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Abstract

The fungicides used to control diseases in cereal production can have adverse effects on non-target fungi, with possible
consequences for plant health and productivity. This study examined fungicide effects on fungal communities on winter
wheat leaves in two areas of Sweden. High-throughput 454 sequencing of the fungal ITS2 region yielded 235 operational
taxonomic units (OTUs) at the species level from the 18 fields studied. It was found that commonly used fungicides had
moderate but significant effect on fungal community composition in the wheat phyllosphere. The relative abundance of
several saprotrophs was altered by fungicide use, while the effect on common wheat pathogens was mixed. The fungal
community on wheat leaves consisted mainly of basidiomycete yeasts, saprotrophic ascomycetes and plant pathogens. A
core set of six fungal OTUs representing saprotrophic species was identified. These were present across all fields, although
overall the difference in OTU richness was large between the two areas studied.
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Introduction

The phyllosphere, defined as the total above-ground parts of

plants, provides a habitat for many microorganisms [1]. Phyllo-

sphere microorganisms, including fungi, have been shown to

perform important ecological functions and can be both beneficial

and harmful to their host plant [2]. In agricultural crops, some

phyllosphere fungi are important pathogens, while others have

antagonistic properties [3] or can influence the physiology of the

plant [4]. Understanding the influence of agricultural practices on

phyllosphere fungal communities is important in order to create

the best conditions for crop development.

Wheat is one of the most important crops worldwide and the

wheat-associated fungal community was one of the first phyllo-

sphere communities to be studied [5]. The wheat phyllosphere has

been found to contain many basidiomycete yeasts such as

Cryptococcus spp., Sporobolomyces roseus and filamentous sapro-

trophs, e.g. Cladosporium spp., Alternaria spp., Epicoccum spp.,

and plant pathogens [5–8]. Fungi can be present both as epiphytes

and endophytes on wheat leaves. This is reflected in the different

sets of fungi retrieved when washed leaf pieces are cultured

compared with leaf wash liquid [9]. The main components of the

fungal wheat leaf community differ in studies conducted at

different sites and at different times and the mechanisms that lie

behind the dynamics of fungal communities in the phyllosphere of

agricultural crops are not well understood.

Plant pathogens are an important and well-studied group of

wheat-associated microorganisms. Important fungal wheat leaf

diseases world-wide include different types of rusts (Puccinia spp.),

powdery mildew (Blumeria graminis) and leaf blotch diseases such

as septoria tritici blotch (Mycosphaerella graminicola (Zymoseptoria
tritici)). Septoria tritici blotch has been one of the most serious

diseases of European wheat since the early 1980 s, causing up to

50% yield losses [10].

Foliar fungicides are routinely used in conventional agriculture

to control fungal diseases. However, besides the desired effect on

fungal pathogens, non-target fungi are also subjected to the

fungicide treatment. It is important to understand the effect of

fungicides on non-target fungi given the antagonistic potential of

some phyllosphere fungi and interactions between different

pathogens [1,11]. Applying a fungicide to control one pathogen

might even increase the problems with another, as has been shown

for Fusarium spp. causing fusarium head blight in cereals [12,13].

It has been hypothesised that fungicides suppress saprotrophic

fungi that otherwise would act as competitors against Fusarium
[13]. On the other hand, phyllosphere saprotrophs have been

shown to accelerate leaf senescence, which could explain some of

the yield increase after fungicide treatment not explained by attack

of pathogens [9,14]. More knowledge on the effect of fungicides on

phyllosphere fungal communities is important in order to optimise

fungicide application strategies.

Fungicides have different modes of action and can be both

broad range or target a specific group of fungi [15] and the

fungicide type and use vary for different crops. Previous studies

examining fungicide effects on non-target fungi in the wheat

phyllosphere using culture-dependent methods have shown that

fungicides with different modes of action have differing effects on
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individual fungal taxa [7–9,16–18]. Some of the biases of culture-

dependent methods can be overcome using DNA-based methods.

Recently, high-throughput sequencing technologies have revolu-

tionized the study of microbial diversity in the phyllosphere.

Consequently, knowledge on bacterial phyllosphere communities

on agricultural crops is growing, but less is known about fungi

[19]. So far, fungicide effects on fungal communities in the

phyllosphere has only been investigated to a limited extent using

DNA-based fingerprinting methods [20,21] and high-throughput

sequencing [22], but none of these studies focused on cereals.

The aims of this study were: 1) to identify the fungal community

in the wheat phyllosphere using 454 high-throughput sequencing,

2) to study the effect of fungicides on fungal community

composition in the wheat phyllosphere, and 3) to study differences

between phyllosphere fungal communities in two areas charac-

terised by different climate conditions and agricultural manage-

ment regimes. Fungicide-treated and non-fungicide treated leaves

were sampled from winter wheat fields in two areas in Sweden and

fungal community composition on the leaves was analysed by

amplification and 454-sequencing of the fungal ITS2 region of the

ribosomal DNA.

Materials and Methods

Ethics statement
Permission from the farmers was obtained through the Plant

Protection Centres of the Swedish Board of Agriculture in Skara

(for the Northern area) and Alnarp (for the Southern area)

respectively. The study did not involve any protected or

endangered species.

Sampling and plant material
Sampling of wheat fields was carried out in two important

agricultural production areas of Sweden, a Northern sampling

area located in the region of Västergötland and a Southern

sampling area in the Skåne region (Fig. 1). The Southern area is

characterised by a milder and drier climate. The two areas also

differ in agricultural management, for example in terms of

cropping sequence [23], the choice of wheat variety and fungicides

are used more frequently in the Southern area [24]. The average

winter wheat yield is about 2000 kg/ha higher in the Southern

area [23]. At the time of sampling, fields in the Northern area had

reached anthesis, while in the Southern area the developmental

stage ranged from anthesis to the early dough ripening stage

(Table 1).

Wheat (Triticum aestivum) leaves were sampled in pest

surveillance plots, disease control and variety trials placed in

conventionally managed farmers’ fields during summer 2011. The

pest surveillance plots are used for monitoring the incidence of

pests and diseases, so fungicides or insecticides are not applied

within these plots. Leaf samples representing seven different winter

wheat varieties were collected from a total of 18 fields (Table 1).

All fields had received 1–3 fungicide treatments containing one

or several of the following active ingredients: azoxystrobin,

bixafen, cyprodinil, difenoconazole, fenpropimorph, metrafenone,

picoxystrobin, prochloraz, propiconazole, prothioconazole and

pyraclostrobin (see Tables S1 and S2 for further details). In fields

with pest surveillance plots, fungicide application outside the plots

was managed by the farmer. In field trials, fungicide application

was carried out by field trial management staff.

