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Abstract 
 

Renewable energies have great potential to contribute to CO2 emission reductions by 
substituting for fossil fuels. This study examines whether renewable energies with learning-
by-doing technical change can compete with forest sequestration to cost-effectively achieve 
the EU carbon target for 2050. Cost-effective abatement solutions are obtained from a 
dynamic, partial equilibrium model that accounts for three kinds of mitigation options: 
renewable energies and abatement in the forest and fossil fuel sectors. The results show a net 
present cost of reaching the target of approximately 286 billion Euros and a carbon price of 
364 Euro/ton CO2 in 2050. Furthermore, the stock of renewables in 2050 can deliver twice as 
much as the current electricity production from renewables, which implies a contribution of 
8.7% to meeting the emissions target. However, the cost per unit emissions reduction is at 
least fifteen-fold higher for renewables than for forest sequestration. Hence, the results 
indicate that renewables are unable to compete with forest sequestration unless they receive 
continued government support.     

Key words: cost-effective, EU climate policy, forest sequestration, learning-by-doing, 
renewable energies.   
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1. Introduction  
 

Renewable energies except bioenergy are carbon-free. Hence, they have great potential to 

contribute to CO2 emissions reductions by substituting for fossil fuels and reducing Europe’s 

dependence on imported energy sources, which may cause political tensions. However, 

renewable energies are relatively costly, and accordingly, their share in European energy and 

electricity consumption is comparatively low, 14.1% and 23.5%, respectively (Eurostat 2014). 

The largest contribution derives from hydro power, followed by wind power, bioenergy and 

solar photovoltaic (PV) energy (Eurostat 2012). The cost of renewables is expected to fall in 

the future due to technological developments, which are driven in particular by government 

policy to reduce emissions and factors affecting the accumulation of knowledge and 

experience (e.g. IEA 2008; Hoefnagels et al. 2011).  

In view of the cost reductions possible with technological development, renewable energies 

could potentially be part of a cost-effective strategy to combat climate change. The European 

Commission (2011) has proposed a roadmap to achieve a competitive low carbon economy by 

2050. The objective is to reduce CO2 emissions cost-effectively by 80-95% compared with 

the level in 1990. Consequently, low cost abatement methods such as forest sequestration 

(Murray et al. 2009; Sohngen 2009; Gren et al. 2012; Munnich Vass and Elofsson 2013) need 

to be recognised. 

The aim of this study is to examine the potential contribution from renewable energies, with 

learning-by-doing (LBD) technical change, to cost-effectively achieve the EU emissions 

target for 2050 with forest sequestration as an alternative abatement method. The analysis 

only considers additional sequestration, defined as the amount of sequestration achieved when 

forest harvesting is reduced compared with the current level. Here, LBD can contribute to 

continuous reductions in both the investment cost and running costs of renewables, depending 

on previous experience in using the technology and its maturity. LBD means that the optimal 

allocation of abatement across technologies is determined not only by the marginal effect of 

current abatement on current cost, but also on the effect of current abatement on all future 

costs. This has implications for optimal carbon policy design. 

A dynamic partial equilibrium model is developed in which abatement costs are minimised 

subject to the 2050 CO2 emissions target. Dynamic cost functions are estimated for this 

purpose for solar PV, wind and hydro power in each EU member state. Building a dynamic 
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model that covers several decades is particularly useful in that it provides the possibility to 

analyse the consequences of technological change on the cost of renewables.    

Endogenous technological change can be modelled in several ways and includes LBD, 

learning-by-researching and learning-by-using (Kahouli-Brahmi 2008). The motive for 

focusing on LBD in this study is specifically its inherent nature, implying that developments 

occur naturally with experience in using the technology. With respect to renewables, with 

varying maturity, it is interesting to quantify the implications of LBD on costs. Lately, LBD 

has been introduced in energy-environment-economy models (see Kahouli-Brahmi (2008) for 

a review). However, the way it is introduced into models differs. Goulder and Mathai (2000) 

introduced it in the abatement cost function to address the significance of policy-induced 

technological change for the design of cost-efficient abatement policies. Their theory has 

since been advanced by e.g. Rosendahl 2004; Bramoullé and Olson 2005. In a recent 

application by Lindqvist and Gren (2013), this approach was used for assessing the cost-

efficiency of different marine abatement options. In the present study, LBD is introduced as 

suggested in the theoretical work of Bramoullé and Olson (2005). It also extends the work by 

Lindqvist and Gren (2013) by having the learning rate differentiated between technologies 

and using an alternative cost function combined with a dynamic renewable energy function. 

This study thus develops previous research in quantifying the effect of LBD on the cost-

effectiveness of different renewables.   

The contribution of this paper to the literature is threefold: 1) It introduces LBD into the cost 

function to empirically assess its impact on the cost-effective level of investment in 

renewables energy in the EU; 2) it determines the cost-effectiveness between renewable 

energies and forest sequestration; and 3) it helps understand the implications on technological 

development of introducing low-cost (forest sequestration) abatement options in EU climate 

policy.    

The paper starts with a theoretical background in section 2, followed by a description of the 

dynamic programming model in section 3. Empirical functions and associated data are 

presented in section 4. Section 5 presents the empirical results, which are discussed and 

conclusions are drawn in section 6. 
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2. Theoretical background 

 

The modelling approach in this paper is related to previous work in the field of cost-effective 

abatement strategies to reduce greenhouse gas emissions in both the energy sector, with 

technical change over time, and the forest sector (Sohngen and Mendelsohn 2003; 

Rokityanskiy et al. 2007; Tavoni et al. 2007; Hedenus and Azar 2009). The main differences 

between these models relate in particular to the type of modelling used; top-down versus 

bottom-up. Top-down models, such as that employed here, are used to evaluate the cost 

competitiveness of mitigation options and the implications across markets, sectors and regions 

over time (e.g. Sohngen and Mendelsohn 2003). Bottom-up models are based on detailed 

technological engineering, process and cost data for individual technologies applied at 

specific locations (e.g. Rokityanskiy et al. 2007; Hedenus and Azar 2009). Consequently, 

bottom-up models generally assess how much mitigation is available at a given carbon price, 

while top-down models estimate how much mitigation is used to achieve the given target at 

the lowest cost (Rose et al. 2012). Tavoni et al. (2007) uses a hybrid modelling approach, 

involving a mix of top-down and bottom-up. 

Moreover, models differ between studies and, in comparison with the present study, with 

respect to forest sequestration modelling 1  and three main energy sector aspects: 1) 

Determination of the level of energy demand; 2) calculation of energy costs; and 3) inclusion 

of technological development. In our model the energy demand is determined endogenously, 

which is similar to the approach in Sohngen and Mendelsohn (2003) and Tavoni et al. (2007). 

However, energy costs are given exogenously in the model, following the approach of 

Rokityanskiy et al. (2007) and Hedenus and Azar (2009). Technological development is 

included endogenously, using LBD. This is similar to the approach in Tavoni et al. (2007). A 

central difference in the present model compared with previous models is the focus on 

renewables in European countries.  

The model presented in this paper (see below) builds on that described by Munnich Vass and 

Elofsson (2013), with two fundamental extensions: 1) Inclusion of dynamic stock functions 

for three kinds of renewable energies; and 2) inclusion of dynamic cost functions for 

renewables, where the dynamics are based on LBD.  

