE 6,, maximizes the likelihood (16) under ©;. Write two polynomials Ag(z) =
>y aiz"and By(z) = 1 — 3°F_, 3;27. The typical assumptions include

(C1) n? has a non-degenerate distribution with En? = 1.
(C2) The true parameter 6y € O;.
(C3) Under 6y, the top Lyapunov exponent p defined in (14) is strictly negative.

(C4) The polynomials Ay, (z) and By, (z) have no common root. Ag,(1) # 0 and the
true values of a, and 3, are not zero.

(C5) g is in the interior of ©1.
(C6) /—@n::E?ﬁ/1 < 00.

Assumption (C4) ensures the identifiability of the model parameters, while others
are self-explanatory. A standard asymptotic result (Theorem 2.4.1) for GARCH models
follows. It is probably the result that requires the ‘weakest’ assumptions (cf. Li et al.

[49]), while Berkes et al. [5] needed the (2 + d)-th (§ > 0) moment condition for
consistency and (4 + §)-th for asymptotic normality.

Theorem 2.4.1 (Francq ad Zakoian [31, Theorems 2.1 and 2.2]) Let (én) be a sequence
of OMLEs. Under Assumptions (C1)-(C4), 8,, — 0y a.s., as n — oo. If in addition (C5)
and (C6) are satisfied, then

V(B — 60) 2> N(0,%),

as n — oo, where

gt (L 9hi(0) 917 (6)
== = By, (hg(eo) o0 00T

2.4.2 Asymptotics for dependent 1

Since only the mean and variance structure are needed and correctly specified for the
QML estimation of GARCH models, the independence assumption of 7, can be re-
laxed. Lee and Hansen [47], therefore, investigated the asymptotic properties for the
GARCH(1,1) model under stationary (and ergodic) innovations. Xie and Yu (Paper I)
extended these results to the GARCH(1,2) model under weaker conditions. Define én
as any maximizer of (16) for the GARCH(1,2) model (7) and (10) under

2= {0:7%<v7<7,0<an <ap < apy, 0 <ay < ag < oy,
0<ay <ay<ag,,0<8 <B< B, <1},
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where vy, Y, Qo1 Qou, Q11> A1, Qag, Qiay, B and G, are constants. Note that ©s is not
necessarily smaller than ©;. Assume the true parameter 6y € Os.

Theorem 2.4.2 (Xie and Yu [Paper I, Theorems 1 and 2]) Consider p = 1 and q = 2
in the GARCH model (10) and n; is strictly stationary and ergodic. Besides Assumption
(C1), assume that the true parameters of a1, o and 31 satisfy

a1g + g + P10 < 1.
Then én — Oy a.s., as n — oo. If we further assume that 0y is in the interior of ©4 and
En|Fi_1) < v < o0,

then én is asymptotically normal, where F;_1 denotes the information up to time t — 1
and k is a positive constant.

Remark 2. Lee and Hansen [47] assumed

sup B (log(S1o + o10n?)| Fiz1) <0 as.

and a uniformly finite conditional (2+ ¢)-th moment for a local consistency result (under
a subset of O3) for the QMLE of the GARCH(1,1) model. Their global consistency was
also based on (inter alia) 19 + P10 < 1. Note that we need only the second moment
condition for the consistency. In this sense, our assumptions are weaker than theirs. Note
that the condition ajg + 319 < 1 is sufficient for sup, E(log(B10 + c10m?)|Fi—1) < 0
a.s. See Remark 1 for a discussion about these two conditions.

2.5 Other models

There are many extensions to the standard ARCH and GARCH models (8)-(10). Some
are mainly of theoretical interest, for example, the continuous time GARCH processes
of Kliippelberg et al. [45] and Brockwell et al. [15], while most of them are more for
practical (economical and/or financial) considerations. For example, it is believed in
finance that bad news have bigger impacts to the volatility of financial time series than
good news. This so-called Leverage Effect has motivated the development of the asym-
metric GARCH extensions, including the Exponential GARCH (EGARCH) of Nelson
[59], GJR-GARCH developed by Glosten et al. [36], Quadratic GARCH developed by
Sentana [63], Threshold GARCH (TGARCH) developed by Zakoian [75] and others,
and Asymmetric GARCH developed by Ding et al. [23] and Straumann [65] amongst
others. The consideration of portfolio management leads to multivariate GARCH mod-
els and multivariate extensions of other GARCH extensions, see (inter alia) Bollerslev
etal. [11] and Bollerslev [9]. Another frequently observed feature in applied work is the
volatility persistence, implied by the estimates of parameters in the variance equation,
where the estimate of Z;.Izl a; + Z?zl B; is close to 1. The strong persistence underly-
ing the GARCH model can be possibly explained by the Integrated GARCH (IGARCH)
by Engle and Bollerslev [26], Fractional IGARCH (Baillie [3]), and the RS-GARCH
models (Hamilton [38], our Papers II and III) that are introduced in Section 3.

Not only to the conditional variance equation (10), there are also extensions made to
the mean structure. Sometimes, it seems restrictive to assume that the observed process
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is a pure GARCH. Therefore, it is natural to view the GARCH as an error process, as in
the original works of Engle [25] and Bollerslev [8]. It is also possible to use the GARCH
as an innovation to an ARMA model. This extension entails essential difficulties. Some
theoretical results can be found in Ling and Li [50], Ling and McAleer [52], and Francq
and Zakoian [31]. Another similar extension is the so-called ARCH-in-Mean model,
where the conditional variance h; is directly entered into the regression equation (7), see
Engle et al. [27]. A full description of such extensions is too lengthy for this thesis, so
readers are referred to Bollerslev et al. [10] and Terdsvirta [70] and references therein
for applications of GARCH models and the extensions.

Finally, it may be worth mentioning an alternative model to GARCH, namely the
Stochastic Volatility (SV) model. A simple SV model, from Taylor [69], is defined as

&t = ht77t

and
IOght = a—|—ﬁloght_1 +§t7 (17)

where 7, is independent of h;. It can be seen that the SV model allows more flexible
parameters (compared with the rather restrictive GARCH). However, there is a random
term (&;) entangled with the already unobservable conditional variance h;, and the es-
timation of the SV model is complicated. We do not pursue the SV model further, but
refer readers to a review by Shephard [64] on SV and ARCH models.

