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Abstract 

Halnes, G. 2007. Biological network modelling: Relating structure and dynamics to func-
tion in food webs and neural networks. ISSN 1652-6880, ISBN 978-91-85913-12-1 
 
This study takes a network approach to understanding complex biological systems. The 
overall objective is to explore how the stability and flexibility of biological networks 
emerge from underlying structural and dynamical characteristics. The thesis is arranged as a 
journey into the complexity of biological network models. The starting point is qualitative 
structural network descriptions. The level of detail in the dynamical description of node 
properties is then gradually increased. Along this journey, new features, both structural and 
dynamical, are revealed as crucial for the function of biological networks. 
 
A set of constructional properties are defined: structural principles, structural complexity, 
interaction diversity, node diversity and network density. These constructional properties 
capture important aspects of the structural organization and dynamic mechanisms in bio-
logical networks. A set of functional properties are defined: structural robustness, struc-
tural cyclicity, dynamic stability and dynamic flexibility. These functional properties are 
systemic properties that are all related to the stability of biological networks. These two sets 
of properties are used to demonstrate how the construction of biological networks is crucial 
for their function. The general theory is applied to food web and neural network models, 
where the general network properties are given specific biological meanings. The studies 
within both fields have their system specific objectives. 
 
A simple food web model is developed for explicitly including a compartment for dead 
organic material (detritus). Several constructional properties are revealed as crucial for the 
structural robustness, the structural cyclicity and the dynamic stability of food webs. The 
pathways due to decomposing and recycling of detritus alter the constructional properties, 
and are crucial for food web function.  
 
Computational neural network models are developed for clinical applications. Possible 
mechanisms behind electroconvulsive treatment (ECT) and anaesthetics are modelled. 
Clinical observations are qualitatively reproduced. Several aspects of the constructional 
properties of neural networks are revealed as crucial for optimal stability and flexibility of 
neurodynamics. 
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1  Introduction 

Life on earth can be viewed as a myriad of networks nested inside networks. Eco-
systems and food webs, at the largest scale, are networks of interacting species. A 
species is a population of individual organisms that may in themselves be de-
scribed as networks of cellular and metabolic processes. Cells are, in turn, autono-
mous structures whose maintenance depends on a network of inner processes, 
some of which are described by the genetic, metabolic and protein-interaction net-
works.  
 
All biological systems, from bacteria to large scale ecosystems, are highly com-
plex networks. The parts of these systems interact in such a way that the entire 
network in some way regulates and organizes itself. Down to the level of chemis-
try, genes and DNA are believed to have evolved through self organizing proc-
esses of interaction between their molecular building blocks, forming dissipative 
structures far from thermal equilibrium (Schneider & Kay 1994). Self organization 
is a process in which the internal organization of a system, normally an open sys-
tem, increases in complexity without being managed or guided by an outside 
source. The idea of networks as self-organizing stems back to Ashby (1957).  
 
While the reductionism tradition in science has tried to understand nature in terms 
of its building blocks, complex systems often have so called emergent properties 
that cannot be deducted from the properties of their parts alone (see e.g., Aderem 
2005). Emergence refers to the way complex patterns arise out of a multiplicity of 
relatively simple (and often local) interactions, suggesting that the patterns of or-
ganization are perhaps more crucial than the characteristics of the building blocks. 
Self organizing systems typically (though not always) display emergent properties. 
The function of each part can only be understood contextually, since it depends on 
the function of all the other parts. Hence, the parts affect the whole (bottom-up 
effects), as well as the whole affects the parts (top-down effects), and the cause of 
the systemic properties is then difficult or impossible to define. In the systemic 
holistic view of life (Capra 1997), there is no strict causal hierarchy between the 
scales. 
 
The most formalized disciplines of network studies in biology are metabolic net-
works, protein-protein interaction networks, and gene regulatory networks at the 
sub-cellular scale; neural networks at the cellular scale, and food webs or ecosys-
tems which are networks of interacting species at the community scale. Between 
the latter two scales are networks of interacting individuals, such as social insect 
networks (Fewell 2003), metapopulation models (Hanski 1999), and human social 
networks which are normally not considered to belong to the realm of biology.  
 
Understanding a natural system implies being able to understand how different 
aspects of its construction and behaviour are responsible for some large scale 
functional property of the system. Generally, a network can be studied at four dif-
ferent levels, being that of 1) its structure, 2) its dynamics, 3) its evolution, and 4) 
its function. Whereas the first three levels deal with how the network looks and 
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behaves, the latter deals with why it does so. It is interesting to note that such a 
concept of a function is not considered in other natural sciences than biology, 
where for instance the properties of an organ, such as the heart, are often believed 
to have been selected for because of their beneficial function for the organism as a 
whole. 
 
The network approach describes a system as a set of units (nodes) and their inter-
actions (links). Some natural systems look like networks in the sense that their 
individual nodes represent physical units (as we perceive them), such as nerve-
cells interconnected by nerve fibres in a neural network. Other networks are ab-
stract conceptualizations, such as food webs, where each node represents an entire 
species or group of species, and the connections are feeding relations (Drossel & 
McKane 2002). Although the systems in study may differ strongly among each 
other in their biological reality, they have many features in common at a more ab-
stract level when conceptualized as networks.  
 
This thesis focuses on models of food webs and neural networks. Despite the dif-
ferent biological reality of these two different systems, network modelling pro-
vides a framework of concepts and methods that can be applied across system 
boundaries. Whereas the included papers (Paper I-V) have their own narratives 
and system specific objectives, they all find themselves under the umbrella of in-
vestigating relations between structure, dynamics and function in computational 
biological network models.  
 
A special emphasis has been put on density-dependent effects, the importance of 
system complexity, stability-flexibility relations and relations between local and 
global properties in biological networks. All these concepts have a biological 
meaning that depends on the system in study. At the same time they are also appli-
cable at a higher level of generality, so that findings within one field may shed 
light on findings within another. 
 

1.1  Overall objectives 
The overall objective of this thesis is to link constructional features (network 
structure and characteristics of internal mechanisms) of biological networks to 
their large scale functional properties, and furthermore to investigate the interplay 
between characteristics at the single node level and the network level. 
 
More specifically it investigates the effect of different aspects of structural com-
plexity on global functions related to the presence and strength of cycles (Paper 
II), structural stability (Paper I), dynamic stability (Paper III-V) and flexibility 
(Paper IV-V). 
 
Furthermore, the global functional effects that stem from single node properties 
are separated from those that stem from the topology of the network (Paper III & 
V) by increasing the density of interactions in the system from no interactions to 
strong interactions. 
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The analyses have been based on computational network models, most of which 
are novel for this work. A final objective is therefore to provide new methodology 
that can be applied to related future work. 
 
The more system specific objectives of each paper will be outlined in Section 3 
and 4 that focus specifically on food webs and neural networks. In Section 2, 
these system specific objectives have been projected to a higher level of ab-
straction where they contribute to an overall understanding of biological networks. 
 

1.2  Outline of the thesis 
The thesis is arranged in a modular way. Due to its rather broad scope, the field of 
biological network modelling will be presented more generally in the following 
section. In addition, the system specific results from the food web- and neural net-
work studies are lifted to a more general level in the final discussion (Section 5), 
highlighting important network properties that are shared across discipline 
boundaries. In between these general sections, the work on food webs and neural 
networks is presented in two distinct sections that go into more system specific 
detail on the models and their application within these two separate fields of bio-
logical modelling.  

 

2  Biological network modelling 

“Somewhere, however, between the specific that has no meaning and that the gen-
eral that has no content there must be, for each purpose and at each level of ab-
straction, an optimum degree of generality.” (Boulding 1956) 
 
Network theory is an old research topic that stretches back to Euler’s solution of 
the Köningsberg bridge problem in the 18th century. Development in computa-
tional power and mathematics of complexity has made the field flourish during the 
last 30 years, and today the network perspective is perhaps the most promising 
when it comes to describing complex biological systems. In addition to introduc-
ing important methodology, an overall aim of this section is to motivate the net-
work approach as a means of understanding living systems, and to demonstrate 
that biological systems on many different scales have many system properties in 
common. 
 
Understanding a complex system implies understanding how different aspects of 
its construction and behaviour are responsible for some large scale functional 
property of the system. This functional property is commonly discussed in the 
context of the environment of the system, for instance in terms of how the system 
responds to an external stimulus. 
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Network modelling may be regarded as a sub-discipline of system analysis. The 
network approach very distinctly describes a system as a set of units (nodes) and 
their interactions (links). At the structural level, network theory coincides with the 
mathematical discipline of graph theory. The structure of small networks can be 
analyzed very powerfully by visual investigation of graphs, whereas large net-
works can look rather “messy”. As Newman (2003) puts it, “the recent develop-
ment of statistical methods for quantifying large networks is to a large extent an 
attempt to find something to play the part played by the eye in network analysis of 
the twentieth century.” The network formalism is especially useful for capturing 
aspects of the overall organization of large and complex systems. It is particularly 
useful in this thesis, where the importance of generic structural principles, such as 
the relation between local and global effects and the density of interactions in bio-
logical systems, is investigated. 
 
This thesis does not address the details of any specific system. Nor does it explic-
itly try to fit models to data in any quantitative way. The applied models are not 
parameterized with empirical data to such a degree that they could be applied to 
make quantitative predictions. On the other hand, all the incorporated structural 
and mechanical principles have a clear biological meaning. The thesis is rooted in 
making assumptions on underlying principles of organization and interaction in 
biological networks. The applied models all find themselves at some intermediate 
level of generality, optimal for this purpose.  
 
This section is structured in a phenomenological way, highlighting general net-
work concepts such as structure, dynamics, evolution and function, rather than on 
biological system specifics. As they are introduced, these concepts with be given 
interpretations on what they mean in specific biological networks, especially for 
the neural networks and food webs that have been the topics of this thesis.  
 

2.1  System boundaries 
The first step in any modelling approach is to specify the system boundaries. 
Checkland (1981) argues that the boundary of a system ‘is a distinction made by 
an observer which marks the difference between ... a system and its environment’. 
This generally means that one has to determine which interacting units and which 
types of interactions one wishes to include in the model. One could speak of ex-
ternal and internal system boundaries. To illustrate the difference between the two, 
the system boundaries of a food web and a neural network will be briefly defined 
below. 
 

2.1.1  System boundaries of food webs 
An empirical food web is, in its simplest form, a map that specifies who eats 
whom (links) within a community of species (nodes). The community is normally 
determined by the species that are believed to play the most important role within 
a certain habitat, such as a specific bay. The external system boundary is thus 
partly geographically determined. In addition it is phenomenologically deter-
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mined, limiting the study to feeding relations, not considering other kinds of 
events in the bay. These system boundaries are plausible if the species within the 
system can be assumed to interact more strongly among each other than they do 
with species not included in the model. Most food webs are simplified in terms of 
resolution, lumping similar species into groups (Solow & Beet 1998), so that the 
network nodes represent functional species (such as trophic species defined as the 
group of species that share the same predators and prey). Effects due to possible 
spatial heterogeneity within the community (e.g. more shrimps in some parts of 
the bay than others), behavioural variations between individuals (e.g. one cod pre-
fers shrimps while another cod prefers small fish), temporal variations (the cod’s 
diet is seasonal) and so on, are ignored in most large scale food web models. Such 
limitations of the level of detail included in the model are regarded as internal sys-
tem boundaries. 
 

2.1.2  System boundaries of neural networks 
A neural network is a set of nerve cells interconnected by nerve fibres. The brain 
processes information by electric signalling across these fibres between millions of 
neurons. These are the processes addressed by neural network models. The overall 
activity is related to the mental state of the organism. Of computational (and some-
times also anatomically motivated) reasons, the external system boundaries are 
restricted to include a relatively small number of neurons. The effect of the re-
mainder of the brain (the environment) is often modelled as a continuous or noisy 
input to the neural network. The processes through which single neurons generate 
the electric signalling pulses and the propagation of signals have been modelled at 
many levels of detail. In this thesis, rather complex neural models are applied, 
describing how mechanisms in the cell membrane are involved in information 
processing. Other processes, such as signal propagation, synaptic transmitter re-
lease and synaptic plasticity are not modelled explicitly in this thesis. 
 

2.2  Structure of biological networks 
The most basic feature of any network is its architecture. In a structural description 
a network is a map of components and connections that indicate whether two 
nodes are interacting. Food webs are typically directed graphs, where an arrow 
from A to B indicates that B preys on A (following the convention that the arrow 
goes in the direction of the energy flow). In weighted graphs, a weight is assigned 
to each connection, indicating the strength of the particular interaction. Structural 
properties of networks can be studied with a high level of generality, since they do 
not include a quantitative description on the properties of nodes and connections. 
Box 1 summarises some typical structural graph measures. Network structure is 
particularly important since it provides the substrate for dynamic processes.  
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2.2.1  Structural principles 
A network model typically defines the structure of a biological network, or it 
specifies some algorithm based on stochastic principles that generate the structure. 
Canonical examples of structural principles are regularity (meaning that nearest 
neighbours are more likely to be directly linked) and randomness (randomly inter-
connected nodes). Most biological systems are not random or regular, but some-
thing in between. Box 2 gives a brief review of general graph theoretical studies of 
biological networks. The more system specific structural features of food webs 
and neural networks are given in following sections. 
 
Box 1: Structural network measures. 
 
Size (N): The number of network nodes. 
Link density (L/N): The average number of links per node. 
Connectance (C=L/N2): The fraction of all possible links that are actually present. 
Shortest path: The path that traverses the minimum number of links between two nodes. 
Path length (m): The number of traversed links in a specific path between two nodes. 
Diameter (D): The mean shortest path length between all nodes in the network. 
Degree (k): The number of links that ha specific node has. 
Degree distribution (P(k)): The probability that a node has k links. 
Poisson degree distribution: Randomly connected networks have a sharp Poisson degree 
distribution. Such distributions are characterized with a modal hump at <k> with exponen-
tially decreasing tails. 
Power law degree distribution: The probability that a given node is connected to k other 
nodes follows a (long tailed) power law P(k) ~ k-γ. 
Long tailed distribution: Any degree distribution that decreases slower than exponen-
tially.  
Motif: A small pattern within a network. 
Module: A densely connected sub-network within a network. 
Small world property: The diameter of the network is small relative to the size N. Com-
monly, networks are termed small if D ~ log (N) (Newman 2003). 
Connection weights (wij): The strength of the interaction between two nodes i and j. 
Directed graph: Links (arrows) have directions. 
Out-degree: In directed graphs: The number of links going out from a node. 
In-degree: In directed graphs: The number of links going in to a node. 
 

2.2.2  Structural complexity in terms of size and connectance 
The complexity of a system is crucial for its function, for instance in terms of 
flexibility and stability. Structural complexity can be described at many levels of 
detail. Perhaps the simplest measure of a systems’ complexity is the product NC of 
its size and its connectance (see Box 1). This simple definition was used in early 
stability analysis of randomly connected ecosystem models (May 1972), and has 
since then been frequently revisited in the debate on the relationship between sta-
bility and complexity or diversity of food webs (McCann 2000).  
 
All types of structural features may hide under the global parameters N and C. The 
advantage of such a simple measure is that all networks can easily be described in 
terms of it, so that different network structures may be compared in terms of how 
their functional properties scale with the complexity NC. This measure was useful 
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as a scaling axis for cyclic structures (Paper II) and stability (Paper III) in different 
food web models. 
 
Box 2: Structures found in biological networks 
 
Most real networks are somewhere in between random networks and regular networks (such 
as lattices, where only local connections occur). Even if different biological networks are 
composed of different nodes and interaction types, they share many features in their struc-
tural organization (Jeong et al. 2000; Oltvai & Barabasi 2002; Albert & Barabasi, 2002). In 
fact, most networks in biology seem to be roughly scale free and follow a power law degree 
distribution, P(k) ~ k-γ, where γ is in the range 2< γ <3 (Barabasi & Oltvai 2004). Interest-
ingly, this is also true for many non-biological networks such as the internet, electric lines 
between power plants and co-authorship networks among researchers (Arita 2005; Albert 
2005). This suggests that these features may emerge from simple construction rules such as 
preferential attachment of new nodes (Barabasi & Albert 1999), or from duplication based 
growth principles (Ravasz et al 2002). A problem with these findings is that most studied 
networks are in fact samples of larger networks, and do not imply scale-freeness at a larger 
scale (May, 2006).  
 
The small world property (Watts & Strogatz 1998) denotes that the mean distance between 
any two nodes (D) is small relative to the size of the system. This seems to be applicable to 
many biological networks (Cohen & Havlin 2003).The small world effect was early noted 
in social networks (Milgram, 1967), where it was popularly known as “six degrees of sepa-
ration”. On a still finer level, network studies have revealed substructures within biological 
networks such as motifs (Milo et al 2002) or modules (Hartwell et al 1999; Ravasz et al 
2002; Hintze & Adami 2007). It is acknowledged that all these structural principles at dif-
ferent levels of detail are important for systemic properties such as robustness and adapta-
tion (Albert et al. 2000; Alon 2003; Zhu et al. 2007; Albert 2005; Yook et al. 2004). Detec-
tion of modules is also regarded as a means of integrating different functional sub-cellular 
networks into the cellular whole (Oltvai & Barabasi 2002; Tornow & Mewes 2003). 
 

2.2.3  Weighted connections 

From a modelling point of view, including weights to the connections in a graph is 
a first step towards a more quantitative understanding of its dynamics. Weighted 
graphs were early used in understanding energy/mass balances (Ulanowics 1972) 
or cycling (Finn 1976) in food webs. The distribution of connection weights has 
been found to be highly important for the stability of ecosystems (McCann 2000), 
something that was investigated further in Paper III. In simple neural network 
models, weight distribution has been related to associative memories (Hopfield 
1982). 
 

2.2.4  Interaction diversity 
Another way of increasing model complexity is to allow for different kinds of in-
teractions. A food web is typically restricted to antagonistic relations (–,+) where 
the prey loses and the predator gains. The more complex ecosystems allow also for 
other direct relations, such as e.g., mutualism (+,+) and competition (–,–). In corti-
cal networks, the flexibility of the neurodynamics is dependent on a fine balance 
between excitatory (one neuron increases the activity of another) and inhibitory 
interactions (one neuron decreases the activity of another).  
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2.3  Dynamics of biological networks 
In dynamic network models, each node will have a state value that varies over 
time due to interactions with other nodes. For instance, in a food web the state 
value of a node typically represents the population of a species. The state of a neu-
ron is usually its cross membrane potential.  
 
In early studies, Boolean state values, where nodes are either “on” or “off”, have 
been used as simplistic first approaches to model gene networks (Kauffman 1969) 
and neural networks (McCulloch & Pitt 1943). Later models operate with continu-
ous node models for potential variations in neural membranes or for the accumula-
tion of gene products (see e.g., Hopfield 1984; Vohradsky 2001). 
 
The connections between nodes are generally described by differential equations 
that determine how the state value in one node is affected by the state values in 
other nodes. In food webs the state variables (populations) vary due to feeding 
relations. In neural networks, the cross membrane potential of a neuron varies due 
to inputs/outputs from/to interconnected neurons in the network.  
 
