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The Long-Term History of Temperate Broadleaves in Southern 
Sweden 

Abstract 
Temperate broadleaves used to be abundant in the primeval forests in southern Sweden, 
yet today they cover only fractions of the forest land. Considering the present small 
area of the forest type, the habitat is of considerable interest for biodiversity, and 
knowledge about the history of temperate broadleaves is crucial for forest conservation 
and management. The main method used for studying past forest composition is pollen 
analysis, yet differences in pollen production and dispersal among taxa have hampered 
the estimation of historical cover of temperate broadleaves. By applying the Landscape 
Reconstruction Algorithm (LRA), a new model for translating pollen data into 
quantitative cover estimates, significantly improved understanding of the vegetation 
cover can be gained.  

The applications of the LRA to local and regional pollen data from southern Sweden 
carried out in this thesis show that in many areas, large cover of temperate broadleaves 
prevailed locally until rather recently, which is likely to be an important cause for the 
survival of the many threatened species associated with these tree taxa today, although 
in small and vulnerable populations. Many of our study sites showed no tendencies of 
local decline of temperate broadleaves until during the most recent 500 years, which is 
considerably later than in the region as a whole, as well as what has often been 
emphasized in other studies. For Tilia, the cover of which has confounded researchers 
since the introduction of pollen analysis, the decline in the southernmost parts of the 
country was not as early as commonly thought, but in general almost as recent as for 
many other temperate broadleaves.  

In this thesis it is also shown that in many presently protected biodiversity 
hotspots the forest composition changed radically during the last 500 years, and hence 
not even these hotspots can be claimed to have unbroken continuity back to ancient 
forests, or to be a reflection of “natural” forest in southern Sweden. Land use changes, 
such as forest clearance for agricultural purposes, as well as grazing and browsing by 
domestic animals are likely to have been important causes for this vegetation change.  

Keywords: Temperate broadleaves, southern Sweden, pollen analysis, the Landscape 
Reconstruction Algorithm, human impact, the Holocene, forest grazing, threatened 
forest species. 
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For Pehr, who taught me that flowers have names. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There remains the incredibly tedious task of examining tens of thousands of 
pollen grains in the column under a microscope, counting them, and then 
identifying the plant species producing each grain by comparison with modern 
pollen from known plant species. 
                            (Diamond 2005) 
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1 Introduction 

1.1 Temperate broadleaves in southern Sweden 

Temperate broadleaved forest is considered to have dominated large parts of 
Europe during most of the Holocene (Iversen 1964, 1973, Birks et al. 1975). In 
southern Sweden today, temperate broadleaves in contrast constitute only 
around 7% of the tree volume on productive forest land (Official Statistics 
Sweden 2014). Temperate broadleaves comprise more than half of the tree 
species considered indigenous in Sweden, most of which are however 
extremely rare in natural habitats today. The by far most common genera of 
temperate broadleaves today are Fagus and Quercus, both most abundant in 
the temperate zone in the southernmost parts of the country  (Swedish Forest 
Agency 2005). 

1.1.1 Biodiversity of temperate broadleaves 

Considering the small area covered by temperate broadleaves today, the habitat 
type is of considerable value for biodiversity, but it also has cultural - as well 
as amenity values (Bengtsson 2005, Sjöman et al. 2012). Among red-listed 
forest organisms in Sweden, more than half are associated with temperate 
broadleaved forests (Berg et al. 1994, 1995, Gärdenfors 2010). The two tree 
taxa with the most associated saproxylic invertebrates (which is one of the 
largest groups of threatened forest organisms) are both temperate broadleaves; 
Quercus sp. and Fagus sylvatica (Jonsell et al. 1998, Larsson et al. 2011).  

Also Tilia, which is considered to have been abundant in the primeval 
forest, yet is rarely found in the wild today, has more specialized species 
associated with it than many other tree taxa (Jonsell et al. 1998, Jonsell and 
Andersson 2011). This mismatch between habitat occurrence and number of 
associated species has been suggested to be due to a larger historical 
distribution of temperate broadleaves (Berg et al. 1995).  
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Today there is a general acceptance of the importance of areas’ long-term 
ecological history for the understanding of present biodiversity (Foster 2002, 
Willis and Birks 2006, Willis et al. 2007, Lindbladh et al. 2013), as 
contemporary forests provide very limited indications concerning long-term 
tree species composition in northern Europe (Lindbladh et al. 2013). 
Temperate broadleaved forests are among the most disturbed natural 
ecosystems globally (Hannah et al. 1995) and using longer time perspectives 
could therefore be illuminating in order to understand more natural conditions 
of these forests (Froyd and Willis 2008, Dietl and Flessa 2011). 

1.2 Paleoecology in the study of temperate broadleaves 

The study of past landscapes and ecosystems is known as paleoecology, which 
is closely related to geology, biology and botany, as well as to history and 
archaeology (Birks and Birks 1980, Gaillard 2000). A unique benefit of 
paleoecology as compared to neo-ecology is the time perspective, as it enables 
identification of phenomena beyond timescales of direct human experience, 
which might only correspond to one or two tree generations (Mitchell 1998).  

The palaeoecological method most commonly used to identify changes in 
tree species composition is pollen analysis. This method makes use of the fact 
that pollen, which is released in large amounts from most flowering plants, can 
be preserved in natural anaerobic environments such as peat mosses or lakes 
(Seppä 2007). The deposit studied by a paleoecologist has been described as a 
type of permanent plot, or an automatic sampling device, which has been 
collecting data for thousands of years (Jacobson 1988), and such natural 
archives have been used to study vegetation developments since the early 20th 
century (Hesselman 1916, von Post 1916).  

1.2.1 From pollen proportions to forest cover 

Modern pollen studies have largely confirmed the earlier notion that temperate 
broadleaves, apart from the late arrival Fagus, used to be considerably more 
abundant in the past in southern Sweden (Berglund 1991, Björkman 1996a, b, 
Björkman and Bradshaw 1996, Björse and Bradshaw 1998, Lindbladh et al. 
2000, Lindbladh et al. 2008, Lindbladh and Foster 2010).  

However, the study of the past cover of temperate broadleaved forest, 
which includes a broad spectrum of taxa, has been severely hampered by the 
very different properties of the plant taxa concerning pollen production and 
dispersal. These differences have been known since the introduction of pollen 
analysis (Hesselman 1916) and have affected our understanding of the land 
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area covered by a certain taxa or vegetation type, as the pollen proportions in 
the deposit do not equal the vegetation producing it.  
Whereas studies from the mid-20th century often focused on the impact of 
climate fluctuations (von Post 1946, Fries 1965, Iversen 1973), more recent 
publications emphasized also the importance of land use changes, such as 
clearance for cultivation and/or grazing (Rackham 1980, Thelaus 1989, 
Bradshaw et al. 1994, Lagerås et al. 1995, Lagerås 1996, 2000, Lindbladh et al. 
2000, Björkman 2002). Early detailed demonstrations of the impact of 
prehistoric people on vegetation in Scandinavia were carried out in the 1940’s, 
by Johannes Iversen (1941), but the interaction of humans and their 
environment is still among the priority research questions in paleoecology 
(Seddon et al. 2014). However, because many of the open land plant species, 
including grasses and cereals, produce comparatively little pollen and therefore 
are underrepresented in the pollen spectra, grazing by domestic animals and 
other agricultural activities are difficult to interpret using pollen percentages 
only (Vera 2000, Bunting et al. 2004, Sugita 2007a, b, Smith et al. 2010, 
Trondman et al. 2014).  

1.2.2 Modern land cover reconstructions 

A recently introduced method to quantify pollen data into more robust 
vegetation reconstructions is the Landscape Reconstruction Algorithm (LRA) 
(Sugita 2007a, b). The LRA has been validated in different parts of the world 
and in different landscapes, and has proven to facilitate reliable vegetation 
cover estimates for southern Sweden, both on a regional and local scale 
(Hellman et al. 2008, Fredh et al. 2012, Cui et al. 2013).  