The leaf below the flag leaf was sampled from 10 randomly

chosen plants in each plot. For pest surveillance plots, plants were

sampled from the fungicide-treated crop outside the plot and in

the non-fungicide treated surveillance plot itself. In field trials,

plants were sampled from fungicide-treated plots and from

untreated control plots. However, there was no untreated plot

available from one field in the Southern area. Leaves from each

plot were pooled into one sample. In total, 42 samples (Table 1)

and 420 leaves were used for the study. Gloves were used when

picking leaves to avoid cross-contamination between fungicide-

treated and untreated leaves, and between fields. The leaves were

collected in clean plastic bags and stored overnight in the

refrigerator and then transferred to 220uC until DNA extraction.

DNA extraction, PCR amplification and sequencing
In order to capture both endophytic and epiphytic fungi, the

whole leaf tissue was used for DNA extraction. Leaves were split

into halves, with the middle vein left on the half used for

extraction. The 10 halved leaves were cut into smaller pieces and

placed in a plastic bag. The samples were frozen in liquid nitrogen,

homogenised with a pestle and 100 mg of each sample were

transferred to another bag (Bioreba AG, Switzerland). The DNA

was then extracted using the DNeasy Plant Mini kit (QIAGEN

AB, Sweden) according to the manufacturer’s instructions, except

for the lysis buffer, for which a larger volume was used (530 ml).

The DNeasy kit was used with the QiaCube (QIAGEN AB,

Sweden) with the standard plant cells and tissues protocol.

The ITS2 region was amplified on a 2720 Thermal Cycler (Life

Technologies, CA, USA) using the forward primer fITS7

(GTGARTCATCGAATCTTTG; [25] and the reverse primer

ITS4 (TCCTCCGCTTATTGATATGC; [26]. The length of the

ITS2 is variable among fungi, ranging between ,122 and 245 bp

[25]. The ITS4 primer was tagged with an 8 bp barcode. PCR

was run in 50-ml reactions with 0.8 ng/ml template, 200 mM of

each nucleotide, 2.75 mM MgCl2, forward primer at 500 nM,

tagged primer at 300 nM and 0.02 U/ml polymerase (DreamTaq

Green, Thermo Scientific, MA, USA) in PCR buffer. PCR

conditions were 5 min at 94uC, 30–32 cycles of [30 s at 94uC, 30 s

at 57uC, 30 s at 72uC] and 7 min at 72uC. The number of cycles

was adapted for each sample to give weak to moderately strong

bands on the agarose gel with approximately the same strength for

all samples to avoid oversaturation and distortion of the PCR pool.

To determine the number of cycles necessary for each sample, test

runs were conducted with non-barcoded primers starting at 25

PCR cycles before samples were run with the barcoded primers.

PCR products were cleaned using AMPure (Beckman Coulter,

CA, USA) according to the manufacturer’s instructions. DNA

concentration was measured on a NanoDrop 1000 spectropho-

tometer (Thermo Scientific, MA, USA) and the samples were

pooled in equimolar amounts. The sample pool was freeze-dried

and sent to LGC Genomics (Germany) for adaptor ligation and

sequencing on 1/16th of a plate on a GS FLX Titanium sequencer

(Roche, Switzerland). Demultiplexed raw sequence data were

deposited in the Sequence Read Archive (http://www.ncbi.nlm.

nih.gov/sra) under the accession number SRP042192.

Bioinformatics and taxonomic assignment
The raw sequence data were analysed using the SCATA

pipeline (http://scata.mykopat.slu.se; [27]). Sequences were

screened for tags and primer sequences, allowing for one mismatch

for the primers in addition to degenerate bases. Sequences shorter

than 200 bp and those with a mean quality score lower than 20

and containing bases with a score lower than 10 were discarded.

The option ‘‘extract high quality region’’ was used.

Sequences were clustered into operational taxonomic units

(OTUs) at a clustering level that was chosen to approximate

species level. The sequences passing the quality control were

clustered at 1.5% dissimilarity cut-off in SCATA, using single
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linkage clustering with default settings (85% alignment, collapse

homopolymers to 3 bp, usearch as cluster engine, miss match

penalty 1, gap open penalty 0, gap extension 1 and end gap weight

0). The level of intraspecific variation in the ITS sequence is

variable within fungi [28], and thus using a single cut-off level will

not perfectly reflect biological species. However, we found 1.5%

dissimilarity to be the most appropriate level in this dataset, as

higher cut-off levels would group some basidiomycete species into

the same OTU.

Singletons in the full dataset were removed, as many of them

were considered to represent sequencing errors [29]. In addition,

singletons in each sample were removed in an effort to limit the

effects of tag switching [30].

We focused on taxonomically assigning the OTUs represented

by at least 10 sequences globally in the dataset (67 OTUs). Some

of these could be taxonomically assigned in SCATA by including

reference sequences from isolates from the Fungal Biodiversity

Center CBS (http://www.cbs.knaw.nl/) and from the UNITE

database including ‘species hypotheses’ accessions (version 6

Figure 1. Wheat leaves were sampled in two important agricultural production areas of Sweden. Dots represent position of individual
fields within in the two sampling areas. The Northern sampling area (N) is located in the Västergötland region and the Southern area (S) in the Skåne
region.
doi:10.1371/journal.pone.0111786.g001

Table 1. Distribution of wheat leaf samples between two geographical areas, fields and treatments, including weather data.

Northern area Southern area

Sampling date 20-June 27-June

No. of fields 13 5

No. of samples 26 16

No. of control samples 13 5

No. of fungicide-treated samples 13 11

Wheat developmental stage (DC) 61–69 61–83 nd

06-June220-June 13-June227-June

Mean temp. (uC) 14.7 14.3

Mean rel. humidity (%) 81.6 82.6

Acc. rainfall (mm) 123.4 37.6

13-June220-June 20-June227-June

Mean temp. (uC) 13.4 14.5

Mean rel. humidity (%) 80.5 81.4

Acc. rainfall (mm) 47.8 17.2

19-June 26-June

Mean temp. (uC) 12.4 14.5

Mean rel. humidity (%) 93.5 78.2

Acc. rainfall (mm) 23.4 0.0

Mean temperature, mean relative humidity and accumulated rainfall1 are given for two weeks, one week and the day before sampling.
DC = developmental stage according to the Zadoks scale, nd = not determined for all fields.
1 Weather data from the Lantmet weather stations in Skara and Anderslöv respectively.
doi:10.1371/journal.pone.0111786.t001
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09.02.2014; [31]) in the clustering. Kõljalg et al. [31] introduced

the term ‘species hypothesis’ (SH) in order to facilitate the

communication of fungal taxa discovered when clustering DNA

sequences at different similarity cut-offs. Stable accession codes for

all species hypotheses in the UNITE database have now been

introduced [31], thus facilitating comparisons among sequence-

based studies of fungi.

