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ABSTRACT 

The objective of this study is to apply ENVISAT 

MERIS data in mapping mountain vegetation in 

Sweden. The Swedish mountain vegetation is 

characterized by mosaics of different land cover types; a 

single MERIS pixel (300 meter IFOV) can consist of 

several of these different land cover types. “Hard” 

classifications which produce a single thematic class per 

pixel often give a low accuracy. While many different 

unmixing methods are reviewed in the literature, the use 

of regression trees is reported to be more promising 

than, for example, Linear Spectral Mixture Analysis. 

Regression trees handle non-linear data and are non-

parametric, and can be well-suited for sub-pixel 

vegetation fraction estimation. Here, the soft 

classification methods of regression trees and linear 

regression are applied using spectral data from a MERIS 

Level 1B FR image. The image is corrected for 

atmosphere and illumination, and MTCI and PCA are 

calculated. Nine-hundred training plots are used for 

seven major vegetation classes. Preliminary results 

show that regression trees produce a slightly lower 

overall RMSE (20.1%) than linear regression (20.6%), 

although generally slightly higher class-wise biases. 

Results are promising however, and further 

improvements will be pursued. 

 

1.  INTRODUCTION 

The mountain areas of Sweden are an important 

ecosystem. The Swedish Environmental Protection 

Agency has as a directive to monitor and protect what 

they call the “Magnificent Mountain Environment.” The 

mountain vegetation can be affected by different 

influences, such as large scale defoliation by insects, 

reindeer grazing, or climate change which may 

influence vegetation composition. Remote sensing data 

can be useful in mapping and monitoring the current 

vegetation as well as dynamic vegetation changes. 

However, these areas are sometimes difficult to 

monitor, due to remoteness, cloud cover and often 

infrequent imaging by fine-resolution satellite images 

(e.g., SPOT or Landsat) than is needed. ENVISAT 

MERIS has the advantage of a frequent re-visit time 

(three days) and capturing large areas within a single 

date scene. Although MERIS was originally intended as 

an ocean sensor, its 15 programmable, narrow spectral 

band widths ranging from 390-1040 nm are also useful 

in land cover mapping applications [1, 2]  

The relatively large pixel size from sources such as 

MERIS, MODIS, or AVHRR means that a single pixel 

can contain a mix of several different land cover types. 

In such cases, “hard” classifications which result in a 

single land cover class per pixel can result in low 

accuracy [3], especially when land cover variability is 

greater than the spatial resolution of the pixel [4]. For 

this reason, methods to derive more information per 

pixel as opposed to a single vegetation class label are of 

interest. “Soft” classification methods which result in 

continuous values such as class fractions per pixel 

include variations of Spectral Mixture Analysis (SMA) 

[5, 6], Artificial Neural Nets (ANN) [7, 8] variations of 

fuzzy classification [9], linear least squares inversion 

[10], generalized linear models [11], linear regression 

[12, 13], and regression trees [14]. For a thorough 

review of methods for estimating fractional and 

continuous field mapping, see [8].  

In comparing these methods, it has been shown that 

Linear SMA generally resulted in lower accuracy, most 

likely due to the limitations imposed by the number of 

end-member possibilities as well as the assumption of 

linear mixing properties within the pixel [15]. Methods 

such as ANN and regression trees have the advantage of 

being non-parametric and of not assuming a linear 

relationship between the predicted and dependent 

variables. Comparisons between the methods have 

shown that the differences in results between them are 

essentially marginal [8]. Regression trees have been 

used widely in recent years to develop products from 

the MODIS sensor, especially fraction of tree cover [16, 

17]. Recent applications have used them to determine 

fractions of multiple land cover types [15, 18]. In the 

study [15], regression trees were applied to mapping the 

fraction of five land cover classes (bare, shrub, grass, 

conifer and water) in Canada’s tundra environment from 

Landsat data. Using a combined regression and 

regression tree model, they achieved an average RMSE 

of 16.43% for fraction mapping. In their case, the high 

variability of bare soil types was thought to add most to 

the result error [15, 19]. The authors also expressed an 

interest specifically in testing MERIS and regression 

trees for sub-pixel soft classification of land cover types 

[15]. 

Regression Trees are part of the Classification and 

Regression Tree (CART) algorithms as described in 

[14]. Regression trees are built upon a single “training” 
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data set of predictor and dependent variable, where the 

dependent variable has a continuous value. An 

advantage of regression trees is that multiple types of 

input data can be accomodated (both continuous and 

categorical). For each separate class, a tree is built by 

starting at the root node and performs all possible splits 

on each predictor variable. Using goodness-of-split 

criteria, either Least Squares or Least Absolute 

Deviation, the optimum node is determined. “Pruning” 

of the tree using either cross-validation or an 

independent data set is necessary to prevent over-fitting. 