By using pollen data from multiple small sites in southern Sweden and by 
applying the LRA, it is possible to gain a considerably better picture of the 
cover of temperate broadleaves at different points in time, as well as the 
general landscape development including agricultural practices. Furthermore, 
the more reliable estimates of vegetation cover provide better precision when 
studying the establishment and/or extinction of plant taxa; especially in the 
case of taxa with low pollen production, such as Tilia, as the probability of 
finding pollen from small populations of these taxa is low. The same is true for 
cereals and several other open land taxa and taxa indicative of anthropogenic 
activities. Hence, small populations might be overlooked in conventional 
pollen diagrams and therefore earlier conclusions of the timing of 
establishment or extinction may be faulty. Using the vegetation cover estimates 
provided by the LRA, also small populations can be studied with a 
considerably better precision. 
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1.3 Objectives 

The main objective of this thesis was to increase the knowledge about the 
development of temperate broadleaved forest in southern Sweden in a 
perspective of 5000 years. Specifically, my research aimed to assess the 
following issues: 

• What can be learned about the cover of temperate broadleaves in 
southern Sweden during the last 5000 years, by using multiple sites and 
the vegetation cover estimates provided by the Landscape 
Reconstruction Algorithm?  

• Today many protected forests in southern Sweden harbour large 
amounts of temperate broadleaves compared to the region as whole. Is 
this a pattern which has distinguished the presently protected areas also 
in a time perspective of thousand years or longer? 

• Climate is the most important driver of vegetation distribution on a 
continental scale, but what impact did land-use changes have on 
temperate broadleaves in different parts of the studied region and 
during different time periods? 

• During the studied 5000 years, climate deteriorated and human impact 
on vegetation increased. How did Tilia, which has been suggested to be 
sensitive to both, as well as indicative of original forest, develop during 
this period? 
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2 Methods 

2.1 Temperate broadleaves 

In Sweden, temperate broadleaves include the indigenous species Acer 
campestre (field maple), Acer platanoides (Norway maple), Carpinus betulus 
(hornbeam), Fagus sylvatica (beech), Fraxinus excelsior (ash), Prunus avium 
(wild cherry), Quercus robur (pedunculate oak), Quercus petraea (sessile oak), 
Tilia cordata (small-leaved lime), Tilia platyphyllos (large-leaved lime), Ulmus 
glabra (wych elm), Ulmus minor (small-leaved elm) and Ulmus laevis 
(European white elm), several of which are extremely rare in natural habitats 
today (Almgren et al. 2003). Temperate broadleaves are distinguished from 
boreal broadleaves such as Betula sp. (birch), Populus tremula (aspen) and 
Salix sp. (sallow) mainly by their more southern geographical distribution 
(Diekmann 1994). Although it is not traditionally considered a temperate 
broadleaved tree in Sweden due to its shrub-like stature (Almgren et al. 2003), 
also Corylus avellana (hazel) is included here based on its distribution in 
Sweden, which is very similar to that of Quercus (Hultén 1971). 

Temperate broadleaved forest is defined by Swedish law as forest covering 
≥ 0.5 ha forest land, where ≥ 70% of the basal area consists of broadleaves, > 
50% of which are temperate broadleaves, or ≥ 1 ha of forest land using the 
same composition but occurring on grazed land (Swedish Foresty Act 1979). 

2.2 Study area  

All study sites used in this thesis are located in southernmost Sweden (fig 1). 
Three sites per area (the areas being the protected areas Biskopstorp, Råshult, 
Siggaboda and Hornsö-Allgunnen) were used in order to study local 
differences in vegetation development using LRA reconstructions. The use of 
several sites provides better spatial resolution of vegetation cover (Hjelle et al. 
2012), and is also an important feature of the LRA. The large lakes used for the  
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Figure 1. Location of the studied sites in southern Sweden, and the studied region in a northern 
European perspective. The numbers correspond to the sites in table 1, and the green line roughly 
to the border between the temperate (southwest) and the hemi-boreal (northeast) vegetation zones. 

reconstruction of regional vegetation by the LRA are Lake Sämbosjön, Lake 
Trummen and Lake Kansjön (fig. 1, table 1). 

Although each pollen study has a specific and unique focus, the compilation 
of data from multiple formerly used sites provides an opportunity to explore 
also other vegetation patterns than the study was originally designed for 
(Mitchell 2010). In Paper II and III, data from several formerly published sites 
was included in the LRA reconstruction of vegetation on both local and 
regional scales (table 1). For Paper IV, pollen data from even more sites were 
compiled, and altogether 42 small sites in southern Sweden were analysed in 
order to gain better understanding of the development of Tilia (table 1).  
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Table 1. Pollen sites used in the thesis, and their respective original reference, site type, 
vegetation zone and paper.  

Nr. Site name Original publication Site type Vegetation 
zone 

Paper 

1. Hestra Björkman and Regnell 
(2001) 

Small peatbog Hemi-boreal IV 

2. Öggestorpsdalen Björkman (2003a) Small peatbog Hemi-boreal IV 
3. Avegöl Lagerås (1996) Small lake Hemi-boreal IV 
4. Bråtamossen Lagerås et al. (1995) Peatbog Hemi-boreal IV 
5. Rogberga Björkman (2003a) Fen Hemi-boreal IV 
6. 
7.  

Lake Kansjön 
Mattarp 

Cui et al. (2013) 
Björkman (1996a) 

Large lake 
Small peatland 

Hemi-boreal 
Hemi-boreal 

II 
IV 

8. Store mosse Björkman (2003a) Peatbog Temperate IV 
9. Alseda Björkman (2001a) Small peatbog Hemi-boreal IV 
10. Lake Sämbosjön Digerfeldt (1982) Large lake Temperate III 
11. Bocksten A Björkman (1996a) Very small fen Temperate IV 
12. Yttra Berg Sköld et al. (2010) Peatbog Temperate IV 
13. Lillegölen Paper II Peat bog Hemi-boreal II,III,IV 
14. Skärsgölarna Lindbladh et al. (2003) Small peatland Hemi-boreal II,III,IV 
15. Ekenäs Valdemardotter (2001) Peat land Hemi-boreal II,III,IV 
16. Flahult Björkman (1996a) Small peatland Hemi-boreal IV 
17. Lake Trummen Digerfeldt (1971) Large lake Hemi-boreal II,III,IV 
18.  Trälhultet Björkman (2000b) Small peatland Temperate III,IV 
19. Holkåsen Lindbladh et al. (2008) Peatland Temperate III,IV 
20. Kalvaberget Lindbladh et al. (2008) Peatland Temperate III,IV 
21. Osaby in-field Lindbladh (1999) Small peatland Hemi-boreal IV 
22. Osaby out-field Lindbladh (1999) Small peatland Hemi-boreal IV 
23. Baggabygget Björkman (2005) Very small fen Temperate IV 
24. Dömestorp Björkman (2002) Peatland Temperate IV 
25. Uddared Björkman (2000a) Small bog Temperate IV 
26. Råshult Lindbladh and Bradshaw 

(1995) 
Small peatland Hemi-boreal III,IV 

27. Nissatorpet Lindbladh and Bradshaw 
(1998) 

Peatland Hemi-boreal III,IV 

28. Djäknabygd Lindbladh and Bradshaw 
(1998) 

Small peatland Hemi-boreal III,IV 

29. Skogshyddan Björkman (2003b) Peatbog Hemi-boreal IV 
      
30. Exhult Björkman and Ekström 

(2003) 
Large peatbog Hemi-boreal IV 

31. Ellabrohult Hannon et al. (2010) Small peatland Hemi-boreal III,IV 
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32. Siggaboda/ 
Siggaboda core 

Björkman and Bradshaw 
(1996) 

Small peatland Hemi-boreal III,IV 

33. Crossroads/ 
Siggaboda 
crossroads 

Hannon et al. (2010) Small peatland Hemi-boreal III,IV 

34. Flinkasjön Björkman (2004) Lake Temperate IV 
35. Grisavad Lagerås (2007) Peatbog Temperate IV 
36. Östra Ringarp Lagerås (2007) Recently 

overgrown small 
lake 

Temperate IV 

37. Bjärabygget Lagerås (2007) Large peatbog Temperate IV 
38. Västragylet Björkman and Sjögren 

(2003) 
Small lake Hemi-boreal IV 

39. Ire Björkman and Sjögren 
(2003) 

Small peatland Hemi-boreal IV 

40. Kullaberg Björkman (2001b) Small peatland Temperate IV 
41. Skeakärret Lagerås (2002) Small peatland Temperate IV 
42. Häggenäs Lindbladh et al. (2007) Small peatland Temperate IV 
43. Vasahus Lindbladh et al. (2007) Small peatland Temperate IV 
44. Kyllingahus Lindbladh et al. (2007) Small peatland Temperate IV 
45. Torup Paper I Very small 

peatland 
Temperate I,IV 

 
2.2.1 Vegetation zones 

Two main vegetation zones dominate southern Sweden (fig. 1); the temperate 
zone (also known as the nemoral zone or the southern deciduous forest region) 
in southernmost and south-western Sweden, and the hemi-boreal (or boreo-
nemoral) zone in the north-eastern parts, as defined by Sjörs (1965). The two 
zones are not physically delimited, but their classification is based on a 
combination of factors, such as the regional climate, physiogeography, and the 
flora and fauna (Sjörs 1965, Ahti et al. 1968, Aldentun 1997).  