OTUs that did not cluster with any reference sequence in

SCATA were blasted against GenBank (http://www.ncbi.nlm.nih.

gov/genbank) in order to find suitable reference sequences. The

most abundant sequence in each OTU was used for this purpose.

Taxonomic assignment was then performed with the help of

neighbour-joining trees (Figs. S1 and S2). First, the OTUs were

divided into basidiomycetes and ascomycetes. Then, a multiple

alignment for each phylum was generated in the stand-alone

version of MAFFT (v7.058b; [32]) using the G-IN-Si option. The

alignments were cut so that all sequences had the same length.

Subsequently, neighbour-joining trees were constructed with the

ProtDist/FastDist+BioNJ option on the phylogeny.fr web service

(http://www.phylogeny.fr; [33]) using 1000 bootstraps. The

OTUs were assigned to the finest possible taxonomic level.

Statistical analyses
First, the relationship between sequencing depth and OTU

richness was analysed using rarefaction curves for each area and

treatment, generated with Analytical Rarefaction 1.3 (Steven M.

Holland 2003, http://strata.uga.edu/software/anRareReadme.

html) in steps of 1000 specimens. The relationship between the

number of samples and OTU richness was analysed with species

accumulation curves. The distribution of treated and untreated

samples was uneven in the two sampling areas. Therefore, when

more than two samples were taken per field, one fungicide-treated

and one untreated sample were randomly chosen from each field

for inclusion in the analysis. Species accumulation curves were

generated using the specaccum function with the random method

in the ‘Vegan’ package (version 2.0–10; [34]) in R (version 3.0.2)

As the number of sequences per sample was unequal, the

dataset was rarefied to 197 sequences per sample, which was the

size of the smallest sample. The rarefaction was performed using

the rrarefy function in ‘Vegan’ (version 2.0–10; [34]). The

rarefaction was repeated 1000 times on the sample-by-OTU table

and the mean was taken over the 1000 matrices and used for

subsequent analysis.

Second, we tested the effect of fungicide treatment and

geographical area on OTU richness and community evenness

(Pielou’s evenness index [35]) using linear mixed models (LMM).

We used the lmer function in the ‘lme4’ R package [36]. A model

including treatment, geographical area and their interaction, with

field and the interaction between field and treatment as random

factors was fitted to both OTU richness and evenness. Significance

tests were performed with a Kenward-Roger modification for

performing F-tests, the KRmodcomp function in the ‘pbkrtest’

package [37]. The LMM analyses were performed both on the full

dataset and on a smaller dataset excluding two fields in the

Southern area where the control samples were dominated by one

single OTU, namely Puccinia striiformis.
Third, non-metric multidimensional scaling (NMDS) was used

to explore the fungal community composition using the function

metaMDS in the ‘Vegan’ package [34] in R. The NMDS was

performed using Bray-Curtis dissimilarities with square root

transformation and Wisconsin double standardisation. Subse-

quently, 95% confidence areas were fitted to the ordination using

the ordiellipse function.

Fourth, we tested the effect of fungicide treatment and

geographical area on both community composition and individual

OTUs using generalised linear models (GLMs). First, a model was

fitted in order to test the effect of geographical area, treatment and

their interaction. The interaction was not significant and a model

including field as a block factor and treatment as a fixed factor

could be fitted to test the effect of the fungicide treatment in both

areas. For these analyses, a GLM was fitted to each OTU using

the manyglm function in the ‘mvabund’ package in R (version

3.8.4; [38]) using a negative binomial probability distribution. The

rarefied sample-by-OTU table was input as the response variable.

Next, the models were tested using the function anova in

‘mvabund’, providing both a multivariate test for the whole

community and univariate tests for each OTU. The score test was

used and the cor.type argument set to shrink to allow for

correlated response among OTUs. P-values were adjusted for

multiple testing. The analysis was performed both at the level of

species and order.

For the NMDS, LMM and the GLM analyses, only the 67

taxonomically assigned OTUs (those represented by at least 10

sequences globally) were included, since they represented the

majority of the sequences in the dataset.

Results and Discussion

Sequence data quality
In all, 56% of the 454 reads from the pool of 420 wheat leaves

passed the SCATA quality filtering. Singletons made up 1.7% of

the sequences in the filtered dataset (471 global singletons and 324

per-sample singletons) and were removed. The removal of per-

sample singletons resulted in a loss of 30 OTUs represented by 2–5

sequences each. Non-fungal sequences were also removed and

these constituted 3.5% of the dataset, mostly wheat sequences. Per

sample, 0–45% non-fungal sequences were removed. The quality-

controlled dataset contained 44 245 sequences in 42 samples. The

number of sequences per sample ranged between 197–2978, with

a mean of 1053 sequences per sample.

Taxonomic composition and richness of the fungal
community of wheat leaves

The fungal community composition in the wheat phyllosphere

was characterised using 454 high-throughput sequencing. We

found 235 fungal OTUs in the pool of 420 wheat leaves when

clustering at 1.5% dissimilarity level. The rarefaction curves

approached saturation (Fig. 2a) for all conditions, while the species

accumulation curves did not (Fig. 2b).

We taxonomically assigned the OTUs containing more than 10

reads in the total dataset (67 OTUs, Table S3). These OTUs

accounted for 90–100% of the sequences in the samples and none

of the species in the tail were present in more than 10% of the

samples. Overall, 45% of the OTUs were identified to species level

and the highest taxonomic level of identification was at the order

level.

The fungal community in the present study consisted of almost

equal proportions of ascomycetes (54%) and basidiomycetes

(46%). The most common orders in the dataset were Sporidio-

bolales, Tremellales, Capnodiales and Pleosporales (Fig. 3).

