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Abstract 13 

Microbiota in the gut play essential roles in human health. Prebiotics are non-14 

digestible complex carbohydrates that are fermented in the colon, yielding energy and 15 

short chain fatty acids; and selectively promotes the growth of 16 

Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are 17 

the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well 18 

as some fruit crops are the best-known sources of prebiotic carbohydrates, while the 19 

prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat. Some 20 

prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, 21 

yacón, and Jerusalem artichoke. A few major quantitative trait loci and gene-based 22 

markers associated with high fructan are known in wheat. More targeted search in 23 

genebanks using reduced subsets (representing diversity in germplasm) is needed to 24 

identify accessions with prebiotic carbohydrates. Transgenic maize, potato and 25 
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sugarcane with high fructan, with no adverse effects on plant development, have been 26 

bred, which suggest that it is feasible to introduce fructan biosynthesis pathways in 27 

crops to produce health-imparting prebiotics. Developing prebiotic-rich and super 28 

nutritious crops will alleviate the widespread malnutrition and promote human health. 29 

A paradigm shift in breeding program is needed to achieve this goal and to ensure that 30 

newly-bred crop cultivars are nutritious, safe and health promoting. 31 

 32 

Keywords: Germplasm, gut microbiota, human health, non-digestible fibers, 33 

transgene 34 

 35 

1. Introduction 36 

The microbial genome or microbiome includes complex microorganism mixtures that 37 

have co-evolved with their human hosts. Humans harbor over 100 trillion cells of 38 

microbial communities that populate various sites in their anatomy [1]. Many species 39 

of bacteria are found in the gastrointestinal tract especially in the colon, where this 40 

flora is largely anaerobic. Diet variation modulates the composition of gut microbiota. 41 

The composition of gut microbiota and the metabolic interactions among its species 42 

may affect food digestion and energy harvest. An increased understanding of the 43 

mechanisms involved in the interactions involving gut microbiota, host and diet will 44 

open up the avenues to treat complex human diseases [2,3,4,5].  45 

Prebiotics have been characterized as a group of carbohydrates that resist 46 

digestion and absorption in gastrointestinal tract (small intestine); which are 47 

fermented by the gut (large intestine) microbiota, selectively promote the growth and 48 

activity of a limited number of colonic bacteria, and alter the colonic microflora 49 

balance towards a healthier composition [6,7,8]. The prebiotics consumption may 50 
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enhance immune function, improve colonic integrity, decrease both incidence and 51 

duration of intestinal infections, down-regulate allergenic response and improve 52 

digestion and elimination [9]. Some cereal grain oligosaccharides may function as 53 

prebiotics and increase the levels of beneficial bacteria in the large bowel [8,10,11]. 54 

Likewise, prebiotics can also improve uptake of calcium, iron, and zinc, and 55 

significantly decrease colon cancer, the level of triglycerides and cholesterol 56 

[8,12,13,14,15,16].  57 

 Overweight and obesity cause 3.4 million deaths, 3.9% of years of life lost, 58 

and 3.8% of disability adjusted life-years (DALYs) worldwide. Populations with a 59 

body mass index (BMI) of 25 or greater are more in the developed (up to 38%) than 60 

in the developing (up 13.4%) world. Children and adolescents in the developed world 61 

are the most affected. Overweight and obesity have therefore become a major global 62 

health challenge [17]. Individuals with BMI above 25 are at increased risk of diabetes 63 

mellitus, cardiovascular diseases, fatty lever (non-alcoholic), and hypertension 64 

[18,19], which significantly impact on public health cost. The evidence to date 65 

suggests that gut microbiota are involved in the pathogenesis of obesity [19,20,21]. 66 

Obese and lean individuals present different microbiota composition profile 67 

[22,23,24]. The obese people use more energy from the diet [22,23,25,26]. The 68 

dietary intervention (prebiotics) impacts gut microbial diversity and human health, 69 

including obesity [19,22,27,28,29].  70 

 Higher intake of dietary fibers play an important role in reducing the risk of 71 

cardiovascular disease, regulate weight management, immune function, and in 72 

shaping microbial diversity in human gastrointestinal tract [30,31,32]. Whole grains 73 

are concentrated sources of dietary fiber, resistant starch, oligosaccharides, and 74 

carbohydrates that escape digestion in the small intestine and are fermented in the gut. 75 
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The fibers that escape digestion in the small intestine are fermented in the gut to 76 

produce short-chain fatty acids (SCFAs), which are rapidly absorbed in the colon to 77 