2.3 Pollen analysis 

Angiosperms (flowering plants) dominate the vegetation of most terrestrial 
ecosystems and consist of roughly 250,000 – 300,000 extant species 
worldwide, more than all other land plants combined (Crane et al. 1995). 
Pollen is the male sexual reproduction organ of angiosperms, and the 
individual pollen grains are very small (0.015-0.100 mm), but have relatively 
distinct shapes and surface structures (fig. 2) (Seppä 2007).  
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The cell walls of living pollen grains are made of two layers; an outer layer 
(exine) consisting of sporopollenin and an inner layer (intine), made of 
cellulose and very similar in construction to an ordinary cell wall. Whereas the 
intine decomposes soon after the pollen grain dies, the very resistant exine with 
its characteristic form and 
sculpture can remain for 
significant amounts of time 
(Moore et al. 1991). The resistant 
nature of the exine is taken 
advantage of in the laboratory 
treatment in order to remove as 
much other material as possible 
from the samples; organic 
material is removed using sodium 
hydroxide (NaOH) and acetolysis 
(acetic anhydride (CH3CO)2O + 
sulphuric acid H2SO4), and 
mineral material is removed using 
hydrofluoric acid (HF) (Berglund 
and Ralska-Jasiewiczowa 1986). 

In the late 19th century, bogs became a focus of interest in Scandinavia in 
order to study changes in climate over time, using pollen (micro fossils) and 
other parts of plants, such as leaves, flowers or buds (macro fossils) (Blytt 
1886). This interest was soon widened to comprise also the study of vegetation 
development (Sernander 1908, von Post 1916). In the early 20th century, pollen 
analysis was revolutionized by the Swedish geologist Lennart von Post (fig. 3) 
by introducing pollen diagrams, and his dissertation in 1916 is usually seen as 
the start of pollen analysis, or palynology, as a method for reconstructing past 
landscapes (Traverse 1988). Pollen analysis provides a proxy for vegetation 
communities on spatial scales from continental biomes to forest stands 
(Mitchell 2010), and temporal spectra from the extinction of dinosaurs 65 
million years ago (Vajda et al. 2001) to studies of the last few centuries with a 
temporal resolution of decades (Fredh et al. 2012). 

Figure 2. Tilia pollen grain. Photo: Fredrik Olsson, 
photo editing: Lina Hultberg 

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Hydrogen
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Figure 3. Lennart von Post during the recovery of Bulverket, a wooden fortification at the bottom 
of Lake Tingstäde träsk, Gotland, Sweden. Photo: Ture J. Arne 1927, from the National Heritage 
Board archive. Expired copyright. 

2.4 Quantitative vegetation reconstructions 

Despite the benefits of conventional pollen analysis, the results of it do not 
simply equal the vegetation that once produced the pollen. The most 
fundamental reason for the mismatch between pollen proportion and vegetation 
cover is connected to the fact that all plant taxa do not produce equal amounts 
of pollen. The pollen production is greatly dependent on the dispersal strategy 
of the plant, and plants relying on pollen dispersal by animals typically produce 
considerably less pollen than plants adapted to wind-pollination (Faegri and 
Iversen 1989).  

The problem of overcoming these differences and translating pollen data 
into quantitative vegetation reconstructions is as old as palynology itself 
(Hesselman 1916, von Post 1916). However, the effort on identification of 
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pollen taxa during the 1930s and 1940s gave rise to intense analytical work 
(Kristiansen 2002), and in the mid-20th century several researchers started 
renewed work on the matter of translating pollen percentages into vegetation 
shares (Erdtman 1946, Anonymous 1947, Fagerlind 1952). Davis (1963), 
suggested R-values (R for ratio) by comparing the pollen percentage in modern 
lake sediment to the percentages of different tree taxa in the surrounding forest 
in Vermont, US. Several refinements of the approach was presented (Andersen 
1970, 1973) and with time the model was transformed into the Extended R-
values (ERV) model (Parsons and Prentice 1981, Prentice and Parsons 1983) 
also known as the Prentice-model. The Prentice-model was from the early 
1990s onwards extended into the Prentice-Sugita model.   

2.4.1 The Landscape Reconstruction Algorithm 

A more recent tool is the Landscape Reconstruction Algorithm (LRA), 
developed by Sugita (1993, 2007a, b). This is an approach which uses the 
various ERV models, as well as an adaptation of the R-value model and other 
concepts. The LRA is a multistep framework for quantitative reconstruction of 
vegetation. It consists of two models; REVEALS (Regional Estimates of 
VEgetation Abundance from Large Sites) and LOVE (LOcal Vegetation 
Estimates). REVEALS estimates regional vegetation composition within 104-
105 km2 using pollen from large lakes, i.e. lakes ≥ 100-500 ha in size (Sugita 
2007a). In the regional vegetation reconstructions presented in this thesis 
(Paper II-IV), 1-2 large lakes were used. This is sufficient for the application of 
the LRA, yet even more robust estimates would have been obtainable if more 
lake records had been available.  

These reconstructions in turn are used in the application of the LOVE model 
(Sugita 2007b) together with pollen data from small sites to calculate the 
background pollen, the RSAP (Relevant Source Area of Pollen) of these small 
sites and estimate local vegetation cover within this RSAP.  

A benefit of using formerly published pollen records is that considerably 
more sites can be used than would otherwise be possible. A downside is that 
studies are rarely carried out in exactly the same way. Common variations are 
the number of pollen levels (subsamples extracted from the sampled sediment 
core), the number of radiocarbon dated subsamples used for age determination, 
and differences in pollen counts (i.e. how many pollen grains were counted at 
each level). The LRA can be applied to samples of low pollen counts, but the 
result will be less reliable and often have large standard errors. The same is 
true for individual taxa with low pollen counts (such as Cerealia in many 
studies, e.g. Paper III).  
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The LRA is still experimental, but REVEALS and/or LOVE have been 
validated in Michigan and Wisconsin, US (Sugita et al. 2010), Denmark 
(Nielsen and Odgaard 2010), Switzerland (Soepboer et al. 2010) and southern 
Sweden (Hellman et al. 2008, Cui et al. 2013, Cui et al. 2014a). In order to 
estimate the vegetation cover, several important parameters are required, such 
as pollen production estimates (PPE) and fall speed. Both are assumed to be 
constant through time (Sugita 2007a, b, Sugita et al. 2007), yet PPES can differ 
between geographical regions (Mazier et al. 2012). Other factors influencing 
the PPE is the age at which trees start to flower, as well as the structure and 
light conditions in the forest (Matthias et al. 2012). Examples of taxa known to 
produce little or no pollen in shaded forest conditions are Corylus, Quercus and 
Tilia (Pigott 1991, Vera 2000). 

In the following text, proportions of taxa based on pollen percentages will 
be referred to as such, whereas vegetation proportions as estimated by the LRA 
will be referred to as vegetation cover. 

2.5 Site selection 

When selecting a study site, a rule of thumb is that the larger the wetland, the 
larger the terrestrial surroundings reflected (Jacobson and Bradshaw 1981). 

The majority of the studied sites 
in this thesis (fig. 1, table 1) were 
chosen in order to reflect local 
forest conditions in southern 
Sweden (fig. 4), and are hence 
small sites, mainly so called 
small forest hollows. Small forest 
hollows is not an exact 
definition, but usually refers to 
wetlands of ≤ 1 ha (Overballe-
Petersen and Bradshaw 2011), in 
opposite to e.g. larger wetlands, 
or lakes such as the ones used to 
reflect the regional vegetation in 
Paper II, III and IV. 