                                                            
1 For differences in modelling approaches with regard to sequestration in previous studies, see Munnich Vass 

and Elofsson (2013).  
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3. Model	

 

This section develops a dynamic, partial equilibrium model to obtain cost-effective solutions 

to reach the EU 2050 carbon emissions target. The abatement strategies available are: (i) 

Renewable energies, (ii) additional sequestration in forests, (iii) additional storage in forest 

products and (iv) reductions in fossil fuel and forest bioenergy consumption. Bioenergy is 

modelled differently from other renewable energies because of the emissions associated with 

harvesting, transporting, processing and combusting wood in the short run. In addition, there 

is an inherent connection between different abatement strategies in the forest sector, with a 

trade-off between forest sequestration, on the one hand, and harvesting for the production of 

bioenergy and forest products on the other. This makes it necessary to separate bioenergy 

from the other renewable energies in terms of modelling.   

The level of electricity production from renewable energies in any year is determined by the 

invested stock and the flow of new investments. In the model, the stock of renewable energies 

at time t is denoted ig
tR , with t=1…T in country i, with i=1….z, and technology g, with 

g=1….q. The yearly rate of depreciation of renewable energies is denoted  , and is assumed 

to be constant throughout the policy period. This assumption is appropriate considering how 

costs are calculated and follows previous work by e.g. Bosetti and Maffezzoli (2013). The 

annual depreciation rate is determined by the payback time required by the investor, which in 

turn is determined by the life expectancy of the technology. Hence, in period t+1 the stock of 

renewables is equal to the remaining stock from historical investments, at the beginning of 

period t, and new investments, denoted ig
tN , carried out during year t. This is calculated as 

follows: 

 

1...0,0

)1(

0

1





TtRR

NRR

igig

ig
t

ig
t

ig
t 

      (1)2 

                                                            
2 In the model it is assumed that the cost-effective stock of renewables is zero at the start of the policy period. 

However, the investments made during the policy period are additional to the current real stock 
(Eurostat 2014), which has received government support. By the end of the policy period, the current 
real stock should be completely depreciated.  
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Renewable energies are measured in Mega Watt hours (MWh). Renewable energies, such as 

solar PV, wind and hydro power, have no direct impact on CO2 emissions, since they are 

carbon-neutral. However, there is an indirect effect when renewable energies replace fossil 

fuels in the electricity production sector. This carbon offset is captured in the parameter , 

which reflects the carbon content of the business-as-usual (BAU) mix of fossil fuels. The 

BAU mix is the combination of fossil fuel consumption in the first model year, where each 

fuel has a specific share in the total. Net reductions in emissions by use of renewable energies 

are hence calculated as: 


g

ig
t

i
t RW       (2) 

The amount of carbon dioxide that can be sequestered in forests each year is determined by 

the volume of standing biomass, i
tV . The biomass volume in period t+1 is determined by the 

volume in period t, the annual growth in standing biomass, )( i
t

i VG , and the annual harvest, 

i
tH , which takes place at the end of the year as follows: 

i
t

i
t

ii
t

i
t HVGVV  )(1      (3) 

ii VV 0  

where iV is the actual volume in each country during the initial year and )( i
t

i VG  is a 

continuous function, quasi-concave in i
tV . The variables, i

tV , )( i
t

i VG  and i
tH  are all 

measured in cubic metres. Furthermore, it is assumed that the area of forest land in each 

country remains constant over the entire policy period, which means that land currently used 

for other purposes cannot be converted to forest land. This assumption is made to avoid 

interference with other sectors such as agriculture, which is not part of the model. 

Harvested biomass can either be used for bioenergy, i
tB , or forest products, i

tF , which 

includes all products made of wood such as timber, pulp and paper. Thus, the amounts of 

bioenergy and forest products are determined endogenously by the yield level as follows: 

i
t

i
t

i
t FBH       (4) 
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Forest bioenergy and forest products are both measured in cubic metres. It is assumed in the 

model that the levels of bioenergy and forest products are constant at the BAU level when 

there is no emissions reduction target. The BAU level is the unregulated quantity produced 

and consumed during the first model year. 

Emissions from bioenergy are determined by three factors: 1) The carbon content of wood 

released to the atmosphere during combustion, i ; 2) emissions from harvesting, transporting 

and processing bioenergy, denoted  ; and 3) the carbon offset, which is due to the 

replacement of fossil fuels, denoted  . These emissions and offsets are assumed to take 

place in the same period as the biomass is harvested. Net emissions from bioenergy are then 

calculated as:   

i
t

ii
t BL )(        (5) 

Net storage of carbon in forest products is determined by two factors: 1) The carbon content 

of wood, i  and 2) emissions associated with harvesting, transporting and processing forest 

products,  , which are equivalent to the amount released from bioenergy. The net amount of 

carbon stored in forest products is hence calculated as:  

i
t

ii
t FM )(  

     (6) 

Net annual forest sequestration, i
tS  , is calculated as the difference in biomass volume 

between years. This volume is multiplied by the carbon content of wood, i , which turns 

volume into metric tonnes (ton) of CO2 emissions removed from the atmosphere. Forest 

sequestration is calculated as follows: 

)( 1
i

t
i

t
ii

t VVS        (7) 

Emissions to the atmosphere from combustion of fossil fuels are determined by the quantity 

of fossil fuels consumed, ij
tX , by fossil fuel type, j , with j=1….q. This quantity is measured 

in ton oil equivalents (toe) and is converted to CO2 emissions by the parameter j  for each 

fossil fuel: 


j

ij
t

ji
t XQ       (8) 
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The overall level of energy consumption is determined endogenously by the model, which 

means that an increase in renewable energy or a decrease in bioenergy does not affect the 

level of fossil fuel consumption and vice versa. This assumption differs from the exogenous 

approach in some energy sector models such as that presented by Hedenus and Azar (2009), 

where the consumption level is determined by results from another model. The main reason 

for assuming endogenous energy demand is in order to focus on abatement potential among 

different technologies, rather than building a fully-fletched energy sector model where energy 

technologies substitute for each other. The latter has been done by a number of others (e.g. 

Capros and Mantzos 2000; Azar et al. 2003; Kitous et al. 2010).   

Net emissions to the atmosphere are then calculated as follows:  

)( i
t

i
t

i
t

i
t

i
t

i
t SWMLQE          (9) 

Net emissions must be lower or equal to the emissions target, MAX
TE , in the final year, T. This 

target is determined by EU climate policy to be achieved by 2050 and stated in terms of a 

maximum amount of CO2 in the atmosphere: 

MAX
TT EE          (10) 

Technological change in renewable energies is modelled so that it affects their cost over time. 

The specification stems from Bramoullé and Olsson (2005) and is calculated as follows: 

 

             (11) 

 

where ig
tZ is the stock of knowledge or the level of experience in using a certain technology in 

a country, at time t. This stock is determined by the initial level of experience, igZ0 , and the 

sum of experience gained from all previous investments in this technology, igN , where 

refers to previous time periods. The cumulative level of abatement by a technology in a 

country is thus regarded as a measure of experience. In this formulation there is no spillover 

in experience between countries in using a technology. This assumption is similar to that in 

Watanabe (1995) and Lindqvist and Gren (2013).  