provide additional energy to the host [30], and prevent the establishment of 78 

potentially pathogenic intestinal microbes [33]. SCFAs production indicates 79 

microbiota metabolic activity. The shift in gut microbiome of humans consuming 80 

noble fibers such as polydextrose and soluble corn fiber significantly affects the 81 

relative abundance of bacteria at the class, genus and species level [34] as noted in 82 

humans who consume a high cruciferous vegetable diet versus those fed with a 83 

refined grain diet without vegetables [35]. This finding shows the dominant role of 84 

the diet in shaping the gut microbial diversity [30,33,34,35], and provides means for 85 

elucidating the role of gut microbiota on the subtle balance between health and 86 

disease [30].  87 

This short review article provides an overview on plant prebiotics sources and 88 

variability; the genotype × environment interaction effects, the genetic and molecular 89 

basis of synthesis of fructans, and progress towards designing prebiotics-rich and 90 

nutritionally-dense food crops, which needs an interdisciplinary approach among food 91 

science, nutrition and genomics-led crop breeding to tap microbiota and plant genetic 92 

resources diversity.  93 

 94 

2. Prebiotic carbohydrates in plants 95 

To date, fructooligosaccharides (FOS), inulin, and galactooligosaccharides (GOS) 96 

from plants are best-known sources of prebiotics. In addition, the raffinose family of 97 

oligosaccharides and resistant starch (the type that is not absorbed in the 98 

gastrointestinal tract) has also been recognized as prebiotic carbohydrates because 99 

these are not absorbed in the intestine and promote the growth of beneficial bacteria 100 
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in the gut [36,37]. In addition, some polysaccharides found in plant cell walls, such as 101 

xylans and pectins, have also been recognized as the potential sources for diverse 102 

polysaccharides to produce new prebiotics [38]. 103 

 104 

3. Novel sources of variation  105 

A literature search (2003-2014) revealed the presence of prebiotic carbohydrates in a 106 

number of food crops, with vegetable and root and tuber crops being the predominant 107 

sources (Table 1). For example, garlic (A. sativum L.), Jerusalem artichoke 108 

(Helianthus tuberosus L.), leek (A. ampeloprasum L.), okra (Abelmoschus esculentus 109 

L. Moench), onion (Allium cepa L.) and shallot (A. cepa L. var. aggregatum) among 110 

vegetables; dragon fruit (Hylocereus species), jack fruit (Artocarpus heterophyllus 111 

Lam), nectarine (Prunus persica L. Batsch), and palm fruit (Borassus flabellifer L.) 112 

among fruits; chicory (Chicorium intybus L.) and yacon [Smallanthus sonchifoliu 113 

(Poepping and Endlicher) H. Robinson)] among root crops; or the tuber crops dahliya 114 

(Dahlia species) and gembili (Dioscorea esculenta (Lour.) Burk.) are the major 115 

sources of fructans. Yacon accessions with high fructans include AJC 5189, ASL 136 116 

and MHG 923 [39], while those from Jerusalem artichoke are JA 37 and CN 52687 117 

[40]. More recently, the gourd family of vegetables, which includes Benincasa 118 

hispida, Lagenaria siceraria, Momordica charantia, Trichosanthes anguina, and 119 

Cucurbita maxima has been reported as good source of digestible and indigestible 120 

fibers, with significant prebiotic properties [41]. In addition, mushroom [Agaricus 121 

bisporus (J.E. Lange) Emil J. Imbach] have also been reported as potential source of 122 

prebiotic carbohydrates [42]. 123 

 Barley (Hordeum vulgare L.), chickpea (Cicer arietinum L.), lentil (Lens 124 

culinaris Medikus), and wheat (Triticum aestivum L.) show genetic variability for 125 
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prebiotic carbohydrates in grain crops (Table 1). Huynh et al. [43] evaluated in 126 

glasshouse and in the field 62 bread wheat cultivars and breeding lines of diverse 127 

origin for grain fructan. They detected significant genotypic variation for grain 128 

fructan, with no evidence of strong genotype × environment interaction. The fructan 129 

contents of field-grown grain samples were positively correlated (r = 0.83) with those 130 

of glasshouse-grown samples of the same cultivars. The grain fructan content among 131 

19 cultivars varied from 0.66 to 2.27% grain dry weight, while in a set of diverse 132 

germplasm it ranged from 0.7 to 2.9%. Cultivars such as Sokoll, Halberd and 133 

Cranbrook had the highest levels of grain fructan (glass house: 1.24 to 1.58%, field: 134 