 
 
Figure 4. Sampling of the wetland 
Lillegölen using a Wardenaar sampler, 
2009. Photo: Matts Lindbladh. 
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The surrounding reflected by a certain wetland is commonly known as the 
“pollen source area” (Jacobson and Bradshaw 1981) or the “Relevant Source 
Area of Pollen” (RSAP) (Sugita 1994, Sugita et al. 2007), which is the area 
beyond which the pollen-vegetation correlation does not improve. The pollen 
proportion is inversely proportional to the distance from the source (Janssen 
1972) and despite that fairly large shares (≥ 50%) of the pollen can come from 
outside the RSAP in a small forest hollow, the pollen proportion within the 
RSAP is sufficient to record the stand scale vegetation heterogeneity (Sugita 
1994, Calcote 1995).  

2.6 Charcoal analysis 

Fire is an important ecological function able to affect vegetation in a wide 
range of ecosystems (Finsinger et al. 2014). One direct method of estimating 
fire frequencies in the past is by charcoal analysis. The charcoal fragments can 
be extracted by soaking the sampled sediment in sodium hydroxide (NaOH) 
overnight and sieving the remains. The findings are usually separated into 
macrocharcoal (>0.5 mm) and microcharcoal (0.15-0.5 mm). Most techniques 
quantify charcoal as either the total number of pieces or the surface area (mm2) 
of charcoal in a particular age class (Higuera et al. 2010). Charcoal analysis 
using the total number of macrocharcoal pieces was used in Paper I. 

2.7 kNN 

kNN Sweden are spatially explicit countrywide estimates of forest attributes 
derived from satellite images and National Field Inventory (NFI) data (Reese et 
al. 2002, Reese et al. 2003). The datasets owe their names to the estimation 
algorithm used – k Nearest Neighbour (kNN). In average, some 1250 NFI plots 
(6-years’ time span) are used in the estimation of one satellite scene (Reese et 
al. 2003). The size of pixels is 25*25 meters, and the estimated attributes are 
standing wood volume by tree species, mean stand age, height and total 
biomass.  

The method is rather new, but has already been used in ecological research 
(Lindbladh et al. 2011a) as well as for the Swedish National Forest Inventory 
(2014). In Paper III, kNN is used to estimate the present vegetation of the 
studied protected areas, as well as the regional vegetation of southern Sweden. 
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2.8 Radiocarbon dating 

The most common method for absolute dating of organic material younger than 
50,000 years is radiocarbon dating. The method was developed in the 1940’s 
and is based on the fact that all living organisms absorb carbon dioxide from 
the atmosphere (Bowman 1990). The carbon in the carbon dioxide occurs in 
three isotopes, one of which (14C) occur in extremely low proportions 
compared to the other two, yet deviates from them by being weakly radioactive 
and decays to 14N with a half-life of 5570±30 years (Walker 2005).  

In principle, the 14C formation and decay is in equilibrium in all living 
organisms, yet when an organism dies and ceases to take up carbon 
dioxide, 14C decays, and no new 14C is absorbed (Bowman 1990). How 
much 14C is left in relation to 12C at a certain point in time is hence a measure 
of the time elapsed since the organic matter died (Andréasson 2006). Today the 
Accelerator Mass Spectrometry (AMS) technique, which detects the specific 
elements and hence requires considerably smaller samples, is readily used 
(Bowman 1990). All ages in Paper I-IV are based on radiocarbon datings, and 
in the pollen studies original to this work (in Paper I and III), AMS dating 
technique is used. 

Since the 14C/12C ratio has not been stable through time, radiocarbon years 
need to be calibrated into calendar years (Olsson 1986, Walker 2005, 
Andréasson 2006). Different methods of calibration can be used. The ones used 
here is Oxcal (Ramsey 1995, Ramsey and Lee 2013) (Paper I) and Clam 
(Blaauw 2010) (Paper II-IV). The total uncertainty of the dating is dependent 
not only on the uncertainty in the age determination and possible 
contamination, but to a large extent also on the precision of other 
measurements, such as the distance between samples in a core. The resultant 
radiocarbon years are given with ±σ statistical certainty (Olsson 1986) and 
presented in years before present (BP). This “present” is however not moving 
forwards as time passes, but is set to 1950 (Walker 2005). 

2.9 Other possible methods for studying past vegetation 
changes 

In this thesis, mainly forest composition and cover of different species in a 
time perspective of 5000 years were studied, using pollen data and LRA 
vegetation reconstructions. However, also plant macro fossils such as leaves, 
flowers or buds, as well as stomata from coniferous needles could have been 
used for the study of long-term forest composition (Hannon 1999, Ammann et 
al. 2014). The area reflected by these methods is however considerably more 
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local than using pollen, and there are presently no methods for converting such 
data into vegetation cover.  

Fossil beetle remains is another possible proxy for past tree species 
distribution (Whitehouse and Smith 2010), and the technique can also be used 
for studying qualitative aspects of forests, such as tree size, tree age and stages 
of decay, as many beetle taxa have very specific habitat requirements (Jonsell 
et al. 1998, Dahlberg and Stokland 2004). Analysis of fossil beetle remains was 
tested within the frame of this doctoral project, yet proved to require 
substantial amounts of sediment, as well as very specific skills in beetle species 
identification, and was therefore not possible to fit into the present work. 

For shorter time sequences, maps and land surveys of different kinds can be 
used for tracing vegetation changes over a couple of centuries, both concerning 
forest cover and composition on a landscape scale (Paper I) (Lindbladh et al. 
2011b) and disturbances such as wind and fire (Schulte and Mladenoff 2005).  
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3 Results 

3.1 Paper I 

The aim of the study was to gain a better understanding of the forest continuity, 
in a presently forested area surrounded by an agricultural landscape, but also of 
the local history of Fagus sylvatica. Torup Forest is located in southernmost 
Sweden, and is the very last forest outpost in a densely populated area heavily 
characterized by agriculture and developments, but the forest is also a regional 
core area for biodiversity associated with temperate broadleaves. Torup is 
mainly used for recreational purposes, yet not formally protected. The 360 ha 
forest is presently dominated by Fagus sylvatica. Pollen and charcoal analysis 
were carried out on sediment from a small forest hollow and chronological 
control was obtained by six 14C dates. 

The pollen analysis revealed that mainly Alnus, in combination with small 
amounts of pollen from other deciduous trees, dominated the site from ~6000 
BP to 2300 BP, whereas open land taxa such as grasses and herbs, as well as 
anthropogenic pollen indicators, were rare. Fagus became detectable in the 
pollen record around 3000 BP, around the same time as continuous curves of 
cereals and other anthropogenic indicators appeared. By 2300 BP, the 
proportion of tree pollen started to decrease, and open land pollen proportions 
indicated considerable areas of open land. From around 700 BP onwards, 
several non-arboreal pollen taxa decreased somewhat, while Cerealia and 
Fagus continued to increase almost uninterrupted up to present. During the 
same period, all other temperate broadleaves decreased. The only findings of 
conifers in the pollen record were from the last couple of centuries, most likely 
as a result of planting for timber production.  

The results suggest that the present dominance of Fagus in Torup is 
relatively new, and a conclusion based on the study is that present high 
biodiversity depends more on the continuity of temperate broadleaved forest in 
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general than on the continuity of particular tree species. The long-term 
development of the studied site is very similar to those of other sites in the 
region, mainly concerning the development of Fagus, but to some extent also 
Quercus. The dissimilarities of these sites, which were emerging around 2000 
BP, are interpreted as differences mainly in the intensity of human impact.  

3.2 Paper II 

The Hornsö-Allgunnen area in south-eastern Sweden has for a century been 
acknowledged as an insect hotspot. It is considered to host the most species-
rich insect fauna in northern Europe; in particular many rare, wood-associated 
insects have been found here. Several hypotheses for this high biodiversity has 
been put forward, but never tested for more than small parts of the area. At 
present the 9000 ha semi-protected “eco-park” is dominated by Picea abies 
(Norway spruce), Pinus sylvestris (Scots pine) and Betula sp. In this study 
three small wetlands were used, which together comprise a considerably larger 
area than previously studied, and the vegetation cover was estimated using the 
LRA. 