Due to different characteristics of the interactions, some of the generality of the 
structural network analysis is lost when network dynamics is studied. Yet, also 
many dynamical principles are shared between different networks. A fairly simple 
equation from neural network modelling (Hopfield 1984) will be discussed in a 
general way to illustrate some general concepts for network dynamics: 
 

[ ]∑
≠

+−=
ij

i
i

i
jjij

i tIutugw
dt
du )()(

τ
. (1) 

 
Equation (1) determines how the state ui (i.e. the cross-membrane potential of a 
neuron or the mean membrane potential of a group of neurons) of a node varies in 
time. If the node is left in isolation, ui will decay due to the second term on the 
right. Inputs to node i at each time unit are the input from outside the system (Ii(t)) 
and the sum of inputs from other nodes. Some function gj relates the state of node j 
with its output to other nodes, while the connection weights (wij) determine the 
strength of the specific connection between the nodes i and j (i.e. how much the 
output of j affects i). Formally, unconnected nodes have wij=0. 
 
The functional form and the interpretation of the interactions will depend strongly 
on the model system. However, it is common in biological network models to do 
as described above and assume that all interactions have the same functional form 
(or at least to limit the system to a small number of different interaction types). In 
this way only the linear connection weights determine the differences in interac-
tion strength across the system. It makes sense to assume that, for instance, all 
feeding relations in a food web or signalling processes in neural networks have the 
same form, and vary only in strength. The set of weighs wij is a weighted graph 
that contains all the information about the structure and the internal differences 
between connection strengths. In neural networks the connection weights are 
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analogous to the strength of the synapses. In food webs they interpret as a preda-
tor’s predation efficiency on its prey.  
 
In most cases of dynamical network analysis, the set of differential equations is 
too complex to be solved analytically. Hence, numerical methods must be applied. 
Technically, this means that some initial values for all parameters and state values 
must be specified at a particular time t. The right hand side of the equation can 
then be calculated, giving the increase/decrease dui/dt at the particular time t. Then 
this initial increase/decrease is calculated for all nodes i and added to the state val-
ues, so that for the next time step t+∆t  (if using the Euler method): 
 

t
dt

tdututtu i
ii ∆+=∆+

)()()( . (2) 

 
This procedure is repeated for time step after time step to find a numerical value 
for the state values for all the discrete time steps.  
 
In general there are three options for the time development of a complex system. 
After a certain time called the transient period, the dynamics of the system will 
either reach 1) a point attractor, 2) a cyclic attractor, or 3) a chaotic attractor (see 
Box 3). The dynamic equations and the connection weights decide the different 
attractors that a complex system has. In neural models, the set of weights are up-
dated through learning processes (Hebb 1949; Hopfield 1982; Kohonen 1988). 
Associative memories may be stored in a distributed manner in the system as at-
tractor states determined by the set of weights (wij). 
 
Box 3: Dynamic attractors (see e.g., Strogatz 2000) 
 
1) Point attractor: A static equilibrium where all state values end up at fixed values that do 
not vary over time. The criterion of neighbourhood stability in food webs demands that a 
stable system remains at a point attractor so that all populations remain constant over time. 
 
2) Cyclic attractor: The situation where state values oscillate so that the network has a re-
peated activity pattern. Cyclic attractors have for instance been found in simple two-species 
predator-prey systems described by Lotka-Volterra equations (see e.g., Gotelli 1991). 
 
3) Strange attractor: A chaotic and unpredictable activity pattern that still has some ordered 
features, and that is locked into a certain region of phase space. Cortical neurodynamics 
exhibit stationary chaotic activity when a test-person is involved in a specific cognitive 
task. 
 

2.3.1  Node complexity 
The differential equations that specify the intrinsic activity of single nodes and 
their response to other nodes is the mathematical fundament for the network dy-
namics. The term node complexity will be used to describe the functional complex-
ity of these equations. The level of biological detail (internal system boundaries) 
should be carefully suited to the problem one wishes to model. For instance, in 
Paper V regulatory processes of ion-channels at the single neuron level are stud-
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ied. The neural model in this paper is more complex than the model in Paper IV, 
where these detailed processes were not the subject of study. 
 

2.3.2  Node diversity 
The complexity of a network can be increased by allowing different nodes to re-
spond differently to the same input, in terms of their intrinsic mechanisms. In Pa-
per V, diversity was implemented by altering parameters in the intrinsic equations 
for a subset of the nodes. Note that variations in the connection weights are cov-
ered by the terms structural complexity and interaction diversity, and are not con-
sidered as node diversity. 
 
2.3.3  Network density 
The effect of network density is a major topic in this thesis. Network density is 
defined simply as a measure of how strongly the units affect each other, in terms 
of a mean (or mean squared) connection strength, taken over all connections. Net-
work density is not related to the unweighted structure of the network (such as link 
density which is related to the number of links). The term density is chosen to pro-
pose a relationship between the spatial density of nodes in the network and how 
much they interact, as will be justified below for food webs and neural networks. 
The purpose of introducing such a term is to discuss in parallel how the network 
density will affect the stability and flexibility of neural networks, and the stability 
of food webs (see Section 5). 
 
The first model of predator prey-dynamics was the famous Lotka-Volterra (LV) 
model for two species (see e.g., Gotelli 2001). If P is the predator population and 
H is the prey population, the LV-equation for the prey’s population dynamics may 
be written as: 
 

aHPHKHr
dt

dH
−−= )/1(  (3) 

 
In the absence of the predator, the density dependent logistic term r(1-H/K)H will 
stabilize the population at the carrying capacity K, limiting the possible population 
that can live in a certain habitat. The population decline due to predations on P by 
H, is assumed to be proportional to the encounter frequency which scales like HP, 
with the proportionality constant a (which is somehow related to the efficiency of 
the predator in this particular relation). It seems likely that in a dense community, 
the encounter rate should increase. Hence, a denser system could be assumed to be 
characterized by higher values of the proportionality constants a. A similar rela-
tion between a and the density has been applied in food web models with adaptive 
foraging, where each specific interaction is assumed to depend on the densities of 
all species in the community (Jordan & Scheuring 2004). 
 
Similar density relations can be found in the human brain. At least at a large scale, 
interconnectedness is known to be highly dependent on spatial distances, and neu-
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rons belonging to neural assemblies that are active in the same functional task are 
likely to be closely located and characterized by strong interconnections. Of com-
putational reasons, the models in Paper IV-V are restricted to relatively small net-
works on spatial scales where distant dependent connectivity might be negligible. 
They are, however, regarded as first approximations to model neurodynamics at a 
large scale, and distance dependent connection weights are therefore assumed. 
Hence, also in neural networks, the average interaction strength may be regarded 
as a density effect. 
 
Density effects are found also at the nodal scale, such as the carrying capacity of a 
population in a food web, or the density of ion channels in neural cell membrane. 
 
2.3.4  Relationship between scales 
Another main topic of this thesis is the relationship between properties at the sin-
gle node scale and at the network scale. If all interactions (and accordingly, the 
network density) were zero, the network activity would depend entirely on the 
sum of the isolated node activities. Hence, increasing the network density is a way 
of bringing the nodes closer together. In this way the relationship between intrinsic 
node properties and properties that emerge globally from interactions at the net-
work level can be investigated. Paper V demonstrates how the relationship be-
tween network density and the density of ion channels at the cellular level is cru-
cial for the large scale dynamics of a neural network. The results of Paper III for 
food webs are discussed in a similar context in the final discussion (Section 5.2). 
 

2.4  Biological network evolution 
Network evolution occurs when the network structure changes over time. This 
happens when nodes and connections between nodes are formed or disappear, 
and/or when the connection weights develop over time. In certain food web mod-
els, network evolution is directly linked to Darwinian evolution in the sense that 
the disappearance of a node represents a species going extinct, and the formation 
of a new node represents a new mutant or invader entering the food web (Drossel 
& McKane 2002). In models where both network dynamics and network evolution 
are considered, the latter is usually assumed to happen at a much slower time 
scale.  
 
The structures of neural networks evolve during the lifetime of the organism in 
processes connected to learning and adaptation. The main paradigm of learning 
relates to synaptic plasticity, and refers to the process where neural networks adapt 
or store memories by updating the synaptic strength (Hebb 1949; Baudry 1998). 
Technically, this is equivalent to updating the connection weights.  
 
Although different structural properties have been applied in different simulations, 
processes of network evolution are not explicitly modelled in this thesis. Instead, 
the objective of this thesis is to relate some large scale properties of biological 
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networks as they are to their construction in terms of their structure and dynamic 
characteristics. 
 

2.5  Function of biological networks 
To be useful, a network approach to biological systems should take function into 
account. It is a rather ambiguous term, but the most general function of a biologi-
cal system is to generate some action that makes it survive and adapt properly to 
environmental events and changes at several time scales. The function could for 
instance be to make the system efficient in terms of energy, time and accuracy, or 
to make it stable or flexible according to some measures. A brief commentary on 
network evolution and function is made in Box 4. Interestingly, a certain degree of 
disorder (randomness/stochasticity) often seems optimal for many biological sys-
tems and processes (Wiesenfeld & Moss 1995; Århem et al. 2000; Strogatz 2001; 
Liljenström & Halnes 2004). 
 
Box 4: Evolution and function 
 
It seems natural to assume that biological network features have been selected for because 
they serve a certain function. However, natural selection act at the individual level and it is 
a matter of debate to which degree selection processes can shape overall structural network 
features (Wagner 2003). Also, biological networks share structural scaling principles with 
pre-biological chemical reaction networks, suggesting that certain features of biological 
network may have been moulded by other processes than natural selection (Wagner 2003). 
Graph-theoretical studies explain how global scaling properties of biological networks may 
be explained by the logic of preferential attachment of new nodes (Barabasi & Albert 
1999), or by duplication based growth principles (Ravasz et al 2002). Other studies focus 
on thermodynamic principles and constraints (Schneider & Kay 1994; Jørgensen & Fath 
2004). However, the different explanations of network features are not mutually exclusive, 
and the observed network features may be a matter of which process provides the strongest 
constraint. 
 
The general function of the brain is intuitively understood: It intuitively under-
stands its own function, it makes decisions, it produces a visual subjective image 
of the external world based on sensory input from the eyes, it recognizes the face 
of a friend in a fraction of a second and learns how long an egg is supposed to 
boil. Sometimes it even forgets things.  
 
The general function of a food web or an ecosystem is less clear. This is due to the 
fact that these systems are living systems studied at the largest scale. The spikes of 
a hedgehog, for instance, have the function of protection against enemies within a 
given environment. An ecosystem has no such obvious environmental challenges 
to react upon, at least not if the systemic interactions are described in terms of an-
nual averages, comprising seasonal variations. From an anthropocentric point of 
view, one could speak of ecosystem-services, suggesting that the function of an 
ecosystem is to provide human beings with resources and nice places to spend 
holidays (eco-tourism). Although a functional concept like this is not useful for 
explaining the structure and dynamics of an ecosystem from an evolutionary per-
spective, it makes sense in a management context. 
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In the network perspective, function is normally discussed in terms of some global 
system property, which is believed to depend on certain constructional features of 
the network (Newman 2003; Liljenström & Halnes 2004). In general, it should be 
essential that the system is stable to short-term fluctuations and common insignifi-
cant events. At the same time it should also be flexible so that it can react to weak 
signals and rare important events, as well as adapt to long-term changes. The sta-
bility and flexibility, as well as the efficiency of a biological system is dependent 
on such parameters as the structure complexity, rate constants and the amount of 
energy invested in constituents and dissipated in the system. In general terms, sta-
bility is often defined in terms of a system’s ability to remain at attractor states, 
and flexibility as the ability to switch between attractor states in a consistent way 
(Kitano 2004; Ashwin & Timme 2005). 
 
The aim of this thesis is to relate certain structural and dynamical features of net-
works to their function within a larger context. The function of a neural network 
could for instance be pattern recognition, associative memory or classification. As 
mentioned before, neural learning and adaptation are associated to processes of 
network evolution and the mechanisms behind them. The short term state of the 
brain, which is the main focus in this thesis, is related to the real-time dynamic 
signalling in the brain. When a test person solves specific cognitive tasks, the ac-
tivity is correlated to certain features of the global dynamics of a brain region (see 
e.g., Fingelkurts & Fingelkurts 2006). At the short time scale, brain function is 
therefore directly related to large scale neurodynamics. The dynamics should be 
stable in the sense that it should remain stationary when working on the same task, 
and flexible in the sense that it should be able to jump between states when some-
thing forces the test person to undertake new and different mental tasks.  
 
Thermodynamic-based goal functions (Fath et al. 2001) suggest that ecosystems 
develop to maximize dissipation (Schneider & Kay 1994), energy throughflow and 
energy storage (Fath et al. 2004). Still, the perhaps most important functional con-
cepts in the ecosystem/food web literature deal with robustness and stability 
(McCann 2000). Food webs are believed to look like they do because they are 
stable. It seems likely that ecosystems should be robust to external variatons (such 
as climate fluctuations, seasonal variations, species invasions and mutations) and 
have stable intrinsic dynamics. Functional stability is also a useful concept in 
management issues, dealing with sustainability and minimizing the effects of hu-
man impacts. It is a task for science to define appropriate stability measures, and 
to relate these to the structure and dynamics of ecosystems. 
 
Some of the functional properties that have been studied in this thesis will now be 
briefly introduced. Their meaning and definitions at a detailed level are highly 
system specific, and will be discussed more thoroughly in the sections on food 
webs and neural networks. 
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2.5.1  Structural robustness 
The structure of a biological network is the substrate for its dynamics. Structural 
changes happen at a longer time scale than dynamics, and are more critical. It is 
crucial that important aspects of the structure are robust to (relatively) small struc-
tural changes. For instance, it should be essential that a network is not easily split 
into two separate sub-networks by the removal of a single link or node. A network 
is structurally robust if important structural aspects are not severely affected by the 
removal of a single node or link. 
 

2.5.2  Structural cyclicity 
Structural cyclicity (Jain & Krishna 2003) is a structural feature of a network. Cy-
clic structures are important for matter/energy recycling and feedback effects. Two 
nodes sitting in the same structural cycle in a directed graph can in principle inter-
act indirectly along an infinite number of pathways of different length correspond-
ing to any number of orbits around the cycle. The structural cyclicity of a network 
is correspondingly a measure of how fast the number of indirect pathways of a 
given length m increases with m. The relationship between nutrient cycling and 
stability also has been a recurrent theme in the ecological literature (DeAngelis et 
al. 1990). 
 

2.5.3  Dynamic stability 
In dynamic systems, state values fluctuate over time. Eventually this may result in 
structural changes, such as species extinctions in food webs (meaning that the state 
value drops to zero and a node disappears). Dynamic stability may be defined in 
many ways. A food web may be defined as dynamically stable if its dynamics 
guarantees that no species go extinct. A stricter criterion, called neighbourhood 
stability, demands that all populations are stable at a fixed point attractor.  
 
At a more general level, stability requires that the system dynamics remains sta-
tionary in some aspect. For instance, the global neurodynamics of a sleeping per-
son should show a persistent slow wave oscillation that is robust to insignificant 
disturbances (ensuring stable sleep). Stationary brain-dynamics correspond to ei-
ther cyclic or chaotic attractors (see Box 3). 
 
2.5.4  Dynamic flexibility 
The function of cortical networks is directly linked to the interplay between stabil-
ity and flexibility in the large scale neurodynamics. If the fire alarm goes off, the 
sleeping person in the previous example should preferably no longer experience 
stability in his or her cortical dynamics. The dynamic should rather switch to some 
other, high frequency and alert state, characterized by a different attractor. This 
ability to switch between states is defined as the flexibility of a neural network. It 
may be triggered by external inputs, as in the example above, or by internal 
mechanisms or intrinsic dynamic properties.  
 



 21 

2.6  General overview of papers 
The papers included in this thesis are arranged as a journey into the complexity of 
biological network models. The starting point is qualitative structural descriptions 
of biological networks, and the level of detail in the dynamical description of node 
properties is then gradually increased. Along this journey, new features, both 
structural and dynamical, are revealed as crucial for the function of biological 
networks. The functional properties considered are all related to stability and 
flexibility. A schematic overview of the papers included in this thesis is found in 
Figure 1. 
 
The analysis begins at the purely structural level, with an application to food webs 
as these are often studied as directed graphs (weighted or unweighted). The struc-
tural functional measures are structural robustness and structural cyclicity. Paper I 
and II show how these functional properties depend on the architecture of food 
webs, with a special emphasis on pathways due to decomposing and recycling of 
dead organic matter. Five food web models are compared, one of which is novel 
for this work. Certain aspects of the network architecture are found to be highly 
important for the structural robustness (Paper I) and structural cyclicity (Paper II) 
in food webs.  
 
Dynamic analysis addresses more quantitative aspects of biological networks. Not 
only the architecture, but also the distribution of interaction strengths and intrinsic 
properties of the nodes are important. System dynamics is implicit in the weighted 
graphs in Paper III, introducing the requirement of a stable fixed point (Box 3) as 
the first dynamic functional measure of this thesis. Dynamic stability depends not 
only on the network architecture, but also on the strength and characteristics (e.g., 
antagonistic, mutual or competitive) of interactions. Paper III shows that the sta-
bility of food webs depend strongly on their architecture and distribution of inter-
action strengths, especially in networks of intermediate network density. 
 

 
 
Figure 1: An overview of the papers included in this thesis.  
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Network dynamics is studied more explicitly in Paper IV & V, with application on 
neural networks. The dynamic functional measures are the stability and flexibility 
of their large scale dynamics (mean activity taken over all nodes). The networks 
are described by differential equations that include a high level of biological real-
ism in the description of single node mechanisms. This detailed dynamical de-
scription reveals that network function depends not only on architecture and link 
distribution, but also on a fine balance between inhibitory and excitatory mecha-
nisms (Paper IV), between local and global interactions (Paper IV), and between 
properties at the single node scale (density of ion channels) and network scale 
(network density) (Paper V). 
 
All the modelling setups and simulations presented in this thesis follow the same 
logic: I) First, the network model is constructed, specifying external system 
boundaries and internal structure and mechanisms. The model contains a set of 
parameters that determine the network structure and the characteristics of the dy-
namical interactions. II) Secondly, some functional measure is specified and iden-
tified as a network property that emerges from these underlying constructional 
characteristics specified by the set of parameters. III) Thirdly, simulations are run. 
The model parameters are varied from simulation to simulation in order to see the 
effect that these variations have on the function of the model. 

 

3  Food webs and ecosystems 

“Most of what is interesting about biological communities cannot be pinned, 
stuffed, pressed onto herbarium sheets or preserved in alcohol” (Thompson 1982). 
 
Single-species approaches to management are based on 19th century reductionism, 
assuming that the dynamics of species can be viewed outside of their role in the 
ecosystem. The ecosystem or food web based approach to management starts at 
the other end of the scale by recognizing the complexity and holism of the system 
(Fath et al. 2007). A food web is in its simplest form a network where the nodes 
represent species (or groups of species) and the directed connections represent 
feeding relations. An example of a food web can be found in Figure 2. Even such 
a qualitative description summarizes a great deal of information on diversity, spe-
cies composition, trophic structure, chain length and species interactions (Pimm et 
al. 1991; Williams & Martinez 2000).  
 