We identified a ‘core’ fungal community of six OTUs that was

found across all treatments and sites. In fact, these six most

abundant OTUs were found in all samples except two, including

all fields. Of these six, five were identified as basidiomycete yeasts

(OTU_0_Sporobolomyces_roseus, OTU_3_Dioszegia_fristingensis,
OTU_4_Cryptococcus_tephrensis, OTU_12_Cryptococcus_sp and

OTU_9_Dioszegia_hungarica), and one as the ascomycete
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OTU_5_Cladosporium_spp. The phyllosphere fungal community

of wheat has often been described as consisting of ‘pink’ yeasts

(Sporobolomyces and Rhodotorula producing carotenoid pigments),

‘white’ yeasts (Cryptococcus) and ascomycete saprotrophs such as

Cladosporium and Alternaria [17,18]. We were able to confirm the

presence of these fungal taxa previously identified by culture-

dependent methods (Table 2). Comparison of DNA-based and

culture-based studies may give misleading results, since culture-

dependent studies typically group morphologically similar species

into one category. Thus, comparing the fungal community

composition at the genus level might overestimate the similarity

to previous studies of the phyllosphere of wheat. Using high-

throughput sequencing, we were able to describe the fungal

community in more detail. Blixt et al. (2010) [6] identified16

fungal species from wheat leaves in Sweden using cloning and

sequencing, 13 of these were found among the 235 OTUs in our

study.

The number of ITS copies has been reported to vary by an

order of magnitude among different fungal species [39,40] and

within the same fungal species [41]. This will to some extent bias

quantitative comparisons among different taxa. Therefore, we

focused on comparing the relative abundance of each OTU in

fungicide-treated and untreated samples.

Fungicide effects on fungal community composition
The application of fungicides had a significant effect on fungal

community composition on wheat leaves (Fig. 4 and Table 3). The

total OTU richness was lower for the fungicide-treated sample

pool (Fig. 2). There was also a tendency for a lower mean OTU

richness per ten leaves in the fungicide-treated samples (19.461.8

SE) than in the control samples (24.362.1 SE), but the difference

was not significant (p.0.05) (Fig. 5a, Table 4). There was no

interaction between fungicide treatment and geographical area for

neither community composition (Table 3) nor OTU richness (p.

0.05) (Table 4). When samples from fields infected with Puccinia
striiformis were included in the analysis, the same pattern was

observed (Fig. S3a, Table S4).

Fungicide treatment affected community evenness negatively

(p,0.01), and there was no interaction with geographical area (p.

0.05) (Fig. 5b, Table 4). However, the pattern was different when

samples from fields infected with P. striiformis were included.

When these samples were included, there was a significant

interaction between area and fungicide treatment (p,0.05) and

evenness tended to be higher in fungicide-treated samples than in

control samples in the Southern area (Fig. S3b, Table S4). P.

striiformis dominated the control samples when present in a field,

and consequently the evenness in these samples was very low. This

dominance might have been further amplified due to the

pathogenic activity of P. striiformis, physically changing the leaf

surface and thus possibly making it less suitable to other fungi, or

by a high amount of P. striiformis biomass masking the less

abundant community members since samples were pooled in

equimolar amounts [42].

The community composition at the order level was significantly

different for fungicide-treated and untreated samples (Fig. 3). The

proportion of Leucosporidiales (p,0.05) and Dothideales (p,

0.05) was lower in fungicide-treated samples than in the control

samples. This was reflected at the species level, where univariate

tests showed that the relative abundance of three OTUs:

OTU_6_Dioszegia_sp (p,0.05), OTU_28_Aureobasidium_pullu-
lans_a (p,0.05) and OTU_25_Leucosporidium_golubevii (p,

0.05), was lower in fungicide-treated leaves than control leaves.

OTU_6_Dioszegia_sp was similar to the ITS sequences of both D.

crocea and D. aurantiaca. These species have been isolated from

both the phyllosphere [43] and the rhizosphere of different plants

[44,45]. Leucosporidium golubevii is a yeast discovered in

freshwater [46], and has been reported from the phyllosphere of

balsam poplar [47]. In addition, the relative abundance of

OTU_16_Phaeosphaeria_juncophila (p,0.01) was higher in

fungicide-treated leaves (Fig. 6). Phaeosphaeria juncophila was

first isolated from the rush Juncus articulatus, but little is known

about its ecology.

The fungicide sensitivity of phyllosphere fungi has mostly been

investigated with fungicides that are no longer used or have been

prohibited in Sweden, except for some sterol biosynthesis

inhibitors (SBI). SBI fungicides have been shown to have no or

Figure 2. Rarefaction and species accumulation curves. a)
Rarefaction curves presenting the relationship between sequencing
depth and species richness in operational taxonomic units (OTUs). Error
bars indicate 95% confidence intervals. b) Sample-based species
accumulation curves. When more than two samples were taken per
field, one fungicide-treated and one untreated sample was randomly
chosen from each field for inclusion in the analysis. Error bars indicate
95% confidence intervals, only shown for Northern and Southern area
respectively.
doi:10.1371/journal.pone.0111786.g002

Figure 3. Fungal community composition on wheat leaves at
the order level. Community composition is presented for the total
dataset, fungicide-treated, control and samples from the Northern and
Southern area respectively. Orders with low abundance have been
merged to the group ‘Others’ to improve visual representation.
doi:10.1371/journal.pone.0111786.g003

Fungicide Effects on Fungal Communities in the Wheat Phyllosphere

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e111786



T
a

b
le

2
.

T
ax

o
n

o
m

ic
an

d
fu

n
ct

io
n

al
as

si
g

n
m

e
n

t
o

f
th

e
3

0
m

o
st

ab
u

n
d

an
t

o
p

e
ra

ti
o

n
al

ta
xo

n
o

m
ic

u
n

it
s

(O
T

U
s)

.