The results showed important similarities between the studied sites during 
the last 3000 years, mainly concerning the large estimated cover of Pinus and 
other light-demanding taxa such as Calluna (heather), Betula and Poaceae. The 
relatively light-demanding Quercus seems to have a different history in 
Hornsö-Allgunnen than in the surrounding region, as well as in southern 
Sweden in general. In large parts of the Hornsö-Allgunnen area Quercus 
sustained during the 19th and 20th centuries, while it decreased in the rest of 
southern Scandinavia. This could be important for the present biodiversity, as 
Quercus has more other taxa associated with it than any other tree genus in 
Sweden. Also, the comparably large share of Pinus and the late establishment 
of Fagus and Picea indicate that the forests of the study area differed from the 
general tree species composition in the region during most of the studied 
period. 

The study suggests that the Hornsö-Allgunnen area has been covered by 
continuously open forest, dominated by light-demanding and fire-favoured 
species such as Pinus, Calluna and Betula for at least three thousand years, 
whereas temperate broadleaves other than Quercus have been rare. The very 
few findings of anthropogenic indicators show that agriculture most likely was 
not the main disturbance behind the openness, although small scale agriculture 
might have contributed to some extent. Rather than agriculture, the data from 
this and other studies of the area point to fire as an important factor 
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contributing to long-term openness and hence to the biodiversity of the forest 
in Hornsö-Allgunnen in the past.  

3.3 Paper III 

Formally protected areas are important in the effort to preserve biodiversity. 
For forest biodiversity in particular, tree species composition, and the 
continuity of that tree species composition, have been suggested as some of the 
most important aspects. In southern Sweden, the high contemporary 
biodiversity of many protected areas has been partly explained by the high 
proportions of temperate broadleaves relative to their surroundings. In order to 
test whether the proportion of broadleaves in these protected areas have been 
distinct from the region in general also in a time perspective of thousand years 
or longer, the LRA was applied to pollen data from four protected areas 
dispersed over southern Sweden.  

Despite differences among the sampled protected areas, the results show a 
common pattern of continuity in vegetation cover up to the most recent 500 
years, in which a) proportions of open land taxa increased; b) Picea and Fagus 
established; and c) temperate broadleaves declined to all time low proportions. 
Up to 500 BP, both temperate and boreal broadleaves were considerably more 
abundant than at present in all studied protected areas, although mixed with 
Pinus in the eastern areas. Only very low proportions of anthropogenic 
indicators were found in any of the areas and in some cases none at all. Today, 
the Picea cover is even larger than estimated by LRA for the last 500 years, 
and constitutes 20-69% of the vegetation in the studied protected areas.  

The results suggest that the studied protected areas maintained forest cover 
and considerably larger proportions of temperate broadleaves up to rather 
recently as compared to the surrounding region; at most sites in the protected 
areas, open land taxa did not increase until during the most recent 500 years. 
Apparently, the biodiversity value of these areas remain despite that the 
proportions of temperate broadleaves are lower during the latest time window 
than ever before. The study hence emphasises the value of the considerably 
longer time perspective provided by paleoecology, which could be crucial to 
understand vegetation changes further back in time than one or two tree 
generations.  
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3.4 Paper IV 

Although a rare element in Swedish forests today, Tilia (lime tree) was once a 
dominating tree genus both in southern Sweden and in other parts of northern 
Europe. The Tilia decline has traditionally been attributed to climate change 
towards colder and wetter conditions during the Bronze Age. Despite its often 
radical decline, the timing and causes behind it is not completely unravelled, 
probably partly as a result of the difficulty to quantify the past occurrence of 
Tilia due to its low pollen production. In this study, pollen data from 42 sites in 
southern Sweden were compiled in order to trace regional patterns concerning 
the development of Tilia as reflected by pollen percentages. Furthermore the 
Landscape Reconstruction Algorithm was applied to pollen data from 12 of 
these sites in order to assess vegetation cover, of Tilia as well as other taxa, 
regionally and locally through time. 

The study shows that Tilia was most abundant in southern Sweden around 
6000 BP, during the warm period known as the Holocene Thermal Maximum 
(HTM). After 4000 BP the genus decreased in the hemi-boreal zone, most 
likely connected to the climate deterioration at that time. In the temperate zone 
however, it persisted at similar levels as during the HTM up to at least 1300 
BP, and at some sites even longer. The decline in the temperate zone occurred 
in close temporal connection with an increase in cereal pollen and decreasing 
tree cover, and it can be concluded that the development of Tilia in the 
temperate zone most likely was highly affected by human disturbance, such 
agricultural management.  

A similar pattern, with local persistence of Tilia up till 1000-500 BP, or 
even longer, can be seen among the LRA sites. Furthermore, the vegetation 
cover as estimated by the LRA confirms the underestimation of Tilia using 
pollen percentages, and suggests that it might have been up to five times more 
abundant than reflected in the pollen data.  
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4 Discussion 

4.1 Quantitative vegetation reconstructions of past forests 

The research presented in this thesis has contributed to considerably improved 
understanding of the cover of temperate broadleaves in southern Sweden. 
Although the study of temperate broadleaves in the area using paleoecological 
techniques is not new, the cover of temperate broadleaves has been difficult to 
interpret due to the different pollen properties of the many taxa involved. In 
Paper II, III and IV, the LRA was applied to pollen data from sites dispersed 
over southern Sweden in order to facilitate better understanding of the 
development of temperate broadleaves in the area. The results of these studies 
confirm the underestimation of tree taxa such as Tilia and Picea and the 
overestimation of Betula, Fagus and Quercus, but also the underestimation of 
several common open land taxa such as Calluna and Poaceae, as well as 
cereals (Paper II-IV) (fig. 5). In addition to the better understanding of the 
abundance of individual taxa which our analyses provide, a benefit of the use 
of vegetation cover as estimated by the LRA relative to pollen percentages is 
the possibility to cluster the cover of different taxa into vegetation types, such 
as temperate broadleaves. Furthermore, the historical development of taxa 
uncommon in pollen analysis due to its low pollen production, such as Tilia 
and cereals, can be studied with a considerably better precision using the LRA. 

However, pollen from some tree taxa, including the temperate broadleaves 
Acer (maple), Fraxinus (ash) and Carpinus (hornbeam) are rarely found in 
Holocene sediments from southern Sweden regardless of time period. Even 
using the LRA, the estimates of vegetation cover of these taxa are therefore 
very low and scattered, and difficult to discuss with any certainty.  
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4.2 The primeval forest and decline of temperate broadleaves 

At the start of the studied period, by 5000 BP, temperate broadleaves 
dominated large parts of southern Sweden, although with variation both on a 
regional and local spatial scale (Paper I, II, III). All temperate broadleaves 
presently considered indigenous in Sweden had by then migrated into the 
region, except the late arrivals Fagus sylvatica and Carpinus betulus (Almgren 
et al. 2003). The regional abundance of temperate broadleaves followed a west-
eastern gradient with considerably higher cover in the western areas (close to 
90% locally in both Biskopstorp and Råshult during the oldest time windows) 
(Paper III) and lower in the eastern (maximum 27% of the vegetation cover at 
any time window at Hornsö-Allgunnen) (Paper II, III). Temperate broadleaves 
declined in the western temperate region from the start of the studied period, 
but was not replaced by another forest type, but mainly by open land. During 
these 5000 years, the estimated tree cover decreased from 84% to 18%, and in 
the last couple of centuries the region was dominated by open land (Paper III). 
The early and marked decline of temperate broadleaves in the western 
temperate zone is very similar to the development in Denmark, where the 
forest was largely replaced by arable land and Calluna (Odgaard and 
Rasmussen 2000, Nielsen et al. 2012). 

 
Figure 5. An example of the differences between vegetation cover and pollen percentages. Pollen 
percentages (left) and vegetation cover, with standard errors, as estimated by LOVE (right) of 
selected taxa, Råshult. 
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The pattern in the hemi-boreal zone was similar, although it occurred later and 
was less obvious. While the cover of temperate broadleaves decreased 
somewhat from 2500 BP simultaneous to a decreasing forest cover, the cover 
of Pinus and boreal broadleaves remained more or less unchanged up to 1500 
BP. During the most recent time window, temperate broadleaves covered 12%, 
relative to >50% at the start of the period (Paper III). The low tree cover (20%) 
along the west coast and the somewhat higher in the inland region (55%) 
during the last 500 years (Paper III) is consistent with Kaplan et al. (2009), 
suggesting that deforestation mainly occurred along the coasts of southern 
Sweden, whereas the inland remained >50% forest covered as late as 150 BP.  