These large scale systems are commonly studied at correspondingly large time 
scales. At the evolutionary time scale, it may be expected that significant changes 
in community structure and genetic make-up will occur. This thesis focuses on the 
ecological time scale (of the order of tens of generations). At this time scale the 
population interactions are assumed to lose their explicit dependence on spatial 
distribution, since spatial heterogeneity in the species distributions within a habitat 
is assumed to even out (Ulanowicz 1972). 
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It should be noted that these assumptions and simplifications are a matter of study 
-focus. High resolution studies exist for smaller subparts of ecosystems, address-
ing spatial issues such as habitat fragmentation and demographic stochasticity (see 
e.g. Polis & Hurd 1995; Casagrandi & Gatto 1999).  
 
A food web is a sub-network of an ecosystem, which generally refers to a broader 
picture, including a higher diversity of interactions, such as mutualism, competi-
tion and predator-prey relations. Only predator-prey interactions are studied in 
food webs (Drossel & McKane 2002). The convention that the arrows go from the 
prey to the predator is used throughout this thesis, indicating the direction of the 
energy flow. Ecosystems require a more abstract description linking population 
dynamics in two connected nodes. Model food webs and ecosystems are still often 
used in similar studies, and findings from the two fields are not always kept apart. 
The difference between them in terms of stability is investigated in Paper III. 
 

 
Figure 2: Example of a food web, illustrating functional grouping. (The picture was taken 
from http://www.mindfully.org/Food/Food-Web-Simply.htm.) 
 
The interplay between different interactions is difficult to parameterize, and quan-
titative ecosystem studies are often limited to a small number of species, whereas 
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the food web models allow for larger communities to be treated. Still, even food 
webs cannot include all species in the habitat, so the nodes will in most cases 
rather represent a class of “similar” species, such as for instance trophic species, 
defined as a group of species that share the same predators and/or preys (Pimm et 
al. 1991). 
 
Empirical food web studies aim at identifying their most important structural fea-
tures and describing them at a level of detail which is sufficient to explain their 
most essential functional characteristics. However, methods of sampling food web 
data have been inconsistent. The role of mammalian predators which look “sexy” 
to the human eye may historically have been overestimated, while less conspicu-
ous species, such as spiders, are more easily lumped into one functional group 
(May 1999). Many food web properties will depend on how “similar” species are 
aggregated into trophic species (Hall & Rafaelli 1991; Drossel & McKane 2002). 
Several empirical food webs could easily be reduced by species aggregation (So-
low & Beet 1998). In this way,  the number of species will depend severely on 
judgments made by empiricists. Systematic species aggregation in empirical webs 
is now commonly used as a means of reducing methodological biases (Williams & 
Martinez 2000). Another and more practical problem is that links may vary over 
time. For instance, a predator may have a seasonal preferences for different prey, 
so that data gathered over longer periods may contain more links than are actually 
present in the system at any fixed point in time (Drossel & McKane 2002).  
 
In addition, some food webs include one or several compartments for detritus 
(dead organic material). However, there is no consistent approach for incorporat-
ing them, something that shows the difficulties in defining clear system boundaries 
(Drossel & McKane 2002). Detritus alters generalizations of the structure and 
function of food webs (Moore et al. 2004), but has been overlooked in many stud-
ies. Paper I and II show that the detritus compartment is of great importance for a 
complete food web picture, altering structural robustness and cyclicity.  
 

3.1  Food web objectives 
The objectives for the food web studies are listed below.  
 

• To develop a simple structural food web model that takes the effect of 
decomposing of dead organic material (detritus) in food webs into ac-
count (Paper I), and to study the effect of decomposing detritus on food 
web robustness (Paper I) and global energy cycling (Paper II). 

 
• To compare different food web models in terms of their robustness (Pa-

per I), global energy cycling (Paper II) and dynamic stability (Paper III), 
and to investigate how these properties scale with the complexity of the 
food web. 

 
• To detect structural differences between stable and unstable food webs 

(Paper III). 
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• To compare the stability of food webs (containing only antagonistic 

predator-prey relations) with the stability of ecosystems (containing an-
tagonistic, mutualistic and competitive interactions) in a simple model 
(Paper III). 

 

3.2  Management applications 
Habitat loss due to landscape fragmentation following agriculture, building of 
roads, river dams and other kind of land exploitation are today assumed to be the 
most important threat towards biodiversity. The loss of habitat area is often ac-
companied by the disappearance of species, especially in the upper trophic levels 
of food webs. Recent predictions show that habitat area alone is not sufficient to 
predict changes in population sizes, but that also food web structures in small ver-
sus large habitat fragments are crucial for controlling abundances of multiple spe-
cies (Kruess & Tscharnkte 2000; Gotelli & Ellison 2006). In addition, global 
warming has altered life conditions for many species, and recent food web studies 
address environmental feedback mechanisms related to for instance temperature 
(Bagdassarian et al. 2007) or CO2 (Legendre & Rivkin 2002). 
 
Simple food web models, used either as core or component hypotheses, provide a 
systematic and enlightening way to grasp a complex system as a whole. Structural 
and dynamic food web models can organize our thinking about a range of applied 
problems, such as detecting important structural features and evaluating mecha-
nisms that control populations. Food web models may also be incorporated as one 
element in models of regional mass balances (Power 2001), or in integrated socio-
ecological models (Tallis & Kareiva 2006). 
 
Due to the relatively low resolution of food web models, specific quantitative pre-
dictions will in most cases be unreliable. Yet, if used with healthy scepticism and 
in combination with knowledge of local natural history, food web models can pro-
mote the iterative feedback between prediction, falsification by observation, and 
new prediction (Power 2001). Understanding relationships between structure and 
functional properties of food webs and ecosystems is of high relevance for eco-
logical management. The models of Paper I-III provide methods for detecting, in 
general and abstract models, which features and links in a food web are important 
for its global function. The results are qualitative, yet they identify features that 
are likely to play the most critical role for system function, and can guide manag-
ers and policy makers on where the main efforts and caution should be focused.  
 
3.3  Food web structures 
Many features in food webs that were earlier believed to be roughly scale free 
(Pimm et al. 1991), have later been found not to be so. A more recent analysis 
(Dunne et al 2002) suggest that the disagreements on food-web structures are 
based on selective use of relatively few sampled food webs.  A scaling relation 
(for some parameters γ and ξ) 
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was recently proposed for the link distribution of food webs (Montoya et al 2006). 
The last factor on the right decreases the probability of a species having a high 
number of links, especially in large food webs. Such a modified power law may 
explain the discrepancies between the scaling of early, smaller food webs and 
more recent larger food webs. 
 
This being said, much is still known about the structure of food webs. Even if they 
formally might not be scale free or small worlds (see Box 1), they are character-
ized by a long tailed degree distribution and are densely interlinked (Ulanowicz & 
Wolff 1991; Williams et al 2002). Furthermore, they have a bias towards hierar-
chical chain-like interactions (Cohen & Newman 1985; Milo et al. 2002; Gar-
laschelli et al. 2003). To some degree, feeding relations can be correlated to spe-
cies’ body-mass (Cohen et al 1993). They seem to be characterized by a distribu-
tion of weak vs. strong links (Ulanowicz & Wolff 1991, McCann 2000; Neutel et 
al. 2002) that is favourable for their stability. This is further investigated in Paper 
III. 
 
Cyclic structures were early identified in food webs (Lindeman, 1942), but have 
commonly been neglected in food web models, partly, it seems, due to the lack of 
analytical tools. However, the presence of cycles has been emphasized in many 
studies as one of the most important features of ecosystems (see e.g., Ulanowics 
1983; Patten 1985; Burns 1989). Cycles affect the residence time of nutrients, act 
as stabilizing buffers for fluctuations in energy supply, and generally affect eco-
system functioning (Allesina & Ulanowics 2004). A technical argument for their 
importance is that cyclic structures will significantly increase the number of higher 
order pathways between two nodes (Borrett et al 2007). Even if each path carries a 
small amount of energy, the high number of different higher order pathways will 
add up to give an important contribution (Lenzen 2007). 
 

3.4  Stability of food webs 
The idea that there is an important connection between stability and diver-
sity/complexity has been subject to many debates (May 1972; Lawlor 1980; 
McCann 2000; Kaiser 2000). As for other biological networks, food webs are 
found to be rather robust with respect to random removal of nodes (Sole & 
Montoya 2001). They are more fragile to specific attacks at keystone species, al-
though their relatively high connectance makes them more robust to removal of 
highly connected nodes compared to many other biological networks (Dunne et al 
2004). Paper I investigates the effect that a detritus compartment has on the struc-
tural robustness of simple food web models. 
 
For decades leading up to the 1970s, the dominant ecological paradigm was that 
complex systems were more stable than simple ones (Odum 1953). This was 
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seemingly accepted as a rule of thumb until May used dynamic mathematical 
modelling in random networks to arrive at the opposite conclusion (May 1972). 
May showed that in terms of a linear stability measure, complex networks tend to 
be less stable than simple ones. May’s findings started a more quantitatively based 
stability-diversity debate. 
 
There are three main objections to May’s conclusions. I) First, real food 
webs/ecosystems are not randomly connected (De Angelis 1975). Real ecosystems 
have been found to be more stable than random networks, even when using May’s 
stability criteria (de Ruiter et al. 1998). II) Secondly, the stability of a food web 
will also be strongly dependent on the level of detail (realism) in the dynamic 
model equations (Polis 1998; Pelletier 2000). More recent modelling approaches 
have shown that food webs including adaptive foraging may yield a positive rela-
tionship between complexity and stability (Kondoh 2003), although it has been 
pointed out that such a positive relationship is highly model specific (Brose et al. 
2003). III) Thirdly, the criterion of neighbourhood stability might not be the most 
relevant stability measure since a model ecosystem might very well be regarded as 
stable even if it has no fixed point equilibrium. For instance, it may have other 
attractor states that ensure that no species go extinct, and many other stability 
measures have been proposed in the literature (Lawlor 1980; Law & Morton 1996; 
McCann 2000). To mention a few, permanence (Law & Morton 1996) defines a 
system as stable if it guarantees that no species go extinct. Resilience is used with 
several specific meanings, but is loosely defined as a measure of how well the 
system is able to maintain its function when faced with a novel disturbances (Holl-
ing 1973; Webb 2007).  
 
Different measures of stability are not mutually exclusive and should be regarded 
as complementary in understanding the dynamics of food webs. Paper III revisits 
May’s criterion of neighbourhood stability. The simplicity of the approach pro-
vides a good framework for studying the importance of food web structure and 
link distribution for system function. The work exceeds May’s original work by 
considering realistic food web structures and the importance of the distribution of 
interaction strengths.  
 

3.5  Food web models 
Food webs are subject to evolution. Many models have been developed to suggest 
how, most of which belong to one of two different groups. Assembly models (Post 
& Pimm 1983; Hang-Kwang & Pimm 1993; Law & Morton 1996; Fukami 2004) 
let food webs evolve through series of invasions (from an outside species pool) 
and extinctions (determined by intrinsic system dynamics). Evolutionary models 
(Caldarelli et al. 1998; Drossel et al. 2001; McKane 2004; Loeuille & Loreau 
2005) let food webs evolve from series of mutations (of internal species) and ex-
tinctions. The end product of all these models is usually a food web that is resis-
tant towards invasion and mutation effects, and dynamically stable within itself. 
These models are also able to explain certain structural aspects of empirical food 
webs, as emergent from the evolutionary process and the constraint of stability. 
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This thesis focuses on a different class of food web models that try to capture im-
portant structural aspects of food webs as they are today, not considering evolu-
tionary processes (Cohen & Newman 1985; Martinez 1992; Williams & Martinez 
2000; Fath 2004). These models incorporate simple principles of how food webs 
are interconnected into algorithms (Box 5), so that they can produce a great variety 
of food webs based on these principles (see Figure 3 for illustrations). The motiva-
tion is partly to complement the rather sparse amount of empirical food web data 
with “realistic” model food webs, and partly to see if the assumed construction 
principles are feasible in the sense that they reproduce empirically observed food 
web features. The models are also easy to manipulate in terms of network size (N) 
and connectance (C), so that they can be used to see how certain network proper-
ties scale with these parameters, and in such a way establish relations between 
structural principles and network function. This thesis compares all these models 
in order to relate structural principles to global functions such as structural robust-
ness (Paper I), energy cycling (Paper II) and dynamic stability (Paper III) in food 
webs.  
 
Box 5: Structural food web models 
 
Constant connectance model (Martinez, 1992): N species are connected randomly among 
each other. All connections have the same probability C of occurring. 
 
Cascade model (Cohen & Newman 1985): N species are ranked by number from 1 to N. All 
connections go upwards in the hierarchy, and occur with the same probability 2C. 
 
Niche model (Williams & Martinez 2000): A niche value (0 < n < 1) is randomly assigned 
to each species. Species’ predate within a range r of niche values (r = x*n, where x is a 
random number drawn from a beta-distribution with expected value 2C). The centre of the 
predation interval is drawn from a uniform distribution on the interval [r/2, n]. 
 
Modified Niche model (Paper I): A food web with N–1 species is generated by the original 
niche model. A detritus compartment is added (species N). All species contribute (arrows 
in) to the detritus compartment. Species feed on detritus with probability C. 
 
Cyber ecosystem model (Fath, 2004): N species divided into six functional groups (detritus, 
detritus feeders, primary producers, herbivores, carnivores and omnivores), which deter-
mine possible and not possible feeding relationships. The model is tuned to have only N and 
C as input parameters by using a fixed distribution of N species, using one detritus com-
partment, one compartment for detrital feeders, and N–2 species evenly distributed in the 
remaining four groups. 
 
The earliest models were different versions of random models (May 1972; Marti-
nez 1992), where all N species are connected randomly among each other. The 
counterpart to the random models was the strictly hierarchical cascade model 
(Cohen & Newman 1985), whose structure is a set of food chains originating in 
basal species (in-degree equal to zero) and terminating at top predators (out degree 
equal to zero) (see Box 1). Real food webs are definitely not randomly connected. 
Nor are they strictly hierarchical. A later assembly model is called the niche model 
(Williams & Martinez 2000) and has become one of the most accepted models. As 
in the cascade model, the species are hierarchically ranked. A niche value (be-
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tween 0 and 1) is randomly assigned to each species, and predators are then al-
lowed to prey on a niche interval centred below their own niche value with possi-
ble overlapping (see the intervals in Figure 3C). The niche overlap allows some 
predations to exert downward in the niche hierarchy, and opens the possibility for 
structural cycles. The niche model has been tested against both random and cas-
cade models (Dunne et al. 2002; Martinez et al. 2006), and has been proven more 
successful in reproducing several empirically found food web properties. The 
niche values and predation intervals can to some degree be correlated to body size 
dependent predation tendencies since the most common situation is that a predator 
predates on an interval of species that have a similar, but in 90% of the cases, 
lower body mass than itself (Cohen et al. 1993). 
 

 
 
Figure 3: Model food webs: A) Cascade model, B) Random model, C) Niche model, D) 
Modified niche model (the large compartment to the right is the detritus compartment) and 
E) The cyber ecosystem model. 
 
None of the models described above recognizes the additional pathways due to 
decomposing and uptake of dead organic material (detritus). The detrital pathways 
(via a detritus compartment) are likely to be structurally different from the conven-
tional predation links in the system. The cyber ecosystem model (Fath 2004) is 
slightly more complex than the other models. Instead of just the total number of 
compartments (N), it operates with six functionally different categories (primary 
producers, grazers, omnivores, carnivores, detrital feeders and detritus) that con-
nect to each other in accordance to ecologically realistic rules. 
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This thesis contributes to the theory by proposing a simpler model for including 
the detritus compartment (Paper I) in order to specifically study the effect of de-
composing and recycling of dead organic material. The model is called the modi-
fied niche model, and technically modifies the original niche model by including a 
detritus compartment and connecting it in a realistic way to the species in the 
original food web. As part of the modified niche algorithm, the detritus compart-
ment connects differently within the system than the conventional predation links 
between the species (see Figure 3D). The modified niche model enters the line of 
simple food web models that only take N and C as input parameters. In addition, a 
third parameter a (see Section 3.9), related to the network density (mean interac-
tion strength), is introduced in Paper III, where the structural food webs are de-
scribed as weighted graphs in order to study dynamic stability. 
 
It should be noted that the structural food web models considered in this thesis are 
very general, and the nodes are not taken to represent specific species. This means, 
in principle, that any of the nodes in any of these models could be said to represent 
a detritus compartment. The reason for adding it explicitly is the argument that this 
compartment is connected differently within the system than the conventional pre-
dations. The modified niche model (Paper I) assumes that all species contribute to 
the detritus pool, and that some species may feed on it, thus creating feedback 
loops from the top predator to some lower level in the system.  
 

3.6  Simulations with food web models 
All the work on food web modelling presented in this thesis follows the same 
logic, described by the following four steps: 1) Food web models (presented in 
Box 5) were programmed in Matlab so that they could produce a variety of food 
web structures based merely on a few input parameters (N, C, a) concerning the 
structural complexity (see Box 1) and mean interaction strength. 2) Parameter val-
ues (N, C, a) were specified. 3) Some functional measure (structural robustness, 
structural cyclicity, dynamic stability) was defined. 4) Simulations were run for 
different models and different choices of model parameters (representing struc-
tural characteristics of the webs), in order to investigate the effect of structural 
principles and parameters on the function of the food webs. 
 

2/ NLC = , (5) 
 
was used as a definition for the connectance, where L is the total number of links 
in the network, and N2 is the theoretical number of possible links. Although canni-
balism (self-links) is often excluded in these models, N2 (as opposed to N(N–1)) is 
still used in the formal definition of C. The mean interaction strength a is defined 
in Section 3.9. 
 
When any of the food web models in Box 5 are run, they produce a food web 
structure that is represented by an N×N adjacency matrix of binary elements (aij) 
that indicate whether species i feeds on species j (aij =1) or not (aij =0), as illus-
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trated in Figure 4. The aim of these models is to reproduce realistic food web 
structures. The model food webs are compared to empirical data sets in Figure 5. 
 

 
 
Figure 4: Simplistic sketch on how a food web graph translates into an adjacent matrix. 
The spy plot (to the right) presents only the links (1’s) in the matrix and is of value for vis-
ual investigation. Downward arrows will result in matrix elements above the main diagonal. 
 

 
Figure 5: The spy plots (see Figure 4 for definition) for the constant connectance (CC) 
model, modified niche (MNI) model and cyber ecosystem (CE) model, compared to six 
empirical data sets.  
 
All models were run to produce a great diversity of food webs. The models were 
analyzed and compared in terms of certain properties with their adjacency matri-
ces. All models were scaled so that food webs with the same N and C values were 
compared among each-others in terms of their structural robustness (Paper I), and 
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in terms of how global energy cycling (Paper II), and stability (Paper III) scale 
with the complexity NC in the different model cases. These functional measures 
will be defined in the following sections.  
 