 







1

0
0

t
igigig

t NZZ



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The cost function for renewable energies is assumed to have constant elasticity. This function 

is increasing and convex in renewable energies and decreasing and convex in experience. The 

learning implies that the cost of renewable energies is reduced, at a decreasing rate, and that 

the benefit of experience is higher for infant technologies than for mature technologies. The 

cost function is expressed as follows:   

  
g

ig
t

ig
t

igig
t

igig
t

ig
t

iR
t ZRRZRC






 )(),(      (12) 

 

where 0ig , 0ig , 1 , 0g  and 1 g  . Given a certain ig
tZ , the 

parameters ig  and ig determines the slope of the cost function ;   is the exponent that 

determines the curvature and g  is the learning rate, which differs between technologies. The 

constant elasticity cost function has the standard learning curve properties, meaning that each 

doubling of experience leads to a reduction in costs by a fixed factor, 2 .  

 

Forest sequestration above the BAU level is achieved through costly reductions in bioenergy 

or forest products. The BAU sequestration is the amount that would occur if the level of 

bioenergy and forest products remained at the constant BAU level throughout the policy 

period. The costs incurred by forest owners for reducing the provision of bioenergy and forest 

products are denoted )( i
t

iB
t BBC 


 and )( i

t
iF
t FFC 


, where B


 and F


are the constant BAU 

levels, respectively. The cost of reducing fossil fuels is calculated similarly and denoted

)( i
t

iX
t XXC 


, where X


is the BAU level of fossil fuel consumption, i.e. the consumption in 

the first year. These cost functions are all assumed to be continuous, decreasing and convex in 

i
t

i
t

i
t XFB ,, .  

 

The decision problem of the policy maker under the EU 2050 scenario is then formulated as 

the minimisation of total abatement costs in present value terms: 

 

























t

j

ij
t

ijiX
t

i
t

iiF
t

i
t

iiB
t

g

ig
t

ig
t

iR
t

i

t

XFBN XXCFFC

BBCZRC

TCMin
ij
t

i
t

i
t

ig
t )()(

)(),(

,,,




   (13) 

subject to (1)-(12) and to the following restrictions: 
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ig
tN0     tgi ,,  

ii
t BB


0              ti,  

ii
t FF


0              ti,   

ijij
t XX


0              tji ,,   

where 
)1(

1





  is the discount factor and,   , is the discount rate.  

The decision problem (13) is solved using the dynamic Lagrangian for discrete time. The 

focus is on an interior solution and the resource Equations (1) and (2) enter as binding 

constraints.  
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 (14) 

where, ig
t , i

t and T are the Lagrangian multipliers. Note that the first and the third 

multipliers are positive, while the second can be either positive or negative. These multipliers 

are the shadow costs for the stock of renewable energies, standing biomass volume and the 

emissions target in the final year, respectively. The shadow cost for the emissions target 

illustrates the cost-efficient level of a carbon tax or, equivalently, the allowance price under 

an emissions trading system.  

Equations (1)-(12) define a convex optimisation problem and hence the cost-effective 

allocation of emissions reductions can be determined from the solution to (13). The necessary 

first order conditions for cost minimisation, assuming an interior solution, which gives the 
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optimal allocation of ig
tN , i

tB , i
tF  and ij

tX  can then be derived. Appendix A shows how the 

derivative of the cost function for renewable energies is determined. The first order conditions 

for the Lagrange multipliers, ig
t , i

t and T , return the same equations as in (1), (3) and (9) 

and are hence not shown here.  
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 3.1 Marginal cost of renewables 

 

Equation (15) can be rewritten in order to show the effect of LBD on the abatement cost over 

time: 
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   (21) 

The left-hand side of (21) shows that the marginal cost of abatement in renewables at time t 

has been decreased by the cumulative learning effect from abatement by renewables in all 

previous periods. The right-hand side consists of three factors. The first shows the effect on 

future abatement cost of investing in renewables in period t. The second shows the discounted 

marginal value of investments in renewables, which reflects the impact on the stock of 

renewables in period t+1 of investing in an additional unit in period t. The third factor shows 

the discounted shadow cost of the emission target, multiplied by the impact on emissions of 

one unit abatement by renewables. The optimal level of abatement in period t requires the 

marginal cost of abatement by renewables to equate to the impacts on emissions in the final 

period, T, when T is different from zero and when the cost has been adjusted for the 

cumulative marginal saving that current abatement has on future cost and the marginal value 

of investments in renewables.  

 

 3.2 Marginal cost of bioenergy, forest products and fossil fuels 

 

Equation (17), (18) and (20) can be rewritten in terms of the marginal cost of an additional 

unit of reduction in bioenergy, forest products and fossil fuels in period t:  

i
t

i
T

tT
i
t

i
t

iiB
t

B

BBC
1)(

)ˆ(


 



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   (22) 
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j
T

tT
ij
t

ij
t

ijij
t

X

XXC
 



 )(


    (24)

 

The marginal cost of reducing bioenergy, forest products and fossil fuels is determined by the 

discounted shadow costs of the emissions target, T  , multiplied by their respective impacts on 

net emissions. The effect of reductions in bioenergy and fossil fuels means that net emissions 

to the atmosphere are reduced, while the reduction in forest products means that fewer carbon 

emissions are stored in products. The marginal cost of reducing bioenergy and forest products 

in (22) and (23) is also determined by the discounted shadow cost of the stock of biomass, 

i
t 1 . This cost is the marginal user cost of harvesting an additional unit in period t, due to 

the impact it has on the forest stock, accompanying stock growth and hence sequestration in 

the next period. The marginal user cost is either positive or negative and is determined by the 

shape of the forest growth function. 

 

 3.3 The dynamics of abatement  

 

The model set-up has implications on the dynamics of abatement. First, the introduction of a 

discount factor mean that the abatement cost for all abatement options is falling over time in 

present value terms, implying a postponement of abatement. Second, the effect of LBD on the 

timing of abatement by renewable energies is ambiguous, since there are two counteracting 

forces. On the one hand, the learning component of the cost curve reduces future abatement 

costs, which implies a postponement of abatement. On the other hand, early abatement leads 

to the accumulation of experience, which in turn reduces future costs. Analytically it is 

unclear which of these effects will dominate the timing of abatement, as pointed out by 

Goulder and Mathai (2000), Rasmussen (2001), Manne and Richels (2004) and Bramoullé 

and Olson (2005). Third, the shadow value of investments in renewables, ig
t , is increasing 

over time as can be seen in equation (16), which means that the marginal cost of abatement by 

renewables is increasing, implying that abatement is brought forward. Fourth, abatement is 

decreasing when the shadow cost of the emission target is increasing. A positive Lagrangian 
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multiplier, T , therefore implies that abatement is brought forward. Fifth, the user cost of 

harvesting an additional unit today, i
t  , in equation (19) can either increase or decrease over 

time depending in particular on the size of forest growth in relation to the discount rate. The 

implication of an increasing (decreasing) i
t  is that the marginal cost of reducing bioenergy 

and forest products in favour of sequestration is increased (reduced) over time. This means 

that sequestration is brought forward (postponed). Due to these counteracting forces, an 

empirical analysis is needed to understand the different driving forces. Hence, the empirical 

functions and accompanying data are described next. 