Around 2000 BP, Fagus established in the temperate zone and Picea in the 
hemi-boreal (Paper II, III), consistent with Fagus immigrating from southwest 
(Björkman 1996a, Bradshaw and Lindbladh 2005, Berglund et al. 2007) and 
Picea from northeast (Bradshaw and Lindbladh 2005). The establishment of 
Fagus and/or Picea has been suggested to be of crucial importance for the 
development of the other temperate broadleaves in Scandinavia, as they often 
coincide with decline of these taxa in pollen studies (Bradshaw and Lindbladh 
2005, Seppä et al. 2009a). This close temporal connection was found also in 
Paper III, where Picea, and locally also Fagus became important at stand scale 
during the most recent 500 years, a period of large changes in forest 
composition at the local scale. 

4.3 Climate change or human impact? 

Climate is the ultimate driver of the distribution and abundance of trees on a 
continental and long-term temporal scale (Huntley and Webb 1989, Svenning 
et al. 2009). As climate changed towards colder and wetter conditions during 
the studied period (Moberg et al. 2006, Seppä et al. 2009b), borealization of the 
vegetation, i.e. the selective decline in thermophilous temperate broadleaves 
relative the more boreal taxa (broadleaves as well as conifers) could be 
expected. Such a shift in the long-term development can be seen in Paper III 
and IV, yet the pattern is complex as the temperate broadleaves were probably 
not directly replaced by this new forest type, but mainly by open land.  

There are also clear connections between the temperate broadleaves’ 
decline and climate. For Tilia, climate was probably the most important 
determinant in the hemi-boreal zone, whereas in the more southern temperate 
zone, the persistence of Tilia until considerably later indicates that local 
factors, such as land use changes, might have been more important (Paper IV). 
For temperate broadleaves in general, as well as estimated forest cover, the 
decline started earlier and was considerably more marked in the temperate zone 
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than in the hemi-boreal (Paper III), contrary to what would have been expected 
if a harsher climate in the hemi-boreal zone would have been the sole cause for 
the decline. Furthermore, the local sites remained covered by temperate 
broadleaved forest considerably longer than the region in general, a difference 
in timing emphasising the importance of local disturbance factors (Paper III). 

A reasonable conclusion is that climate fluctuations have been crucial for 
the persistence of temperate broadleaved species close to their distribution 
limit, such as Tilia (Pigott and Huntley 1981). However, the difference in 
timing of temperate broadleaves’ decline between the zones as well as the 
temporal connection to a decreasing tree cover, both as estimated by the LRA 
(Paper III, IV) and pollen percentages (Paper I), suggests that although climate 
has most likely been an important determinant, the role of human land use for 
the development of temperate broadleaves should not be underestimated. 

4.4 Land-use changes 

The negative impact of human activities on the historical development of 
temperate broadleaves in southern Sweden has been emphasised also by earlier 
studies (Berglund 1969, 1991, Bradshaw et al. 1994, Lindbladh 1999, 
Lindbladh et al. 2000, Berglund and Börjesson 2002, Lindbladh et al. 2007, 
Sköld et al. 2010). But what kind of land-use changes were they? 

4.4.1 Arable land 

A human disturbance which can be inferred with certainty from pollen analysis 
is the cultivation of cereals, as these do not grow in natural environments 
(Behre 1981, 1988, Gaillard 2013). In the western temperate zone, cultivation 
of cereals occurred in increasing proportions from 5000 BP according to the 
studied regional sites (Paper III). During the most recent time windows, almost 
half the vegetation cover of the region consisted of cereals, in combination 
with the anthropogenic indicators Plantago lanceolata (ribwort plantain) and 
Rumex sp. (sorrel) (Paper III). This development is comparable to the cover of 
these taxa in Denmark and northern Germany during the same period (Nielsen 
et al. 2012), yet considerably higher than in the hemi-boreal zone (Paper III), 
where cereals and anthropogenic indicators constituted maximum 16% of the 
estimated cover during the most recent 500 years.  

Among the local sites for which vegetation cover was reconstructed (Paper 
II, III) the cover of cereals and anthropogenic indicators was considerably 
lower, and almost exclusively occurred in the temperate zone. This apparent 
difference of agricultural indicators on a local scale compared to regional 
might be an effect of the sites biased to presently forested areas, partly due to 
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the general lack of wetlands in the modern agricultural landscape due to 
drainage.  

Although small scale cultivation of cereals in a forested landscape can be 
difficult to detect, as the small proportion of cereal pollen becomes “invisible” 
in the tree pollen matrix (Hicks 1998), the compilation of 42 small pollen sites 
in southern Sweden show that cultivation of cereals can be detected also on a 
local spatial scale (Paper IV). In both zones the mean cereal pollen for these 
sites increased around 1200 BP, and the highest mean pollen proportions 
(around 2%) were found 300 BP, and correspond to approximately twice as 
much as both present time and the time before 500 BP (Paper IV).  

4.4.2 Meadows and grazing 

Whereas cereals were abundant on a regional scale, the local decline in 
temperate broadleaves mainly occurred in temporal connection to increased 
cover of open land (Paper III) (fig. 6). Although grasslands cannot be used as 
indicators of human impact per se, as they are also natural habitats (Gaillard 
2013), abrupt changes are often associated with human activities.  

 
Figure 6. Estimated cover of all studied hotspot sites in Paper III. Temperate broadleaves: Acer, 
Carpinus, Corylus, Fraxinus, Quercus, Tilia and Ulmus. Boreal broadleaves: Alnus, Betula and 
Salix. Open land: Calluna, Cyperaceae, Filipendula, Juniperus, Poaceae and Ranunculus. 
Agriculture: Cerealia, Secale, Rumex and Plantago lanceolata.  

Up to the late 19th century, grasslands were of considerable areal extent 
according to historical sources, usually at a ratio of at least 2:1 compared to 
arable land (Cousins 2001) based on the importance of nutrient circulation 
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using animal manure as fertilizer (Berglund et al. 2014). Traditional Swedish 
agriculture divided land into infields and outland. The infields were located 
close to the settlements and consisted of fenced arable land and hay meadows 
on fertile soils (Myrdal 1998, Dahlström 2006, Berglund et al. 2014). The 
meadows were often partly wooded with deciduous trees and shrubs which 
were pollarded or coppiced for winter fodder (Sjöbeck 1932, Häggström 1998, 
Slotte 2000). The outlands on the other hand were located outside the village 
itself, on poorer soil and often shared among several villages, and usually 
grazed by domestic animals (Sjöbeck 1932, Dahlström 2006, Berglund et al. 
2014). This forest grazing became increasingly important during the last 
millennium, and was area-wise a dominating land-use during the 19th century 
(Dahlström 2006). The combined effect of these; creation of arable land and 
wooded meadows together with forest grazing, which were all abundant during 
the last 500 years, are reasonable causes for the reduction in tree cover during 
this period as seen in Paper III. 

In some areas, both in southern Sweden and other parts of Scandinavia, 
intense grazing in combination with slash-and-burn cultivation, or 
deforestation in combination with overgrazing, resulted in heathlands 
(Overland and Hjelle 2009, Hjelle et al. 2010, Berglund et al. 2014). The very 
low estimated forest cover (≤ 20%) during the last 1000 years in the western 
temperate zone could be a reflection of this (Paper III). There, Calluna may 
have replaced temperate broadleaves around 200 BP, at least partly due to 
overgrazing on sensitive sand areas, and burning of heather for improved 
grazing (Lindbladh et al. 2011b). Although most likely less abundant on a 
regional scale (Paper III), Calluna heaths did occur also in parts of the hemi-
boreal zone (Cui et al. 2013, Cui et al. 2014a). The comparably large cover of 
Calluna and low tree cover in Hornsö-Allgunnen (Paper III) is however not 
likely to be a result of overgrazing, but rather of dry soils in combination with 
recurring fires, as the large proportion of open land cover as well as the 
abundance of Calluna is consistent throughout the studied period (Paper II). 