3.7  Structural robustness in food webs 
Paper I compares the models presented above (Box 5) in terms their structural 
robustness. In this context, robust means that the structural properties defined in 
Box 6 and 7 are relatively unaffected by random removal of single links/nodes. 
Box 6 summarizes the structural properties that are based on undirected graphs 
(ignoring the direction of the relations). Box 7 summarizes structural measures 
that are developed in order to also catch the directed properties of food webs. 
 
A special focus is put on the pathways generated by decomposition and recycling 
of detritus. Since all species are assumed to contribute to the detritus compartment, 
this new structural component ensures that the food web is integrated into one 
strongly connected component, which also performs better in terms of efficiency 
(mean shortest distance between two nodes). The results show that the detritus 
compartment also makes the system more robust to link and node removal in terms 
of several of the measures presented in Box 6 and 7. The findings are especially 
important for sparsely interconnected networks (low C-values). Recycling of dead 
organic material makes food webs more integrated, and harder to disintegrate by 
small structural impacts. 
 
Box 6: Undirected measures 
 
Strongly connected components (Ns,): A strongly connected component consists of all 
nodes that are directly or indirectly connected. In a fully integrated food web Ns = 1. 
 
Bridges (Nb):  A bridge is a connection whose removal causes the splitting of a strongly 
connected component into two separated components. 
 
Cutpoints (Nc): A cutpoint is a node whose removal causes the splitting of a strongly con-
nected component into two or more separated components. 
 
Diameter (D): Average shortest path length taken over all node pairs D = < dij >. 
 
Efficiency (E): Average of reciprocal path lengths E = <1/dij>, where 1/dij is defined if 
there is no path between i and j. 
 
Box 7: Directed measures 
 
Nodes that are part of any structural cycle (No): A node i is a part of a structural cycle if 
its position in the directed graph is such that a flow unit, leaving i, can return to i by follow-
ing directed pathways. 
 
Mean number of recipient nodes (Nr): If an energy unit leaves a node i, the number of 
recipient nodes is the number of other nodes it can it reach by following directed pathways 
from i. 
 



 33 

3.8  Structural cyclicity in food webs 
Food webs are structural diagraphs, showing not only which species are inter-
linked, but also the direction of the relation (energy transfer). The number of di-
rected pathways of length m>0 between any node pair is found by raising the ad-
jacency matrix to the m’th power (Borett et al. 2007). Pathway proliferation, 
developed as a measure of how the number of possible pathways between two 
nodes increases with path length, has further been used as a measure of the 
influence of indirect interaction in strongly connected networks. For large m, the 
rate between the number of pathways of length m+1 and m approaches the 
dominant eigenvalue, so that: 
 

∞→→
+
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A
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,
1

λ  (6) 

 
Generally the increase of Am with m will increase with the number of cycles in the 
system. The dominant eigenvalue of the adjacency matrix can be regarded as a 
measure of how well the structure of the graph supports cycling of matter/energy. 
The dominant eigenvalue (λ) is therefore called the structural cyclicity. λ is a 
purely structural measure, and does not measure the actual quantity of flow; and 
therefore differs from the Finn cycling index (Finn 1976). 
 

Figure 6: Structural cyclicity in five food web models, compared to empirical data. Regres-
sion lines for models are based on 1000 runs (for different values of N and C) with each 
model. Regression line for data is based on the data points shown in the figure. 
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Paper II compares the five food web models in Box 5 in terms of their structural 
cyclicity, and also compares the results to empirical food web data. In all models 
the structural cyclicity scales more or less linearly with the complexity (NC) of the 
webs, a trend also found for the empirical data sets as seen in Figure 6. The detri-
tus compartment is found to increase the structural cyclicity. The modified niche 
model gave the best fit to empirical food webs. 
 
Structural food web models aim at reproducing the structural features of food 
webs that are essential for their function. Paper II identifies structural cyclicity as 
one essential feature. The structural cyclicity is a measure of how well a food web 
structure provides a substrate for energy/matter cycling, but does not quantify the 
actual cycling. Due to energetic considerations, it is common to assume that the 
biomass decreases with the trophic level, since, as a rule of thumb, 90% of the 
energy is dissipated in every transfer. Hence, at the higher levels of the food web 
hierarchy, energy transfers will commonly be some orders of magnitude less than 
the transfers from primary producers. Since some pathways carry more en-
ergy/matter transfers than others, some cycles may be very important for the total 
cycling, while others will be less so. Unweighted models like those in Paper II can 
not capture such quantitative differences, and results based on structure alone may 
have limited validity (a further discussion on the quality of structure based results 
is found in Section 5.1). On the other hand, these structures are present in nature, 
and the modified niche model produces food webs that have a structural cyclicity 
in agreement with empirical food webs. Studies have also shown that the strength 
of a link is not always correlated to its importance for system stability (McCann et 
al. 1998; de Ruiter et al. 1998). In other words, a link is not necessarily unimpor-
tant because it is weak. With today’s computational power at hand, there is no 
reason to discard structural features. General food web models should rather aim 
at reproducing as many empirically observed features as possible. 
 

3.9  Dynamic stability in food webs 
Paper III addresses system dynamics in an implicit way, inspired by the approach 
of May (1972). No assumptions are made on the underlying dynamic equations. A 
dynamic food web is assumed to have a fixed point attractor. A weighted commu-
nity matrix (Ã) is constructed to describe the interactions and their strength in the 
vicinity of this fixed point. The community matrix represents the interaction coef-
ficients when the dynamic system has been linearized around this fixed point. The 
criterion of neighbourhood stability (Box 3) was used as the dynamic stability 
measure. Eigenvalue analysis of the community matrix is used to check whether a 
perturbation from equilibrium will tend to increase (i.e., it is further removed from 
equilibrium and is unstable) or decrease (i.e., it is brought back to equilibrium and 
is stable).  
 
Whereas May’s original work was based on randomly generated communities, 
Paper III goes deeper into the specific importance of food web structure and dis-
tribution of interaction strengths. The structural food web models in Box 5 were 
transformed into community matrices relating the gain of a predator and the loss of 
a prey, as illustrated in Figure 7. 
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Figure 7: Example of how a predator-prey relation (1,0) in the structural adjacency matrix 
is quantified in the community matrix that contains matrix elements linking the predator 
gain and prey loss (+,–). 
 
In May’s work, the matrix elements in Ã were drawn from a normal distribution 
with mean zero and standard deviation a. This results in the approximate relation: 
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ji
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,
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For direct comparison with May’s results, all community matrices were normal-
ized to satisfy the condition above. This means that the mean interaction in the 
system will be 0.8a. For simplicity, a (and not 0.8a) will still be referred to as the 
mean interaction strength. May showed that for randomly generated communities 
there is a steep threshold (for a), so that almost all food webs that satisfy 
 

NC
a 1
<  (8) 

 
are stable, and almost all food webs that do not are unstable. May allowed all 
kinds of interactions, so that all the combinations (ãij,ãji) = (0,0), (+,–), (+,+), (–,–
), (0,+) and (0, –) could occur (the plusses and minuses here represent any positive 
and negative numbers determining whether a species gains or looses by the pres-
ence of the other species). This is referred to as the ecosystem-paradigm. The food 
web models, were constrained to only include predator-prey (+,–) interactions. As 
in May’s work, the diagonal elements were chosen to be –1, meaning that the sin-
gle species have a self-stabilizing effect (i.e. approaches carrying capacity) in their 
intraspecific interactions (May 1974). 
 
The first main finding of Paper III is that food webs are more stable than ecosys-
tems. This is most likely due to the destabilizing effects of positive feedback loops 
(+,+) and (–,–) (May 1974).  
 
In a second analysis in Paper III, the interaction coefficients are drawn by ecologi-
cally inspired distributions defined by the predation intervals in the niche and 
modified niche models. In this case, the probability of a web being stable de-
creases more gradually with a, and there is no steep a-threshold (see equation 8) 
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between unstable and stable webs. In this case, stability depended strongly on the 
distribution of interaction strength (and not only on the mean value). A compari-
son of stable to unstable webs revealed that a few very strong links embedded in a 
majority of weaker links were beneficial for food web stability (Figure 8). Empiri-
cal findings support such a long tailed interaction strength distribution (Ulanowicz 
& Wolff 1991; Neutel et al. 2002). 
 
The objective of Paper III was not to study food web stability on a general basis, 
but rather to see what aspects in a food web’s structure and link distribution that is 
important for its function. For this, a functional measure was needed, and 
neighbourhood stability was chosen because of its mathematical simplicity. A dis-
tribution of a few strong links and many weak links has been found in several 
more complex modelling approaches (Kondoh 2003; Quince et al. 2005), but Pa-
per III shows that such a link distribution is favourable also in terms of the crite-
rion of neighbourhood stability. 
 

 
Figure 8: Link distribution in stable versus unstable webs. The x-axis show intervals of 
interaction strengths. The y-axis shows number of links in each interval in stable food webs 
divided by the number found in unstable webs. 
 
Paper III does not reveal any correlation between neighbourhood stability and 
recycling of detritus, unless special assumptions are made on the strength of detri-
tal pathways. 
 

3.10  Structure versus dynamics in food webs 
Structural robustness and dynamic stability are relevant at different time-scales. To 
start this brief commentary where the last section ended, recycling of detritus was 
not found affect neighbourhood stability in food webs (Paper III). On the other 
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hand, detrital pathways are of great importance for structural robustness (Paper I). 
If a food web is not dynamically stable it may (or may not: the analysis of this is 
not conclusive for neighbourhood stability) eventually result in a species going 
extinct, so that a node will disappear from the food web structure. If the system is 
not structurally robust, essential features of its organization will be changed by 
this node removal. This will in turn most likely have severe effects on system dy-
namics, possibly resulting in new species extinctions. The overlap between these 
two time scales is crucial in evolutionary and assembly models of food webs, but 
is not addressed in this thesis. Here, the focus is put on identifying the features in 
the structure and link distribution that play the most important role at each time 
scale respectively.  

 

4  Neural network modelling 

Descartes’ characterization of mind as ‘the thinking thing’ (res cogitans) is finally 
abandoned. Mind is not a thing but a process – the process of cognition, which is 
identified with the process of life. The brain is a specific structure through which 
this process operates. The relationship between mind and brain, therefore, is one 
between process and structure (Capra 1997). 
 
Neurobiology has reached quite far in describing the physiology of individual neu-
rons (nerve cells) by studying them in isolation and manipulating the input in vari-
ous ways (Reichert 1992). When a neuron is at rest, its internal potential is nega-
tive (–70mV) with respect to its surroundings. The cell membrane has different 
gating mechanisms, ion pumps and ion channels, which together establish the 
negative resting potential. When the resting potential is perturbed beyond a certain 
level (-55 mV), for example due to input from other neurons, the ion channels will 
open and close in a systematic manner, allowing fluxes of mainly ionic sodium, 
potassium (but also calcium and chloride) to pass through the nerve membrane. 
More then 50 years ago, Hodgkin and Huxley (HH) incorporated these mecha-
nisms into a detailed description of a single neuron as a modified electrical circuit 
that transports electrical signals (Hodgkin & Huxley 1952). The HH-equations 
explain how a single cell can regulate flows of ions through its cell membrane in 
order to rapidly depolarize and re-polarize itself, changing its potential from rest 
(–70mV) to some positive value (often around +30mV), and back to rest again 
within a few milliseconds. This sudden and sharp change in potential generates a 
stereotyped pulse, an action potential (or spike), that travels along the axon (see 
Figure 9) of the neuron. The action potential is generated in an all-or-nothing 
manner, meaning that either the potential is fired with full amplitude, or not fired 
at all, resulting in almost identical spikes that can be regarded as binary informa-
tion coding units.  
 
However, an overall understanding of brain function does not seem to be embed-
ded in a detailed description of its components alone. Complex neural networks 
have emergent properties which are not obvious from an understanding of neuron 
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physiology. The human brain consists of about 1011 neurons, and 1015 connections 
(Chklovskii et al. 2004). A biological neuron is composed of a cell body, called 
the soma, and of dendrites (input channels) and axons (output channels) that 
branch out of the soma (see Figure 9A). Neurons work as summing devices that 
sum up all their inputs, and depending on whether this sum reaches a certain 
threshold, respond by generating action potentials that become outputs to other 
neurons.  
 
The inputs to a neuron will be either excitatory or inhibitory, meaning that they 
will either increase or decrease the receiver neuron’s probability of firing a re-
sponse signal (Reichert 1992). The brain processes information mainly by the 
transmitting of electric signals (action potentials) between millions of neurons 
across these nerve fibres. Most modelling approaches consider only a subset of 
these. The fundamental questions in understanding the brain, deal with how the 
activity of high numbers of interconnected neurons give rise to a global activity 
pattern that is somehow related to the function of the brain. 
 

 
 
Figure 9: (A) A simple sketch of two neurons connected by a chemical synapse. (B) A 
sketch of a chemical synapse. Signals are transferred between two neurons via chemical 
neurotransmitters. The presynaptic part of the synapse contains neurotransmitters in so 
called vesticles. When a neuron sends an electrical pulse along its axon (output-channel), it 
causes a rapid change in presynaptic membrane potential that can make the vesticles open. 
The neurotransmitter will then be released in the synaptic cleft, where it binds to receptors 
on the postsynaptic part of the synapse, which in turn produces an electric input signal to 
the receiver neuron. (The illustrated example is canonical, and describes an axodendritic 
chemical synapse, which is the most typical. There are also dendrodendritic, axoaxonal and 
gap-junction synapses). 
 
The brain needs to function in a complex and changing environment. This implies, 
among other things, to be able to respond and adapt to environmental events and 
changes at three different time scales (see Liljenström 1997):  
 

• (T1): At the longest, evolutionary time scale, genetic adaptation has re-
sulted in an initial and to some degree hard-wired connectivity of the in-
dividual neural network. However, recent studies suggest that electric ac-
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tivity may still play some part in the structuring of the brain, also at the 
embryonic developmental stages (Spitzer 2006). The genome is believed 
to code for the basic rules for how the brain develops throughout life, in 
order to adapt to varying conditions and carry out various functions effi-
ciently. However, genetic coding cannot account for the detailed synaptic 
and neural development during an individual’s life. This slow evolution-
ary process is usually not considered in larger scale studies of neural net-
works which are directed towards understanding the brain as a real time 
information processing device.  

 
• (T2): At an intermediate time scale, corresponding to the life span of an 

individual, the central nervous system adapts through numerous plastic 
mechanisms (Thickbroom 2007). Experiments have shown that neurons 
that are simultaneously active will be more likely to excite each others at 
a later stage, a phenomenon called long term potentiation (LTP) (Bliss & 
Lømo 1973). Long term depression (LTD) refers to the opposite phe-
nomenon, where synapses between pairs of neurons that rarely operate in 
synchrony are weakened (Bear & Abraham 1996). Together, these proc-
esses may form assemblies of highly interacting and functionally associ-
ated neurons (Hebb 1949; Palm 1982; Bressler 1995; Varela et al. 2001; 
Fingelkurts & Fingelkurts 2006). This hypothesis of synaptic plasticity 
was early postulated by Hebb, who proposed that synapses (links) be-
tween co-active neurons will be permanently (or long lastingly) strength-
ened (Hebb 1949). Recent studies suggest that intrinsic plastic changes 
also occur (e.g., changes of ion channel properties), and that synaptic 
plasticity is not the sole explanation of LTP and LTD (Debanne et al. 
2003). In addition, ongoing structural plasticity, including the forma-
tion/elimination of synapses (sprouting/pruning), suggests that memory 
could also depend on these type of changes in the structural wiring dia-
gram of the brain (Chklovskii et al. 2004). 

 
• (T3): Finally, at the shortest time scale, fast, highly temporal changes in 

the neural activity are associated with the short term states of the brain, 
which in turn are closely related with cognitive processes (see e.g., Free-
man 1991; Seth & Edelman 2004). 

 
The genetic processes at an evolutionary time scale (T1) and the plastic, adaptive 
processes at the intermediate time scale (T2) are not explicitly modelled in this 
thesis. They provide an implicit explanatory background for how cortical struc-
tures have developed, and how interaction strengths may change over time due to 
external stimuli or internal neural processes. The focus in this thesis in the shorter 
time scale (T3). The neural network models that are included in this thesis are 
used for investigating how different constructional features affect the neurody-
namics in relation to electroconvulsive treatment, ECT (Paper IV) and anaesthetics 
(Paper V). 
 
Larger scale measurements of brain dynamics are empirically accessible through 
techniques such as electroencephalography (EEG), positron emission tomography 
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(PET), and functional magnetic resonance imaging (fMRI). This thesis primarily 
refers to EEG studies. The EEG reflects the electrical activity of the brain, by re-
cordings from electrodes placed on the scalp (or in some special cases, directly on 
the cortex). The resulting traces represent an electric signal that stems from a large 
number (thousands to millions) of neurons, and supposedly primarily from their 
postsynaptic potentials (the potential of the input signal to neurons). There is, 
however, still no consensus on the relation between EEG and the activity at the 
neuronal level (see e.g., Freeman 1975, 2000). 
 

4.1  Neural network objectives 
Traditionally, there are two main objectives for using neural network models. One 
is to develop an understanding of real, biological neural networks (BNN), and the 
other is to develop computational tools, as artificial neural networks (ANN) which 
can be used for pattern recognition, optimization, associative memory, etc. (see 
Section 4.5 below).  
 
This thesis is only concerned with the former, using computational models for 
BNN studies. The objectives here are summarized as: 
   

• To develop different neural network models in order to study the physio-
logical mechanisms behind the large scale dynamics (EEG) of the neo-
cortex (Paper IV-V). 

 
• To investigate how the flexibility of the EEG (in terms of diversity of dy-

namic features) depends on structural complexity of the model (Paper IV-
V). 

 
• To study how EEG features may be regulated by the density of intercon-

nectedness at the network scale (Paper IV-V), and the density of ion 
channels at the single neuron scale (Paper V). 

 
• To study the role that different network properties have on EEG-

dynamics in relation to electro-compulsory treatment (ECT) of patients 
with major depression (Paper IV), and in relation to explaining possible 
mechanisms of anaesthetics (Paper V). 

 

4.2  Clinical applications 
EEG analysis is important in empirical research. Certain mental states or cognitive 
functions can be correlated to certain EEG patterns in different brain regions. EEG 
analysis is also of high clinical relevance, where it is used for determining con-
sciousness states or mental health of patients. For example, different drugs and 
various (electric and other) treatments of mental patients are assumed to affect 
various neural mechanisms, and these can indirectly be studied using techniques 
such as EEG. Understanding the mechanisms behind EEG is crucial for linking 
brain function and brain dynamics. The computational models proposed in Papers 
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IV and V can serve as a step towards quantitative models that could be used to test 
the effects of different clinical treatments. A typical EEG setup and typical results 
are shown in Figure 10. 
 
The neurodynamics of brain structures, as revealed by EEG, exhibit specific char-
acteristic oscillation frequencies (Niedermeyer & Lopes 1999). The four major 
wave types are delta waves (up to 4 HZ) associated with deep sleep; theta waves 
(~4-8 Hz) associated with hypnosis and light sleep; alpha waves (~8-12 Hz), asso-
ciated with a relaxed state of consciousness, and beta waves (~12-30 Hz) associ-
ated with active thinking. The frequency range ~30-100 Hz is referred to as 
gamma waves, is associated with higher mental activity, such as perception, prob-
lem solving, and attention. The brain activity is normally a blend of these frequen-
cies, and the characteristic frequency spectrum changes with the age and mental 
state of the individual.  
 