O
T

U
ID

N
o

.
o

f
re

a
d

s
T

a
x

o
n

o
m

ic
a

ss
ig

n
m

e
n

t
U

N
IT

E
S

H
-a

cc
e

ss
si

o
n

S
H

%
2

P
h

y
lu

m
C

la
ss

O
rd

e
r

P
u

ta
ti

v
e

fu
n

ct
io

n
a

l
a

ss
ig

n
m

e
n

t
[6

4
,6

5
]

O
T

U
_

0
8

1
9

0
Sp

o
ro

b
o

lo
m

yc
es

ro
se

u
s

SH
1

9
6

7
0

6
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
M

ic
ro

b
o

tr
yo

m
yc

e
te

s
Sp

o
ri

d
io

b
o

la
le

s
ye

as
t

O
T

U
_

3
5

4
7

5
D

io
sz

eg
ia

fr
is

ti
n

g
en

si
s

SH
1

9
6

9
6

2
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
T

re
m

e
llo

m
yc

e
te

s
T

re
m

e
lla

le
s

ye
as

t

O
T

U
_

5
4

7
6

0
C

la
d

o
sp

o
ri

u
m

sp
p

–
–

A
sc

o
m

yc
o

ta
D

o
th

id
e

o
m

yc
e

te
s

C
ap

n
o

d
ia

le
s

sa
p

ro
tr

o
p

h
,

p
at

h
o

g
e

n

O
T

U
_

4
3

5
1

0
C

ry
p

to
co

cc
u

s
te

p
h

re
n

si
s

SH
1

9
8

0
5

6
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
T

re
m

e
llo

m
yc

e
te

s
T

re
m

e
lla

le
s

ye
as

t

O
T

U
_

1
2

2
8

4
8

C
ry

p
to

co
cc

u
s

sp
p

SH
1

5
4

1
2

4
.0

6
FU

9
7

.5
B

as
id

io
m

yc
o

ta
T

re
m

e
llo

m
yc

e
te

s
T

re
m

e
lla

le
s

ye
as

t

O
T

U
_

9
2

3
3

0
D

io
sz

eg
ia

h
u

n
g

a
ri

ca
SH

1
9

6
9

6
1

.0
6

FU
9

8
.5

B
as

id
io

m
yc

o
ta

T
re

m
e

llo
m

yc
e

te
s

T
re

m
e

lla
le

s
ye

as
t

O
T

U
_

1
2

3
0

1
P

u
cc

in
ia

st
ri

if
o

rm
is

SH
2

0
5

9
0

3
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
P

u
cc

in
io

m
yc

e
te

s
P

u
cc

in
ia

le
s

p
at

h
o

g
e

n

O
T

U
_

1
4

2
2

2
3

M
yc

o
sp

h
a

er
el

la
g

ra
m

in
ic

o
la

SH
0

4
4

7
1

0
.0

6
FU

9
8

A
sc

o
m

yc
o

ta
D

o
th

id
e

o
m

yc
e

te
s

C
ap

n
o

d
ia

le
s

p
at

h
o

g
e

n

O
T

U
_

1
3

2
0

1
2

B
lu

m
er

ia
g

ra
m

in
is

SH
1

9
5

2
2

6
.0

6
FU

9
8

.5
A

sc
o

m
yc

o
ta

Le
o

ti
o

m
yc

e
te

s
Er

ys
ip

h
al

e
s

p
at

h
o

g
e

n

O
T

U
_

7
1

2
6

8
U

d
en

io
m

yc
es

p
a

n
n

o
n

ic
u

s
SH

2
1

7
6

5
0

.0
6

FU
9

8
.5

B
as

id
io

m
yc

o
ta

T
re

m
e

llo
m

yc
e

te
s

C
ys

to
fi

lo
b

as
id

ia
le

s
ye

as
t

O
T

U
_

6
1

1
3

6
D

io
sz

eg
ia

sp
p

SH
1

9
6

9
5

9
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
T

re
m

e
llo

m
yc

e
te

s
T

re
m

e
lla

le
s

ye
as

t

O
T

U
_

2
4

9
2

9
P

h
a

eo
sp

h
a

er
ia

ce
a

e
sp

1
a

–
–

A
sc

o
m

yc
o

ta
D

o
th

id
e

o
m

yc
e

te
s

P
le

o
sp

o
ra

le
s

-

O
T

U
_

2
7

8
3

6
A

sc
o

ch
yt

a
sp

SH
2

3
3

9
5

0
.0

6
FU

9
8

.5
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
P

le
o

sp
o

ra
le

s
sa

p
ro

tr
o

p
h

,
p

at
h

o
g

e
n

[5
7

]

O
T

U
_

1
6

5
6

0
P

h
a

eo
sp

h
a

er
ia

ju
n

co
p

h
ila

SH
2

2
7

8
0

3
.0

6
FU

9
8

.5
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
P

le
o

sp
o

ra
le

s
sa

p
ro

tr
o

p
h

O
T

U
_

1
8

5
5

5
A

sc
o

ch
yt

a
sk

a
g

w
a

ye
n

si
s

–
–

A
sc

o
m

yc
o

ta
D

o
th

id
e

o
m

yc
e

te
s

P
le

o
sp

o
ra

le
s

sa
p

ro
tr

o
p

h
,

p
at

h
o

g
e

n

O
T

U
_

2
6

4
9

2
Le

u
co

sp
o

ri
d

ie
lla

fr
a

g
a

ri
a

SH
2

1
2

3
1

7
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
M

ic
ro

b
o

tr
yo

m
yc

e
te

s
Le

u
co

sp
o

ri
d

ia
le

s
ye

as
t

O
T

U
_

2
2

4
5

9
A

lt
er

n
a

ri
a

m
a

lo
ru

m
–

–
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
P

le
o

sp
o

ra
le

s
p

at
h

o
g

e
n

,
sa

p
ro

tr
o

p
h

[6
6

]

O
T

U
_

1
9

4
2

4
P

h
a

eo
sp

h
a

er
ia

ce
a

e
sp

5
a

SH
2

2
7

8
1

3
.0

6
FU

9
8

.5
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
P

le
o

sp
o

ra
le

s
–

O
T

U
_

4
7

3
2

7
P

h
a

eo
sp

h
a

er
ia

n
o

d
o

ru
m

SH
2

0
6

9
8

9
.0

6
FU

9
8

.5
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
P

le
o

sp
o

ra
le

s
p

at
h

o
g

e
n

O
T

U
_

3
4

2
9

7
H

e
lo

ti
al

e
s

sp
1

a
–

–
A

sc
o

m
yc

o
ta

Le
o

ti
o

m
yc

e
te

s
H

e
lo

ti
al

e
s

–

O
T

U
_

2
8

2
4

9
A

u
re

o
b

a
si

d
iu

m
p

u
llu

la
n

s
a

–
–

A
sc

o
m

yc
o

ta
D

o
th

id
e

o
m

yc
e

te
s

D
o

th
id

e
al

e
s

sa
p

ro
tr

o
p

h
,

an
ta

g
o

n
is

t
[5

2
]