     

4. Empirical functions and data 

 

In the present application, the empirical model is divided into yearly time periods and run 

until 20603 with the same emissions constraint every year after 2050 to achieve realistic 

terminal conditions. All costs are discounted with a 3% annual discount rate for all 27 EU 

countries. This rate is in between the rates given in Stern (2007) and Nordhaus (2007), who 

have different views on the appropriate discount rate in models that analyse the cost-effective 

allocation of carbon abatement over time. The empirical model is set up in GAMS, using the 

CONOPT3 solver for all calculations (Brooke et al. 1998). 

 

 4.1 The stock of renewable energies 

 

The stock of renewable energies available each year in the 27 EU countries is determined by 

previous investments, yearly depreciation and current investments. The rate of depreciation of 

the different technologies – solar PV, wind and hydro power - is calculated from the payback 

time required by investors in the technologies. The depreciation rate is assumed to be 35% per 

year, since the payback time is 15 years for all technologies and countries in Faber et al., 

(2009)4, which is the source of the cost data used. These data are taken from the Green-X 

                                                            
3 Results are only shown for the policy period 2010-2050. The analytical model in section 3 is written with a 

single emission restriction in 2050 for simplicity.  
4 The data on the CD-ROM is updated from a previous version, but the methodology behind the cost-resource 

curves is the same as in the first version and is described in detail in Ragwitz et al. (2003) 
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database and have been used in a number of studies (e.g. Resch et al. 2006, 2008; Hoefnagels 

et al. 2011). The depreciation rate is important for the overall results and therefore a 

sensitivity analysis on the assumption is performed (see section 5.1).  

 

The amount of emissions avoided by replacing fossil fuels with renewables is calculated 

similarly to Sims et al. (2003) and van Vuuren et al. (2007), where it is assumed that 

renewables will replace in particular coal- and gas-fired power plants. The net reductions in 

emissions by renewables in the present model are based on the replacement of a combination 

of fossil fuels, where each fuel has its own emissions coefficient. The combination is based on 

the weighted average emissions factor for coal, oil and gas, where the weights are the initial 

2010 levels of these fuels. The calculated carbon offset factor for renewables is given in 

Appendix B.   

 

 4.2 The cost of renewable energies 

 

The shape of the dynamic cost functions for renewable energies is determined from static 

marginal cost functions, for which data is available from the Green-X database. This data has 

been compiled by a consortium of researchers in Europe (Faber et al. 2009). The marginal 

cost functions in the database increase step-wise reflecting cost and resource potentials at 

band level. Each band has the same economic, technical, social and geographical conditions. 

The methodology used for calculating these marginal cost functions is the same for each 

technology and EU country and is described in detail in Appendix C.  

 

Renewable energies are characterised by having a comparatively high investment cost and a 

relatively low running cost. In order to verify the accuracy of the marginal cost data used, 

they are compared against other sources. The cost range of wind power used is 45-115 

Euro/MWh, with the lowest cost found in Germany and the highest in Austria. This range is 

in line with estimates from the European Wind Energy Association (2009) of 50-110 

Euro/MWh. Similarly, the cost range for hydro power used here is 25-190 Euro/MWh, with 

the lower figure found in Estonia and the higher in Belgium and the Netherlands. This can be 

compared against the figure of 20-80 Euro/MWh in Ecofys (2008), which is said to increase. 

For solar PV, the range used is 300-1250 Euro/MWh with the lowest in Spain and the highest 
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in the Baltic States. The global cost range is estimated to be 190-570 Euro/MWh (IEA 2010), 

with the highest cost found in Europe.  

 

From the step-wise marginal cost-resource curves, it is possible to econometrically fit static 

marginal cost functions for each technology and country using the statistical software 

Minitab. Static marginal cost functions are thus fitted for solar PV, small-scale hydro power 

and onshore wind power. These marginal cost functions are assumed to be quadratic and have 

the following form: 

  

igigigigig RbaC  2)(      (25) 

where iga is the intercept and igb is the coefficient, representing the fixed investment cost and 

the slope of the marginal cost curve, respectively. The estimated intercepts and coefficients 

are presented in Appendix D (Table D1-D3) together with the econometric results from fitting 

these functions to the data. Appendix D (Figure 10 and 11) shows the fit of the curve to the 

data for France, which is a large investor in renewable energies. The fit is good for most 

countries and technologies, based on the standard error estimate and the summary statistics.  

 

To form the dynamic cost functions in equation (12), the marginal cost function is integrated 

and the parameter ig in (12) is replaced by the estimated intercept iga and the coefficient ig  

is replaced by the estimated coefficient, 
3

igb
. In addition, the exponent   in (12) is replaced 

by the number 3, which stem from the integration of the quadratic marginal cost function. The 

dynamics is then introduced in (12) as a cost reduction, based on the increases in experience 

in a technology ig
tZ  .   

 

The learning rate, g , in the dynamic cost functions influences the cost of abatement by 

renewable energies. For each doubling of experience, the cost of renewable energies is 

reduced by a fixed amount, 
g2  . Estimation of learning rates in the field of renewable 

energies has a fairly long history and the literature is vast. In general, learning rates vary 

depending on the specific technology, geographical location and period referred to. A study 

by Neij (2008) gives different learning rates for solar PV, ranging from 10-47%, with an 

average of 20%. De Noord et al. (2004) and McDonald and Schrattenholzer (2001) report the 
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same average learning rate of 20%, while the IEA (2010) technology roadmap for solar PV 

quotes an average of 18%. Hydropower is viewed as a mature technology that is already cost- 

competitive on the market (IRENA 2012c). However, McDonald and Schrattenholzer (2001) 

quote a learning rate of 1.4% and Kahouli-Brahmi (2008) report 0.40-1.96%. The learning 

rate for onshore wind power varies between studies. Junginger et al. (2004) report 15-19% 

and Hoefnagel et al. (2010) report a range from previous literature of 0-19%. Others 

(McDonald and Schrattenholzer 2001; Neij 2008) report lower learning rates, in the range 6-

8%. In the present study, it is assumed that the learning rate for solar PV is 20%, hydro power 

1% and wind power 15%. These rates are varied in the sensitivity analysis due to their 

importance for the model. It is also assumed that renewables only can triple in size each year, 

in each country, which implies that investments will be brought forward in time compared 

with a case without this restriction.  

 

 4.3 Abatement in the forest sector  

 

Forest sequestration is modelled at aggregate level in each country. Biomass in standing forest 

is based on a representative stand of one hectare comprising a constant mix of tree species of 

average age, in each country. The volume on this stand is multiplied by the forest area, which 

is then converted to CO2 emissions by the carbon content of wood i (see Appendix B). The 

calculation of biomass volume in Equation (3) is based on an exponential function, which is 

described in Appendix E.  

The harvested biomass is assumed to be used for either bioenergy or forest products, where 

bioenergy produces electricity and/or heating and hence replaces fossil fuels. The amount of 

emissions avoided by the replacement is calculated similarly as for renewable energies. This 

carbon offset parameter,  , can be found in Appendix B together with emissions related to 

harvesting, transporting and processing biomass,  .  