 
Figure 10: Instrumental EEG setup and characteristic EEG traces (picture taken from 
Wikipedia). 
  
Electroconvulsive therapy (ECT) is today the most effective treatment against se-
vere depression, yet the mechanisms behind the treatment are poorly known. EEG-
data show that the dynamical activity patterns shift between several different 
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phases, as a response to an electric shock. Response patterns differ between indi-
viduals, and also depend on patient diagnosis and stimulus doses (Wahlund & Von 
Rosen 2003). Furthermore, correlations have been found between the response 
pattern and the efficiency of the treatment (West et al. 1999). Paper IV investi-
gates three neural network models of different complexity in terms of their dy-
namic (EEG) response to an artificial electroshock, mimicking the ECT effect. 
 
Anaesthesia works by setting the patient in a sleep-like state, characterized by 
slow waves in the EEG signal. One hypothesis is that some anaesthetics cause this 
effect by blocking specific potassium channels in the cell membrane of single neu-
rons (Århem et al. 2003). Paper V applies a neural network model with details at 
the neuronal level to show how such selective blocking may cause phase changes 
in the global EEG. 
 

4.3  Neural network structures 
The brain seems to be evolutionary designed, at least partly, to deal efficiently 
with space, time, matter, and energy (see e.g. Liljenström 1997). Some studies 
suggest that the brain is organized to find an optimal balance between information 
processing and energy consumption, by reducing wiring costs and minimizing 
local travelling delays (see e.g. Laughlin & Sejnowski 2003). This does not imply 
that the brain is homogenous. On the contrary, the brain is highly heterogeneous, 
with many interacting subparts and regions.  
 
Different brain regions are associated with different functional tasks. Different 
brain regions are also anatomically quite different, in the way neurons are inter-
connected, and in the composition of neuronal types. There is a relationship be-
tween the neuro-anatomical substrate (structural connectivity) and the spatial de-
pendencies in activity patterns (functional connectivity) (Sporns et al. 2000). 
 
There seems to be at least three basic architectural schemes at work in different 
regions of the brain (Buzaki 2007):  
 

• The simplest uses strictly local wiring, so that only neurons that are 
closely located are connected to each others. This is typical for cerebel-
lum, thalamus, and the basal ganglia. These regular networks form re-
peated modular circuits, where only neighbouring modules are likely to 
be connected. Because of this, computations are massively parallel.  

 
• Another network type, which is rarer, has apparently random connec-

tions, where the probability of two neurons being interconnected is 
roughly independent of the distance. This kind of connectivity has so far 
only been found in recurrent excitatory circuits in the hippocampus.  

 
• The third architectural scheme is typical for neo-cortex, and combines lo-

cal modular connections with more random long range connections. This 
complex wiring scheme shows strong similarities with scale free and 
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small world networks (Box 1). For instance, an analysis of cortio-cortical 
connection data for different regions in the macaque and cat cortex has 
shown that these networks indeed are “small worlds” that also are con-
nected in a close to optimal way, with respect to an efficiency measure on 
information exchange (Latora & Marchiori 2001). Another theoretical 
study has shown, using artificial neural networks, that the small world ar-
chitecture is optimal for fast learning (Simard et al. 2005). However, 
other studies show that different structures may be optimal, depending on 
the computational task and the dynamics of the learning rules (Tsodyks & 
Gilbert 2004; Emmert-Streib 2006). 

 
The idea that the functional units in the brain are not neurons, but rather typical 
microcircuits containing groups of neurons (locally repeated in a given brain area, 
similar to what is called network motifs in graph theory), has also gained attention. 
For instance, Shepherd has given an overview of the typical circuitry in different 
areas of the brain (Shepherd 1998). One of the neural network models in Paper IV 
is based on a simplification of the six layered neo-cortical microcircuit proposed 
by Shepherd (see Figure 11). 
 
The human brain is often referred to as the most complex system in the universe, 
composed of a diversity of different neurons, synapses and electrical and chemical 
mechanisms. Neural network structures vary significantly over different brain ar-
eas, and little is still known about global connectivity patterns down to the level of 
individual neurons (Seth & Edelman 2004). Fortunately for modellers, much of 
the functionality of neural networks seems to be determined by large scale connec-
tivity patterns and dynamics, rather than detailed local patterns (Liljenström 1991; 
Lansner & Liljenström 1994). Most modelling studies, including the ones in this 
thesis, focus on capturing and analyzing the significance of certain large scale as-
pects with the neuron-anatomy. 
 
In Papers IV and V, computational neural network models of different structures 
were developed, in order to relate structural complexity to the stability and flexi-
bility of the neurodynamics, as reflected in EEG. An emphasis was put on the role 
of large scale features such as the relation between excitation and inhibition, and 
network density. 
 
4.4  Dynamic stability and flexibility in neural networks 
Brain behaviour experiments have demonstrated that neural activity picked up by 
the EEG shows spatiotemporal transitions when the operation of behaviour 
switches (Fingelkurts & Fingelkurts 2006). Since certain features of the EEG are 
correlated with cognitive tasks or mental states, it is essential that the neurodynam-
ics is stable to noisy fluctuations and common insignificant perturbations. At the 
same time it should be able to respond to weak signals such as an important sen-
sory input, so that the neurodynamics (and accordingly the mental state) can 
switch to new states (Liljenström 2003). Electrophysiological evidence of brain 
flexibility comes from the variety of spatiotemporal patterns of neural and den-
dritic activity that are related to behaviour. Evidence for brain stability comes from 
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demonstrations that reproducible patterns recur in reproducible behavioural states 
(Freeman 2005). 
 
Freeman proposed that chaotic dynamics are necessary for the brain to be able to 
respond rapidly and flexibly to its surroundings (Freeman 1991, 2000). Chaotic 
patterns are found in EEG readouts, and are not surprising in a highly complex 
system like the brain. Chaotic systems are known to be very sensitive, and can 
rapidly leap between different stable attractor states (see Box 3) if perturbed by an 
external signal, or between quasi-stable attractors by self organized dynamic proc-
esses associated to the phenomenon of chaotic itinerancy (Liljenström 1995; 
Tsuda 1996; Freeman 2003).  This kind of sensitivity may be responsible for the 
brain’s ability to switch between different states (Ashwin & Timme 2005). The 
multiple states collectively form a metastable collection of states of normal brain 
activity, each with its accompanying behaviour (Freeman et al. 2006). 
 
In cortical networks, a dynamic balance between excitation and inhibition gives 
rise to an array of ordered or chaotic network oscillations (Freeman 2000; Brunel 
2000). These activity patterns are not only affected by external sensory input, but 
are also due to the internally generated and continuously changing state of cortical 
networks. It has been suggested that the local-global wiring of cerebral cortex and 
the self organized complex dynamics that it supports are necessary ingredients for 
consciousness in the terms of subjective experiences (Århem & Liljenström 1997; 
Buzsaki 2007).  
 
Many studies try to detect structures and mechanisms behind the EEG signal. 
Some characteristic features of the EEG are believed to stem from correlations in 
the firing patterns between pairs of neurons. It was recently found in studies of the 
vertebrate retina, that weak correlations between pairs of neurons coexist with 
strongly collective behaviour in the responses of ten or more neurons (Schneidman 
et al. 2006). Synchronized global activity patterns can rise from different underly-
ing mechanisms, and common frequencies may be determined by synaptic or 
membrane time constants (Brunel 2000). Other findings show that coordinated 
network activity can emerge from single cells responding selectively to character-
istic input frequencies, so that cells can be said to have a preferred resonance fre-
quency (Hutcheon & Yarom 2000).  For instance, in the visual cortex, synchroni-
zation between distinct areas are believed to be responsible for linking different 
features of the actual visual scene (Eckohorn et al. 1988; Gu & Liljenström 2007). 
Synchronization is also believed to be the mechanism responsible for the large 
scale integration of the brain activity into a unified cognitive moment (Varela et al. 
2001). Dynamic features, such as resonances and phase locking between the ac-
tivities of separated brain regions, have been early observed, and may be important 
drivers for linking different neural assemblies through the effects of synaptic plas-
ticity. 
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4.5  Neural network models 
One of the greatest challenges today is to understand the operations of cortical 
structures by relating global and local patterns of activity at time scales relevant 
for behaviour. Although certain features in the EEG signal are correlated with cer-
tain functional tasks, the relationship between structure, dynamics and the function 
of the brain is today poorly understood at a detailed level. Concepts such as stabil-
ity and flexibility therefore have to be applied in a rather qualitative way (Liljen-
ström 2003). Whereas food webs may be said to be dynamically stable if they 
have a fixed-point equilibrium or if no species go extinct, such simple definitions 
are only applicable in highly abstract and artificial neural network (ANN) models 
(Hopfield 1982; 1984).  
 
Biological neural networks (BNN) are not steady state systems, but here, lesions 
and neuronal death may be considered as counterparts to species extinction in food 
webs. The global brain activity is continuous and changing, while single neurons 
may be active for periods, relax, and then become active again. Many dynamic 
BNN models are, in fact, complex attractor models, whose essential features are 
spatio-temporal patterns of activity, belonging to one of several attractor states that 
are robust in the sense that they are not critically dependent on the detailed func-
tioning of individual neurons (Lansner & Liljenström 1994). Common for most 
BNN models, it seems essential that the global dynamics should be able to main-
tain certain characteristic features without reaching a static steady state. At the 
same time, the dynamics should be flexible so that the characteristic features may 
be altered by important external inputs or internal mechanisms (Liljenström 1997; 
2003). The work of this thesis demonstrates how the stability and flexibility of 
neural networks are related to the density of connections (Paper IV & V), the bal-
ance between inhibition and excitation (Paper IV & V), and the density of ion 
channels on the single neuron level (Paper V). 
 
Unlike most computer processors, the brain is highly parallel in its operation, and 
it is organized into several different brain regions occupied with different tasks at 
the same time. Another difference is that the brain is plastic and changes the 
strength of its connections (synaptic plasticity) over time, a process involved in 
memory and learning. Neural networks show amazing capabilities in solving spe-
cific tasks, such as pattern recognition and associative memory.  
 
Artificial neural network (ANN) modelling has developed into a highly mathe-
matical and statistical discipline, studying such networks as highly interesting 
computational tool in their own right. Although highly inspired by biological neu-
ronal functions, many ANN models have become far removed from biological 
reality, as opposed to BNN models whose main aim is to simulate certain features 
of the real systems. Nevertheless, the boundaries between the fields are not always 
clear, and simplified ANN models are often used when trying to understand bio-
logical principles of organization. For overviews of ANN modelling, see Haykin 
(1994), or Jain et al. (1996). 
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The focus of this thesis is on BNN modelling. A large variety of different BNN 
models have previously been developed and applied. Most of these try to capture 
certain structural and dynamical aspects of the brain, in stead of reproducing the 
detailed (and largely unknown) anatomical varieties. BNN models are distin-
guished from each other by their different levels of sophistication at two organiza-
tional scales: 1) the dynamic equations that determine input-output relationships 
for single neurons, and 2) the structural description of the network. As in any 
modelling setup, the level of detail should be chosen with regard to the problem 
one wishes to investigate. 
 
Model neurons range in complexity from the simple, binary McCulloch-Pitts neu-
ron (McCulloch & Pitt 1943) to the biological realism and detail of the spiking 
HH-neuron (Hodgkin & Huxley 1952) with several structural compartments and 
features (see e.g. Bower & Beeman 1998). The HH-model is based on measure-
ments on the giant squid axon, but has been successfully used (with small modifi-
cations) to describe other neurons types. The HH-model uses a set of four coupled 
differential equations to give a detailed and biologically realistic description on 
how the cell regulates its ion pumps and ion channels to produce the action poten-
tials. Simplified network frameworks for spiking neurons have been developed by 
averaging the spiking effects over groups of neurons, and in this way reducing the 
HH-equations (Gerstner 2001). 
 
Many neural network models have been developed to study how dynamically 
driven processes of synaptic plasticity may structure neural network, and how 
memory storage can be explained in terms of link distribution (see e.g. Hopfield 
1982, 1984; Kohonen 1988; Siri et al. 2006). In such models, emphasizing learn-
ing rules and structural moulding, simple neural models may be sufficient since 
the detailed short term dynamics is not of particular interest. Simple modifications 
of the McCulloch-Pitts neurons have been applied in many studies, using continu-
ous sigmoidal input-output relations (see e.g., Hopfield 1984), so that  
 

)1/(1)( xexgy β−+== , (9) 
 
where x is the summed and weighted input, and β is a parameter that determines 
the slope of the sigmoid curve. As opposed to the spiking HH-neurons, the con-
tinuous and abstracts relations can be interpreted as the average firing rate of a 
group of neurons, so that the network nodes are functional modules, representing 
larger groups of neurons. Although devoid of many details, such models are able 
to reproduces realistic spatiotemporal activity patterns of, for example, the olfac-
tory cortex (Liljenström 1991).  
 
The work presented in Paper IV & V models the EEG as a functional measure in 
itself, and specifically addresses mechanisms behind the EEG. For these studies, 
relatively complex and spiking neural models were applied.  
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4.5.1.  Fitzhugh-Nagumo networks 
Paper IV uses networks of Fizhugh-Nagumo (FN) neurons (Fizhugh 1961) to 
model how the EEG responds to artificial electric shocks (ECT) for different net-
work structures. The FN-model (see Box 8) is based on the HH-model, but re-
duces the number of equations. Therefore, the equation parameters do not have the 
same clear biological interpretation as they do in the HH-formalism, where they 
describe detailed mechanisms at the single neuron scale. Still, FN neurons behave 
in a similar, spiking manner as HH-neurons, and seem to have sufficient complex-
ity to allow for large scale dynamics studies.  
 
The network model in Paper IV was inspired by the work of Giannakopoulos et al. 
(2001), using the same values for most parameters. However, the model was ex-
panded by using different input terms for excitatory and inhibitory neurons (the 
two different sums in Box 8) so as to be able to regulate the balance between the 
two kinds of interactions. 
 
Box 8: Dynamics for a network of excitatory (inhibitory) Fitzhugh-Nagumo neurons: 
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ui: The postsynaptic potential of neuron i 
vi: The membrane potential at the axon initial segment 
wi:  An auxiliary variable stemming from simplifications of the HH-formalism. 
a, b, c:  Positive constants, appropriate for the existence of the oscillation  interval.  
g(v): A nonlinear function for the relation between the pre- and postsynaptic potential. 
ei:  External input. 
cik:  Connections (0 or 1) from k to i.  
p+/–:  Excitatory/inhibitory connection strengths.  
τex/in:  Excitatory/Inhibitory time-constants. 
Tik:  Signal delay (synaptic + propagation delay) from neuron k to neuron i.  
γi:  Synaptic membrane conductance of the neuron i.  
 
4.5.2  Frankenheauser-Huxley networks 
In order to study possible mechanisms behind the function of anaesthetics, Paper 
V uses a modified version of the HH equations, called the Frankenheauser-Huxley 
(FH) equations (Frankenheauser & Huxley 1964). Like the HH-model, the FH-
model (see Box 9) incorporates a fine level of biological realism, and the density 
of active sodium and potassium ion channels in the cell membranes of single neu-
rons can be regulated. This neural model makes it possible to vary the density of 
ion channels at the single neuron level.  
 
The specific parameters for this neural model were taken from Johansson & År-
hem (1992). An equation for the signal transfer (the summation in Box 9) between 
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neurons had to be added to the original FH-equations. Signal transfers were mod-
elled by letting the action potential in one neuron result in stereotyped, exponen-
tially decaying inputs to all receiving neurons. Such transfer relations have earlier 
been used by Gerstner (2000), but for another framework that does not include 
FH-neurons. 
 
Box 9: Equations for a network of Frankenhaeuser-Huxley neurons: 
  
dvi/dt = (IS – INa (vi,mi,hi) - IK (vi, ni) - IL(vi) + Ii)/CM  
dm/dt = αm(v)(1-m)-βmm 
dh/dt = αh(v)(1-h)- βhh 
dn/dt = αn(v) (1-n)- βnn 
 
where 
 
INa = AmPNa (vF2/RT) ([Na]o-[Na]i exp (vF/RT))/(1-exp(vF/RT)) 

IK = AmPK(vF2/RT) ([K]o-[K]i exp (vF/RT))/(1-exp(vF/RT)) 
IL = (v-VR)/ RM 
PNa=P*Nahm2 
PK = P*Kn2 
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and where the symbols represent the following parameters and constants:  
 
v     Membrane potential 
t, tsyn, tj

(f)  Time, synaptic delay, time of action potential f in neuron j. 
τs     Synaptic time constant 
IS     Stimulation current 
IL     Leak current 
IC     Capacitive current 
INa    Initial transient current 
IK     Delayed sustained current 
Ii     Synaptic input to i resulting from all action potentials in all other neurons.  
PNa, PK  Membrane permeabilities for Na+ and K+  
m, h, n  Variables for PN activation- (m), inactivation (h) and PK activation (n) 
α, β      Rate functions for m, h, and n as indicated by suffix. 
     Definitions and values given in Johansson & Århem (1992) 
P*Na, P*K Permeabilities for Na+ and K+, when all Na and K channels are open (m s-1)  
VR    Resting potential (= –70 10-3 V) 
Am    Membrane area (100 10-6 m-2) 
R     Gas constant (8.3143 J K-1 mol-1) 
F     Faraday’s constant (96.48701 C mol-1) 
T     Absolute temperature (280 K) 
CM    Membrane capacitance (7pF = 7µF/cm2 = 7 10-2 F m-2) 
Rm    Leak resistance (4.3GΩ = 4.3 kΩ cm2 = 4.3 10-1 Ω m2) 
Nai, Nao,  Intra- and extracellular Na concentrations (14 and 114.5 mmol/l = mol m-3) 
Ki , Ko   Intracellular and extracellular K concentrations (120 and 2.5 mmol/l = mol m-3) 
cij     Connection weight between neuron i and j. 
d0, dij   Nearest neighbour distance, distance between neuron i and j. 
c     Global density parameter (connection strength) 
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4.6  Simulations with neural network models 

All the work on neural network modelling presented in this thesis follows the 
same logic, described by the following four steps: 1) Computational neural net-
work models were programmed in Matlab. 2) Dynamic equations for the input-
output relations for single neurons, and for the signal transfer between neurons 
were specified. 3) The global dynamics of the system was a model of the EEG-
signal, and was defined as the arithmetic mean membrane potential taken over all 
neurons. 4) Several simulations were run for different choices of model parameters 
(representing structural characteristics of the network, or some neurological 
mechanisms), in order to investigate the effect of different parameters on the EEG 
signal (functional measure). 
 
In both the FN and FH models (Box 8 & 9), the entire structures of the networks 
were determined by the sets of connection weights cij, being zero for unconnected 
nodes, and having some weighted value for all connected node pairs, depending 
on their spatial positions with respect to each other. The model weights give a 
negative input for inhibitory synapses, and a positive input for excitatory synapses. 
When simulations were run, the network dynamics was driven by an external in-
put, representing a noisy background signal (Paper V) or a continuous input (Pa-
per IV) that could stem from some other brain region outside the system bounda-
ries. This driving input initiated dynamic signalling between all the neurons in the 
network.  
 