After pruning has produced an optimal tree, summary 

statistics are generated for the terminal nodes. These 

summary statistics are then applied to the whole data set 

(satellite image and ancillary data, if used) and a 

continuous value is estimated for each class. These 

estimates may require normalizing in order to sum to 

unity.  

The objective of the work presented here is to 

investigate the use of MERIS full resolution data in 

mapping fractions of basic mountain vegetation classes 

using soft classification methods. The two methods 

which are tested and compared are regression trees and 

linear regression.  

 

2.  MATERIALS AND METHODS 

2.1 Materials  

One MERIS Level 1B full-resolution (300m) image 

acquired July 31
st
, 2005 was used. The image had two 

large cloud areas in the north and south and a jet 

contrail in the middle. The MERIS wavelengths 

followed the standard spectral band widths. Bands 11 

and 15 have been excluded from this analysis, due to 

their sensitivity to oxygen absorption and water vapor, 

respectively. 

As training and evaluation data, a land cover 

classification developed from an Image 2000 Landsat 

ETM+ image acquired July 29, 2000 was used. The land 

cover classification was created using unsupervised 

classification and labeled using field and photo-

interpreted data from the National Inventory of 

Landcapes in Sweden (NILS). The classification 

accuracy for 19 classes was 74%.   

Additional data included a 50-m DEM and a 1:100 000 

scale land-cover map from the National Land Survey, 

and a polygon-based aerial photo-interpretation. 

 

 

2.2 Study area 

 

The study area was the cloud free portion of the MERIS 

image which measured 400 km in the north-south 

direction and 150 km east-west. It covered the mountain 

areas of the provinces of Västerbotten and northern 

Jämtland (between 62° and 65° N latitude). The 

elevation in the Swedish mountains in the study area 

ranges from approximately 250 to 1500 m.a.s.l.  

 

2.3 Methods 

 

The aim of the paper is to test the application of 

regression trees and linear regression for deriving a soft 

classification of mountain vegetation classes using 

MERIS data.  The MERIS data have been pre-processed 

to correct for atmospheric and illumination effects, 

registered to the Swedish coordinate system, the MERIS 

Terrestrial Chlorophyll Index (MTCI) was calculated, 

and principal components analysis (PCA) was used to 

transform the 13 spectral bands in order to derive 

uncorrelated band information for use in the 

classification.  

 

An atmospheric correction using BEAM software’s 

Simple Method for Atmospheric Correction (SMAC) 

[20] was applied using the recorded horizontal visibility 

for that day (75 km) and the parameters as measured by 

MERIS. Geometric registration to the Swedish 

coordinate system was first attempted using the supplied 

tie-points, however due to the high topographic 

variation, the result produced misregistration between 

the MERIS and Landsat data that were not acceptable. 

Instead, control points were chosen visually to do a co-

registration between geo-corrected Landsat images and 

the raw MERIS image. Small lakes, approximately one 

MERIS pixel in size, were often used as control points 

since they were plentiful in the mountain environment, 

readily seen in the MERIS images, and easily matched 

to Landsat images. Any apparent clouds and cloud 

shadows in the subset were masked from the image 

using manual delineation. 

 

Due to the large topographic variation, an illumination 

correction was performed using the c-correction [21] 

and a 50-m DEM. Cosine of the incidence angle, which 

is used in the correction, was derived at 50 m resolution 

and resampled using cubic-convolution to the MERIS 

pixel size. Slope and aspect were similarly derived from 

the 50 m DEM.  

 

MTCI was calculated according to [22] with the 

expectation that it might help differentiate between the 

cover types.  PCA was used to reduce the 

dimensionality of the MERIS data since correlation 

between the MERIS bands is high [2]. In our case, PC1, 

PC2 and PC3 respectively explained 75%, 23% and 1% 

of the variation in the data (98% total), with PC1 

representing the near-infrared MERIS bands, and PC2, 

the visible bands.  Before band transformation by PCA, 

non-mountain vegetation was masked from the image 

using the 1:100 000 scale Swedish “Road Map.” 

 



Two soft classification methods were tested: regression 

trees and linear regression. These methods require 

separate input training data sets for each class to be 

estimated. Having both heterogeneous mixes and 

homogenous training areas is advantageous. In this 

light, 100 homogenous training sets were collected from 

a photo-interpretation from the NILS inventory which is 

distributed as a nation-wide systematic random sample. 

In addition, 800 heterogeneous plots were randomly 

sampled over the study area; the fractions of vegetation 

classes from a Landsat-based mountain vegetation 

classification were extracted for the corresponding area 

of the MERIS pixel. Corresponding spectral values from 

PC1, PC2 and MTCI were extracted, as well as the 

elevation and slope from the resampled DEM. 