O
T

U
_

2
5

1
7

9
Le

u
co

sp
o

ri
d

iu
m

g
o

lu
b

ev
ii

SH
2

1
2

3
1

5
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
M

ic
ro

b
o

tr
yo

m
yc

e
te

s
Le

u
co

sp
o

ri
d

ia
le

s
ye

as
t

O
T

U
_

5
0

1
7

1
C

ys
to

fi
lo

b
as

id
ia

le
s

sp
a

–
–

B
as

id
io

m
yc

o
ta

T
re

m
e

llo
m

yc
e

te
s

C
ys

to
fi

lo
b

as
id

ia
le

s
–

O
T

U
_

3
2

1
5

4
C

ry
p

to
co

cc
u

s
w

ie
ri

n
g

a
e

SH
2

1
6

5
0

3
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
T

re
m

e
llo

m
yc

e
te

s
Fi

lo
b

as
id

ia
le

s
ye

as
t

O
T

U
_

3
5

1
5

2
P

le
o

sp
o

ra
le

s
sp

1
–

–
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
P

le
o

sp
o

ra
le

s
–

O
T

U
_

4
3

1
4

5
H

e
lo

ti
al

e
s

sp
1

b
–

–
A

sc
o

m
yc

o
ta

Le
o

ti
o

m
yc

e
te

s
H

e
lo

ti
al

e
s

–

O
T

U
_

4
4

1
2

4
B

u
lle

ra
g

lo
b

o
sp

o
ra

SH
1

9
7

1
1

4
.0

6
FU

9
8

.5
B

as
id

io
m

yc
o

ta
T

re
m

e
llo

m
yc

e
te

s
T

re
m

e
lla

le
s

ye
as

t

O
T

U
_

2
0

1
2

3
M

o
n

o
g

ra
p

h
el

la
sp

p
SH

2
1

6
9

2
7

.0
6

FU
9

8
.5

A
sc

o
m

yc
o

ta
So

rd
ar

io
m

yc
e

te
s

X
yl

ar
ia

le
s

p
at

h
o

g
e

n

O
T

U
_

3
3

1
1

4
P

h
a

eo
sp

h
a

er
ia

ce
a

e
sp

5
b

–
–

A
sc

o
m

yc
o

ta
D

o
th

id
e

o
m

yc
e

te
s

P
le

o
sp

o
ra

le
s

–

O
T

U
_

7
0

1
1

1
Le

p
to

sp
o

ra
ru

b
el

la
–

–
A

sc
o

m
yc

o
ta

D
o

th
id

e
o

m
yc

e
te

s
In

ce
rt

ae
se

d
is

sa
p

ro
tr

o
p

h
[6

7
]

Sp
e

ci
e

s
h

yp
o

th
e

si
s

ac
ce

ss
io

n
co

d
e

s
in

th
e

U
N

IT
E1

d
at

ab
as

e
ve

rs
io

n
ar

e
in

d
ic

at
e

d
w

h
e

n
av

ai
la

b
le

.
Fu

n
ct

io
n

al
as

si
g

n
m

e
n

t
as

‘p
at

h
o

g
e

n
’

is
o

n
ly

u
se

d
fo

r
ta

xa
kn

o
w

n
to

b
e

p
at

h
o

g
e

n
ic

o
n

w
h

e
at

.
1
V

e
rs

io
n

6
(0

2
.0

9
.2

0
1

4
)

h
tt

p
:/

/u
n

it
e

.u
t.

e
e

/,
2

Si
m

ila
ri

ty
cu

t-
o

ff
fo

r
cl

u
st

e
ri

n
g

in
U

N
IT

E.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

1
1

7
8

6
.t

0
0

2

Fungicide Effects on Fungal Communities in the Wheat Phyllosphere

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e111786

http://unite.ut.ee/


a moderate effect on the ‘pink’ and ‘white’ phyllosphere yeasts,

with a somewhat stronger effect on ‘white’ yeasts [16]. Aureoba-
sidium pullulans is reported to be sensitive to propiconazole [16]

and prochloraz [17,18] and these two fungicides and other SBI

fungicides have been used in almost all the fields in this study

(Table S1). The ascomycete A. pullulans is one of the most

common inhabitants of the phyllosphere of many crops [48] and is

also present in many other habitats [49]. Aureobasidium pullulans
is known to be antagonistic towards necrotrophic pathogens, e.g.

grey mould in strawberries [50] and powdery mildew in durum

wheat [51]. The mechanism of the antagonism is hypothesised to

be competition for nutrients [52]. Some strains of A. pullulans also

produce a type of antibiotic called aureobasidins [53]. The

antagonistic potential of biological control agents is frequently

strain-specific, depending on the mechanism of antagonism. From

the sequence data, we cannot make inferences about the

antagonistic capacity of an OTU. Hence, it is unknown whether

the reduction in the relative abundance of A. pullulans in

fungicide-treated leaves has an impact on the antagonistic capacity

of the fungal community.

Several OTUs were identified as common wheat pathogens in

the dataset: OTU_14_Mycosphaerella_graminicola, OTU_13_

Blumeria_graminis, OTU_1_Puccinia_striiformis, OTU_47_

Phaeosphaeria_nodorum (Parastagonospora nodorum), OTU_20_

Monographella_spp and OTU_224_Pyrenophora_tritici-repentis.
Surprisingly, there was no significant effect of fungicide treatment

on the relative abundance of any of these OTUs. On the contrary,

there was a tendency for higher variability in the relative

abundance of M. graminicola and B. graminis in treated samples

(Fig. 6), and the share of B. graminis (the only member of

Erysiphales) was larger in treated samples (Fig. 3). On the other

hand, P. striiformis tended to dominate the fungal community in

untreated samples and was nearly absent from the fungicide-

treated samples from the same fields, only being present in two

fields in the Southern area (Fig. 3). Fungicide resistance in

common pathogens is an increasing problem and could be an

explanation for the high variability in the relative abundance of

the pathogens observed here. Resistance to strobilurines in M.

graminicola and even more so in B. graminis is widespread in the

Nordic and Baltic countries. In addition, resistance to demethyl-

ation inhibitor fungicides is increasing in both pathogens [10]. 454

sequencing is a semi-quantitative method only allowing quantifi-

cation of the relative abundance of different OTUs [25]. Thus, we

were unable to determine whether the fungicide treatment had an

effect on absolute abundance of the pathogens.

In soil, DNA from dead fungal mycelia has been shown to

degrade rapidly [54], but data on the rate of DNA degradation in

the phyllosphere are lacking. It is possible that DNA from fungi

killed by the fungicides might have been detected by the PCR. The

difference in community composition between fungicide-treated

and untreated samples may therefore be underestimated. Howev-

er, the large difference in the relative abundance of P. striiformis
between fungicide-treated and untreated samples does not support

this hypothesis.