 

4.4 Cost functions for reducing bioenergy, forest products and fossil fuels  
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The cost of reducing bioenergy and forest products, for the benefit of increased forest 

sequestration, is defined as reductions in producer and consumer surpluses. This approach 

follows Adams et al. (1996, 1999), Alig et al. (1997), Gren et al. (2012) and Munnich Vass 

and Elofsson (2013). Reductions in producer surplus are foregone producer profits and 

reductions in consumer surplus are foregone consumption value of the same products.  

The costs of fossil fuel reductions are calculated similarly to the cost of reducing bioenergy 

and forest products, except that it only includes reductions in consumer surplus for three main 

classes of fossil fuel products; oil, coal and natural gas. It is assumed that the EU is a price 

taker on the world market of fossil fuels, implying a perfectly elastic supply function and 

hence no producer surplus (Gren et al. 2012; Munnich Vass and Elofsson 2013).  

Restrictions are imposed on bioenergy, forest products and fossil fuels by an upper quantity 

bound, constant over time and equal to the BAU level of production/consumption, and a 

lower bound equal to zero. The reduction in these three product categories can only be 20% 

per year, which means that reductions will be carried out earlier in the policy period compared 

with a case without this restriction. Quantities, prices and elasticities for the products used to 

calculate the cost functions, are taken from Munnich Vass and Elofsson (2013).  

 

 4.5 Emissions target  

 

Total emissions according to the model from fossil fuel and bioenergy in Europe are 

approximately 4.1 billion ton CO2 in 2010, based on the amounts consumed and their 

emissions factors. The amount of emissions in 2010 reported by Eurostat (2013) is 3.8 billion 

ton CO2 from the energy and transport sectors. The difference is likely to be due to emissions 

related to bioenergy, which is treated as carbon-neutral in EU climate policy. The calculation 

of the emissions target set for the year 2050 is based on an 80% reduction in reported 

emissions in 1990 of 4.3 billion ton CO2 (Eurostat 2013), adjusted for the difference between 

model emissions and reported emissions. This means that emissions in 2050 must be below or 

equal to 930 million ton CO2. In the results section, only the additional amount of 

sequestration in forests and forest products is presented, meaning that the BAU sequestration 

is deducted in all calculations. Similarly, the results only consider reductions in emissions 

from reduced bioenergy use, where the amount is reduced from the BAU level.      
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5. Results of cost-effective solutions 

 

The cost-effective abatement path to 2050 in the EU is described below. The development of 

the stock of renewable energies is shown in Figure 15. There is no stock of solar PV at any 

time up to 2050. This is mainly explained by its relatively high initial cost, but also by low 

learning and depreciation rates in relation to cost. Hence, solar PV is not a cost-effective 

abatement option during the policy period. However, wind power and hydro power increased 

at a growing rate. There are two factors that explain the dramatic increases towards the end of 

the policy period, when the target date is approaching: 1) The discount rate6, which makes it 

cheaper to invest the longer the policy period has progressed; and 2) the learning rate, 

meaning that the cost falls with increased experience in a technology. Hence, the results point 

towards a delay in abatement by renewable energies, despite the fact that learning-by-doing 

means that early abatement reduces future costs.  

 

Fig. 1 Changes in the stock of renewable energies in all 27 EU countries to 2050 

 

                                                            
5 This is the cost-effective stock, which is in addition to the real stock in 2010 of 539 million MWh (Eurostat 

2014)  
6 When varying the discount rate from 3 to 1%, the implication for the stock of renewables is that there is a 

slightly lower level of investment throughout the period, implying that the learning rate has a smaller 
effect. In 2050 the stock delivers 1032 million MWh instead of 1055 million MWh.   
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The stock of renewable energies in 2050 can deliver 1055 million MWh electricity, with 974 

million MWh from wind power and the rest from hydro power. This means a reduction of 274 

million ton CO2 based on fossil fuel substitution. This amount can contribute to approximately 

8.7% of the emissions reduction required by 2050, when the reduction is from the BAU level, 

i.e. the same amount of emissions as in 2010. The reported electricity production in 2010 

from solar PV, wind and hydro power amounted to 539 million MWh (Eurostat 2014), where 

the majority is derived from hydro power. The changes in the stock of renewable energy can 

be compared against results from other models. In Knopf et al. (2013) 13 different models are 

used to analyse the technology pathway to achieve the 2050 emission reduction target for the 

EU. As in the present study, they found that wind power will experience the largest increase 

during the policy period. Hydro power will remain more or less constant and solar PV will 

increase moderately. The different models estimated that wind power will increase on average 

seven-fold between 2010 and 2050 and that wind power together with solar PV will 

contribute on average 27% to the emissions reduction target in 2050. This share is higher than 

the estimate in the present study. The discrepancy can be due to a number of factors apart 

from model construction, including differences in initial costs of renewable energies, learning 

and depreciation rates.      

The amount of annual investment in renewable energies varies considerably between EU 

countries due to cost differences. Figure 2 shows how total investments over the entire policy 

period in wind power are distributed among the 27 EU countries. The diagram shows that 

large emitting countries, such as Germany, France, Italy and the UK, generally also invested 

the most. However, the proportion of investment relative to the BAU emissions level varies. 

For example, in France the proportion of investments to emissions is 19%, when measured in 

the same units, which is five times as much as in Germany.     
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Fig. 2 Total annual investments in wind power to 2050 in the 27 European countries 

 

The total amount of sequestration in forests and carbon storage in forest products is shown in 

Figure 3 as optimal sequestration. This is plotted against the BAU sequestration, which is the 

amount achieved when bioenergy and forest product production is assumed to be constant 

throughout the policy period at the 2010 level. The difference between the two lines is the 

additional sequestration, which can be considered to be abatement. Both lines are increasing 

over time and follow each other closely until 2037, when optimal sequestration starts 

increasing at a higher rate. The large increase during the final 13 years is achieved at the 

expense of both bioenergy and forest products and can be explained by the fact that abatement 

becomes cheaper in present value terms the longer it is postponed. The difference between the 

two lines is 103 million ton CO2 in 2050, which corresponds to 3.2% of the emissions 

reduction required in that year.  
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Fig. 3 Annual optimal and business-as-usual (BAU) sequestration in European forests and 

forest products to 2050 

 

This is lower than the renewable energy contribution of 8.7%. The contribution is small 

compared with the values reported in Sohngen and Mendelsohn (2003) and Tavoni et al. 

(2007) who both estimated that global forest sequestration could contribute approximately 

33% to carbon targets in 2100. However, the target ambitions are difficult to compare due to 

differences in the units used. The main explanation for the comparatively small contribution 

in the present study is the focus on additional sequestration on existing forest land in Europe, 

i.e. conversion of e.g. agricultural land to forestry is not considered an option.   