3 Markov switching models

Nowadays, an increasing number of economic researchers think it may be more rea-
sonable to consider that in the long term there are different economic states, and the
outcomes of an economic system depend on these states. For example, in the analysis
of the US annual GNP growth rate series, Hamilton [38] treated the expansion and re-
cession period as two states (called regimes in econometric literature) and proposed a
model in the form

Y: — w(Ry) = Zﬁz(ytﬂ = w(Re—;)) + v,
i=1

where {Y;} are the observations in question, [3;, i = 1,...,s, are coefficients, R; is
the regime at time ¢, u(R;) are constants depending on the regimes R; (assuming two
regimes in his model) and ¢, is distributed as N(0,02). Hamilton assumed that the
regimes are unobservable and the shift between the two regimes is governed by a Markov
chain (unobserved). The inference of the model has to be based only on the observations,
the outcomes of some economic variables. Hamilton [38] showed that such Markov
switching or regime switching models have advantages in model interpretation and data
description. The idea of Markov switching has drawn much attention during the last two
decades from both statisticians and practitioners: see the review by Hamilton and Raj
[40].

It is worth noting that Markov switching models are closely related to the Hidden
Markov Model (HMM), which has been very popular in fields such as engineering,
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biology and statistics. Unlike the Markov switching model in which Y; is dependent
on Y;_1, the observations in a HMM are independent given the corresponding regimes.
Hence, HMM has a simpler dependent structure than the Markov switching model. See
the monograph by MacDonald and Zucchini [54] for a comprehensive introduction to
HMM.

3.1 Regime-switching GARCH and path dependence problem

Some attempts (e.g. Cai [17] and Hamilton and Susmel [41]) have been made to incor-
porate the Markov Switching into the popular GARCH models. Keeping our attention
only on the conditional variance structure, the regime-switching GARCH (RS-GARCH)
process {Y; }1¢cz is defined by

Y, = (ht)1/277t7

q p
he =w(Ry) + > ai(R)YZ, + > Bi(R)hi, (18)

i=1 j=1

where {1;} as usual is a sequence of i.i.d. random variables with zero mean and unit
variance. {R;} is a Markov chain with a finite state space E = {1,2,...,d}. Given
{R: = s}, s € E, Y; follows a GARCH model. As in an ordinary GARCH model,
assume parameters «;(s) > 0, 5;(s) > 0, and w(s) > 0, for all 4, j,s. Suppose that
{n:} and {R;} are independent and that the Markov chain is irreducible and aperiodic
with stationary distribution w(s) := P(R; = s),s € E, and transition probabilities
pri = P(R; = l|R:—1 = k). Also note that 7(s) > 0 for all s € E under the
assumptions. The Markov chain {R;} is unobservable and its transition probabilities
and stationary distribution are unknown. Our aim is to draw statistical inference based
only on the observed {Y;}.

ML estimation may be used for the estimation of the RS-GARCH model. Suppose
that we are given a realization {y1, ..., y, }. Making use of (15) and taking into account
the regime switching, summing up the (conditional) probability density over all possible
paths of the Markov chain leads to a likelihood function (r; denotes the value of R;)

L’ﬂ(y17 7y7l79) = Z 7T'(7“1) {Hthl7Tt} {H lea-u,Tt(yl» ?yt)} )
t=2 t=1

(Tlv"' 7Tn)€En
19)

where fr, . . (y1,...,y) is the conditional density of Y; given previous observations
and regimes and

0 := {prs(s), ai(s), (), k £ L1 < by los <d 1< i< 1§ < ph,

which contains the transition probabilities of the Markov chain and parameters of the
GARCH equation (18). The stationary distribution 7(s), s € E, is not included since,
asymptotically, the stationary distribution will not affect the estimation (see e.g. Leroux
[48] ). We assume that p, ¢ and d are known.

However, the likelihood (19) is not easy to handle since the number of possible
regime paths grows exponentially with ¢. The likelihood becomes intractable very
quickly as n increases. This regime path dependence problem is induced by the the
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recursive structure in (18): h; depends on the whole regime path through h;_; and fur-
ther on. The applicability of the RS-GARCH model is limited. Hamilton and Susmel
[41], Cai [17], and Francq et al. [32] had to limit their estimation to the RS-ARCH
model, i.e. letting p = 0 in (18). Two possible alternatives will be discussed in Sections
3.2 and 3.3.

3.2 The reduced RS-GARCH model

In order to overcome the path dependence problem, Gray [37] proposed a reduced model
for RS-GARCH(1,1), where (18) is replaced by

he = w(Ry) + a(R) Y2 + Eg, | [B(Rt)hi-],

and the expectation is across the regime path Ri_q:= {R¢-1, Rt_2, ...}, conditional on
available information up to time ¢t — 1, F;_;. Note that Y; (Ar; in Gray’s context) is
essentially a mixture of distributions with respect to different regimes (with time-varying
mixing parameters), it is natural to consider to take expectation of individual conditional
variances over regimes. This integrated variance is then used as the lagged conditional
variance in constructing the conditional variance of the next time period, and the path
dependence problem can be overcome while the essential nature of the GARCH process
is preserved.