Fungicide use was significantly correlated with changes in the

relative abundance of certain fungal taxa (Fig. 6). Several

hypotheses can be put forward to explain the cause of these

negative or positive correlations. First, a difference in fungicide

sensitivity [20] can cause some taxa to decrease relative to others

in the community. Secondly, a specific taxon may be affected by

the fungicides indirectly through changes in the abundance of

Table 3. Effect of environmental and management factors on fungal community composition in the wheat phyllosphere.

Multivariate test (anova.manyglm)

Data Factor Res. Df score Pr(.score)

Abund Intecept 41

Abund Area 40 78.29 0.001 ***

Abund Fungicide treatment 39 67.38 0.001 ***

Abund Area x fungicide treatment 38 22.53 0.546

Abund Intercept 41

Abund Field 24 690.8 0.001 ***

Abund Fungicide treatment 23 125 0.001 ***

Significance codes: *** = 0.001, Abund = 67 most abundant OTUs.
doi:10.1371/journal.pone.0111786.t003

Figure 4. Non-metric multidimensional scaling (NMDS) of
phyllosphere fungal communities of wheat. Ordination of
samples with fitted environmental variables. Ellipses represent 95%
confidence areas for Southern area (solid grey line), Northern area (solid
black line), fungicide-treated (dashed grey line) and control (dashed
black line) groups respectively. The NMDS was performed on the mean
of 1000 rarefied datasets.
doi:10.1371/journal.pone.0111786.g004
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Figure 5. Richness of operational taxonomic units (OTUs) and community evenness. Boxplots with interquartile ranges of a) OTU richness
and b) community evenness grouped by treatment (fungicide-treated and control samples) and geographical area. Horizontal lines represent
medians and dots mean values. Samples from fields infected with yellow rust (Puccinia striiformis) in the Southern area (fields 15 and 16, Table S1)
have been removed.
doi:10.1371/journal.pone.0111786.g005

Table 4. Summary of the linear mixed model analysis of OTU richness and evenness.

OTU Richness

Random effects Variance Standard deviation

Field 16.0 4.00

Field x fungicide treatment 0.00 0.00

Residual 36.7 6.06

Fixed effects Estimate Standard error t-value

Intercept 28.5 2.01 14.1

Fungicide treatment (treated) 24.39 2.38 21.84

Area (Southern) 212.3 4.82 22.55

Fungicide treatment x Area 2.84 5.06 0.56

Evenness

Random effects Variance Standard deviation

Field 0.000 0.000

Field x fungicide treatment 0.002 0.040

Residual 0.004 0.065

Fixed effects Estimate Standard error t-value

Intercept 0.816 0.021 38.6

Fungicide treatment (treated) 20.089 0.030 22.99

Area (Southern) 20.073 0.052 21.40

Fungicide treatment x Area 0.025 0.066 0.380

Samples from fields infected with yellow rust (Puccinia striiformis) (fields 15 and 16, Table S1) were excluded.
doi:10.1371/journal.pone.0111786.t004
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other, potentially competing, members of the community. It is also

possible that taxonomic groups are closely interconnected by

unknown functional interactions leading to pairwise co-occurrence

or decrease in response to another underlying factor, such as

fungicide-induced changes in plant physiology [55].

Spatial variation and biogeographical patterns
There were significant differences between fungal communities

on wheat leaves sampled from two different areas in Sweden

(Fig. 4, Table 3). The two areas were chosen as they differed in

terms of climate conditions and agricultural management. The

mean OTU richness per ten leaves was significantly lower (p,

0.05) in the Southern area (13.861.1 SE) than in the Northern

(26.361.6 SE) (Fig. 5a, Table 4) as well as the total OTU richness

in the sample pool (Fig. 2), although the Southern area was only

represented by five fields. There were more fungicide-treated

samples from the Southern area but the difference in overall OTU

richness persisted also when comparing the same number of

fungicide-treated and untreated samples in the two areas (Fig. 2b).

The community evenness tended to be lower in the Southern area

(Fig. 5b, Table 4), but there was no significant difference (p.0.05)

when samples dominated with P. striiformis had been removed

(Fig. S3b, Table S4).

The variation in community composition among fields was

high, as field was a significant factor in the GLM analysis

(Table 3). In addition, most of the OTUs (155 out of 235) only

occurred in one sample in the dataset. For OTU richness, the

variable field explained one third of the random variation, while

for evenness, field did not explain any of the random variation

(Table 4).

At the order level, Sporidiobolales had a significantly higher

relative abundance in the Southern area (p,0.001), while

Pleosporales (p,0.01), Helotiales (p,0.05) and the unassigned

group of OTUs (p,0.05) were relatively more abundant in the

Northern area (Fig. 3). There were many OTUs in the Phaeo-
sphariaceae and in the Pleosporales that did not match any known

species. These may represent undescribed fungal species, but could

also reflect intragenomic variation, although this phenomenon

does not seem to be wide-spread in fungi [56]. At the species level,

OTU_16_Phaeosphaeria_juncophila (p,0.05) and OTU_18_As-
cochyta_skagwayensis (p,0.01) were relatively more abundant in

the Northern than in the Southern area. Fungi in the genus

Ascochyta can be weak pathogens on cereals or have a

saprotrophic lifestyle [57].

OTU_0_Sporobolomyces_roseus (p,0.001) was relatively more

abundant in the Southern area and it was the largest community

member in that area, while OTU_3_Dioszegia_fristingensis was

the most abundant species in the Northern area (Fig. 7). Both of

these species produce pigments and ballistospores, two characters

considered to be a sign of adaptation to the phyllosphere [48].

Several studies have reported Sporobolomyces roseus as very

common on wheat leaves [5,7]. In contrast, Blixt et al. [6] only

found a small proportion of this species in their study, but they

selectively collected leaves diseased with Phaeospharia nodorum.

Dioszegia fristingensis was described relatively recently in

Germany [58], and has been reported from China [59]. It has

been suggested that a group of Dioszegia, including D.

fristingensis, is restricted to colder climates [58].