The amount of sequestration mainly increases at the expense of bioenergy, which declines 

slowly from 2036 and is more or less phased out in 2050 (see Figure 4). This is explained by 

the positive net emissions associated with bioenergy and the comparatively low cost of 

reducing these. The phase-out of bioenergy indicates that the amount of additional 

sequestration has more or less reached its limit. The only possibility to increase it further 

would be to reduce forest products, but that is costly compared with the gain in reduced 

atmospheric emissions. The reduction in bioenergy, and also in forest products, means that 

European forests became older earlier and that higher future growth, and hence sequestration, 

is brought forward in time compared with the BAU case.  
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The change in fossil fuel consumption is also shown in Figure 4. The trend is similar for the 

different fossil fuels, with the level staying constant during the first decades and then being 

substantially reduced. The reduction starts in different years for each fuel, reflecting their 

respective carbon content and cost of reduction. Hence, coal, with the highest carbon content 

and lowest cost, is reduced earlier than oil and gas.  

 

Fig. 4 Change in fossil fuel and bioenergy consumption to 2050 

 

The changes illustrated in Figures 1-4 resulted in an overall abatement cost, in present value 

terms, of 286 billion Euros for reducing emissions in the EU by 80% by 2050. The majority of 

this cost is incurred during the last five years. If renewable energies are excluded as 

abatement options, the net present cost of achieving the target would increase to 374 billion 

Euros. Hence, there is a cost saving of approximately 31% with renewables. The carbon price 

in 2050, which is equivalent to the marginal cost of abatement, is estimated to be 364 

Euro/tCO2. These cost estimates can be compared against estimates in previous studies. In a 

model comparison study consisting of 13 models, the carbon price was estimated to be 

between 240-1127 Euro/tCO2 in 2050, with a median of 521 Euro/tCO2 (Knopf et al. 2013). 

The carbon price reported in Capros et al. (2012) varied between 147-370 Euro/tCO2, 

depending on the scenario. These estimates are quite close to that obtained here. 

0

100

200

300

400

500

600

700

2010 2015 2020 2025 2030 2035 2040 2045 2050

M
ill
io
n
 t
o
e

Oil Coal Gas Bioenergy



25 
 

In terms of the overall cost of reaching the 2050 target, Capros et al. (2012) found an average 

annual cost in 2011-2050 of 2659-3090 billion Euro, depending on the scenario analysed. In 

that study an energy system model was used, which did not recognise land use sequestration 

of any kind. The key reason for the higher costs found by Capros et al. (2012), apart from not 

including forest sector abatement, was the modelling of energy demand. Their demand was 

determined by the market equilibrium, which meant that it could increase during the study 

period. The model used in the present study is constructed with an upper BAU limit on energy 

demand. Furthermore, renewable energies do not need to substitute for reductions in fossil 

fuels. Both of these aspects contribute to a lower overall cost of achieving the target.  

The cost per unit in Euro/MWh for wind power is shown in Figure 5 for two scenarios: with 

and without the learning rate (LR). 

  

Fig. 5 Cost per unit (Euro/MWh) of wind power with/without the learning rate (LR) to 2050 

 

The difference between the two lines is due to the LR, which indicates that the cost is reduced 

when experience increases. The cost is the same until 2043 and after that it is always lower 

with LR. This shows that the benefit of learning starts paying off after 2043. The general 

shape of the two curves is determined by a combination of four factors: 1) The curvature of 

the quadratic cost function; 2) the learning implications (in the scenario with LR); 3) the 

depreciation rate; and 4) the discount factor. The cost is constant in both scenarios until 2043 

when there is hardly any investment. When investments start increasing, the cost with 
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learning is reduced. In both scenarios the cost increases during the last two years and this is 

explained by the increasing stock, which involves a move upwards on the quadratic cost 

function.  

Figure 6 compares the unit cost of wind power, hydro power and additional sequestration in 

Euro/ton CO2. As the curves show, both wind power and hydro power are more costly than 

additional sequestration throughout the policy period. During this period, the cost of 

renewables is at least fifteen times higher than that of additional sequestration. This means 

that none of the renewable energy technologies can compete with additional forest 

sequestration. Hydro power is also more expensive than wind power during the last years 

when most of the investments take place. The reason for the lower cost for wind power during 

the last years is most likely explained by the curvature of the cost function and that learning 

starts paying-off.   

 

Fig. 6 Unit cost (Euro/ton CO2) of wind power, hydro power and additional sequestration to 

2050 

 

The total costs of reductions in fossil fuels, bioenergy and forest products and of increases in 

renewable energies in all 27 EU countries are shown in Figure 7. The majority of the costs 

originate from reductions in fossil fuels. The high cost share of fossil fuels reflects a 

comparatively high per unit cost and large deployment of this abatement method, which in 

turn is explained by the comparatively high cost of renewable energies and the limited scope 
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of additional sequestration. The variation that emerges between countries with regard to the 

cost of renewable energy investments is explained by differences in the cost per unit 

emissions reduction. Similarly, variations in the cost of additional sequestration is explained 

by differences in per unit cost and in forest age, which in turn involves differences in growth 

potential and hence sequestration.  

 

 

Fig. 7 Total discounted costs per country in the EU-27 countries, divided into cost relating to 

reductions in fossil fuels, bioenergy and forest products and to increases in renewable 

energies 

 

At aggregate level, the total costs in each EU country largely reflect its need to abate in order 

to meet the overall emission target. This means that countries with high BAU emissions pay 

the most. The five countries with the highest costs – Germany, France, UK, Spain and Italy – 

together pay 62% of the total costs and contribute 62% to total BAU emissions.  
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 5.1 Sensitivity analysis 

 

The rate of technological development cannot be predicted and hence here we have to rely on 

historical estimates for the learning rates and assume that these will continue. However, 

historical estimates vary between studies, due in particular to differences between countries 

and between study periods. In this respect, the learning rates used above may have been over- 

or underestimated. Hence, a sensitivity analysis is carried out on the learning rate (LR) to 

determine its effect in terms of overall cost and investments in renewable energies. Figure 8 

shows the effect of changing the LR of wind power, which is the main contributor to the 

overall stock of renewables. It shows that the stock of wind power in 2050 increases when the 

LR increases. The sensitivity to change is greatest under low LR values. 

 

Fig. 8 Stock of wind power in 2050 under different learning rates (LR) 

Figure 9 shows the total abatement cost on varying the LR for wind power. The cost is 

reduced with higher LR values and the reduction is substantial, with 44% when the LR 

changes from 0.01 to 0.8, reflecting the comparatively high cost of renewables initially. 
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Fig. 9 Total abatement cost in 2050 under different learning rates (LR) for wind power 

The effect of changing the LR for hydro power is much lower than for wind power, due to a 

low LR for this mature technology. On adjusting the LR of hydro power from 0.01 to 0.05, 

the change in total cost is negligible and the stock only increases from 81 to 86 million MWh. 

Despite an increase in the LR of solar PV to 1, the stock is still zero. 

The rate of depreciation of renewable energy technologies is an important factor that 

determines the overall cost results, since it determines how long it is necessary to pay for an 

investment. Early investments are comparatively expensive and part of these investments will 

remain in operation for approximately 15 years, in the base case in section 5. A high 

depreciation rate implies a shorter lifetime and vice versa. On changing the depreciation rate 

of all technologies from 35% to 50%, meaning that the technologies would be more or less 

completely depreciated after 10 years, the cost reduction is approximately 0.1%, and the total 

stock of renewable energies can deliver 3% more electricity from wind and hydro power than 

the figures quoted in the base case. When increasing the depreciation rate for one technology 

at a time, the magnitude of the cost reduction and the increases in stock are still comparatively 

low for both wind and hydro power. These results suggest that changes in the depreciation 

rate have smaller implications for the cost and investment in renewables than changes in the 

learning rate.  