Gray’s idea is generalized to GARCH(p, ¢q) model by Xie and Yu [Paper II]. It is
referred to as the reduced RS-GARCH, in which (18) is replaced by

Y, = (ht)1/277t7

q p
hy = w(Ry) + Z ai(R)Y2, + Ep, Z Bi(R)he_j| . (20)

i=1 j=1

Note that actually we only need to integrate out the single regime R;_; at time point
t since recursively h;_; is already independent of R;_». For the reduced RS-GARCH
model, the conditional density f in (19) depends only on the current regime. Because
of the simplified structure, the likelihood for this model can be written as a product of
matrices as

Ln(yla"'ayn;e) ZIT{HMQ(yla"'ayt)}pa (21)
=2
where 1 = (1,...,1)T € RY, p = (7(1) f1(y1), o, 7(d) fa(y1))T € R? and matrix
p1ifi(yr, - ye) pafryi,-ye) 0 Parfi(yr, s Ye)
Moy, ) = 2.9.1-2f2(y1,~-~,yt) ].9.2.2f2(y1,~-~,yt) Pa2f2(Y1s - Yt)
prafa(i, - ye) p2afa(yis-ye) - paafa(yi, - ye)

Assuming a Gaussian innovation process 7;, the MLE 0, is defined as any maxi-
mizer of (21) within parameter space ©3, which is a compact subset of some Euclidean
space. The likelihood (21) can be calculated using, e.g. the so-called forward-backward
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algorithm. It turns out that it is important to compute the conditional probabilities
Ast := P(R: = s|Fi—1), s € E. The integrated variance at time ¢ is then the weighted
average of h; over different regimes s with respect to weight Ay, and those integrated
variances will be used in the conditional density and in the right-hand side of (20) as
the lagged variances. See Xie and Yu [Paper II] for the recursive formula of A4, and the
Appendix for the algorithm to calculate the likelihood (21).

The consistency of MLE for the reduced RS-GARCH model is obtained by Xie and
Yu [Paper II] under the assumptions

(D1) The true parameter §y € O3

(D2) {Y}}+ez in model (20) is strictly stationary and ergodic. In addition, the uncondi-
tional variance of Y; is finite.

(D3) Forany 6y and 65 € Oz and all Y, Y;_1, ..., if p(Yy|Yi—1,Yia, - - 501) = p(Yy]
Y;_1,Yi_2,--+ ;02), as. under the true parameter 6y, then 6; = 05.

Assumption (D3) ensures the identifiability of parameters in (20). The following theo-
rem generalizes the results for HMM by Leroux [48].

Theorem 3.2.1 (Xie and Yu [Paper II, Theorem 1]) For the reduced RS-GARCH model
(20), assume (D1)-(D3). Then

0, — 6y, a.s. asn — oo.

The asymptotic normality of the MLE is not proved in Xie and Yu [Paper II], but in
their simulation study, the Quantile-Quantile (QQ) plot (Figure 2) and the Kolmogorov-
Smirnov goodness-of-fit test suggest that the MLE for a reduced RS-GARCH(1,1) model
is asymptotically normally distributed. See Xie and Yu [Paper II] for details.
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Figure 2: The QQ-plot of MLE for a reduced two-regime switching GARCH(1, 1) model
with 0-1 line: B1-B8 represent estimators of w(1), w(2), a1(1), B1(1), @1(2), £1(2),
p12 and paq, respectively. See Xie and Yu [Paper II] for more information.
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3.3 The RS-GARCH model

The regime path dependence problem of the RS-GARCH model mentioned in Section
3.1 is derived from the GARCH-part of the conditional variance equation (18). For
ARMA, it is well known that an invertible ARMA process can be transformed into an
AR process with infinite order. See Brockwell and Davis [16] for a description of the
property of invertibility and this result. The similarity between GARCH and ARMA
models (cf. Bollerslev [8]) indicates a possible analogous treatment of the RS-GARCH
model.

As with the discussion of the ordinary GARCH in Section 2.2, the condition under
which Y; is stationary for the RS-GARCH model can be investigated by writing (18) in
the form of (13). Let A}, 7, and X} be defined as in Section 2.2 except that now they
depend on the current regime R;. Define B} = (w(R;),0,...,0)7 € R". Then Y; is a
solution of (18) if and only if X} is a solution of

X; =A;X] | +Bi(Ry). (22)

Mimicking the argument of Bougerol and Picard [12], Francq et al. [32, Theorem 1]
proved that (22) has a strictly stationary solution if and only if the top Lyapunov expo-
nent p* associated with (A}) is negative, i.e.

* : 1 * *
p _tlglg{mE(IOgHAO'”AtH)} <0. (23)

Assume that

(E1) The random variable 7, is non-degenerated.

(E2) suppee, Eoo[|log po(Y1)]] < o0,

where 0 is the set of model parameters as in the reduced RS-GARCH model (Section
3.2), the parameter space ©4 is a compact subset of some Euclidean space, and the true
parameter y € O4. Under Assumptions (E1) and (E2), Berkes et al. [5] showed that
for a strictly stationary and ergodic solution of (18), we have

h, = Co(Rt) + ZCL(R,:)Y?_“ VteZ

i=1

with probability one and this representation is unique with coefficients

and

where A; (x) = 37, o(Ry)x’ and B (x) = 1 — 3°0_, B;(Ry)a’.
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By transforming the RS-GARCH into an (infinite order) RS-ARCH model, a han-
dleable likelihood as (21) can be obtained. The ML estimation is hence possible. Re-
cursive formulae for {¢;} are available in Berkes et al. [5], while the algorithms for the
transformation and calculation of the likelihood are presented in the Appendix of this
thesis. Under Gaussian innovations 7, and Assumption (E2) (inter alia), Xie [Paper I1I]
proved the consistency of the MLE. Xie [Paper III] also conjectured the consistency for
non-Gaussian innovations and provided numerical evidence by using two-component
mixture normal distributions for 7;. The density is

(1 - p)¢(ﬂ17 U%) =+ pd)(:u?a O-g)

A rather unusual example is reported with the true parameters i3 = 0.25, 0% = 0.3, iy =
—2.25, O'% = 1.675, and p = 0.1, which implies a zero mean, unit variance, skewness
around —2.05, kurtosis 8.84, and two modes. From Table 1, it follows that while the
biases usually decrease, the standard deviations always decrease as the sample size in-
creases, which suggests that the estimates are consistent.