2.2 to 2.27%). Advanced lines had grain fructan above 2%.  Marotti et al. [44] 135 

detected large differences in dietary fibers among modern and ancient durum wheat 136 

cultivars. The insoluble dietary fiber (IDF), soluble dietary fiber (SDF) and total 137 

dietary fiber ranged from 102 to 181, 18 to 37, and 127 to 199 g kg-1 dry weight, 138 

respectively. Colon bacteria ferment SDF easily, rapidly and completely. In vitro 139 

research further revealed that SDF selectively proliferate microbial growth, with 140 

fibers from the Kamut®Khorasan (ancient durum wheat) and Solex (modern durum 141 

wheat) promoting maximum growth of Bifidobacterium pseudocatenulatum B7003 142 

and Lactobacillus plantarum L12 strains in the gastrointestinal tract [44]. Sweet 143 

wheat [45] –a double mutant lacking GBSSI and SSIIa genes– had about twice as 144 

much total dietary fiber and 7-fold higher concentration of low-molecular-weight 145 

soluble dietary fiber, largely fructan, in comparison to parental or wild-type line [46]. 146 

Sweet wheat germplasm is an excellent source that may be used to raise fructan levels 147 

by crossing it with other high fructan lines [45]. Some einkorn wheat (Triticum 148 

monococcum) germplasm contain 2 to 3 times greater inulin than maize (24-27 g kg-1) 149 

[47]. Likewise, barley cultivars such as KVL 1113 and KVL 1112 are reported to 150 



 7 

contain grain fructan as high as 3.9 to 4.2 g 100 g-1 [48]. Rye (Secale cereale L.) 151 

grains are another source of rich dietary fiber. The total dietary fiber amongst 19 152 

cultivars varied from 147 to 209 g kg-1 dry matter, of which 26 to 41 and 45 to 64 g 153 

kg-1 dry matter were arabinoxylans and fructan, respectively [49].  154 

 Resistant starches (RS 1, RS 2, RS 3 and RS 4), which escape digestion in 155 

small intestine but ferment in the colon by the resident microflora to produce SCFAs, 156 

are receiving greater attention due to their potential role in promoting human health 157 

[50]. RS 2 and RS 4 promote distinct microflora, impacting colon health [51]. Their 158 

content ranges from 12 to 45 g kg-1 dry weight, among ancient and modern durum 159 

wheat cultivars. 160 

  Grain legumes are rich sources of dietary fiber. Lupin and chickpea kernel-161 

derived fiber stimulates colonic bifidobacteria growth and contributes to colon health 162 

[52,53]. Chickpea grains are a good source of α-galactooligosaccharide (α-GOS), 163 

which varied from 6.35% to 8.68% dry matter among 19 chickpea cultivars, with 164 

ciceritol and stachyose, respectively, accounting for 50% and 35% of the total α-165 

GOS [54]. Chickpea accession ‘171’ had the highest α-GOS (8.68%) and lowest 166 

sucrose (2.36%), which may be used to obtain α-GOS for use as a prebiotic in 167 

functional foods. Chickpea raffinose, another α-GOS was demonstrated to modulate 168 

the intestinal microbial composition to promote intestinal health in humans [55,56]. 169 

Johnson et al. [57] reported significant variation for prebiotic carbohydrates, with 170 

raffinose, stachyose, sorbitol, and verbascose being predominant sources of prebiotic 171 

carbohydrates in lentil. Other plants products with significant prebiotic properties 172 

include almond (Amygdalus communis L.) seeds and bamboo [Gigantochloa levis 173 

(Buluh beting)] shoot crude polysaccharides (BSCP), both promote the growth of 174 

beneficial microbes in the gut [58,59]. 175 
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 Research on identifying genetic variation for prebiotic carbohydrates in most 176 

of these crops is in its infancy. However, there is a growing awareness to develop 177 

“wholesome” functional food for improving human health. Core [60] and mini core 178 