A reduction in the initial 2010 cost of renewables is also tested in order to see whether that 

can deliver a stock of solar PV. Table 1 shows the results of reducing the cost of all 

renewables by a certain percentage. The results show that a reduction in cost of 80% would 
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return a comparatively large stock of solar PV. The stock of wind and hydro power would 

increase at the same time, with approximately 66% and 89%, respectively, compared to the 

amount resulting from the model in section 5.  

Table 1. Change in the stock of renewables in 2050 and total abatement cost to 2050 on 

reducing the cost of renewable energies by a certain percentage  

   Stock wind  Stock hydro Stock solar PV Total cost

Reduced cost  Million MWh  Million MWh Million MWh Billion Euro

‐20%  1069  91 0 275

‐40%  1202  106 0 261

‐60%  1410  128 0 241

‐80%  1614  153 690 189

 

6. Discussion and conclusions 

 

The aim of this study was to analyse whether renewable energies with learning-by-doing 

(LBD) technical change can compete with forest sequestration in a cost-effective EU climate 

policy up to 2050. This is an unexplored area of research and the results contribute to the 

understanding of how renewable energies, with endogenous technical change, react to the 

inclusion of a low-cost abatement method like forest sequestration in terms of investments 

and technological development.  

The cost-effective solutions based on a dynamic programming model reveal that the amount 

of investments in wind and hydro power over the policy period generate a stock of renewable 

energies in 2050 that can deliver approximately 1055 million MWh. This is twice as much as 

the current production from these renewable sources (Eurostat 2014). This stock of 

renewables can contribute roughly 8.7% to the emissions reduction target in 2050, which is 

higher than the 3.2% share from the forest sector. Hence, most of the reductions stem from the 

fossil fuels sector. The main reason for a comparatively low contribution from renewables is 

their relatively high cost per unit emissions reduction. The explanation for the low 

contribution from forest sequestration is the limited scope of this option in the analysis, which 

is due to the focus on additional sequestration and the land use change constraint in the model. 
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Additional sequestration is the amount achieved when bioenergy and forest products are 

reduced compared with their current levels of production.   

Throughout the policy period, the cost per unit emissions reduction is at least fifteen-fold 

higher for renewable energies than for forest sequestration. Hence, renewable energies with 

LBD are unable to compete with forest sequestration. This result has important policy 

implications, since it indicates that there is a need for continued financial support for the three 

renewable energy technologies if they are to deliver most of the emissions reduction required 

in 2050. However, any government support scheme should ideally be phased out slowly and 

should be directly related to the reduction in cost that stems from increased learning in a 

technology. The phase-out should hence be initiated when the learning starts kicking-in, 

which happens in 2043 for wind power according to the present analysis. An alternative or 

additional approach would be to direct political support to forest sequestration, by recognising 

this abatement option, which has large potential and low cost. That could also be a beneficial 

approach in terms of increasing ecosystem services. Furthermore, the availability of cheaper 

abatement options means that technological development in renewable energies will halt, 

which has previously been pointed out by e.g. Tavoni et al. (2007). This slowdown can 

potentially be avoided if political measures are taken to directly incentivise technological 

change. Identifying the kinds of measures that best support continuous developments in 

renewables, which are accompanied by cost uncertainties, is a separate area of research that is 

not discussed here.    

The results also show that the cost of achieving the 2050 emissions target would be 

approximately 286 billion Euros when recognising renewable energy potential – solar PV, 

wind and hydro power – and abatement in the forest and fossil fuel sectors. The cost of carbon 

is estimated here to be 364 Euros/tCO2 in 2050. These cost figures can be compared against 

results from other models to get a benchmark for the present results and explain any 

differences. Capros et al. (2012) estimated the overall cost to be 2659-3090 billion Euros. The 

large discrepancy compared with the present study is most likely due to model structures and 

assumptions, in particular with regard to energy demand. In the same study, the estimated 

carbon price is 147-370 Euro/tCO2, which is close to that obtained here.  

Future research to improve the understanding of different abatement methods could include 

e.g. an analysis of the contribution from agricultural abatement. Furthermore, climate change 
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impacts on forestry, which could amend the forest growth function and lead to changes in 

land allocation, would be another interesting research topic.   
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Appendix A. Calculation of the derivative of the cost function for renewable 

energies 

 

In order to solve the model, the time derivative of the cost function for renewables, equation 

(11), is solved. The problem is set up for five periods, where the superscripts, i and g, are 

omitted to facilitate reading and 0Z is set to 1 for convenience. 
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These derivatives show a pattern that can be used to derive the general time derivative of the 

renewable cost function as follows: 
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Appendix B. Conversion parameters 

 

Table B1. Conversion parameters used in the model  
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Appendix C. Calculation of step-wise cost-resource potential curve 

 

Annual costs, quoted on the y-axis of the step-wise curve, cover investment costs and 

operation and maintenance costs (Ragwitz et al. 2003) and are calculated as follows: 

ig
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      (C1)

   

where igK   is the power generation cost in each country, i, for each renewable energy 

technology, g, measured in Euro/MWh; igI is the fixed investment cost in Euro/MW; ig
MOC &  is 

the operation and maintenance costs per energy unit in Euro/MW per year; igH  is the full-

load hours per year; and CRF is the capital recovery factor, which is calculated as follows: 
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P

r

rr
CRF      (C2) 

 

where r is the interest rate and P is the payback time required by investors. The CRF converts 

the total investment cost into an annual cost in present value terms, i.e. an annuity, which is 

recurring for a pre-specified number of years. The payback time and interest rate are the same 

for all technologies and countries and are 15 years and 6.5%, respectively. No taxes are 

included in the various cost components in equation (C1).  

 

The renewable energy potentials, which are quoted on the x-axis of the step-wise cost-

resource curves, provide additional potential for electricity generation. The potential is 

determined by taking into account the technical feasibility, social acceptance, planning 

aspects, growth rate of industry and market distortions. The cost and potentials in the database 

refer to the year 2006 (Resch et al. 2008). These costs remained more or less constant 

between 2006 and 2010 (IRENA 2012a; IRENA 2012b; IRENA 2012c), and hence there is no 

need to adjust the data to fit the model. 
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Appendix D. Input data in model regarding renewable energies   
 

Table D1. Statistical results of fitting a static, quadratic, constant elasticity function to the 

data on costs and resource potentials for wind power. The intercept and the coefficient are 

used in equation (28) for renewable energies 

Country Intercepta SE Estimate Coefficienta SE Estimate No of obs. SSEb 
Austria 69 1.48 4.14 0.31 20 475.717 
Belgium 70 0.97 2.89 0.15 24 252.529 
Bulgaria 76 2.14 1.86 0.33 22 1554.23 
Cyprus 69 0.74 57.54 4.11 16 52.1538 
Czech Republic 67 1.51 1.69 0.14 22 440.392 
Denmark 57 0.91 13.98 0.56 32 404.647 
Estonia 61 0.67 15.29 0.90 21 77.3810 
Finland 64 0.90 0.78 0.03 24 232.644 
France 60 0.96 0.02 0.00 30 345.984 
Germany 61 2.22 0.06 0.01 20 1235.00 
Greece 65 0.93 0.81 0.03 24 257.949 
Hungary 70 0.99 20.76 1.69 18 142.193 
Ireland 52 0.59 5.08 0.39 19 50.2131 
Italy 70 0.84 0.06 0.01 22 141.157 
Latvia 67 0.79 16.11 1.00 21 119.521 
Lithuania 68 0.85 14.05 1.18 18 100.541 