Table 1: The standard deviation and bias (in parentheses) of MLE for the regime-
switching GARCH model with mixture normal innovations, for sample sizes n =500,
2000, and 5000, respectively.
n o)  ad) A1) @) @@ bi(2) P12 P21
500 0.315 0.230 0.127 12.24 0.186 0.225 0.042 0.037
(0.011)  (0.064) (0.031) (6.83) (0.138) (-0.012) (0.014) (-0.005)
2000 0.148 0.131 0.074 6.839 0.126 0.134 0.015 0.014
(-0.01) (0.01)  (0.042) (5.538) (0.155) (0.004) (0.016) (-0.001)
5000 0.091 0.082 0.045 4.984 0.064 0.105 0.011 0.012
(-0.004) (0.008) (0.035) (4.849) (0.132) (0.016) (0.013) (-0.004)

As in the case of the reduced RS-GARCH case, the conjecture of the asymptotic
normality of the MLE is also supported, in view of the QQ-plot and goodness-of-fit
tests, see Xie [Paper III]. Bickel et al. [6] proved asymptotic normality for the general
HMM, but the conditional independence of observations given the unobserved regime is
crucial in their framework and cannot be easily relaxed to include our model. Douc et al.
[24] obtained the asymptotic normality for a class of autoregressive models with Markov
regime, which includes HMM and the regime-switching ARCH model as special cases.
However, they use the Markov property of { Rg, Yk, ..., Ys—s+1} (assume an s-th order
ARCH model), which does not hold for GARCH or infinite order ARCH models. A
proof of the asymptotic normality of the MLE is still needed.

3.4 The GARMS model

A closer examination of the consistency result for the reduced RS-GARCH (Xie and Yu
[Paper I1]) and RS-GARCH (Xie [Paper II1]) seems to indicate that not only the Gaussian
assumption for innovations, but also the particular model structure are not essential for
the proof. It suggests that it should be possible to extend those results to the following
general autoregressive model with Markov switching (GARMS) defined by

Y, = fQ(Yf—laRt;gt)a (24)
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where {¢;} is an i.i.d. innovation process, Y7 ; denotes observations {Yj, ..., Y; 1}
from possibly an infinite past, i.e. s may be equal to —oco. By convention, this set is
empty when s > t — 1. {R; }+<z is an unobservable Markov chain with finite state space
E = {1,2,...,d}, where d is known and fixed. Its transition probability matrix is A =
(pki), where p; = P(Ry = l|Ry—1 = k), k,l € E. The parameter § may depend on
the regimes Ry, and is assumed to be finite-dimensional. An infinite-dimensional setting
sounds attractive but is technically formidable. fy is a family of measurable functions
indexed by 6 and has implicit requirements imposed by the (conditional) density of Y.
One of the examples of (24) is the infinite order AR model with Markov switching, see
Xie et al. [Paper V].

Clearly, when s > t — 1, i.e. the conditional distribution of Y; does not depend
on lagged Y’s but only on R;, model (24) leads to the aforementioned HMM. Yao and
Attali [74] studied the stability of this process when s = t — 1, i.e. a first order au-
toregression in (24), including conditions under which there is a stationary solution and
finite moments of {Y;} and for which limit theorems can be applied. Francq and Rous-
signol [30] also considered the stability of the process and the consistency of the MLE
in this case. A natural and interesting case is that of s less than ¢ — 1 but finite. The
finite order autoregressive model with Markov switching is called ARMS model. Kr-
ishnamurthy and Rydén [46] obtained the consistency for the MLE of the ARMS model
when the Markov chain of this model has finite states. Douc et al. [24] not only ex-
tended it to continuous state space but also proved the asymptotic normality of MLE for
both stationary and non-stationary observation sequences. Note that the ARMS model
also includes the finite order RS-ARCH model, studied by, among others, Cai [17] and
Hamilton and Susmel [41].

Given the distribution of ¢;, the regime R; = k, observations y;_; and function
fo,» assume that the conditional distribution of Y; has a density ¢(y;|¥;_1; 6x) with re-
spect to some Lesbegue measure. Here 0,k € E, belong to some finite-dimensional
parameter space ©. Denote the whole model parameter including those of the Markov
chain {R;} as ¢, which belongs to ®, a subset of some Euclidean space. That is, for-
mally we have A(¢) = (pri(¢)) and 0, (¢) € @ for k,I € E. The usual case is just

¢ = {p11,p12, -, Pdd, 01, .., 04} (6 may be a vector), and pg;(-) and 0 (-) equal to
coordinate projections. The true parameter is denoted by ¢y and assume ¢y € .

Define p(Y;|Y; %; ¢) as the conditional density of Y; given Y, ° under ¢ and its
logarithm as g(Y;|Y,7; #). The technical assumptions include

(A1) The Markov chain { R; }+¢7 is aperiodic and irreducible.

(A2) {Y:}iez is a strictly stationary and ergodic process.

(A3) Foreachkand! € E, px(-) and 0 (-) are continuous on @, and ¢(y; Y3 1:0k(0))
is continuous on P for all realizations of Y;_;.

(Ad) Forany ¢ € @, 0 < minger q(Ve| Y, T3 04(¢)) < maxper ¢(Y2|Y, 71 0k(9))
< oo for all Y; *° a.s. under ¢¢; and there exists a neighborhood of ¢, V(¢) =
{¢ :d(¢,¢) < d} for some § > 0 and the Euclidean distance d(-, -), such that

Eg, [sby ey [0V 516 < oo
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(A5) Identifiability condition: For any ¢; and ¢ € ®, if for all Y, >, p(Yz| Y, %7; 61)
= p(Yi[Y,7; ¢2) a.s. under o, then ¢1 = ¢s.

These assumptions are fairly standard in the context of ARMS. They are also found, for
example, in Francq and Roussignol [30], Krishnamurthy and Rydén [46], and Douc et
al. [24].

Once again, ML estimation is utilized. The likelihood has the form

LYy ooy 0) = Y 77(7"1){]_[%m}{Hq(ytlii_l;ﬁn(d)))}. (25)
t=2 t=1

(15000570

The MLE is defined as any parameter ¢y, that maximizes the likelihood L} over a com-
pact subset of @, ®*. The consistency of the MLE is obtained in the following theorem.
Simulation studies using a particular infinite order AR model with Markov switching
are carried out. The simulation studies not only confirm the consistency, but also give
valuable information on the finite sample property of the MLE, see Xie et al. [Paper V].