[61] collections that represent diversity of the entire collection of a given species 179 

preserved in a genebank are reported in most of the grain crops [62,63]; thus 180 

suggesting that these could be used as resource to identify prebiotic-rich germplasm 181 

for use in crop breeding. Likewise, many genebanks have large germplasm collections 182 

of fruits, vegetables, and root and tuber crops (Figure 1 and Table 2), which were 183 

previously reported as source of high fructans (Table 1). There is a need to develop 184 

representative subsets in these crops, which could be systematically evaluated for 185 

prebiotic carbohydrates. 186 

 187 

4. Genotype × environment interaction  188 

Research to date suggests that most of the nutritional traits are highly influenced by 189 

environment (location) and genotype × environment interaction effects, with 190 

environments having major effects [64]. In a trial involving 10 lentil cultivars 191 

evaluated at two locations for two years, Johnson et al. [57] reported significant year 192 

and location effects for sorbitol, mannitol and verbascose, and year × location × 193 

cultivar effects for sorbitol, while Putta et al. [40]  detected genotype × environment 194 

interaction for inulin content in Jerusalem artichoke. The environment effects in both 195 

the trials were the most significant. Genotype x environment interaction (P ≤ 0.001) is 196 

also reported for rafinnose family of oligosaccharides [65]. These results reinforce the 197 

need for multilocation evaluation of germplasm/cultivars to identifying those with 198 

high prebiotic carbohydrates for use in plant breeding.  199 

 200 
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5. Genomic regions associated with prebiotics 201 

Quantitative trait loci (QTL) associated with fructan and inulin is known in wheat 202 

[66]. QTL on chromosomes 2B, 3B, 5A, 6D and 7A have been associated with high 203 

fructan in a double haploid (DH) mapping population involving a high-fructan 204 

breeding line (Berkut) and the low-fructan cultivar Krichauff [66]. QGfc.aww-6D.2 205 

and QGfc.aww-7A.1 had the largest effects (17 and 27% of the total phenotypic 206 

variation, respectively). Validation in another mapping population involving Sokoll 207 

and Krichauff confirmed that QGfc.aww-6D.2 and QGfc.aww-7A.1 show similar 208 

effects. Gene-based single nucleotide polymorphism (SNP) markers have successfully 209 

been mapped to a major QTL (QGfc.qww-7A.1) [66], which affects the accumulation 210 

of fructan in wheat grains [68]. Furthermore, the alleles controlling high- and low-211 

fructan were associated in fructan production in a diverse set of 128 wheat lines [67]. 212 

Stem-water soluble carbohydrate (SWSC) in wheat consists mainly of fructans and 213 

sucrose and can serve as a source for grain development and fructan synthesis [68]. It 214 

is likely that genes affecting SWSC [69] could affect grain fructan accumulation. 215 

Likewise, two major QTL for inulin content, Xgcag9 on chromosome 2BL-2 and 216 

Xgwm499 on chromosome 5BS contributed respectively 20 and 15% of the 217 

phenotypic variation in a DH population involving AC Reed and Grandin [66]. There 218 

are QTL with major effects on the fructan level of the vegetative tissues of barley, 219 

onion and ryegrass [70,71,72].  220 

 Arabinoxylans represent the major dietary fibers present in wheat bran and its 221 

hydrolysis leads to the formation of arabinoxylan oligosaccharides (AXOS) [73], 222 

which has a strong prebiotic effect [74]. QTL mapping and validation revealed that 223 

QGax.aww-2A.1 and QGax.aww-4D.1 had a major effect on wheat grain arabinoxylan 224 



 10 

accumulation [75], which are apparently different at two QTL with large effects on 225 

grain fructan that are in chromosome 6D and 7A [66]. 226 

 Fructans, the major component of water-soluble carbohydrate temporarily 227 

reserved in the stem are used for grain filling by temperate cereals. Research shows 228 

that sucrose:sucrose 1-fructosyltransferase (1-SST), sucrose:fructan 6-229 

fructosyltransferase (6-SFT), and fructan-fructan 1-fructosyltransferase (1-FFT) 230 

enzymes are involved in fructan synthesis in barley and wheat [76,77,78]. More 231 

recently, Kooiker et al. [79] investigated the effect of TaMYB13-1 gene and its 232 

influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression 233 

resulted in up-regulation of all three families of fructosyltransferases and y-vacuolar 234 

processing enzyme (y-VPE-1) involved in the maturation of fructosyltransferases in 235 

the vacuole. The overexpression of these target genes was highly correlated in 236 

recombinant inbred lines and during stem development as well as the transgenic and 237 

non-transgenic wheat, supporting a direct regulation of these genes by wheat 238 

transcription factor TaMYB13-1. Further TaMYB13-1 overexpression in wheat led to 239 

enhanced fructan accumulation in the leaves and stems and also increased spike 240 

weight and grain weight per spike in transgenic plants under water-limited 241 

environments. This finding suggests that TaMYB13-1 plays an important role in 242 

coordinated up-regulation of genes necessary for fructan synthesis and can be used as 243 