 
Figure 11:  Six layered unit oscillator of excitatory (EX) and inhibitory (IN) neurons, con-
nected to other oscillators through lateral connections between neurons in layer five. 
 
In Paper IV, the following parameters were varied: 1) The relative number of in-
hibitory vs. excitatory neurons, 2) the relative strength of inhibitory versus excita-
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tory synapses (p+ and p- in Box 8), and 3) the entire network structure, using three 
different structural models, ranging from a simple pair oscillator model to a highly 
complex and anatomically inspired structure. In this way, the importance of these 
parameters for the flexibility in the ECT-response was studied. For illustration, 
one of the neural network structures of the models in Paper IV is shown are in 
Figure 11. 
 
In the dynamically more complex FH-model of Paper V, the network structure 
was limited to a simple regular lattice of 6 × 6 neurons with distant dependent 
connection strengths between neuronal pairs, cij = c(d0/dij), as described in Box 9. 
Simulations were run with exclusively excitatory networks, and with mixed net-
works where 6 of the 36 neurons were inhibitory, as illustrated in Figure 12. For 
both cases, density dependent regulatory mechanisms were modelled at two differ-
ent scales. This was done by running different simulations with variations in the 
following parameters: 1) The global connectivity (c) regarded as a density parame-
ter (since connection strength decreases with distance), and 2) the density of ion 
channels on the single neuron level. A possible effect of anaesthesia was modelled 
by blocking (decreasing the density of) specific inhibitory potassium channels.  
 
Despite realistic parameter values in terms of distances, the time constant, neural 
mechanisms, and the relative number of excitatory and inhibitory neurons, the 
neural models applied both in Paper IV and Paper V are freely parameterized in 
terms of interaction strengths. This is true for most neural network models, since 
there is no way, as yet, of measuring and parameterizing synaptic strengths in 
brains in vivo. In Paper IV, connection weights were tuned in relation to the exter-
nal input until the network gave rise to a realistic global activity pattern. After this 
initial tuning, the connection weights were only varied collectively in terms of 
defined parameters for global inhibition/excitation. In Paper V, all connection 
weights were restricted to follow the same distance dependent relation. 
 

 
Figure 12: Network of 6 × 6 FH-neurons. 6 neurons (black) in the grid can be made inhibi-
tory to compare the difference between purely excitatory networks and mixed networks. In 
the neo-cortex about 20% of the neurons are inhibitory. The number 6 (as opposed to 7) 
was chosen out of symmetry reasons. 
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4.7  Phase shifts in neural network dynamics 
Electroconvulsive therapy (ECT) is today the most effective treatment against se-
vere depression. The patient EEG evoked by ECT stimulation generally exhibits a 
specific pattern of seizures in the central nervous system, characterized by several 
(6-7) post-ECT phase-shifts. The mechanisms behind this response pattern are 
poorly known. Paper IV hypothesized that the cortical network structure and spe-
cifically the balance between excitation and inhibition could carry us a long way 
in understanding them.  
 
In Paper IV, neural network models were parameterized so that they exhibited 
stationary dynamics when driven by a continuous external input. An artificial elec-
tric shock, simulating electroconvulsive therapy (ECT), was given to the system. 
The ECT response in the EEG signal can undergo phase shifts, such as observed 
in Figure 13. The ECT response is characterized by decaying, high amplitude os-
cillations, going over to slow wave oscillation, and finally, going over to more 
enveloped network activity. This suggests that these models, based on simplified, 
but anatomically inspired structures, capture some of the most important mecha-
nisms involved in generating the neo-cortical EEG signal and its response to ECT. 
The features of the response were found to depend strongly on the complexity of 
the network and in particular on a delicate balance between excitation and inhibi-
tion. The number and interaction strength of inhibitory neurons were found to be 
crucial for producing the most flexible (and clinical-like) response. In addition, a 
combination of strong local connections and weak global connections gave rise to 
the most flexible dynamics.  
 

 
Figure 13: Phase shifts in a neural network dynamics after artificial ECT-
stimulus.  
 
Three models of different complexity were used. Phase shift responses were only 
observed in the two most complex ones. These were in turn only able to reproduce 
2 of the 6 clinically observed phase shifts. The phase shifts occur in the transient 
system dynamics before it reaches a stationary attractor. This transient period is 
likely to depend strongly on the model complexity, and the observed trend sug-
gests that more complex models, including larger cortical areas, could explain the 
high number of clinically observed phase shifts. On the other hand, delayed effects 
may also stem from different mechanisms than the short range balance between 
inhibition and excitation. These may be due to long range signalling between other 
parts of the brain (not considered in our network model of limited spatial scale) 
and delayed release of neuromodulators. 
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4.8  Density effects in neural networks 
Part of the work in Paper V was aimed at finding useful qualitative classifications 
of EEG features. Clinical EEG is flexible in switching between different classes of 
dynamics. In Paper V different underlying mechanisms that might be responsible 
for these switches are studied. Results from different simulations were compared 
qualitatively by classifying the EEG-signal into one of the states A-D in Figure 14.  

 
Figure 14: Qualitative classifications states of different EEG features: A) spiking activity, 
B) enveloped activity, C) enveloped activity with dominant slow wave frequency, and D) 
bursting activity. 
 
Changes, both in synaptic strength and in membrane currents on single neurons, 
will result in different response patterns to an input (Sharp et al. 1996). In Paper 
V, the relationship between these two mechanisms is studied at a network level. It 
was found that the flexibility of the neuro-dynamics depends on a fine balance 
between the network density (at the global scale), and the ion channel density (at 
the nodal scale). Changes in density at two different scales could drive the EEG 
signal between qualitatively different states. For instance, the EEG might be 
driven from an irregular, enveloped activity pattern (Figure 14B) to an activity 
pattern with characteristic slow wave frequencies (Figure 14C), either by increas-
ing the network density (mean synaptic strength), or by decreasing the density of 
inhibitory K-channels at the single neuron level. The former may be realized 
through activity driven synaptic plasticity. The density of ion channels can sup-
posedly be altered by the neuron itself as a response to some cue (Destexhe & 
Marder 2004; Debanne et al. 2003) or by pharmacological means.  
 
 

 
Figure 15: Changes in mean network dynamics (EEG) caused by decreasing the density of 
potassium channels in inhibitory neurons.  
 
Selective blocking of specific K-channels have been hypothesized as one of the 
main function of some anaesthetics (Hille 2001; Århem et al. 2003). Paper V 
shows that selective blocking of inhibitory K-channels may very well drive the 
dynamics of a neural network into slow wave oscillations (see Figure 15) which 
are characteristic for anaesthesia (and sleep). 
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The similarities between the simulation results in Papers IV & V and clinical EEG 
are qualitative. The results are suggestive on the most important neural mecha-
nisms underlying the EEG signal, and captures qualitative features of its response 
to ECT and anaesthesia. Hopefully, future development of models of this kind 
may be more quantitatively fitted to patient data, and be used as clinical tools for 
further understandings of EEG and ECT mechanisms. Simulations with such mod-
els could experiment with different doses of drugs and ECT, as well as with dif-
ferent ECT frequencies. 
 

4.9  Large scale neurodynamics and the mechanisms behind 
The large scale neurodynamics (EEG) is correlated to the cognitive state. How-
ever, it has been a matter of debate whether the neurodynamics is of importance in 
itself as the physiological aspect of mind. It might be the processes underlying the 
EEG signal that are of real importance, whereas the EEG in itself is just a by-
product. Paper V demonstrates explicitly how different underlying processes at 
two different levels of organization qualitatively can give rise to similar features in 
the EEG. If changes in network density can cause similar state switches as changes 
in ion channel density at the neuronal level, the large scale dynamics does not 
conclusively reveal its underlying process. 

 

5  General Discussion 

5.1  Quality of results 
It has been argued in several occasions that purely structure-based studies as in 
Paper I and II are not sufficient to understand biological networks (Arita 2005; 
Wetiz et al. 2007). Even if measures of robustness and structural cyclicity are 
highly suggestive of which structural principles are important in nature, they are in 
most cases not conclusive in terms of how they affect system dynamics where en-
ergy transfers and flows vary over time.  
 
The strength of structural studies is the generality of their application. Since struc-
tural information on biological systems is far easier to access than any quantitative 
dynamical information, and since the models are based on few quantitative as-
sumptions, they do provide a useful first step towards understanding the basics of 
biological networks. In addition, structural models work as the substrate for sys-
tem dynamics. Reproducing realistic biological network structures should be the 
first step in any attempt to gain a full understanding of these systems. 
 
Dynamic network models simulate the time development of the system in a quanti-
tative way. However, biological systems are highly complex, meaning that many 
parameters in the equations are unknown. In any model, the systems must be sim-
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plified and many parameters are based on reasonable assumptions, often intro-
duced stochastically.  
 
This thesis does therefore not aim to fit network models to data in any quantitative 
way. Rather, it proposes certain underlying principles (such as the structural algo-
rithms in food web models, the regulations of ion channels in single neurons, or 
changes in the global network density) as hypothesises of generic properties that 
are important for the function of biological networks. The model simulations pro-
vide qualitative answers to whether these hypotheses are possible explanations to 
the system function. In this way, the thesis offers insight into which system 
mechanisms may be important. Even if they lack a detailed predictive power, 
analysis like this can reveal that there are critical thresholds, attractor states and 
critical balances in the systems, and they can identify which model parameters are 
most important for the function of the system. In this way, the models in this thesis 
give empirical scientists guidance in what they should look for. 
 

5.2  Density effects and the relationship between scales 
It was argued in Section 2 that the mean interaction strength in the network could 
be regarded as a density effect. The findings in paper III, IV and V all suggest that 
the diverse nature of biological networks is found at intermediate network density 
where the activity patterns arise from an interplay between the local effects of sin-
gle nodes (or oscillatory units), and the global interactions. An exhaustive study of 
the importance of network density would require a theoretical model setup, aimed 
at drawing general conclusions on the balance between local and global effects. 
The more system specific approach that is found in this thesis has its value in as-
signing specific biological meaning to the concept of network density. 
 
Consider the community matrix for a food web. Paper III used diagonal elements 
equal to –1. In the limit of no interactions (mean interaction strength a=0), the 
system is stable, due to the self-stabilizing form of each isolated species. The bio-
logical system would then be interpreted as a set of primary producers stabilized at 
their carrying capacities. Then, the interactions are “switched on”. For a<<1, the 
food web is stable. For a>>1, the food web is always unstable (except in the case 
of complete anti-symmetry), meaning that the strong interactions dominate over 
the intrinsic stabilizing properties of the single species. The structure and link dis-
tribution of food webs are of importance for structural stability only for intermedi-
ate a-values, suggesting that the complexity of nature has been forged by an inter-
play between local and global effects.  
 
Similar results were found when system dynamics was studied more explicitly in 
neural networks. Paper V shows that the flexibility of neuro-dynamics is most 
prominent for intermediate network density. In Paper IV, the most flexible (and 
realistic) ECT-response was obtained when the lateral connections (connecting 
unit circuits to each others) were relatively weak in comparison to intra-circuit 
connections. 
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The most explicit study of single node effects vs. network effects is presented in 
Paper V. The density of sodium and potassium channels in the neural membrane 
determines the characteristics of a neuron’s response patterns to voltage fluctua-
tions, and hence its intrinsic activity. For low global interaction strength, the sys-
tem dynamics is determined by intrinsic node properties. When increasing the den-
sity of nodes (i.e. the global interaction strength) gradually, starting from zero, the 
global activity pattern changed from being determined solely by the sum of intrin-
sically spiking nodes towards a more synchronized network-determined activity. 
For high connection density, the network undertook bursting activity, with charac-
teristic features that depend little on the properties of the single nodes. For inter-
mediate interaction strength, the system dynamics was most flexible, in the sense 
that the dynamic features could be quantitatively changed by small changes, either 
in the ion channel densities of single nodes, or in global connectivity.  
 
In Papers III-V, a fine balance between some local stabilizing effect and some 
global destabilizing effect gave the most realistic system response. 
 
In summary, the structure and interaction strength distribution in food webs are 
only important for their dynamic stability if such a sensitive balance exist. Like-
wise, the balance between stability and flexibility of neuro-dynamics was shown 
to depend on a fine balance between local stabilizing mechanisms (in single neu-
rons or unit circuits) and global connection strength, driving these units in and out 
of phase.  
 
An analytically conclusive study of the relationship between the local and global 
scale, could be addressed by idealized and theoretical network models. The three 
model studies of this thesis have their strength in that they demonstrate qualita-
tively how different properties of two different kinds of biologically inspired net-
works depend on a sensitive balance between local intrinsic effects, and the 
strength of global interactions. 
 

5.3  Dynamic & structural node diversity 
One of the common simplifications in dynamic network studies is to assume that 
all the nodes are intrinsically identical. This means that all the equations have the 
same functional form, and that the heterogeneity in the network is solely due to the 
connections and their weights. For instance, food web models have shown that by 
allowing a subset of the species to be adaptive predators (regulating their diet to-
wards abundant species) tend to stabilize the system (Kondoh 2003; 2006). 
 
In Paper V, node diversity was introduced in a neural network by letting the sub-
group of inhibitory neurons be intrinsically different than the majority of excita-
tory neurons. In this case it was shown that the network consisted of two sub-
systems that dominated at different global activity levels, showing that the flexible 
responses in the neuron-dynamics can be explained by switches between dominant 
sub-groups of neurons.  
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The detritus compartment was not found to have any effect on the dynamic stabil-
ity of food webs unless special assumptions were made on the strength of the de-
tritus links relative to other links (Paper III). On the other hand, the detritus com-
partment made the system significantly more structurally robust to severe system 
perturbations, such as link and node removal, representing effects at a longer time 
scale. This illustrates the possibility that different aspects of food webs may be 
responsible for systemic stability related to different events at different time 
scales.  
 

5.4  The stability/flexibility dilemma 
Stability and flexibility are two positively charged concepts. They still seem to be 
in some kind of opposition to each others, perhaps not as antonyms, but at least in 
the sense that it could be expected to be a trade-off between the two. In the system 
perspective, stability often refers to the system’s ability to maintain some impor-
tant features as they are. This works for food webs, which unarguably can be said 
to be stable if all species populations remain at fixed sizes.  
 
The interplay between stability and flexibility is clearer when these concepts are 
considered in relation to the surroundings. The requirement of flexibility in neuro-
dynamics is obvious when one realizes that the brain needs to deal with different 
tasks under different conditions. The meaning of stability and flexibility in the 
dynamics of a neural network is explained at a larger scale, in terms of their func-
tion for the survival and well being of the organism that owns the brain. This 
broader context contains the set of different challenges that a person is likely to 
face during a lifetime. The multiple states that the brain can switch between col-
lectively form a metastable collection of states of normal brain activity, each with 
its accompanying behavior (Freeman et al. 2007). It thus seems that flexibility at 
one scale is a way of obtaining (meta)stability at a larger scale. 
 
Food webs are living systems studied at the largest scale. This may be the reason 
why the concept of flexibility rarely shows up as a large scale measure in the food 
web literature, although a certain degree of flexibility is implicit in some studies of 
food web resilience (McCann 2000). It is difficult to picture a set of different ex-
ternal condition to which a food web as a whole should have a set of different re-
sponse mechanisms, at least at time scales relevant for management issues. Sea-
sonal variations could be one possibility, yet the abstract large scale food webs 
considered in this thesis normally map interactions in terms of annual averages.  
 
When the concept of flexibility shows up in the food web literature, it is normally 
at the species level. For instance, species flexibility in terms of adaptive foraging, 
where predators direct their efforts towards abundant rather than endangered 
preys, has been found to stabilize food webs (Kondoh 2003, 2006). Also in these 
studies, stability seems to be the large scale goal, while flexibility at a more local 
level is a means of achieving it. Although flexibility might very well be studied 
theoretically in terms of a food web’s ability to leap between different attractor 
states, the external events that could trigger such responses would most likely in-
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volve significantly longer time scales than those considered in management issues. 
It is also hard to imagine that such leaps between global attractor states, causing 
fundamental changes, would be anything but disastrous for many of the organisms 
involved, including human beings. Food webs are therefore most commonly stud-
ied in terms of several different measures of stability, reflecting human values of 
conservation and sustainability, and perhaps also an idea of nature as ideally well 
balanced and constant. However, effects of global warming and habitat degrada-
tion may call for a new paradigm, searching for critical thresholds in the systems, 
and the characteristics of dynamic attractor changes. 
 

5.5  Main contributions 
The main contributions of this thesis are summarized below: 
 
5.5.1  Food web conclusions 

• Detritus alters generalizations of the structure and function of food webs. 
Detrital pathways increase the structural cyclicity and the structural ro-
bustness of food webs. 

 
• Food web structure and distribution of interaction strength are of compa-

rable importance for dynamic stability of food webs.  
 

• Systems constrained to contain only antagonistic (+,–) interactions (food 
webs) are more stable than systems where all sorts of interaction pairs are 
allowed (ecosystems). 

 
• Neighbourhood stability is optimized in food webs that are characterized 

by a few strong interactions embedded in a majority of weaker interac-
tions. 

 
5.5.2  Neural network conclusions 

• A fine balance between inhibition and excitation is crucial for a flexible 
and realistic EEG response to clinical treatments with anaesthesia and 
ECT. 

 
• Intermediate network density (i.e. where intrinsic node properties and 

global network interactions are of comparable importance) is optimal for 
flexible neurodynamics. 

 
• State transitions in network neurodynamics can be evoked by regulatory 

mechanisms at two different scales: changes in cellular ion-channel den-
sity or changes in global interaction strength. 

 
• Computational neural network models based on simplified, but anatomi-

cally inspired structures are able to capture some of the most important 
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mechanisms involved in generating EEG-signal and its response to anaes-
thesia and ECT. 

 
5.5.3  Theory development 

• The concepts: Structural principles, structural complexity, interaction di-
versity, node diversity and network density are proposed and defined. 
This set of constructional concepts provides a useful toolbox for biologi-
cal network studies in general. Applications to food web and neural net-
work models demonstrate that these concepts are crucial for the function 
of biological networks. 

 
• The most interesting and realistic features of biological networks emerge 

at an intermediate network density. Network functions depend on the in-
terplay between intrinsic node effects and effects of interactions at the 
network level. At an intermediate network density, the function of the 
network is particularly sensitive to structural principles, structural com-
plexity, interaction diversity and node diversity. 

 
• The modified niche model is novel for this work. In the line of simple 

structural food web models that only take network size and connectance 
as input parameters, the modified niche model is the first to explicitly in-
clude a detritus compartment. This model can be used in future studies. 

 
• Frameworks for networks of interacting Fitzhugh-Nagumo and Franken-

heauser-Huxley neurons have been developed, and can be used in further 
studies for investigating different aspects of EEG time series.  

 
All models were programmed in Matlab, without using pre-defined toolboxes. For 
details on the program codes, please contact Geir Halnes: geir.halnes@bt.slu.se. 
 