Theorem 3.4.1 (Xie et al. [Paper V, Theorem 1]) For the GARMS model (24), assume
(Al)-(AS). Let ¢, be an MLE sequence over ®*, satisfying

LYoy oo Yii6n) = sup LE (Y, ..., Y1 0), as.
PpED*

then ¢?n tends to ¢g a.s. as n — Q.

4 LSW processes and forecasting

Recently, many work have been done in which not only the traditional time domain tech-
niques are used but also the time-scale or time-frequency techniques, such as wavelet
transforms. One advantage of using wavelet transform is that it depends less on speci-
fications of the dependent structure and distribution of the original series since wavelet
coefficients are often less correlated than the original data. In some time-frequency mod-

els, certain non-stationary processes can also be treated in the same framework (see, e.g.
Dahlhaus [20] and Mallat et al. [55]).

4.1 LSW processes

The locally stationary wavelet (LSW) process is a relatively new time-scale analysis tool
proposed by Nason et al. [57]: it incorporates a class of stochastic processes based on
non-decimated wavelets. It is well-known that a stationary stochastic process X;,t € Z,
can be written as -

Xy = / A(w) exp(iwt)d¢(w), (26)
where d{(w) is an orthonormal increment process (Priestley [62]). The idea behind the
LSW process is just to replace the set of harmonics {exp(iwt)|lw € [—m, 7]} in (26)
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with a set of non-decimated wavelets and the spectrum A(w) by some time-varying
quantities. For the definition and transforms of non-decimated wavelets, see Percival
and Walden [60].

Definition 4.1.1 (Nason et al. [57]) An LSW process is a sequence of doubly-indexed
stochastic processes { Xy 1 }t—o,... 7—1, having the following representation in the mean-
square sense

.....

-1
Xer = Z ij,k;T'l/)j,k—tEj,ka (27)

j=—J k
where &; 1, is a random orthonormal increment sequence and where 1); 1 is a discrete
non-decimated family of wavelets for j = —1,—-2,....—J(T),k =0, ...,T — 1 based on
a mother wavelet 1) (t) of compact support. The following properties are also assumed.:

(I) B¢ =0forall j, k. Hence EX, v = 0 forallt and T.

(1) cov(&j ks &,m) = 0j10km-

(III) The amplitudes w; .7 are real constants and for each j < —1 there exists a
Lipschitz-continuous function W;(z) for z € (0, 1) which satisfies

—1
Z Wf(z) < oo uniformly in z € (0, 1)

j=—o0

with Lipschitz constants L which are uniformly bounded in j and

-1
Z 2_ij < 00.

j=—o00

In addition, there exists a sequence of constants Cj fulfilling > y Cj < oo such
that for each T

sup  |wj e — Wi(k/T)| < Cy/T.
k=0,....T—1

Fryzlewicz [33] showed that by slightly altering the Assumption (III) in Definition
4.1.1, LSW processes can capture all the stylized properties of financial time series (P1-
P4) described in Section 1. Note that a set of non-decimated wavelets does not constitute
a basis for the underlying space, hence w;; may not be uniquely determined. LSW
processes are still meaningful by defining an Evolutionary Wavelet Spectrum (EWS) of
sequence {X; 7 }=o,... . 7—1 for infinite sequence T' > 1 as

Si(z) = W]-Q(z),forj =-1,...,—J(T),z € (0,1).

Under Assumption (III) of Definition 4.1.1, S;(z) = limp_. |wj$[zT];T|2 and

Z:io S;(z) < oo uniformly in z € (0,1). By realizing the covariance structure of a

LSW process with lag 7 as

Cov(Xp1, Xirm) = Y Y W5 Wikt ket (28)
ik
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it is clear that EWS actually measures the variance at a particular time z and scale j,
which is the analogue of the usual spectrum for stationary processes. Define the autoco-
variance as follows:

CT(Zv T) = COU(X[zT],Ta X[zT]-‘rT,T)
and the local autocovariance with EWS S;(z) as

-1

c(z,7)= Y Si(2)¥(r),

j=—00

where the U;(7) = Y>> _ 1), 1t; k—- is defined as the autocorrelation wavelets. From
(28) it can be seen that || cr — ¢ ||p..= O(T~') (Nason et al. [57]). Recall that the
local variance 02(2) := ¢(z,0) = j;lfoo S;(z) since ¥;(0) = 1 for all values of j.
Hence, the variances and covariances of a LSW process can be estimated by estimating
the EWS.

Nason et al. [57] showed that, assuming innovations &; in Definition 4.1.1 are Gaus-
sian, an unbiased estimator of the EWS vector S(k) = {S;(k/T)};=_1,.. —; for the
LSW process X; r is

A5 I(k),

where A ; is the inner product of the autocorrelation wavelet, whose element A;; =
<V, >= 3" U,(7)¥;(7), and I(k) is the vector of the wavelet periodogram, the
element of which is the square of empirical wavelet coefficients defined by

T-1

dj e = Z Xt, 10kt (29)
t=0

where 1 ;. is the same wavelet basis used to build X; 7 in Definition 4.1.1. Therefore,
the estimation of EWS and local variance and covariance is feasible. See Nason et al.
[57] or Xie et al. [Paper IV] for further discussion about this estimation.

4.2 Wavelet basis selection

As seen in Section 4.1, in order to ensure an unbiased estimator of the EWS, the wavelet
periodogram has to be constructed using the true wavelet (see (29)) as in the definition of
{X¢ r}. However, in practice it is unrealistic to assume that we know the true wavelet.
It is natural to ask how a practitioner can choose an appropriate wavelet basis on which
to build the model, and what happens if an inappropriate one is chosen. Since these
questions were first posed by Nason et al. [57] they have not been answered in the
literature. Xie et al. [Paper IV] conducted a sensitivity analysis, based on numerical
examples, to demonstrate the effect of selecting the wrong wavelet on the estimate of
EWS.

The analysis was conducted as follows. A set of wavelets for the comparison, mainly
the compactly supported orthogonal wavelets from Daubechies [21] with different fil-
ter lengths, was predetermined. Some true LSW processes based on these wavelets,
including stationary, non-stationary ones with known EWS and local variance, were
constructed. For each process, 50 realizations are generated. These wavelets were then
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applied to all realizations to construct the wavelet periodogram and estimate the EWS.
The estimates were then compared with the true values and the averages (over 50 real-
izations) of mean square errors (MSE) were obtained as a criterion for selection.