 

Seven land cover classes were defined: bare rock, grass 

heath, other heath (dry and mesic), meadow, wetland, 

mountain birch, and water. Spectral responses are given 

in Fig. 1. Examining the spectral signatures from 

“pure,” and hypothetically unmixed pixels of these 

types show that they are well-separated using the 13 

MERIS bands and the PCA-MTCI combination. 

Discriminant analysis results in 89% and 92% total 

correctly classified, respectively. Of the 13 band 

MERIS dataset, the best accuracy was achieved with the 

minimum band of bands 3, 5, 7, 9, 10, and 14. 

 

 
 

Figure 1.  Spectral signatures of the seven cover types 

over all MERIS bands and MTCI. Meadow (yellow), 

mountain birch (dk green), other heath (brown), bare 

rock (white), grass heath (lt green), wetland (black 

circles), and water (black squares along bottom), are 

shown. 

 

 

The 800 heterogeneous training data samples had on 

average three different cover types of greater than 10% 

fraction. Tab. 1 gives a summary of the heterogeneous 

data samples which is also an indication of the land 

cover composition.  

 

 

 

 

Table 1. A summary of the 800 heterogeneous training 

samples. 

 

Class No. samples 

where class is 

present 

Mean 

cover % 

Water 131 29.7% 

Bare rock 207 11.3% 

Grass heath 178 13.9% 

Other heath 404 54.6% 

Meadow 337 19.5% 

Wetland 327 22.8% 

Mtn. Birch 345 37.2% 

 

Regression trees were implemented using ENVI 

software’s Rule Generator-Numeric Modeler extension. 

The algorithm is based on GUIDE [23]. A regression 

tree based on the input training data is created for each 

class, as is a resulting image file with pixel-wise 

predicted fractions for that cover type. Similar training 

data input was required for linear regression; however, 

just the spectral data were used (PC1, PC2, and MTCI). 

The regressions were implemented in Minitab. A 

regression equation was determined for each individual 

class using the significant input variables for that class.  

 

In both methods, when combining the resulting fraction 

images for all classes, the sum of fractions for a single 

pixel is greater than 1. Therefore the fractions are 

summed and new fractions are calculated proportionally 

so that they sum to one.  

 

 

3.  RESULTS 

 

With the regression tree method, trees were built for 

each class. The significant bands used in splitting nodes 

in the trees are given in parentheses for each class: 

water (pc1); bare rock (pc2, elevation); grass heath (pc2, 

elevation); other heath (pc1, pc2, MTCI); meadow (pc1, 

MTCI, slope); wetland (pc2, slope); and mountain birch 

(pc1, pc2, MTCI, and elevation). An example of one of 

the larger regression trees created during this work is 

shown in Fig. 2.  

 

 
 

Figure 2. Regression tree created for Meadow. B1 is 

PC1, B3 is MTCI, and B5 is slope. R
2 
was 41.5%. 



Linear regression equations were calculated for each 

vegetation class and the corresponding R
2
 values are 

provided in Tab. 2.  

 

Table 2. The significant bands (p < 0.005) and 

corresponding R
2
 values for each class’ linear 

regression equation. 

 

Class Signif. 

bands 

R2 

Water pc1 81.9% 

Bare rock pc1, pc2 48.7% 

Grass heath pc1, pc2 31.6% 

Other heath pc1, pc2, MTCI 24.2% 

Meadow pc1, MTCI 38.5% 

Wetland pc1, pc2, MTCI 10.1% 

Mtn. Birch pc1, pc2 48.2% 

 

A separate set of evaluation data consisted of 100 

randomly selected plots within the study area. RMSE 

and bias was calculated for each individual class and as 

a total for both regression tree and linear regression 

results. The results are given in Tab. 3. 

 

Table 3. RMSE and bias (in %) from accuracy 

assessment with 100 samples for both regression tree 

and linear regression. The lower RMSE is in bold.  

 

 Regression  

Tree 

Linear 

Regression 

Class RMSE  Bias RMSE Bias 

Water 15.1  4.4 19.6 3.1 

Bare rock 13.6 3.6 14.3 1.3 

Grass heath 21.1 3.7 21.5 4.5 

Other heath 26.4 6.7 28.0 -2.2 

Meadow 17.9 -4.2 17.4 -0.9 

Wetland 23.8 -13.0 20.3 -7.4 

Mtn. Birch 19.6 -1.2 20.6 1.4 

Total 20.1 -- 20.6 -- 

 

When the resulting files from regression tree and linear 

regression are “hardened” (i.e., where the dominant 

class fraction determines the class label), regression 

trees have a higher percent correct in all classes 

compared to regression. The overall number correctly 

classified in this case with regression trees was 65% as 

compared to 61% from linear regression. An example of 

a three-band combination for a smaller area is given in 

Fig. 3. The visual result from regression appears to be 

“smoother” with graduated changes between pixels 

whereas the regression tree result has more discrete 

units of classes.  