The disappearance of meadows 
Neither Picea nor Fagus were generally tolerated in wooded meadows or other 
grasslands, due to the negative effect on grazing caused by the shading Fagus 
(Sjöbeck 1932) and the inappropriateness of Picea for pollarding for animal 
fodder (Björkman 1996a, Nilsson 1997, Lindbladh and Bradshaw 1998, 
Kullberg and Bergström 2001). 

Meadows and grazed land were most extensive in the late 19th century 
(Morell 2001, Dahlström 2006), and still in the beginning of the 20th century 
meadows comprised 3.8 million hectares, corresponding to almost 10% of the 
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land area in Sweden (Bernes 2014). During the latest century, meadows were 
converted into arable land or planted with forest, and as forest grazing were 
abandoned, at some places as late as in the 1930s, also the outlands developed 
into forest (Dahlström et al. 2006). To a large extent, these formerly open areas 
were colonized by Fagus and Picea, probably as an effect of the cessation of 
the traditional agricultural management (Fredh et al. 2012). 

Figure 7. The present Fagus forest at Torup. Photo: Tove Hultberg. 

Fagus is known to benefit from human disturbance (Björkman 1996a, 
Lindbladh et al. 2008), and in some areas its colonization was appreciated and 
even favored on the land owned by the nobility, as it was beneficial for pigs 
feeding and hunting (Lindqvist 1931, Sjöbeck 1932, Fritzboger 1994). For 
Torup (Paper I) this could be an important reason underlying the present 
dominance of Fagus (fig. 7) as the establishment of a noble estate in the area 
around the 14th century coincides with the main Fagus expansion at the site. 

However, also Picea, which has been suggested to be less dependent on 
human impact for its establishment before the industrial forestry started in the 
mid-20th century (Giesecke 2005, Seppä et al. 2009a, Bialozyt et al. 2012) 
might have benefited from the disturbance as its immigration took place into a 
landscape opened up by forest grazing by domestic animals, which most likely 
favoured its rapid dispersal (Björkman 1996a, Lindbladh et al. 2014). 
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4.4.3 Fire 

All cultivation, as well as to some extent grazing, requires open land, and some 
forest clearance has therefore been as prerequisite for agriculture in most areas 
(Kalis et al. 2003). One way of clearing forest is by fire, and many areas in 
southern Sweden have frequently experienced both natural fires and human 
caused fires (Niklasson and Drakenberg 2001, Olsson et al. 2010, Cui et al. 
2014b).  

At Torup (Paper I), traces of 
fire mainly occur 2000-600 
BP, which is also a period 
where we see other clear 
indications of human 
impact; sudden decrease in 
the original forest indicators 
Tilia and Alnus 
simultaneous to increases in 
cereals, grasses and herbs. 
The cessation of fire at 
Torup at 600 BP 
corresponds rather well with 
the suggested cessation of 
fires around 500 BP in the 
temperate zone in general 
(Bradshaw et al. 2010). 
 
 
 
 
 
 
 
 
 
 
Figure 8. Controlled burning for 
conservation purposes in a nature 
reserve in south-eastern Sweden. 
Photo: Tove Hultberg 
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In the hemi-boreal zone (fig. 8), fires were generally more abundant and ceased 
later (Niklasson and Drakenberg 2001, Bradshaw et al. 2010). At Hornsö-
Allgunnen (Paper II), recurring fires are suggested to have shaped the 
landscape up to the 20th century (Niklasson and Drakenberg 2001, Lindbladh et 
al. 2003, Niklasson et al. 2010), probably partly as a result of dry soils due to 
the very low annual precipitation (Alexandersson et al. 1991) in combination 
with the highest density of lightning ignitions in Sweden (Granström 1993). 
Throughout the studied 5000 years, the area was dominated by fire-favoured or 
fire-resistant taxa such as Pinus in combination with Calluna (Zackrisson 
1977, Nilsson 1997). The cover of temperate broadleaves are considerably 
lower than at the other studied areas (Paper III), probably due to the negative 
impact of fire on these taxa (Bradshaw et al. 2010).  

Despite the low cover of temperate broadleaves (Paper II, III), Hornsö-
Allgunnen is considered to host the most species-rich insect fauna in northern 
Europe; in particular many rare, wood-associated insects are found in the area 
(Nilsson and Huggert 2001, Ehnström and Axelsson 2002). Among the areas 
used for vegetation reconstructions, Hornsö-Allgunnen was by far the most 
open during the entire studied period (Paper III). The recurring fires probably 
created important sun-exposed habitats, which are preferred by 24% of the 
wood associated red-listed insects in Sweden (Jonsell et al. 1998, Dahlberg and 
Stokland 2004). Moreover, around 5% of the wood associated insects in 
southern Sweden are specifically dependent on burned wood (Jonsell et al. 
1998), and the late cessation of forest fires in the area as compared to many 
other parts of southern Sweden is likely to have been crucial also for them.  

4.5 Tilia as a case study 

An interesting element of the decline in temperate broadleaves during the last 
5000 years is the genus Tilia. Tilia is considered to be indicative of original 
forest, i.e. forest more or less unaffected by human activities (Rackham 1980, 
Lindbladh et al. 2000, Bradshaw et al. 2005). It has been pointed out as a 
dominating tree taxa in primeval forests in northern Europe (Iversen 1973, 
Birks et al. 1975, Berglund 1991), in some areas present in extreme 
abundances in the past (Grieg 1982). Furthermore, the genus has been pointed 
out as sensitive to changes towards colder climate (Pigott and Huntley 1981) as 
well as to human exploitation of woodland (Pigott 1991), both of which 
occurred during the 5000 years included in this study. Today, Tilia is a mere 
curiosity in southern Sweden, constituting around 0.1% of the total volume on 
productive forest land (Official Statistics Sweden 2014).  
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Our compilation of data from 42 pollen sites in southern Sweden shows that 
Tilia was most abundant in southern Sweden around 6000 BP, during the 
Holocene Thermal Maximum (HTM) (Paper IV), which fits well with the 
notion of Tilia as a thermophilous taxa (Pigott and Huntley 1981, Pigott 1991).  

However, the dynamics of Tilia as reflected in Paper IV is not just a general 
increase and decline connected to a changing climate. In the temperate zone, in 
spite of the climate deterioration, Tilia pollen continued to remain rather 
abundant up 1300 BP or longer (Paper IV). This sustenance of Tilia until long 
after the end of the HTM is confirmed by the vegetation cover of Tilia as 
estimated by the LRA, which suggests that Tilia was a common forest 
component at many sites up to 500 BP or longer (Paper IV). These results, in 
combination with the close temporal connection between the Tilia decline in 
the temperate zone and both the decrease in tree cover and increase in cereals 
(the latter from approximately 1200 BP onwards), indicate that the loss of Tilia 
as a common forest tree in the temperate zone in Sweden might be 
considerably more recent than the Bronze Age decline suggested by pollen 
studies from the mid-20th century (von Post 1946, Fries 1965, Iversen 1973). 
But it also suggests that climate deterioration was most likely not the only 
agent causing it. Rather, the ultimate cause for the loss of Tilia as an abundant 
forest tree in Scandinavia was probably a combination of climate change and 
changes in land use.  

A very similar pattern has been shown in Britain (Turner 1962, Grant et al. 
2011), where human impact was suggested to be the main, although not the 
only, cause for the Tilia decline. There, however, the Tilia decline occurred 
considerably earlier, probably due to earlier land-use changes in Britain as 
compared to southern Sweden. These results, using Tilia as a case study of the 
primeval forest, shows that although its distribution was most likely 
fragmented, Tilia and probably also other components of the primeval forest 
are likely to have been abundant up to relatively recently in southernmost 
Sweden. Furthermore, they show that the final destruction of the primeval 
forest was largely caused by human activities. 

4.6 Effects on biodiversity 

Irrespective of both vegetation zone and initial proportions, the cover of 
temperate broadleaves (except Fagus) is today lower than ever during the 
studied 5000 years (Papers II, III, IV). This substantial decline could explain 
the disproportionally large amount of threatened species associated with the 
forest type. The mere persistence of temperate broadleaves up to during the last 



41 

500 years at stand level (Paper III, IV) has ensured the survival of these 
associated taxa, although in small, fragmented and vulnerable populations.  
It is however important to point out that although the decline of temperate 
broadleaved forest can largely be explained by clearance for agricultural 
purposes, the decline has not been stopped by the abandonment of that land-
use. Rather, as the traditional management of agricultural land was abandoned, 
the open areas were replaced by forests of mainly Picea, but in some areas also 
Fagus.  