From Xie et al. [Paper IV], for the non-stationary process, a quite clear conclusion
is that choosing different wavelet bases is not particularly sensitive; using the least-
asymmetric wavelet s8 usually gives the smallest MSE no matter which wavelet gener-
ates the process. This implies that for a non-stationary analysis based on LSW processes,
a default choice could be the s8 wavelet. For a stationary process, the selection is more
sensitive to the true wavelet basis. Xie et al. [Paper IV] identified a ‘cutting’ property
associated with the covariance of LSW processes that may help to detect the length of
the wavelet filter.

4.3 A new forecasting algorithm

FryZlewicz et al. [35] developed a forecasting algorithm for LSW processes. The pre-
dictor for the h steps ahead forecast of X, 7, given observations Xo 7, X171, - - -,

Xi—1,7,1s defined as
t—1

Xi_14nr = th—l—s;TXs,T- (30)
s=0

The coefficients b; 7, j = 0, ...,t — 1, are chosen to minimize the MSPE E()A(t,Hh’T —
Xi—14+n1)?. Thatis, the vector by = (bo r, ...,b:—1,7)" is such that

b = argmin [(b;T, ~1)Sen1r(bT, 1T 31)

where ¥, ,_1,7 is the covariance matrix of Xo 7, ..., X;—1 7 and X;_14 7. Directly
taking the derivative over the quadratic form in (31) then equating it to zero leads to a
linear equation system for solving by

Ci1n+CT,
Si—1,rby = Cio1qp = %,

where ;1.7 is the covariance matrix of X 7, ..., X;—1,7, C¢—_1 4 is the column vec-
tor of covariances between Xg 7, ..., X;—1,7 and X;_14p,7, and Cy ;_; the vector of
covariances between X;_14p 7 and X 7, ..., X;—1 7. These (co)variances can be esti-
mated by estimating the local autocovariance.

(32)

In practice, X,z in (31) can be approximated by its estimate (cf. FryzZlewicz et al.
[35]). In addition, considering the non-stationary nature and local smoothness of the
process, it is recommended that only the most recent p observations in (30) should be
used, rather than the entire sequence, i.e.,

t—1
XP =3 bersrXer. (33)

s=t—p

The parameter p, as well as some other parameters of the estimation, can be selected
data-driven by so-called Adaptive Forecasting method (see FryZlewicz et al. [35] for
details).
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Fryzlewicz’s algorithm can work well for short forecasting horizons (usually small
values of p’s) and carefully chosen parameters (see FryZlewicz et al. [35] and FryZlewicz
[33] for examples). However, using this algorithm often results in an extraordinarily high
value of b; when solving (32) because the covariance matrix often becomes singular,
even for moderately large value ¢ in (30) (or p in (33)). Consequently, the forecasts
predict abnormally large values (outliers). Close investigation reveals that this problem
is difficult to circumvent without artificially intervening on a case-by-case basis.

In order to overcome this weakness, Xie et al. [Paper IV] suggest imposing some
restriction on the predictor coefficients b, when minimizing the quadratic form of (31).
For instance, an obvious constraint is to require

bl'1 =1, (34)

where 1 is the unit vector with the same length as b;. This actually works as a weighted
average predictor with data-driven coefficients. The solution of (31) with constraint (34)
is easily obtained using the Lagrangian Multiplier (LM) method via the equation system

e 1 b o Cioign
o D)5 e

where ) is the Lagrangian multiplier. However, remember that imposing constraint (34)
cannot prevent the excessively large predictor coefficients from occurring. Hence, it
does not fit our purpose. Another convenient choice may be more preferable, namely
the requirement for a unit length of vector by, i.e.,

bl'b, = 1. (36)

It should be mentioned that, by imposing a restriction to by, the parameter space of b,
is reduced and we may obtain only local maxima. In addition, the solving of b; under
condition (36) is not so direct as in (35). Using the LM method, the solution of b, with
the unit-length restriction is formally

by = (Sr10 — AI) " Croryn, (37)

where I is the identity matrix of the same size as X, A is again the Lagrangian multiplier
and satisfies

Cl (S = AD) (S — A 'Cypp =1 (38)

and
Yi—1.7 — AI > 0 (positive definite). (39)

So (37) can be solved numerically.

The new forecasting algorithm, with constraint (36), together with FryZlewicz’s al-
gorithm, has been applied to real data sets to conduct out-of-sample experiments. It
has been shown (Xie et al. [Paper IV]) that while the performance of Fryzlewicz’s al-
gorithm is severely affected by the outliers, the new algorithm works consistently and
outperforms FryZlewicz’s algorithm in most cases. See Xie et al. [Paper IV] for the
comparison and a discussion of the result.
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4.4 An application to volatility forecasting

The new forecasting algorithm paves the way for volatility forecasting using LSW pro-
cesses. The volatility forecasts may be obtained by estimating the EWS of the sequence
together with the forecasts. FryZlewicz’s algorithm is not suitable for this volatility fore-
casting method due to the occurrence of outliers. Wavelet s8 is used as a representative
in this application and some other wavelets are also discussed.

The volatility forecasting ability of the LSW method was compared with those of
the standard GARCH(1,1), GARCH(1,1) with ¢-distribution for innovations 7; in (8),
EGARCH(1,1), and RS-GARCH(1,1) models. The forecasting was conducted on 7, the
log returns of the daily S&P500 index from 2 Jan 1990 to 29 Dec 2000, from the Cen-
ter for Research in Securities Prices database. To perform the out-of-sample forecast,
starting from a half sample (t = 1390, 29 June 1995), the parameters were estimated
using all previous observations and the adaptive forecasting estimation method. All the
different models were tested for 1 to 50 steps ahead forecasting. After every 50 steps,
the data were updated, parameters re-estimated and forecasting conducted again. The
sample MSPEs with respect to the true volatilities (Ut2 *, see equation (40) below) for all
forecasting horizons were summarized as an evaluation criterion.