Luxembourgc 70 0.97 2.89 0.15 24 252.529 

Maltad 69 0.74 57.54 4.11 16 52.1538 
Netherlands 63 1.09 1.23 0.06 28 400.330 
Poland 65 1.19 0.38 0.03 22 268.832 
Portugal 62 1.24 1.07 0.08 28 632.922 
Romania 64 1.15 0.64 0.05 22 249.123 
Slovakia 74 1.25 99.90 8.30 18 223.177 
Slovenia 70 0.93 68.77 5.01 18 122.918 
Spain 57 0.96 0.04 0.01 32 490.958 
Sweden 63 0.91 0.62 0.03 26 246.789 
United Kingdom 54 0.99 0.04 0.01 32 419.252 
a Intercept and coefficient in static cost function in equation (31)     
b Sum of Squared Error/Residuals         
c Luxemburg has the same estimates as Belgium 
d Malta has the same estimates as Cyprus 
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Table D2. Statistical results of fitting a static, quadratic, constant elasticity function to the 

data on costs and resource potentials for solar PV. The intercept and the coefficient are used 

in equation (28) for renewable energies 

Country Intercepta SE Estimate Coefficienta SE Estimate No of obs. SSEb 
Austria 455 31.0071 5.25 0.7855 12 64814.6 
Belgium 565 32.5374 18.44 2.4163 12 73072.4 
Bulgaria 400 26.7243 7.16 1.0087 12 41533.5 

Cyprusc 431 28.0321 0.33 0.0493 12 52926.8 
Czech Republic 436 28.2938 3.96 0.5943 12 51956.5 
Denmark 582 36.3392 23.13 3.5493 12 86579.2 

Estoniae 652 35.8836 16.59 2.3767 12 87944.5 
Finland 652 35.8836 16.59 2.3767 12 87944.5 
France 449 30.2411 0.14 0.0206 10 59822.7 
Germany 436 28.4833 0.16 0.0251 12 55903.0 
Greece 373 26.0841 3.94 0.6197 12 45151.5 
Hungary 453 32.2701 14.77 2.2737 12 63502.2 

Irelandf 552 36.0377 0.33 0.0469 12 88444.4 
Italy 431 28.0321 0.33 0.0493 12 52926.8 

Latviae 652 35.8836 16.59 2.3767 12 87944.5 

Lithuaniae 652 35.8836 16.59 2.3767 12 87944.5 

Luxembourgd 565 32.5374 18.44 2.4163 12 73072.4 

Maltac 431 28.0321 0.33 0.0493 12 52926.8 
Netherlands 556 47.8047 4.45 0.7834 10 89456.1 
Poland 643 34.5772 0.98 0.1400 12 76933.8 
Portugal 327 21.1583 3.63 0.5573 12 29330.5 
Romania 420 27.2665 2.33 0.3400 12 45748.2 
Slovakia 544 33.9365 26.48 3.9264 12 73873.6 
Slovenia 600 34.7407 207.45 30.377 12 80189.0 
Spain 339 23.6548 0.14 0.0212 12 34648.0 
Sweden 653 34.9342 3.49 0.5215 12 83341.5 
United Kingdom 552 36.0377 0.33 0.0469 12 88444.4 
a Intercept and coefficient in static cost function, equation (31)       
b Sum of Squared Error/Residuals           
c Malta and Cyprus have the same estimates as Italy         
d Luxembourg has the same estimates as Belgium         
e Estonia, Latvia, Lithuania have the same estimates as Finland       
f Ireland has the same estimates as UK         
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Table D3. Statistical results of fitting a static, quadratic, constant elasticity function to the 

data on costs and resource potentials for hydro power. The intercept and the coefficient are 

used in equation (28) for renewable energies 

Country Intercepta SE Estimate Coefficienta SE Estimate No of obs. SSEb 
Austria 54 1.53048 3.59410 0.15012 24 636.509 

Belgiumc 74 8.64991 23.4689 7.58467 11 2146.59 
Bulgaria 61 1.30448 64.6103 5.21795 24 499.656 

Cyprus NA NA NA NA NA NA 
Czech Republic 45 2.5193 158.588 11.8985 20 1096.60 
Denmark NA NA NA NA NA NA 

Estoniad 68 0.77186 117.005 8.35075 18 78.1050 
Finland 68 0.77186 117.005 8.35075 18 78.1050 
France 42 1.32308 3.38210 0.14531 24 418.563 
Germany 74 8.64991 23.4689 7.58467 11 2146.59 

Greecee 45 1.14325 20.5762 0.82722 24 285.063 

Hungaryf 45 2.51930 158.588 11.8985 20 1096.60 

Irelandg 46 0.82810 13.6972 0.58546 22 137.969 
Italy 45 1.14325 20.5762 0.82722 24 285.063 

Latviad 68 0.77186 117.005 8.35075 18 78.1050 

Lithuaniad 68 0.77186 117.005 8.35075 18 78.1050 

Luxembourg NA NA NA NA NA NA 

Malta NA NA NA NA NA NA 

Netherlandsc 74 8.64991 23.4689 7.58467 11 2146.59 
Poland 33 0.83646 8.92540 0.92257 18 92.9149 

Portugalh 48 1.12397 4.77170 0.43116 22 250.477 
Romania 77 2.60500 23.9016 2.55690 20 1226.70 
Slovakia 32 0.56072 17.8631 1.08962 24 84.7816 

Sloveniae 45 1.14325 20.5762 0.82722 24 285.063 
Spain 48 1.12397 4.77170 0.43116 22 250.477 
Sweden 46 0.82810 13.6972 0.58546 22 137.969 

United Kingdomg 46 0.82810 13.6972 0.58546 22 137.969 
a Intercept and coefficient in static cost function in equation (31)     
b Sum of Squared Error/Residuals         
c Same as Germany           
d Same as Finland           
e Same as Italy             
f Same as Czech Republic           
g Same as Sweden           
h Same as Spain             
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Fig. 10 Fitted cost curve for wind power in France 

 

 

 

 

 

 

 

 

Fig. 11 Fitted cost curve for hydro power in France 
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Appendix E. Abatement in the forest sector 

 

The Chapman-Richard function measures cumulative standing biomass volume, i
tV , in cubic 

metres over the area, iA , and age, i
ty , of the forest, as follows: 
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where, ik , im , and in , are positive country specific parameters. These were calibrated by 

Munnich Vass and Elofsson (2013) based on data for unmanaged forests. The growth, 

)( i
t

i VG , in standing biomass volume is calculated by taking the derivative of the volume 

function (E1) with respect to age. The average age of the forest varies over time due to forest 

growth and harvestings. The forest is rejuvenated when the harvesting level is higher than the 

growth level in any one year, and depleted when it is not.  
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