 

4.  DISCUSSION 

 

The results from the accuracy assessment show that 

regression trees resulted in a slightly lower RMSE 

(20.1%) than with linear regression (20.6%), both 

overall and on a per class basis. The regression trees 

may have performed slightly better due to the inclusion 

of the ancillary data from the elevation model. 

However, linear regression shows lower per class bias.  

 

  
 

Figure 3. The result in a three-band file with meadow, 

grass heath and bare rock in RGB (higher relative 

values are brighter). The regression tree result is on the 

left and linear regression on right. In the center of the 

picture is the highest mountain in the study area, where 

we expect to see high percentages of these cover types. 

 

The trends for class accuracy are similar between the 

two methods. The class “other heath” has the highest 

RMSE, perhaps due to the fact that this class typically 

had the widest range of values in the training data (Tab. 

1). As seen by the low R
2
 value from the linear 

regression (Tab. 2), and by noting that the residuals 

were not distributed normally, it is likely that the 

combination of the two types of heath (dry and mesic) 

are too different to combine together into one type. 

Likewise with wetland, where a low R
2
 value from 

linear regression and non-normally distributed residuals 

show the effect of combining three different wetland 

classes into one. It is also important to note that a 1:100 

000 scale wetland mask was used to help in the Landsat 

classification and therefore, where wetland is present, it 

may be somewhat over-classified in the Landsat 

classification, and therefore in the input data. The 

negative bias for wetland may be a result of this. 

Within-class variability can affect the result negatively 

and should be minimized [24].  

 

Vegetation types that typically had lower fractions 

represented within a pixel, such as grass heath (see Tab. 

1), had larger errors in quantifying the higher fractions. 

This leads to the idea that a better representation of the 

class variability may be needed for a better result. Non-

major classes which would not be well-represented in 

the training data should perhaps not be included in this 

classification. Large errors from minor classes can 

affect the overall accuracy of the other classes. Other 

studies [8, 12] show that the result from linear 

regression is influenced by the a priori information of 

the training sets.  

 



The class of water was not well-predicted considering 

its unique signature, and was perhaps under-represented 

in the training data. The narrow and low range of 

water’s DN in the visible and N-IR bands may also 

explain why it is not being distinguished in mixed 

pixels. Similar problems with water occurred in other 

studies [8, 15].  

 

In regression trees, use of the MTCI band was found 

beneficial in three classes, specifically other heath, 

meadow, and mountain birch. These classes have a 

signature with a steep slope at the red-edge region.  

 

The regression tree worked better than a previously 

created hard classification for this area, where dominant 

classes tended to be over-classified and resulted in a 

58% overall accuracy [25]. In comparison to others’ 

results when classifying multiple land cover types from 

regression trees (e.g., [15] with 16.43% overall RMSE 

from regression trees), the accuracies were quite 

comparable. This study has used seven classes, 

including a wetland class which is often a highly 

variable class that is difficult to classify.  This study has 

not looked into the effect of “distant and proximate” 

training data because the study area was relatively 

similar. However, if working with the entire mountain 

chain, this issue would be relevant and should be taken 

into consideration. 

 

The results of the regression tree and linear regression 

were promising. Further investigation into the 

regression tree will be done, as this study was a 

preliminary test. Additional ancillary data can be 

investigated and incorporated into the training data. 

Improving the quality and supplementing the input 

training data may give a better result, although previous 

studies show the methods should be robust to training 

data errors [13]. Stratification of the study area may be 

beneficial. In addition, using a combination of 

classification methods, such as regression trees for 

mixed pixels and another method for the more extreme 

fractions (i.e., absent and pure), should be tried in 

producing an end product. 

 

 

5.  CONCLUSIONS 

The objective of this study was to investigate the use of 

MERIS full resolution data in mapping fractions of 

basic mountain vegetation classes using soft 

classification methods. The two methods which were 

tested and compared were regression trees and linear 

regression. The seven classes of bare rock, grass heath, 

other heath, meadow, wetland, mountain birch and 

water were classified. Regression trees resulted in 

slightly lower overall RMSE (20.1%) than linear 

regression (20.6%), although per-class bias was slightly 

higher for regression trees. These results are 

preliminary, and further investigation into variations in 

the regression tree method as well as improved input 

data, appears to offer a promising technique for fraction 

mapping of mixed pixels for mountain vegetation. 
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