One difficulty associated with volatility forecasting, compared with forecasting the
actual observations, is that the true volatility is unknown. There is much discussion in
the literature about the definition of true volatility. Readers are referred to Andersen
and Bollerslev [2] , Starica and Granger [67] , and a comprehensive review on volatility
forecasting by Poon and Granger [61]. Starica and Granger [67] showed that a long
return series of the S&P500 index is non-stationary, but exhibits a locally stationary
structure. Inspired by this finding, a new true volatility definition, as a local mean of
squared observations over a symmetric interval (¢ — m, ¢ 4+ m) around the observation
at time ¢ for some positive integer m, is proposed by Xie et al. [Paper IV] as

m m 2
1 i— Ti44
" D rhi~ (Elm - ) : (40)

T om+1. om—+1

1=—m

This volatility definition can also be applied to stationary processes. However, it seems
particularly suitable for processes with a locally stationary structure, smooth evolution
of the variance or even variances that exhibit a linear trend. The length of the selected
interval, [ = 2m + 1, can be adjusted for different processes. A fairly large [ may be
used for stationary processes, and a smaller one for non-stationary processes. In Xie et
al. [Paper IV], I = 5,11,19 and 31 were used, and their differences discussed.

The ratios of the MSPE of different GARCH models, over that of the LSW modeling
with the s8 wavelet, are presented in Figure 3, for all forecasting horizons. The ratios
for the RS-GARCH model are usually over five for most forecasting horizons and not
included in the figure. Perhaps surprisingly, in-sample estimation of the data shows that
only one regime is visible. Regime prediction also always adheres to a single regime.
In this case, the model is too complicated to produce an accurate forecast. Figure 3
suggests that the volatility forecasting using LSW processes performs fairly well; LSW
forecasting usually produces more accurate forecasts for most forecasting horizons. In
particular, it outperforms GARCH models for smaller horizons, where GARCH mod-
els are known to be capable of giving good forecasting. For more discussions of the
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comparison between different interval lengths and wavelet bases, see Xie et al. [Paper
IV].
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Figure 3: The ratios of GARCH(1,1) (solid), EGARCH(1,1) (dashed) and GARCH-t(1,1) (dot-
ted) MSPEs divided by corresponding MSPE from the LSW modeling with s8 wavelet basis in
forecasting S&P500 return series, and unit line (dash-dotted), against the forecasting horizons.
The lengths of intervals (1) in (40) are 5, 11, 19, and 31, respectively.

5 Summary of the papers

In this section, a brief summary of the papers is presented. Please refer to the appended
papers for details.

Paper I. In this paper, we investigate the asymptotic properties of the quasi-maximum
likelihood estimator for the GARCH(1,2) model under stationary innova-
tions. Consistency of the global QMLE and asymptotic normality are ob-
tained, which extends the previous results for GARCH(1,1) by Lee and
Hansen [47] under weaker conditions.

Paper II. The regime-switching GARCH model combines the idea of Markov switch-
ing and the GARCH model, and also includes the popular Hidden Markov
models as special cases. The statistical inference associated with this model,
however, is rather difficult because the observations depend on the whole
regime path due to the recursive structure of the GARCH equation. In this
paper, inspired by the work of Gray [37] on the GARCH(1,1) model, we
consider a reduced regime-switching GARCH(p, ¢) model, that is, the past
regimes are integrated out at every step and observations then depend only
on the current regimes. The Maximum Likelihood (ML) estimation is con-
sidered and the consistency of ML estimators for this model is proved. Sim-
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ulation studies to illustrate the consistency and asymptotic normality of the
proposed estimators are presented. In a model specification problem, where
an ordinary GARCH model is wrongly specified to data generated from
regime-switching GARCH models, the persistence of model is discussed;
the finding is interesting.

Paper III. The regime-switching GARCH model incorporates the idea of regime switch-
ing into the more restrictive GARCH model, which significantly extends the
GARCH model. However, the statistical inference for such an extended
model is rather difficult because observations at any time point then depend
on the whole regime path and the likelihood quickly becomes intractable as
the length of observations increases. In this paper, by transforming it to an
infinite order ARCH model, we are able to derive a likelihood that can be
handled directly and the consistency of the maximum likelihood estimators
is proved. Simulation studies illustrate the consistency and asymptotic nor-
mality of the estimators. Both Gaussian and non-Gaussian innovations are
investigated. A model specification problem is also presented.

Paper IV. Locally stationary wavelet (LSW) processes, built on non-decimated wavelets,
can be used to analyze and forecast non-stationary time series, and they have
been proved useful in the analysis of financial data. In this paper we first
carry out a sensitivity analysis using numerical examples, and propose some
practical guidelines for choosing the wavelet bases for these processes. The
existing forecasting algorithm from Fryzlewicz et al. [35] is found to have
no protection from outliers and a new algorithm, imposing restrictions on
the predictor coefficients, is proposed. These algorithms are tested on real
data and the new algorithm works consistently and outperforms the existing
algorithm in most of the cases. The volatility forecasting ability of LSW
modeling based on our new algorithm is then discussed and is shown to be
competitive against traditional GARCH models when applied to S&P500 re-
turn series. The applications in Nason et al. [57] and FryZlewicz et al. [35]
are limited to the Haar wavelet. In this paper, this limitation is relaxed and
many others wavelets are applied.

Paper V. In this paper, a general autoregressive model with Markov switching is con-
sidered, where the autoregression may be of an infinite order. The con-
sistency of the maximum likelihood estimators for this model is obtained.
The assumptions for consistency are discussed in some detail. The condi-
tions associated with consistency are discussed using finite and infinite order
Markov switching AR models. The simulation studies using these examples
demonstrate the assumptions and the consistency of the MLEs. The asymp-
totic normality is also suggested by numerical experiments.

6 Future research

There are many topics for potential future research suggested by the results of this thesis.
Here I outline and discuss some of them from the perspectives of theoretical develop-
ment and empirical applications.
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6.1 Theoretical development

As discussed in Sections 3.2 and 3.3, the asymptotic normality of MLEs for RS-GARCH
models is still a open problem. Bickel et al. [6] provided a good reference for the asymp-
totic normality for HMMSs. Their approach is the classic Cramér method, involving a
central limit theorem for the score function and a law of large numbers for the observed
information. However, they require an inequality ([6, Lemma 3]), which can be traced
back to a 1966 paper by Baum and Petrie [4] on the HMM with finite states and ob-
servations taking values in a finite set. The property of conditional independence of
observations given their corresponding regimes is crucial for this inequality. This prop-
erty does not hold for Markov switching models and a suitable condition to circumvent
the inequality is not apparent. Relatively, Douc et al.’s result [24] may be closer to what
we want. Douc et al. obtained the consistency and asymptotic normality for MLE of the
ARMS (see Section 3.4) with a continuous state-space Markov chain, which includes the
RS-ARCH model. However, their results require the Markov property implied by the
ARCH model to derive an important inequality ([24, Lemma 1]), which is not valid for
the GARCH structure. The asymptotic normality for RS-GARCH models is challeng-
ing, but also attractive. It requires more subtle techniques. Perhaps some ‘truncation’
technique applying to the RS-ARCH(c0) model and some particular case (e.g. a finite
state Markov chain) could be a good starting point.

In Paper I, only the asymptotics for the GARCH(1,2) model (under dependent inno-
vations) are considered. In fact, a direct extension to GARCH(1, q) requires barely more
complexity of denotations. For a general GARCH(p, ¢) model, investigation reveals that
the uniqueness of the ARCH representation of the GARCH model of Berkes et al. [5]
relies on the i.i.d. assumption of innovations. Otherwise, Berkes et al.’s proofs mimics
what Lee and Hansen [47] showed. Therefore, it is possible to extend our result in Paper
I further to GARCH(p, q) model if we can work around the unique representation. For
the GARMS model (24), an attractive setting would be an infinite-dimensional parame-
ter space since the autoregression can be of infinite order. However, it is difficult even
to define a distance for an infinite-dimensional space that achieves the compactness of
the parameter space and consistency of the estimators simultaneously. Another potential
generalization of (24) is to relax the i.i.d. innovation {e;} to certain kind of stationary
process. Such a generalization would obtain the possibility to study the ML estimations
of ARMA models with Markov switching, see e.g. Billio et al. [7]. These remain topics
for future research.

For the reduced RS-GARCH model, the process Y; is assumed to be strictly station-
ary and ergodic (see Paper II and Section 3.2) for the consistency of the MLE. However,
the condition that ensures the stationarity of Y; is not clear. By writing the RS-GARCH
model (18) as a general autoregressive model with stationary and ergodic coefficients,
i.e. equation (22), Francq et al. [32] obtained such a condition for the RS-GARCH
model, i.e. (23), the top Lyapunov exponent p* is strictly negative. This result is stim-
ulating, however a direct analogue does not exist for the reduced RS-GARCH model.
More work needs to be undertaken. It should be noted that, for many of the extensions
of the GARCH model mentioned in Section 2.5, the basic properties such as conditions
for stationarity, existence of moments, consistency, and asymptotic normality are also
not well developed. See the review by Li et al. [49] for some available results.
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Time-frequency or time-scale analysis has become more and more popular for both
financial time series and in other fields (cf. Vidakovic [73]). Besides the LSW modeling,
there are many other possible methods and applications using wavelets. For example,
Fryzlewicz et al. [34] used (inter alia) Haar wavelet shrinkage to study processes with
stepwise variance. We suggest that such a technique may be extended to other wavelets
and may also be applied to other stochastic processes.

6.2 Empirical applications

The results for the RS-GARCH model make it possible to envisage its use in many em-
pirical applications. We can apply the model to different financial time series to see if it
describes the data better than the ordinary GARCH. It is believed that the strong persis-
tence of the ordinary GARCH processes that are frequently observed (e.g. Cai [17] and
Hamilton and Susmel [41]) can be explained by changes of regimes, see, e.g. Gray [37]
and Hamilton and Susmel [41]. Among others, Hamilton and Susmel [41] showed that
RS-ARCH models provided better model interpretation than ordinary GARCH; Using
an adjusted RS-GARCH(1,1) model from Gray [37], Klaassen [44] showed improved
volatility forecasts against the ordinary GARCH(1,1) model. The potential for applying
our results is significant.

In addition, the time point of regime-switching reveals much information which is
of interest to economists and practitioners. For example, Hamilton [38] used a Markov
switching AR model to analyze the US GNP growth rate series and labeled the two
regimes in his model as the ‘expansion’ and ‘recession’ periods. Hence, it is interesting
to examine when a recession really begins. The starting months of different recessions
in US identified by Hamilton [38] are very close to the official data. Such an example
represents many possible interesting applications.

Methods using LSW processes or other time-frequency techniques have been proven
appealing for the analysis of time series with particular spectral features, see e.g. Na-
son et al. [57] for an analysis of an infant heart rate (ECG) sequence. FryZlewicz
[33] (among others) showed that LSW framework is useful in financial log return series
analysis. Struzik [68] applied the wavelet based effective Holder exponent to uncover
the local scaling (correlation) characteristics of the S&P index and discover structure
through the analysis of collective properties of non-stationary behaviour. Therefore, not
only the stationary, but also non-stationary processes can be analyzed by the wavelet
transform or other time-frequency methods (see e.g. Dahlhaus [20], FryZlewicz et al.
[35], and Xie et al. [Paper IV]). Applications in [33], [35], and [57] using LSW pro-
cesses are limited to the Haar wavelet, while our work [Paper IV] extends the algorithm
to many other wavelets. More applications using different wavelets to both stationary
and non-stationary processes can be expected.

We should mention that, according to our simulation studies, a consistent estimate
for the RS-GARCH models requires the size of observations to be as large as 3000,
or even more; such data may not always be available. One possible solution in such
cases is to use some resampling method to reduce estimate biases, such as the bootstrap
methods, see e.g. Davison and Hinkley [22]. Such possibility has to be explored in the
future too.
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