a molecular tool to improve the high fructan trait. 244 

 245 

6. Designing prebiotic-rich and super-nutritious crops 246 

Marker-assisted selection (MAS) is used in plant breeding to speed and increase the 247 

precision of genetic progress; and when integrated into optimized molecular breeding 248 

strategies, it can also lower the cost of selection [63]. As noted above few validated 249 
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QTL with major effects and associated with grain fructan or arabinoxylans are known 250 

in wheat. Nguyen et al. [75] identified microsatellite marker gpw-95001-4D nearest at 251 

grain arabinoxylans QTL (QGax.aww-4D.1), while Huynh et al. [66] reported 252 

microsatellite marker gwm681-7A, closely associated with a major grain fructan QTL 253 

(QGfc.aww-7A.1). Huynh et al. [67] successfully mapped gene-based SNPs, Ta1-FFT, 254 

Ta6-SFT, and TaWIVRV, co-located with each other and with the grain fructan QTL, 255 

QGfc.aww-7A.1 [66]. SNP alleles controlling high or low fructan are associated with 256 

fructan production in diverse 128 wheat lines [66]. These markers are available for 257 

indirect selection of segregants with high grain fructan or arabinoxylans 258 

concentrations in wheat. For example, the validated QTL QGfc.aww-7A.1 with a 259 

major effect and SNP-based markers may be used for targeted enhancement of grain 260 

fructan in wheat. 261 

 Chicory, artichoke and onion are good sources of inulin molecules, which are 262 

synthesized by two enzymes, sucrose:sucrose 1-fructosyltransferase (1-SST) and 263 

fructan:fructan 1-fructosyltransferase (1-FFT) [80] with a chain length of up to 200 264 

degree of polymerization [81]. Tubers of transgenic potato (Solanum tuberosum L.) 265 

containing 1-SST and 1-FFT genes had full spectrum of inulin molecules present in 266 

globe artichoke, with no adverse effect on plant growth or tuber yield [82]. The inulin 267 

containing tubers however display a reduction in starch content, which means that 268 

synthesis of inulin does not increase tuber storage capacity. Hellwege et al. [82] found 269 

that inulin produced in potato tubers is indistinguishable from inulin isolated from 270 

artichoke roots. More recently, Stoop et al. [83] produced transgenic maize and potato 271 

containing 1-SST and 1-FFT from Jerusalem artichoke. Transgenic maize expressing 272 

1-SST or 1-SST and 1-FFT driven by endosperm-specific promoter produced 3.2 mg 273 

g-1 kernel inulin type fructan, with no adverse effect either on kernel development or 274 
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in germination. Potato tubers expressing 1-SST accumulated 1.8 mg inulin g-1 tuber, 275 

while the tubers with a combined expression of 1-SST and 1-FFT accumulated 2.6 mg 276 

inulin g-1 tuber. The introduction of fructan biosynthetic pathway in a high-sucrose 277 

maize background increased inulin accumulation to 41 mg g-1 kernel, indicating that 278 

sucrose availability is limiting fructan production in transgenic maize.  279 

 Sugar beet (Beta vulgaris L.) is an economically important crop but lacks 280 

enzymes to produce fructans. It is a rich source of sucrose that accumulates in the 281 

vacuole of its taproot cells. Transgenic sugar beet containing onion 282 

fructosyltransferases 1-SST and 6G-FFT had an efficient conversion pathway of 283 

sucrose into complex, onion-type fructans, without any adverse effect on taproot 284 

growth or the loss of storage carbohydrate content [84,85]. More recently, Hanlie Nell 285 

succeeded in introducing the 1-SST and 1-FFT from Cynara scolymus in sugarcane 286 

(Saccharum officinarum L.). Transgenic sugarcane plants accumulated inulin up to 287 

165 mg g-1 fresh weight, which is comparable to that found in native plants; therefore, 288 

exhibiting great potential as a future industrial inulin source. It seems therefore 289 

feasible to introduce fructans biosynthesis pathways in both staple and industrial 290 

crops, as already noted in transgenic maize, potato, sugar beet, and sugarcane health-291 

imparting prebiotics for use in functional food to promote human health.  292 

 Malnutrition is widespread and casts enormous negative socio-economic 293 

impact at the individual, community, and national levels [86]. The world population 294 

by 2050 is expected to be around 9 billion; and providing enough food that is 295 

nutritious (protein and prebiotic-rich and micronutrients dense) and safe (free from 296 

toxic compounds and microbial toxins) to humankind is the greatest challenge in the 297 

21rst Century. To date, the research has shown that nutritional traits can be combined 298 

into improved genetic background using both conventional and nonconventional plant 299 
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breeding. For example, seed iron-dense beans and rice, maize with high tryptophane 300 

and lysine, or ß-carotene rich maize and sweet potato cultivars have been developed 301 

and are commercially grown in some areas of Africa, Asia, Central and South 302 

America, while “Golden Rice 2” variants (containing high ß-carotene) have been 303 

developed using transgenic breeding and are being introgressed into several Asian 304 

rice cultivars [64].  305 

Advances in prebiotic research have conclusively demonstrated that fructans, 306 

and the fructooligosaccharides –including inulin– are nondigestible fibers promoting 307 

the growth of beneficial microbiota in the gut, which positively impact micronutrient 308 

absorption and utilization in humans [7,8,11,13,16]. Exploratory research to date 309 

suggests that it is possible to identify prebiotic-rich genetic resources, as evidenced in 310 

barley, wheat, chickpea and lentil among grains crops. Likewise, some fruit, 311 

vegetable, root and tuber crops have also been identified as rich sources of prebiotic 312 

carbohydrates. A global search of genebank data repository revealed that many of the 313 

latter group of crops (fruit, vegetable, root and tuber) have large germplasm 314 

collections (Figure 1 and Table 2), which needs to be scientifically scrutinized to form 315 

representative subsets and evaluated for prebiotic carbohydrates. A paradigm shift in 316 

plant breeding is needed to incorporate nutritional quality (prebiotic rich and nutrient 317 

dense) as important objective that ensures that newly developed cultivars are not 318 

nutritionally inferior [64].  319 

 320 

7. Perspectives 321 

Humans are confronted today with diet-related health problems that in ancient times 322 

were of minor importance [87]. Human gut microbiota is populated by an array of 323 

bacterial species, which has established multiple mechanisms to influence human 324 
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health. Diet has a dominant role in shaping the gut microbial diversity and human 325 

health. Inulin and fructan are the best-characterized prebiotics obtained from plants. 326 

Limited search has revealed sufficient genetic variation for inulin and fructan in 327 

barley and wheat grains. Prebiotic compounds are abundant in vegetable, root and 328 

tuber crops as well in some fruit crops. Targeted search for identifying genetic 329 

variability for prebiotics is yet to begin. Genebanks are the repository of large 330 

collection of plant germplasm. Reduced subsets representing diversity of entire 331 

germplasm collection of a given species preserved in the genebanks are available in 332 

most of the grain crops, which need evaluation to identifying novel germplasm rich in 333 

prebiotic carbohydrates for use in plant breeding.  Crops lacking such representative 334 

subsets require developing these germplasm samples to capture the diversity available 335 

in the genebank.   336 

 Chicory, artichokes and onion are good sources of fructan. Transgenic maize 337 

and potato containing 1-SST and 1-FFT genes from Jerusalem artichoke, transgenic 338 

sugar beet containing 1-SST and 6G-FFT genes from onion, and transgenic sugarcane 339 

containing 1-SST and 1-FFT from globe artichoke have shown high fructan with no 340 

adverse effect on plant development, which clearly indicates that it is feasible to 341 

introduce fructans biosynthesis pathways in both staple and industrial crops, to 342 

produce health-imparting prebiotics to promote human health. 343 

 The evidence to date strongly suggests that manipulation of gut microbiota 344 

represents a novel approach in treating obesity and related metabolic 345 

disorders.  Culture-independent assays and modern high-throughput sequencing and 346 

bioinformatics tools (not the subject of this review) provide opportunities to 347 

investigate taxonomic and functional diversity of the gut microbiota. These 348 

developments are powerful means of understanding the contribution of the human 349 
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microbiome to health and its potential as a target for therapeutic interventions [88] 350 

The dietary interventions (prebiotics) to induce microbial change offers a great 351 

opportunity towards improved human health [20,21,22,27]. Increasing in the levels of 352 

prebiotics together with other quality traits (fat, protein, minerals, and vitamins) in 353 

staple food crops is therefore an important strategy to enhance nutrition and health of 354 

malnourished people worldwide. 355 

 Research to date suggests that it is feasible to develop nutritionally dense 356 

crops cultivars to fight widespread malnutrition, more specifically in the developing 357 

world. It is encouraging to note that plant breeders are aware that other quality traits 358 

such as micronutrients, vitamins and now prebiotics are equally important as are oil 359 

and protein. They are progressively taking a holistic approach to breed crops that 360 

provide wholesome food promoting human health at large. A multidisciplinary 361 

approach involving all stakeholders is needed to develop nutritionally dense and 362 

prebiotic-rich cultivars adapted to diverse agro-ecosystems. 363 
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Table 1 707 
Genetic variation for prebiotic carbohydrates reported in cereal and legume, root and 708 
tuber, and fruit and vegetable crops 709 
Crop species  Summary of variation reported Reference 

Cereal and legume crops 
Barley (20) Grain fructan, 0.9 to 4.2 g 100 g-1, KVL 1113 and KVL 1112 

being highest  
[48] 

Lentil (10) Sorbitol, 1039 to 1349 mg 100 g-1; mannitol,  160 to 294 mg 
100 g-1; raffinose and stachyose, 2319 to 2793 mg 100 g-1; 
verbascose, 922 to 1968 mg 100 g-1; and nystose, 52 to 79 
mg 100 g-1 

[57] 

Durum wheat 
(10) 

Insoluble dietary fiber, soluble dietary fiber and total dietary 
fiber 102-181, 18-37 and 127-199 g kg-1 dry weight, 
respectively 

[44] 

Lentil (22) Raffinose, stachyose, and verbascose 1.6 to 2.4 g, 1.7 to 2.9 
g, and 1.2 to 1.9 g 100-1 dry matter, respectively 

[89] 

Chickpea (19) α-galactooligisaccharide (α-GOS), 6.35 to 8.68%, Ciceritol 
the main sugar 

[54] 

Wheat (62) Grain fructan in cultivars 0.66 to 2.27% dry weight; 
germplasm 0.7 to 2.9% dry weight; advanced lines >2% dry 
weight  

[43] 

Einkorn wheat, 
maize and rice 

Inulin 55-85, 24-27, and 1.7 to 8.4 g kg-1 in einkorn wheat, 
maize and rice, respectively 

[47] 

Rye (19) Arabinoxylans 26 to 41 and  fructan 45 to 64 g kg-1 dry 
matter 

[49] 

Root and tuber crops 
Dahlia, yam and 
gembili  

Dahlia and gembili tubers high in inulin type fructan, 78% 
and 68%, respectively, than that of yam tubers (49%) 

[90] 

Yacon (23)  Ploidy level significantly impacted the content and 
distribution of fructooligosaccharides (FOS); 11 lines high 
in short chain-FOS, while 12 lines high in long chain-FOS 

[91] 

Yacon (35) Fructooligosaccharide (FOS), 6.4 to 65 g 100-1 dry matter,  
AJC 5189  high in FOS  

[39] 

Yacon  (4) Oligofructans, 42.84 to  49.13 mg g-1 fresh tubers  [92] 
Yacon (4) Inulin content, 141-289 mg kg-1 dry matter, with tubers 

having greater levels than rhizomes  
[93] 

Yacon (10) Fructan, 31-89 g kg-1 fresh root weight; ASL136, MHG923 
and MHG927 being highest in fructan (72-89 g fructan kg-1) 

www2.cipo
tato.org/pu
blications/
program_r
eports/97_
98/51yaco
n.pdf 

Fruit and vegetable crops 
Jerusalem 
artichoke (79) 

Inulin, 55.3 to 74.0% dry weight, JA 37 and CN 52867 
promising for both yield and inulin 

[40] 

Fruits (32) and 
vegetables (41) 

Most fruits, except nectarine (0.89 mg g-1 fresh weight), 
contain low amount of FOS; vegetables with high FOS: 
scallion 4.1 mg g-1, onion 2.24 mg g-1, garlic 1.76 mg g-1, 
and Jerusalem artichoke 1.6 mg g-1 fresh weight 

[94] 
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Varieties of 
plant foods (47) 

 Garlic and Jerusalem artichoke had high inulin-type fructan 
(19.4 to 29.2 g 100 g-1 fresh weight) than shallot  and red 
onion (3.6 to 8.8 g 100 g-1 fresh weight ); FOS highest in 
Jerusalem artichoke (5.2 g 100 g-1 fresh weight) 

[95] 

Bulb (3) and  
roots/tubers (7) 

Inulin type fructan 27 to 42% dry weight in garlic, shallot 
and onion; sweet potato, white radish, cassava and yam 
bean contain 0.42 to 2.14% 

[96] 

Fruits and 
vegetables (13) 

Jackfruit (flesh, 98 mg g-1; seeds, 29 mg g-1 dry extract), okra 
(49 mg-1 dry extract), and palm fruit (pericarp, 14 mg g-1; 
flesh, 47 mg g-1; embryo, 34 mg g-1 dry extract) rich in 
oligosaccharides 

[97] 

Pitaya (dragon 
fruit) 

Red-fleshed dragon fruits contain more oligosaccharides 89.6 
g kg-1 than white-fleshed types, 86.2 g kg-1 fresh fruit 
weight  

[98] 

Onion (15)  Fructan 0.84 to 3.04%, San Juan de la Rambla being highest 
in fructan 

[99] 

Fruits (43) and 
vegetables (60) 

High fructan vegetables: garlic, artichoke, shallots, leek bulb, 
and onions (1.2 to 17.4 g 100 g-1 fresh weight); fruits with  
detectable fructan: longon, peach, persimmon, and melon 
(0.21 to 0.46 g 100 g-1 fresh weight) 

[100] 

Figure in bracket within the first column refers to either the number of accessions 710 
within a crop or number of different crop species evaluated for prebiotic compounds  711 
  712 
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Table 2 713 
Select genebanks holding major germplasm collections of chicory, dahlia, dragon 714 
fruit, gembili, garlic, jack fruit, Jerusalem artichoke, leek, okra, onion, shallot and 715 
yacón 716 
 717 

Jerusalem artichoke 
 

Accession 
number 

Shallot Accession  
number 

Institute of Field and Vegetable 
Crops Novi Sad, Serbia 

120 Science and Advice for 
Scottish Agriculture, United 
Kingdom 

707 

North Central Regional Plant 
Introduction Station, USA 

107 Leibniz Institute of Plant 
Genetics and Crop Plant 
Research, Germany 

329 

Leibniz Institute of Plant Genetics 
and Crop Plant Research, Germany 

102 Station d'Amélioration 
Pomme de Terre et Plantes à 
Bulbes, France 

319 

Onion   Leek  
National Res. Centre for Onion and 
Garlic, India 

1,300 Agriculture and Food 
Research Council, United 
Kingdom 

128 

Northeast Regional Plant 
Introduction Station,  Cornell 
University, USA 

1,156 Leibniz Institute of Plant 
Genetics and Crop Plant 
Res., Germany 

95 

Royal Botanic Gardens, Kew, 
United Kingdom 

976 The Netherlands Plant 
Research International, 
Netherlands 

88 

Garlic   Okra  
National Res. Centre for Onion and 
Garlic, India 

750 Regional Station Akola, 
NBPGR, India 

2,286 

Vegetable Section Olomouc, 
Czech Republic 

623 University of Georgia, USA 2,220 

Asian Vegetable Research and 
Development Center, Taiwan, 
China 

505 University of the 
Philippines, Los Baños 
College, Philippines 

942 

Jack fruit  Dahlia   
Laboratoire d'Ecologie 
Moléculaire, Université de Pau, 
France 

81 Research Institute of 
Landscaping and 
Ornamental Gardening, 
Czech Republic 

224 

Regional Station Thrissur, 
NBPGR, India 

72 Vytautas Magnus 
University, Lithuania 

115 

Department of Agriculture Sabah, 
Malaysia 

57 National Plant Material 
Center USDA/SCS, USA 

15 

Dragon fruit   Gembili   
Programa de Recursos Genéticos 
Nicaragüenses, Nicaragua 

50 Dry-lowlands Research 
Programme, Papua New 
Guinea 

149 

Southern Fruit Research Institute, 
Viet Nam 

24 Dodo Creek Research 
Station, Solomon Islands 

112 
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Departamento Nacional de 
Recursos Fitogenéticos y 
Biotecnología, Ecuador 

18 University of the 
Philippines, Los Baños 
College, Philippines 

73 

Yacón   Chicory   
Estación Experimental Agraria 
Baños del Inca, Peru 

123 Station de 
Génétique/Amélioration des 
Plantes, INRA, France 

400 

Universidad Nacional de 
Cajamarca, Peru 

110 Unité Expérimentale 
d'Angers, Groupe d'Étude et 
de contrôle des Variétés et 
des Semences (GEVES), 
France 

251 

Estación Experimental Agraria 
Andenes, Peru 

89 Leibniz Institute of Plant 
Genetics and Crop Plant 
Res., Germany 

223 

  718 
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 719 
 720 
Fig. 1. Proportion of accessions representing 12 fruit, vegetable, root and tuber crops 721 
preserved across 288 genebanks globally (Source: http://apps3.fao.org/wiews/) 722 