Climate is an important factor shaping phyllosphere commu-

nities. The Northern area in the present study had received more

precipitation than the Southern area, and the relative humidity

was higher on the day before sampling (Table 1). This could be a

possible explanation for the higher fungal species richness

observed in the Northern area. Levetin and Dorsey [60] found

that rainfall was the most important factor for leaf surface fungi,

Figure 6. Distribution of community abundance for the most
abundant OTUs grouped by treatment. Boxplots with interquartile
ranges showing the relative abundances of the 21 most abundant
operational taxonomic units (OTUs) in the dataset grouped by
treatment. Outliers are not shown, OTU_1_Puccinia_striiformis is
therefore excluded. Significant (p,0.05) differences are marked with
an asterisk.
doi:10.1371/journal.pone.0111786.g006

Figure 7. Distribution of community abundance for the most
abundant OTUs grouped by geographical area. Boxplots with
interquartile ranges showing the relative abundances of the 21 most
abundant operational taxonomic units (OTUs) in the dataset grouped
by geographical area. Outliers are not shown, OTU_1_Puccinia_striifor-
mis is therefore excluded. Significant differences (p,0.05) are marked
with an asterisk.
doi:10.1371/journal.pone.0111786.g007

Fungicide Effects on Fungal Communities in the Wheat Phyllosphere

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e111786



with the number of yeasts and Phoma spp. correlating positively

with the amount of rainfall in their study. In our study, some

Cryptococcus and Dioszegia yeasts were more abundant in the

Northern area, while the opposite was true for Sporobolomyces
roseus (Fig. 7).

The atmosphere is also an important source of phyllosphere

microorganisms [61]. The local air spora is one factor influencing

phyllosphere community composition in different areas. Levetin

and Dorsey [60] found an overlap between fungi found in the

phyllosphere and the air spora. Similarly, we identified species that

are commonly found in air, e.g. Aureobasidium pullulans and

Cladosporium spp. [60,62,63]. The differences we found between

areas and fields indicate that local conditions were important for

fungal community composition and richness in the wheat phyllo-

sphere in this study.

Conclusions
Fungicide-use was associated with moderate but significant

changes in fungal community composition on wheat leaves.

Community evenness was negatively correlated with fungicide use.

Fungicides had no effect on OTU richness on a per-plant basis,

but there were fewer OTUs in the fungicide-treated sample pool.

On the species level, the relative abundance of several saprotrophs

was significantly affected in fungicide-treated samples. However, it

is unclear whether the saprotrophic species that persist on treated

leaves are capable of resisting and/or degrading the fungicides

used, or what role they play in the control of pathogens and

disease suppression. Interestingly, there was no significant

difference in the relative abundance of common wheat pathogens,

although P. striiformis tended to dominate the community in

control samples when present. Further research is necessary to

identify the mechanisms behind fungicide-fungi interactions in the

phyllosphere of agricultural crops. Identification of the interactions

between pathogenic and saprotrophic phyllosphere fungi and

management practices has the potential to guide the development

of sustainable disease control strategies.

Supporting Information

Figure S1 Neighbour-joining tree of the most abundant
ascomycete ITS2 sequences in the dataset. The most

abundant sequence in each operational taxonomic unit (OTU_x)

is included together with publicly available reference sequences

and selected environmental sequences. OTUs marked with an

asterisk were taxonomically assigned in SCATA. Species hypoth-

esis accession codes in the UNITE database are given when

available. Dotted lines represent branches with bootstrap values

lower than 70%. Sporobolomyces roseus is included as an outgroup.

(EPS)

Figure S2 Neighbour-joining tree of the most abundant
basidiomycete ITS2 sequences in the dataset. The most

abundant sequence in each operational taxonomic unit (OTU_x)

is included together with publicly available reference sequences

and selected environmental sequences. OTUs marked with an

asterisk were taxonomically assigned in SCATA. Species hypoth-

esis accession codes in the UNITE database are given when

available. Dotted lines represent branches with bootstrap values

lower than 70%. Rhizopus oryzae and Rhizopus microsporus are

included to form an outgroup.

(EPS)

Figure S3 Richness of operational taxonomic units
(OTUs) and community evenness in the full dataset.
Boxplots with interquartile ranges of a) OTU richness and b)

community evenness grouped by treatment (fungicide-treated and

control samples) and geographical area. Horizontal lines represent

medians and dots mean values. Also samples from fields infected

with yellow rust (Puccinia striiformis) in the Southern area (fields

15 and 16, Table S1) were included. F-tests with Kenward-Roger

approximation showed a significant effect of geographical area on

OTU richness (p,0.001) and of geographical area (p,0.01) and

the interaction between treatment and area (p,0.05) on

community evenness.

(EPS)

Table S1 Wheat variety, fungicide, dose and application
date for wheat leaf samples collected.

(DOCX)

Table S2 Active ingredients in fungicides used in the
sampled wheat fields.

(DOCX)

Table S3 Taxonomic assignment and sequence data for
the 67 most abundant operational taxonomic units
(OTUs) in the dataset.

(XLSX)

Table S4 Summary of the linear mixed model analysis
of OTU richness and evenness including all samples.

(DOCX)
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20. Čadež N, Zupan J, Raspor P (2010) The effect of fungicides on yeast

communities associated with grape berries. FEMS Yeast Res 10: 619–630.

doi:10.1111/j.1567-1364.2010.00635.x.

21. Moulas C, Petsoulas C, Rousidou K, Perruchon C, Karas P, et al. (2013) Effects

of systemic pesticides Imidacloprid and Metalaxyl on the phyllosphere of pepper

plants. Biomed Res Int: 969750. doi:10.1155/2013/969750.

22. Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, et al. (2014) Unravelling the

Diversity of Grapevine Microbiome. PLoS ONE 9: e85622. doi:10.1371/

journal.pone.0085622.

23. Sverige, Statens jordbruksverk, Sverige, Statistiska centralbyran (2012) Jord-

bruksstatistisk arsbok 2012: med data om livsmedel = Yearbook of Agricultural

statistics. 2012. Stockholm, Orebro, Publikationstjansten, SCB.
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31. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, et al. (2013)

Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol

22: 5271–5277. doi:10.1111/mec.12481.

32. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for

rapid multiple sequence alignment based on fast Fourier transform. Nucleic

Acids Res 30: 3059–3066. doi:10.1093/nar/gkf436.

33. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, et al. (2008) Phylogeny.fr:

robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36: W465–

W469. doi:10.1093/nar/gkn180.

34. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. (2013) vegan:

Community Ecology Package. Available: http://CRAN.R-project.org/
package=vegan.

35. Pielou EC (1966) The measurement of diversity in different types of biological

collections. J Theor Biol 13: 131–144. doi:10.1016/0022-5193(66)90013-0.
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62. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High
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