A similar development has been seen in New England, where a 
predominantly wooded region were opened up by European settlers who 
cleared the forest for agricultural purposes around 400 BP (Motzkin and Foster 
2002, Foster and Motzkin 2003). Similar to southern Sweden, the region is 
today largely forested again, yet the forest composition has changed. While the 
change in Sweden mainly was towards Picea, in New England the change was 
towards a more homogenous forest dominated by short-lived, early 
successional tree species (Thompson et al. 2013). Likewise, in Japan the 
establishment of an agricultural landscape caused a decline of many indigenous 
tree species, followed by a further decrease in species diversity, and 
afforestation by mainly light-demanding tree taxa, after the recent 
abandonment of these traditional techniques (Berglund et al. 2014). 

In Sweden, Picea alone presently constitute about half of all productive 
forest land (Official Statistics Sweden 2014), as an effect of both modern 
forestry with large-scale plantations of Picea monocultures and changed 
agricultural practices during the 20th century (Larsson et al. 2011, Lindbladh et 
al. 2014). In addition to this dramatic change in species composition, many 
forests are now considerably denser and darker than in the early 20th century 
(Lindbladh et al. 2014), causing a threat not only to taxa associated with 
temperate broadleaves, but also to the many species which benefited from the 
areal increase of agriculture (Berglund et al. 2008).  

4.6.1 Biodiversity hotspots in a production forest matrix 

In both the temperate and hemi-boreal zone, the forest composition and the 
forest cover changed considerably later among the studied local sites than in 
the surrounding region (Paper III). When comparing these two spatial scales, it 
is however important to keep in mind that the vegetation cover at the regional 
scale is estimated for large areas (104-105 km2) (Sugita 2007a) over which 
vegetation is not homogenously distributed, but an average of many different 
smaller land units. The local sites studied here are hence not likely to have 
been unique in their maintenance of forest cover, and should not be thought of 
as isolated islands of forest in a region largely characterized by agriculture. 
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However, the large cover of open areas and cultivated land in the region 
relative the local studied sites (Paper III) do indicate that the local sites, which 
are all presently forested biodiversity hotspots, have indeed been different from 
the regional mean.  

At present, the studied local sites are considered to be biodiversity hotspot 
areas. Despite this later decline of temperate broadleaves at the local hotspots 
(Paper III), more or less extensive vegetation changes took place also there 
during the last 500 years, as has been shown also for other areas in southern 
Sweden (Fredh et al. 2012, Cui et al. 2014a). At present, Picea or Pinus 
dominate the vegetation both in the region as whole and the studied hotspot 
sites in Paper III, which are all protected today (fig. 9).  

 
Figure 9. Present forest composition as estimated by the kNN, in the hotspot sites and in southern 
Sweden. Temperate broadleaves: Fagus sylvatica and Quercus robur. 

Similar results were found in central Sweden, where Woodland Key Habitats 
(which are by definition areas which host or could be expected to host red-
listed species) experienced dramatic changes in structure due to the cessation 
of forest fires and increased forestry management during the last 150 years 
(Ericsson et al. 2005). It could therefore be argued that the difference between 
the present biodiversity hotspots and their surrounding is rather small, both in 
southern and central Sweden. However, both for the local sites in Paper III, and 
in the Woodland Key Habitats studied by Ericsson et al. (2005), these hotspots 
have considerably higher conservation values than the Picea dominated 
managed forest landscape surrounding them, despite the present similarity in 
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tree species composition. Although the proportions of temperate broadleaves in 
the protected areas studied in this thesis are lower than they used to be, it is 
obviously enough to maintain many of these rare taxa, at least in a shorter 
perspective. Areas such as these can be used as reservoirs from which 
temperate broadleaves and species associated with them can proliferate and 
spread, if given the opportunity. If not, the worst-case scenario is that many 
threatened species will go extinct also in these hotpots. 

These findings suggests that the time perspective of a few centuries or even 
shorter which is commonly used in studies concerning forest continuity (Kirby 
et al. 1998, Graae 2000, Goldberg et al. 2007, Fritz et al. 2008, Eriksson et al. 
2010, Matuszkiewicz et al. 2013, Palo et al. 2013) might be too short to 
understand the distribution of species associated with presently fragmented 
habitat types. Here the collaboration between paleoecologists and ecologists 
could be crucial, as paleoecology can provide a time perspective rarely used 
but very important for conservation (Reitalu et al. 2014). 

4.7 Values of temperate broadleaves for human wellbeing 

Even if not studied in this thesis, the long-term connection between people and 
broadleaved forest in southern Sweden is an important aspect as expressed by 
human health and people’s perception of forest and urban areas. Temperate 
broadleaves are abundantly planted in urban areas throughout Scandinavia 
(Sjöman et al. 2012) and temperate broadleaved forests reportedly increases 
people’s perceived value of a forest visit as compared to other types of forests 
(Norman et al. 2011) although also mixed forests, containing both conifers and 
broadleaves, are preferred to even-aged coniferous stands, i.e. modern 
production forest (Nielsen et al. 2007).  

Broadleaved forests have even proven to be beneficial for public health, 
even more so than nature in general (Annerstedt et al. 2010). Furthermore, 
historical continuity or historical richness, i.e. the perception of different time 
layers or the amount and diversity of cultural elements, is among the most 
important aspects concerning people’s perception of the forest (Tveit et al. 
2007). These benefits of temperate broadleaves for human wellbeing 
furthermore emphasize the importance of temperate broadleaved taxa for the 
future. 
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5 Conclusions 
Temperate broadleaves are rare in natural habitats in Sweden today, and 
despite their importance for present biodiversity, little is known about their 
past cover. Using pollen data and the newly developed Landscape 
Reconstruction Algorithm, we were able to draw unique conclusions 
concerning the historical cover of temperate broadleaves. 
 
 Temperate broadleaves prevailed locally until rather recently in southern 

Sweden, which is likely to be an important cause for the survival of the 
many presently threatened species associated with temperate broadleaves, 
although in small and vulnerable populations.  

 Despite the long continuity of temperate broadleaves in present biodiversity 
hotspots, the forest composition often changed radically also in these areas 
during the most recent 500 years. Hence, not even the vegetation of present 
protected areas could be claimed to have unbroken continuity back to 
ancient forests, or to be a reflection of “natural” forest in southern Sweden.  

 For Tilia, the cover of which has confounded researchers since the 
introduction of pollen analysis, the decline in the southernmost parts of the 
country was not as early as commonly thought, but in general almost as 
recent as for many other temperate broadleaves.  

 Differences in the development of Tilia in the temperate and the hemi-
boreal zone illustrate that these zones really are very different concerning 
physiogeography and climate, and our data indicate that climate played a 
crucial role in the Tilia decline in the hemi-boreal zone. 

 Despite the temporal correlation between Picea dominance and the 
relatively low proportions of temperate broadleaves today, a natural 
immigration of the strong competitor Picea is not likely to be the main 
cause for the decline of temperate broadleaves in southern Sweden. Rather, 
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this shift is likely to be an effect of changing land-use and modern forestry 
benefiting Picea. 

 Long-term studies such as pollen analyses are crucial for the understanding 
of the present distribution of threatened species as the legacies of past 
changes in forest composition and disturbances can prevail for centuries or 
even longer. Such studies therefore provide an important basis for how to 
preserve these threatened species for the future. 

 
The studies included in this thesis show that although a wealth of pollen studies 
has been carried out in the region, there is still much to discover using multiple 
sites and new techniques. However, the data and methods used here only 
provide information about tree species composition and vegetation cover. By 
combining them with other paleoecological proxies, such as analysis of fossil 
insect remains or dendrochronology, more can be learned about aspects such as 
the quality and historical management of the forest. Paleoecology therefore has 
a great potential for providing detailed insights into historical habitats and 
better understanding of present biodiversity, and for influencing conservation 
strategies. However, in order to fulfil that potential, the knowledge gained from 
paleoecology needs to be communicated and incorporated with neo-ecology, or 
it will simply be the study of what once was. 
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