5.6  Personal comments and future prospects 
As the reader may have noticed, the papers included are not arranged in a chrono-
logical order. My work as a PhD started with neural network models, under the 
supervision of Hans Liljenström. His expertise in this field defined the focus of 
study for the first half of my PhD, resulting in Papers IV and V. A stipend from 
Formas allowed me to spend three months at the International Institute for Applied 
System Analysis (IIASA) in Vienna, where I had the privilege to do a project un-
der the supervision of Brian D. Fath. The project was awarded with a grant that 
allowed me to spend three additional months at IIASA. Fath’s expertise in eco-
logical network analysis defined the focus of study for the second half of my PhD, 
resulting in Papers I-III. 
 
The initial plan was to move gradually from these first projects and into the field 
of ecology, bringing along neural network models as a toolkit. A concrete idea on 
how to realize this involved using artificial neural network (ANN) models as deci-
sion making devices for adaptive foragers, or for females selecting mates, acting 
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within a specific ecological context. The relevant field experiments required to 
complete the planned projects did, however, not receive funding. Still, the inter-
face between the cognition of single organisms and their role in a larger ecological 
context has been rather poorly explored, and I believe that there are great future 
prospects for models of this kind. Such meso-scale models can be used to study 
the interplay between learning and evolution, and the importance of adaptation at 
different time scales. 
 
Another idea, concerning my transfer from neural network modelling to food web 
modelling, was that the network abstraction allows theory to be easily transferred 
between fields. There are many examples of network theoretical measures being 
applied across system boundaries. For instance, the same graph theoretical meas-
ures can be applied to all systems described as networks (see e.g., Strogatz 2001; 
Albert & Barabasi 2002). 
 
A wide range of functional tasks have been studied in neural network models, 
where concepts such as synchrony, adaptation, flexibility, associative memory, 
classification and stochastic resonance (just to mention a few) have a specific 
meaning. In the network abstraction, all functional concepts are manifested as 
structural, dynamic and evolutionary network properties. Hence, via the network 
abstraction, these concepts can be projected onto other systems, where their bio-
logical meaning would have to be reinterpreted. It is my conviction that at least 
some of these concepts might be applicable to food webs and reveal new aspects 
of these systems. However, it appeared essential to become familiar with the exist-
ing theory in ecological modelling before doing any attempt to introduce new 
methodology to the field. Still, the prospects of transferring network concepts be-
tween fields appeal to me. 
 
From a personal point of view, the broad scope of this thesis and the opportunity 
to work within two different fields has been very exciting. The different projects 
that I have been involved in, so far, have provided me with a methodological tool 
box that can be applied in later studies, which are anticipated in several pending 
project proposals. 



 60

References 

Aderem, A. 2005. Systems biology: Its practice and challenges. Cell 121, 511-513. 
Albert, R., Hawoong, J., Barabasi, A.-L. 2000. Error and attack tolerance in complex net-

works. Nature 406, 378-382. 
Albert, R. & Barabasi, A. 2002. Statistical mechanics of complex networks. Review of 

Modern Physics. 74: 47-97. 
Albert, R. 2005. Scale-free networks in cell biology. Journal of cell science 118, 4947-

4957. 
Allesina, S. & Ulanowics, R.E. 2004. Cycling in ecological networks: Finn’s index revis-

ited. Computational biology and chemistry 28, 227-233. 
Allesina, S., Bodini, A. & Bondavalli, C. 2005. Ecological subsystems via graph theory: the 

role of strongly connected components. Oikos 110, 164-176. 
Alon, U. 2003. Biological networks: The tinkerer as an engineer. Science 301, 1866-1867. 
Arita, M. 2005. Scale-freeness of biological networks. Journal of Biochemistry 138, 1-4. 
Ashby W.R. 1957. An Introduction to Cybernetics. Chapman & Hall: London. 
Ashwin, P. & Timme, M. 2005. When instability makes sense. Nature 436, 36-37. 
Bagdassarian, C.K., Dunham, A.E., Brown, C.G. & Rauscher, D. 2007. Biodiversity main-

tenance in food webs with regulatory environmental feedbacks. Journal of Theoretical 
Biology 245, 705–714. 

Barabasi, A.-L. & Albert, R. 1999. The emergence of scaling in random networks. Science 
286, 509-512. 

Barabasi, A-L. & Oltvai, Z.N. 2004. Network biology: Understanding the cell’s functional 
organization. Nature Reviews Genetics 5, 101-114. 

Baudry, M. 1998. Synaptic plasticity and learning and memory: 15 years of progress. Neu-
robiology of Learning and Memory 70, 113-118. 

Bear, M.F. & Abraham, W.C. 1996. Long term depression in hippocampus. Annual Review 
of Neuroscience 19, 437-462. 

Bliss, T.V. & Lømo, T. 1973. Long lasting potentiation of synaptic transmission in the den-
tate area of the anaesthetized rabbit following stimulation of the perforant path. Journal 
of  Physiology 232, 331-356. 

Borrett S.R., Fath, B.D., Patten, B.C. 2007. Functional integration of ecological networks 
through pathway proliferation. Journal of Theoretical Biology 245: 98–111. 

Boulding, K. 1956. General systems theory - The skeleton of science. Management Science, 
New York. 

Bower, J.M., Beeman, D. (1998): The Book of GENESIS, 2nd edition. Springer Verlag, 
Berlin. 

Brose, U., Williams R.J. & Martinez N.D. 2003. Comment on “Foraging adaptation and the 
relationship between food-web complexity and stability”. Science 301, 918. 

Brunel, N. 2000. Dynamics of sparsely connected networks of excitatory and inhibitory 
spiking neurons. Journal of Computational Neuroscience 8, 183-208. 

Burns, T.P. 1989. Lindeman's contradiction and the trophic structure of ecosystems. Ecol-
ogy 70, 1355-1362. 

Buzsaki, G. 2007: The structure of consciousness. Nature 446, 267 
Caldarelli, G., Higgs, P.G. & McKane, A.J. 1998. Modelling coevolution in multispecies 

communities. Journal of Theoretical Biology 193, 345–358. 
Capra, F. 1997. The web of life: A new synthesis of mind and matter. Harper Collins Pub-

lishers, London. 
Casagrandi, R. & Gatto, M. 1999. A mesoscale approach to extinction risk in fragmented 

landscapes. Nature 400, 560-562. 
Checkland, P.B. 1981. Systems Theory, Systems Practice. Chichester: John Wiley, Chiches-

ter, U.K. 
Chklovskii, D.B., Mel, B.W. & Svoboda, K. 2004. Cortical rewiring and information stor-

age. Nature 431: 782-788. 



 61 

Cohen, J.E., Newman, C.M. 1985. A stochastic theory of community food webs II. Individ-
ual webs. Proceedings of the Royal Society of London B224, 449-461. 

Cohen, J.E., Pimm, S.L., Yoditz, P. & Saldana, J. 1993. Body sizes of animal predators and 
animal prey in food webs. Journal of AnimalEecology 62, 67-78. 

Cohen, R. & Havlin, S. 2003. Scale free networks are ultra-small. Physical Review Letters 
90, 058701 

DeAngelis, D.L. 1975. Stability and Connectance in Food Web Models  Ecology 56, 238-
243. 

DeAngelis, D.L., Mulholland, P.J., Elwood, J.W., Palumbo, A.V. & Steinman, A.D. 1990. 
Biogeochemical cycling constraint on stream ecosystem recovery. Environmental man-
agement 14, 685-697. 

Debanne, D., Daoudal, G., Sourdet, V. & Russier, M. 2003. Brain plasticity and ion chan-
nels. Journal of Physiology – Paris 97, 403-414. 

de Ruiter, P.C., Neutel, A.-M. & Moore, J.C. 1998. Biodiversity in soil ecosystems : The 
role of energy flow and community stability. Applied Soil Ecology 10, 217-228. 

Destexhe, A. & Marder, E. 2004: Plasticity in single neuron and circuit computations. Na-
ture 431, 789-795. 

Drossel, B., Higgs, P. G. & McKane, A. J. 2001. The influence of predator-prey population 
dynamics on the long-term evolution of food web structure. Journal of Theoretical Biol-
ogy 208, 91–107. 

Drossel, B. & McKane, A.J., 2002. Modelling food webs. In Bornholdt, S., & Schuster, 
H.G., eds., Handbook of Graphs and Networks. Wiley- VCH, Berlin. 

Drossel, B., McKane, A.J. & Quince, C. 2004. The impact of nonlinear functional re-
sponses on the long term evolution of food web structure. Journal of Theoretical Biology 
229, 539-548. 

Dunne, J.A., Williams, R.J. & Martinez, N.D. 2002: Food-web structure and network the-
ory: The role of connectance and size. PNAS 99, 12917-12922. 

Dunne, J.A., Williams, R.J. & Martinez, N.D. (2004): Network structure and robustness of 
marine food webs. Marine Ecology-Progress Series 273, 291-302. 

Eckohorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. & Reitboeck, H.J. 
1988: Coherent oscillation: A mechanism of feature linking in the visual cortex? Biologi-
cal Cybernetics 60, 121-130. 

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. 2002. Stochastic gene expression 
in a single cell. Science 297, 1183-1186. 

Emmert-Streib, F. 2006. Influence of the neural network topology on the learning dynam-
ics. Neurocomputing 69, 1179-1182. 

Fath, B.D. 2004. Network analysis applied to large-scale cyber-ecosystems. Ecological 
Modelling 171, 329-337. 

Fath, B.D., Patten, B.C. & Choi, J.S. 2001. Complementarity of ecological goal functions. 
Journal of Theoretical Biology 208, 493-506 

Fath, B.D. 2006. A non-thermodynamic constraint to trophic transfer efficiency based on 
network utility analyzis. InternationalJournal of Ecodynamics 1, 28-43. 

Fath, B.D., Scharler, U.M., Ulanowicz, R.E & Hannon, B. 2007. Ecological network analy-
sis: Network construction. Ecological Modelling 208, 49-55. 

Fewell, J.H. 2003. Social insect networks. Science 301, 1867-1870. 
Fingelkurts An.A & Fingelkurts Al.A. 2006. Mapping of brain operational architectonics. 

In: Chen, F.J. (Ed.) 2006. Focus on Brain Mapping Research. Nova Science Publishers, 
Inc. pp. 59-98. 

Finn, J.T. 1976. Measures of ecosystem structure and function derived from analysis of 
flows. Journal of Theoretical Biology 56, 363–380. 

FitzHugh R. 1961. Impulses and physiological states in theoretical models of nerve mem-
brane. Biophysical Journal 1:445-466 . 

Frankenhaeuser, B. and Huxley, A.F. 1964. The action potential in the myelinated nerve 
fibre of Xenoupus Laevis as computed on the basis of voltage clamp data. Journal of. 
Physiology 171, 302-315. 

Freeman, W.J. 1975. Mass action in the nervous system. Academic Press: New York. 
Freeman, W.J. 1991. The physiology of perception. Scientific American 264, 78-85. 



 62

Freeman, W.J. 2000. Neurodynamics: An exploration in mesoscopic brain dynamics. 
Springer, Berlin. 

Freeman, W.J. 2003. Evidence from human scalp electroencephalograms of global chaotic 
itinerancy. Chaos: An Interdisciplinary Journal of Nonlinear Science 13: 1067-1077. 

Freeman W.J. 2005. Origin, structure, and role of background EEG activity. Part 3. Neural 
frame classification. Clinical Neurophysiology 116, 1118-1129. 

Freeman, W.J., Holmes, M.D., West, G.A. & Vanhatalo, S. 2006. Dynamics of human neo-
cortex that optimizes its stability and flexibility. International Journal of Intelligent Sys-
tems 21, 881-901. 

Fukami, T. 2004: Community assembly along a species pool gradient: implications for 
multi-scale patterns of species diversity. Population Ecology 46, 137-147. 

Garlaschelli, D., Caldarelli, G., Pietronero, L., (2003): Universal scaling relations in food 
webs. Nature 423, 165-168. 

Gerstner, W. 2000, Population dynamics of spiking neurons: Fast transients, asynchronous 
states and locking. Neural Computation 12, 43-89.  

Gerstner, W. 2001. A framework for spiking neuron models: The spike response method. 
In: Handbook of Biological Physics. 4 p. 469-516, Elsevier. 

Giannakopoulos, F., Bihler, U., Hauptmann, C. & Luhmann, H.J. 2001. Epileptiform activ-
ity in a neo-cortical network: a mathematical model. Biological Cybernetics 85, 257-268. 

Gotelli, N.J. 2001. A primer of ecology, third edition. Sinauer Associates, Inc. Sunderland, 
Massachusetts. 

Gotelli, N.J. & Ellison, A.M. 2006. Food-web models predict species abundances in re-
sponse to habitat change. PLoS Biology 4, e324: 1869-1873. 

Gu, Y., Halnes, G., Liljenström, H., Liang, H., von Rosen, D., & Wahlund, B. 2006. Mod-
elling ECT effects by connectivity changes in cortical neural networks. Neurocomputing 
69, 1341-1347. 

Gu, Y. & Liljenstrom, H. 2007. A neural network model of attention-modulated neurody-
namics. Cognitive Neurodynamics (in press). 

Hall, S.J. & Raffaelli, D.G. 1991. Food web patterns: lessons from a species rich web. Jour-
nal of Animal Ecology 60, 823-841. 

Halnes, G. 2007. Hils hvis du ser meg. Oktober Norsk Forlag, Oslo. 
Hang-Kwang, L. & Pimm, S.L. 1993. The assembly of ecological communities: A minimal-

ist approach. Journal of Animal Ecology 62, 749-765. 
Hanski, I. 1999. Metapopulation Ecology. Oxford University Press, Oxford. 
Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. 1999. From molecular to modu-

lar cell biology. Nature 402, C47-C52. 
Haykin, S. 1994. Neural networks: A comprehensive foundation. MacMillan College Pub-

lishing Co. New York.  
Hebb, D.O. 1949. The organization of behavior. Wiley, New York. 
Hille, B. 2001. Ion Channels of Excitable Membranes, 3rd edition. Sinauer, Sunderland, 

Massachusetts, 814 pp. 
Hintze, A. & Adami, C. 2007. Evolution of complex modular biological networks. 

http://arxiv.org/ftp/arxiv/papers/0705/0705.4674.pdf 
Hodgkin, A.L. and Huxley, A.F. 1952. A quantitative description of membrane current and 

its application to conduction and excitation in nerve. Journal of Physiology 117, 500–
544. 

Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecol-
ogy and Systematics 4, 1-23. 

Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective compu-
tational abilities. PNAS USA 79, 2554-2558. 

Hopfield, J.J. 1984. Neurons with graded response have collective computational proper-
ties, like those of two-state neurons. PNAS USA 81, 3088-3092. 

Hutcheon, B. & Yarom, Y. 2000. Resonance, oscillation and the intrinsic frequency prefer-
ences of neurons. Trends in Neuroscience 23, 216-222. 

Jain, A.K. & Mao, J. & Mohiuddin, K.M. 1996. Artificial neural networks: A tutorial. Com-
puter 29: 31-44. 



 63 

Jain, S., Krishna, S., 2003. Graph theory and the evolution of autocatalytic networks. In: 
Bornholdt, S. and Schuster, H.G. (eds.), Handbook of graphs and networks: From the ge-
nome to the internet. Wiley-VCH, pp. 355-395. 

Jeong, H., Tombor, B., Albert, R., Oltval, Z.N., Barabasi, A.-L. 2000. The large scale or-
ganization of metabolic networks. Nature 407, 651-654. 

Johansson, S., Århem, P. 1992. Computed potential responses of small cultured rat hippo-
campal neurons. Journal of Physiology 445, 157-167. 

Jordan, F. & Scheuring, I. 2004. Network ecology: topological constraints on ecosystem 
dynamics. Physics of Life Reviews 1, 139-172. 

Jørgensen S.E. & Fath, B.D. 2004. Application of thermodynamic principles in ecology. 
Ecological complexity 1, 267-280. 

Kaiser, J. 2000. Rift over biodiversity divides ecologists. Science 289, 1282-1283. 
Kauffman, S. 1969. Metabolic stability and epigenesist in randomly constructed genetic 

nets. Journal of Theoretical Biology 22: 437–467. 
Kitano, H. 2004. Biological robustness. Nature Review Genetics 5, 826-837. 
Kohonen, T. 1988. Self-organization and associative memory, Springer Verlag, New York. 
Kondoh, M. 2003. Foraging adaptation and the relationship between food-web complexity 

and stability. Science 299, 1388-1391. 
Kondoh, M. 2006. Does foraging adaptation create the positive complexity-stability rela-

tionship in realistic food web structure?  Journal of Theoretical Biology 238, 646–651. 
Kruess A, Tscharnkte T. 2000. Species richness and parasitism in a fragmented landscape: 

Experiments and field studies with insects on Vicia sepium. Oecologia 122, 129–137. 
Lansner, A. & Liljenström, H. 1994. Computer models of the brain – How far can they take 

us? Journal of Theoretical Biology 171, 61-73. 
Latora, V., Marchiori, M. 2001. Efficient behavior of small world networks. Physical Re-

view Letters 87, 198701. 
Laughlin, S.B. & Sejnowski, T.J. 2003. Communication in neuronal networks. Science 301, 

1870-1874. 
Law, R. & Morton, R. D. 1996. Permanence and the assembly of ecological communities. 

Ecology 77, 762–775. 
Lawlor, L.R. 1980. Structure and stability in natural and randomly constructed competitive 

communities. The American Naturalist 116, 394-408. 
Legendre, L. & Rivkin, R. B. 2002. Pelagic food webs: Responses to environmental proc-

esses and effects on the environment. Ecological Research 17, 143–149. 
Lenzen, M. 2007. Structural path analysis of ecosystem networks. Ecological Modelling 

200, 334-342. 
Liljenström, H. 1991. Modeling dynamics of the olfactory cortex using simplified network 

units and realistic architecture. International Journal of Neural Systems 2, 1-15. 
Liljenström H. 1995. Autonomous Learning with Complex Dynamics. International Jour-

nal of Intelligent Systems 1, 119-153. 
Liljenström, H. (1997) Cognition and the Efficiency of Neural Processes. In: Eds. Århem, 

P., Liljenström, H. & Svedin, I. Matter Matters? Springer Verlag, Heidelberg. 
Liljenström, H. 2003. Neural Stability and Flexibility - A Computational Approach. Jour-

nal of Neuropsychopharmacology 28, S64-S73. 
Liljenström, H. & Halnes, G. 2004. Noise in neural networks – in terms of relations. Fluc-

tuations and Noise letters 4, L97-L106. 
Lindeman, R.L., 1942. The trophic dynamic aspect of ecology. Ecology 23, 399-418. 
Loeuille, N. & Loreau, M. 2005. Evolutionary emergence of size structured food webs. 

PNAS 102, 5761-5766. 
Martinez, N.D. 1992. Constant connectance in community food webs. American 
Naturalist 139, 1208-1218. 
Martinez, N.D., Dunne, J.A., Williams, R. J., 2006. Diversity, complexity and persistence 

in large model ecosystems. In: Eds. Pascual, M. & Dunne, J.A. Ecological Networks: 
Linking Structure to Dynamics in Food Webs. Oxford University press, Oxford. 

May, R. M. 1972. Will a large complex system be stable? Nature 238, 413–414. 
May, R. M. (1974). Stability and complexity in model ecosystems, Second edition. 
Princeton University Press, Princeton. 



 64

May, R.M. 1999. Unanswered questions in ecology. Philosophical Transactions of the 
Royal Society of London B 354, 1951-1959. 

May, R.M. 2006. Network structure and the biology of populations. Trends in Ecology and 
Evolution: 21, 394-399. 

McCann, K.S., Hastings, A. & Huxel, G.R. 1998. Weak trophic interaction and the balance 
of nature. Nature 395, 794–798. 

McCann, K.S. 2000. The diversity-stability debate, Nature 405, 228–233. 
McCulloch, W.S. & Pitts, W. 1943. A Logical Calculus of Ideas Immanent in Nervous Ac-

tivity. Bulletin of Mathematical Bio-physics 5, 115-133. 
McKane, A.J. 2004. Evolving complex food webs. The European Physical Journal B 38, 

287-295. 
Milgram, S. 1967. The small world problem. Psychology Today 1, 60-67. 
Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. 2002. Network 

motifs: Simple building blocks of complex networks. Science 298, 824-827. 
Montoya, J.M., Pimm, S.L. & Sole, R.V. 2006: Ecological networks and their fragility. 

Nature 442, 259-264. 
Moore, J.C.,  Berlow, E.L., Coleman, D.C., Ruiter P.C.,  Dong Q., Hastings A., Johnson 

N.C., McCann K.S., Melville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post 
D.M., Sabo, J.L., Scow K.M., Vanni, M.J., Wall, D.H. 2004: Detritus, trophic dynamics 
and biodiversity. Ecology Letters 7, 584-600. 

Niedermeyer, E. & Da Silva, F.L. 1999. Electroencephalography, 4th edition. Lippincott 
Williams & Wilkins. 

Neutel, A.M., Heesterbeek, J.A.P & de Ruiter, P.C. 2002. Stability in real food webs: Week 
links in long loops. Science 296, 1120-1123. 

Newman, M.E.J. 2003. The structure and function of complex networks. SIAM Review, 45: 
167-256. 

Odum, E.P. 1953. Fundamentals of ecology. Saunders, Philadelphia. 
Oltvai, Z.N., Barabasi, A.-L., 2002. Life’s complexity pyramid. Science 298, 763-764. 
Palm, G. 1982. Neural Assemblies. Springer, Berlin, Heidelberg and New York. 
Patten, B.C. 1985.  Energy cycling in the ecosystem. Ecological Modelling 28, 1-71. 
Pelletier, J.D. 2000. Are large complex ecosystems more unstable? A theoretical reassess-

ment with predator switching. Mathematical Biosciences 163, 91-96. 
Pimm, S.L. 1980. Food web design and the effect of species deletion. Oikos 35, 139-149. 
Pimm, S.L., Lawton, J.H. & Cohen, J.E. 1991. Food web patterns and their consequences. 

Nature 350, 669–674. 
Polis, G.A. & Hurd, S.D. 1995. Extraordinary high spider density on islands: Flow of en-

ergy from the marine to terrestrial food webs and the absence of predation. PNAS USA 
92, 4382-4396. 

Polis, G.A. 1998. Stability is woven by complex webs. Nature 395, 744-745. 
Post, W.M., Pimm, S.L. 1983. Community assembly and food web stability. Mathematical 

Biosciences 64, 169-192. 
Power, M.E. 2001. Field biology, food web models, and management: Challenges of con-

text and scale. Oikos 94, 118–129. 
Quince, C., Higgs P.G. & McKane, A.J. 2005. Topological structure and interaction 

strengths in model food webs. Ecological modelling 187, 389-412. 
Ravasz, A., Somera, L. Mongru, D.A., Oltvai, Z.N. & Barabasi, A.-L. 2002: Hierarchical 

organization of modularity in metabolic networks. Science 297, 1551-1555. 
Reichert, H. 1992: Introduction to neurobiology. Oxford university press, New York. 
Schneider, E.D, Kay, J.J. 1994. Life as a manifestation of the second law of thermodynam-

ics. Mathematical and Computer Modelling 19, 25-48. 
Schneidman, E., Berry, M.J., Segrev, R. & Bialek, W. 2006. Weak pairwise correlations 

imply strongly correlated network states in a neural population. Nature 440, 1007-1012. 
Seth, A.K. & Edelman, G.M. 2004. Theoretical neuroanatomy: Analyzing the structure, 

dynamics and function of neuronal networks: Lecture Notes in Physics 650, 483-511. 
Sharp, A.A., Skinner, F.K. & Marder, E. 1996. Mechanisms of oscillation in dynamic 

clamp constructed two-cell half-center circuits. Journal of Neurophysiology 76, 867–883. 



 65 

Shepherd, G.M. 1998. The synaptic organization of the brain, 4th edition. Oxford university 
press, New York. 

Simard, D., Nadeau, L., Kröger, H. 2005. Fastest learning in small world neural networks. 
Physics Letters A 336, 8-15. 

Siri, B., Berry, H., Cessac, B., Delord, B. & Quoy, M. 2006. Topological and dynamical 
structures induced by Hebbian learning in random neural networks. 
http://necsi.org/events/iccs6/viewpaper.php?id=168 

Sole, R.V.& Montoya, J.M. 2001. Complexity and fragility in ecological networks. Pro-
ceedings of the Royal Society of London B 268, 2039-2045. 

Solow, A.R., Beet, A.R. 1998. On lumping species in food webs. Ecology 79, 2013-2018. 
Spitzer, N.C. 2006. Electrical activity in early neuronal development. Nature 444,  707-712. 
Sporns, O., Tononi, G. & Edelman, G.M. 2000. Theoretical neuroanatomy: Relating ana-

tomical and functional connectivity in graphs and cortical connection matrices. Cerebral 
Cortex 10, 127-141.  

Strogatz, S.H. 2000. Nonlinear Dynamics and Chaos. Perseus Publishing, LLC. 
Strogatz, S.H. 2001. Exploring complex network. Nature 410, 268–276. 
Thickbroom, G.W. 2007. Transcranial magnetic stimulation and synaptic plasticity: ex-

perimental framework and human models. Experimental Brain Research 180, 583–593 
Thompson J.N. 1982. Interaction and coevolution. Wiley, London. 
Tallis, H. M. & Kareiva, P. 2006. Trends in ecology and evolution.21, 562-568. 
Tornow, S. & Mewes, H.W. 2003: Functional modules by relating protein interaction net-

works and gene expression: Nucleic Acids Research 31: 6283-6289. 
Tsodyks, M. & Gilbert, C. 2004. Neural networks and perceptual learning. Nature 431, 

775-781. 
Tsuda, I. 1996. A new type of self-organization associated with chaotic dynamics in neural 

networks. International Journal of Neural Systems 7, 451-459. 
Ulanowicz, R.E. 1972. Mass and energy flow in closed ecosystems. Jorunal of Theoretical 

Biology 34, 239-253. 
Ulanowicz, R.E. 1983. Identifying the structure of cycling in ecosystems. Bioscience. 65, 

219–237. 
Ulanowicz, R.E. & Wolff, W.F. 1991. Ecosystem flow networks: Loaded dice? Mathemati-

cal Bioscience 103, 45-68. 
Varela, F., Lachaux, J-F., Rodriguez, E. & Martinerie, J. 2001. The brainweb: Phase syn-

chronization and large-scale integration. Nature Reviews 2, 229-239. 
Vohradsky, J. 2001. Neural model of genetic networks. The Journal of Biological Chemis-

try 276, 36168-36173. 
Wagner, A. 2003. Does selection mold molecular networks? Science STKE 202, pe41. 
Wahlund, B. & von Rosen, D. 2003. ECT of Major Depressed Patients in Relation to Bio-

logical and Clinical Variables: A Brief Overview. Neuropsychopharmacology 28, S21–
S26. 

Watts, D.J. & Strogatz, S.H. 1998. Collective dynamics of small world networks. Nature 
393, 440-442 

Webb, C. 2007. What is the role of ecology in understanding ecosystem resilience? Biosci-
ence 57, 470-471. 

Weitz, J.S., Benfey, P.N. & Wingreen, N.S. 2007. Evolution, interactions and biological 
networks. PLOS Biology 5, 10-12. 

West, M., Prado, R. & Krystal, A.D. 1999. Evaluation and comparison of EEG traces: La-
tent structure in nonstationary time series. Journal of the American Statistical Association 
94, 1083-1095. 

Wiesenfeld, K. & Moss, F. 1995. Stochastic resonance and the benefits of noise: From ice 
ages to crayfish and squids. Nature 373, 33-36. 

Williams, R. J. & Martinez, N. D. 2000. Simple rules yield complex food webs, Nature 
404, 180–183. 

Williams, R.J., Berlow, E.L., Dunne, J.A., Barabasi, A-L. & Martinez, A.D. 2002. Two 
degrees of separation in complex food webs. PNAS 99, 12913-12916 

Yook, S.-H., Olval, Z., Barabasi, A.L. 2004. Functional and topological characterization of 
protein interaction networks. Proteomics 4, 928-942. 



 66

Zhu, X., Gerstein, M., Snyder, M. 2007. Getting connected: Analysis and principles of bio-
logical networks. Genes and Development 21, 1010-1024. 

Århem, P. & Liljenström H. 1997. On the Coevolution of Cognition and Consciousness. 
Journal. of Theoretical Biology 187, 601-612. 

Århem, P., Blomberg, C. & Liljenström, H. eds. 2000. Disorder versos order in brain func-
tion – Essays in theoretical neurobiology. Word Scientific, London. 

Århem, P., Klement, G. & Nilsson, J. 2003. Mechanisms of anesthesia: Towards integrating 
network, cellular and molecular modeling. Neuropsycopharmacology 28, 40-47. 



 67 

Acknowledgements 

First of all, I would like to thank my main supervisor, Prof. Hans Liljenström: 
Thank you for accepting me for a PhD-student and for introducing me to the field 
of Neural Network modelling. I have appreciated the collaboration, the support 
and the many interesting conversations about research and stranger things.  
 
Second, I would like to thank my supervisor at IIASA (The International Institute 
for Applied System Analysis), Ass. Prof. Brian D. Fath: Thank you for accepting 
me as a YSSP (Young Scientists Summer Program) -student, for an invaluable 
introduction to ecological network analysis, and for useful inputs to my thesis.  
 
Many others have contributed to this thesis. During my work with neural networks 
I have received assisting supervision from Prof. Dietrich Von Rosen and Prof. 
Peter Århem, for which I am very grateful. I would also like to thank PhD Yuqiao 
Gu and PhD Björn Wahlund for fruitful collaboration with the papers. A special 
thanks to Prof. Frank Moss for funding my three-weak guest-stay in his research 
lab in St. Louis, where I had a really good time. 
 
I am grateful to the members of the DYN-program and EEP-program at IIASA for 
useful input during my work there. A special thank to my fellow YSSP-students 
Jack Teng and Sarah Cobey for guiding me to the relevant ecological literature, 
and to PhD Åke Brännström for helping me initiate my work on dynamic stability 
in food webs. 
 
I want to thank the people at the Department of Biometry and Engineering for 
having made my stay in Uppsala a pleasant one. The administrative personal Ma-
jsan Lövgren, Berit Wennberg and Sven Smårs have been very supportive. I want 
to give a special thanks to PhD Tomas Thierfelder who was the “opponent” at my 
pre-dissertation and made useful and interesting comments to my work. 
 
I want to thank Cemus (The Centre for Environment and Development Studies) in 
Uppsala for being such a nice and inspiring place. A special thanks to my fellow 
students at Cemus Research Forum for the friendship and for exciting interdisci-
plinary seminars. 
 
Finally, I want to thank all my friends and family for being the good people they 
are. A special thanks to my good friend Hanna Yousef for corrections and com-
ments on my thesis during its final stage of completion. 
 
Internal funding and funding from the Swedish Research Council have been the 
major financial sources enabling this thesis. In addition, a stipend from FORMAS 
financed my three first months at IIASA. A personal award granted by IIASA fi-
nanced my second tree months at IIASA. All these contributions are greatly ac-
knowledged. 
 
 


	sam.pdf
	kap1.pdf
	kap2.pdf
	kap3.pdf
	kap4.pdf
	kap5.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightIt
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-LightSC
    /AkzidenzGroteskBE-LigItOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AkzidenzGroteskBE-SuperItalic
    /AkzidenzGroteskBQ-Bold
    /AkzidenzGroteskBQ-BoldItalic
    /AkzidenzGroteskBQ-Italic
    /AkzidenzGroteskBQ-Light
    /AkzidenzGroteskBQ-LightIt
    /AkzidenzGroteskBQ-LightOsF
    /AkzidenzGroteskBQ-LightSC
    /AkzidenzGroteskBQ-LigItOsF
    /AkzidenzGroteskBQ-MedItalic
    /AkzidenzGroteskBQ-Medium
    /AkzidenzGroteskBQ-Reg
    /AkzidenzGroteskBQ-Super
    /AkzidenzGroteskBQ-SuperItalic
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /Bembo
    /Bembo-Alt
    /Bembo-AltBold
    /Bembo-AltItalic
    /Bembo-Bold
    /Bembo-BoldItalic
    /Bembo-BoldItalicOsF
    /Bembo-BoldOsF
    /BemboExpert
    /BemboExpert-Bold
    /BemboExpert-BoldItalic
    /BemboExpert-Italic
    /Bembo-ExtraBoldItalicOsF
    /Bembo-ExtraBoldOsF
    /Bembo-Italic
    /Bembo-ItalicOsF
    /Bembo-SC
    /Bembo-SemiboldItalicOsF
    /Bembo-SemiboldOsF
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Galliard-BlackItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NewBaskerville-Roman
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Webdings
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /Vivaldii
    /VladimirScript
    /Vrinda
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightIt
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-LightSC
    /AkzidenzGroteskBE-LigItOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AkzidenzGroteskBE-SuperItalic
    /AkzidenzGroteskBQ-Bold
    /AkzidenzGroteskBQ-BoldItalic
    /AkzidenzGroteskBQ-Italic
    /AkzidenzGroteskBQ-Light
    /AkzidenzGroteskBQ-LightIt
    /AkzidenzGroteskBQ-LightOsF
    /AkzidenzGroteskBQ-LightSC
    /AkzidenzGroteskBQ-LigItOsF
    /AkzidenzGroteskBQ-MedItalic
    /AkzidenzGroteskBQ-Medium
    /AkzidenzGroteskBQ-Reg
    /AkzidenzGroteskBQ-Super
    /AkzidenzGroteskBQ-SuperItalic
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /Bembo
    /Bembo-Alt
    /Bembo-AltBold
    /Bembo-AltItalic
    /Bembo-Bold
    /Bembo-BoldItalic
    /Bembo-BoldItalicOsF
    /Bembo-BoldOsF
    /BemboExpert
    /BemboExpert-Bold
    /BemboExpert-BoldItalic
    /BemboExpert-Italic
    /Bembo-ExtraBoldItalicOsF
    /Bembo-ExtraBoldOsF
    /Bembo-Italic
    /Bembo-ItalicOsF
    /Bembo-SC
    /Bembo-SemiboldItalicOsF
    /Bembo-SemiboldOsF
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Galliard-BlackItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NewBaskerville-Roman
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Webdings
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /Vivaldii
    /VladimirScript
    /Vrinda
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightIt
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-LightSC
    /AkzidenzGroteskBE-LigItOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AkzidenzGroteskBE-SuperItalic
    /AkzidenzGroteskBQ-Bold
    /AkzidenzGroteskBQ-BoldItalic
    /AkzidenzGroteskBQ-Italic
    /AkzidenzGroteskBQ-Light
    /AkzidenzGroteskBQ-LightIt
    /AkzidenzGroteskBQ-LightOsF
    /AkzidenzGroteskBQ-LightSC
    /AkzidenzGroteskBQ-LigItOsF
    /AkzidenzGroteskBQ-MedItalic
    /AkzidenzGroteskBQ-Medium
    /AkzidenzGroteskBQ-Reg
    /AkzidenzGroteskBQ-Super
    /AkzidenzGroteskBQ-SuperItalic
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /Bembo
    /Bembo-Alt
    /Bembo-AltBold
    /Bembo-AltItalic
    /Bembo-Bold
    /Bembo-BoldItalic
    /Bembo-BoldItalicOsF
    /Bembo-BoldOsF
    /BemboExpert
    /BemboExpert-Bold
    /BemboExpert-BoldItalic
    /BemboExpert-Italic
    /Bembo-ExtraBoldItalicOsF
    /Bembo-ExtraBoldOsF
    /Bembo-Italic
    /Bembo-ItalicOsF
    /Bembo-SC
    /Bembo-SemiboldItalicOsF
    /Bembo-SemiboldOsF
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Galliard-BlackItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NewBaskerville-Roman
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Webdings
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /Vivaldii
    /VladimirScript
    /Vrinda
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AkzidenzGroteskBE-Bold
    /AkzidenzGroteskBE-BoldIt
    /AkzidenzGroteskBE-It
    /AkzidenzGroteskBE-Light
    /AkzidenzGroteskBE-LightIt
    /AkzidenzGroteskBE-LightOsF
    /AkzidenzGroteskBE-LightSC
    /AkzidenzGroteskBE-LigItOsF
    /AkzidenzGroteskBE-Md
    /AkzidenzGroteskBE-MdIt
    /AkzidenzGroteskBE-Regular
    /AkzidenzGroteskBE-Super
    /AkzidenzGroteskBE-SuperItalic
    /AkzidenzGroteskBQ-Bold
    /AkzidenzGroteskBQ-BoldItalic
    /AkzidenzGroteskBQ-Italic
    /AkzidenzGroteskBQ-Light
    /AkzidenzGroteskBQ-LightIt
    /AkzidenzGroteskBQ-LightOsF
    /AkzidenzGroteskBQ-LightSC
    /AkzidenzGroteskBQ-LigItOsF
    /AkzidenzGroteskBQ-MedItalic
    /AkzidenzGroteskBQ-Medium
    /AkzidenzGroteskBQ-Reg
    /AkzidenzGroteskBQ-Super
    /AkzidenzGroteskBQ-SuperItalic
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /Bembo
    /Bembo-Alt
    /Bembo-AltBold
    /Bembo-AltItalic
    /Bembo-Bold
    /Bembo-BoldItalic
    /Bembo-BoldItalicOsF
    /Bembo-BoldOsF
    /BemboExpert
    /BemboExpert-Bold
    /BemboExpert-BoldItalic
    /BemboExpert-Italic
    /Bembo-ExtraBoldItalicOsF
    /Bembo-ExtraBoldOsF
    /Bembo-Italic
    /Bembo-ItalicOsF
    /Bembo-SC
    /Bembo-SemiboldItalicOsF
    /Bembo-SemiboldOsF
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Castellar
    /Centaur
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Galliard-BlackItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NewBaskerville-Roman
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Webdings
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /Vivaldii
    /VladimirScript
    /Vrinda
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /SVE <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice




