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Integrating Trees Outside Forests into National Forest Inventories 

Abstract 

Trees Outside Forests (TOF) offer a wide range of ecological, economic, and social 

services. For example, they sequester carbon, provide wood for fuel and construction, 

protect soils from erosion, and contribute to the conservation of biological diversity. In 

particular in regions with low forest cover, TOF often have a substantial role in meeting 

society’s demands for resources such as wood and fodder. 

Information about trees is required for many purposes and at many geographical 

scales, and it has been recognised that substantial tree resources are overseen when 

focussing on forests alone. At the global scale, reporting obligations linked to 

agreements such as the Kyoto protocol are important. However, information is also 

needed for policy making at national scale and for integrated management by rural and 

urban planners. The focus of this thesis is the provision of national level information 

about TOF resources. 

From a literature review it was concluded that many national forest inventories have 

widened the scope of their inventories through including TOF. However, in general 

there is a shortage of information about TOF resources on a global scale. Further, very 

few methodological studies exist on how TOF could be integrated into national forest 

inventories. A central question of this thesis thus is how an integrative monitoring 

approach such as a national tree inventory would look like. 

Existing data from country-level TOF inventories across three continents were re-

analysed. It was found that TOF contribute substantially to national tree biomass and 

carbon stocks. A method for simulating the spatial distribution of TOF elements at the 

landscape scale was investigated at selected study sites in Skåne, in the south of 

Sweden. The aim was to reconstruct existing patterns by methods from material 

sciences that might be used for modelling TOF patterns. Finally, a sampling simulation 

study was conducted to assess the potential of different inventory strategies to form the 

basis for national tree inventories. It was found that the combination of data from field 

sample plots and airborne laser scanning offers great potential in connection with 

model-assisted estimation. 

The results of this thesis may serve as a starting point for moving from a forest-

centred view on tree monitoring towards integrative monitoring approaches that 

consider all trees that grow in a study region as valuable. 
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1 Introduction 

1.1 Background 

Globally, substantial efforts are put into the monitoring of forest resources 

(e.g., FAO, 2010), and there are good reasons for this due to the multitude of 

ecosystem services provided by forests. However, tree resources that grow 

outside forests typically are not taken into account by forest monitoring 

programmes even though they provide similar services as forest trees. Such 

tree resources are summarised with the term trees outside forests (TOF). The 

term was coined by the Food and Agricultural Organisation (FAO) of the 

United Nations while planning the Global Forest Resources Assessment 2000 

(FRA) in the mid-1990s (Pain-Orcet & Bellefontaine, 2004). By introducing 

the TOF concept, the FAO aimed at increasing political attention to TOF (de 

Foresta et al., 2013) because it was recognised that considerable amounts of 

tree resources in many countries might be overlooked when monitoring focuses 

solely on forests. Furthermore, the relevance of TOF for human livelihood, 

general environmental conditions, and biodiversity was emphasised (Pain-

Orcet & Bellefontaine, 2004; Bellefontaine et al., 2002). 

Interest in TOF has existed much longer than the recent attempts by the 

FAO to provide a more holistic view on tree resources. Already in 1713, Hans 

Carl von Carlowitz, in addition to introducing the term “sustainability” in the 

context of forest management, referred to non-forest tree resources several 

times in his opus Silvicultura Oeconomica (Carlowitz, 1713). For centuries, 

people have managed various agroforestry systems such as fruit tree meadows, 

hedgerows, riparian buffers, or parkland trees (Boffa, 2000; Herzog, 2000). In 

addition, there is a long history and wealth of literature from agroforestry and 

urban planning that emphasise the role of TOF. Also, TOF inventories have 

been implemented before (Holmgren et al., 1994; Bieberstein et al., 1982; 

Bieberstein et al., 1975). 
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TOF are trees that grow on land not defined as forest or other wooded land 

(Bellefontaine et al., 2002). This basic definition from FAO relies on the 

definitions of forest and other wooded land, and there are many forest 

definitions available that often vary between countries (Lund, 2002). Thus, the 

definition of what constitutes TOF can also vary between countries. However, 

at an international level, the FAO’s definitions of forest and other wooded land 

are widely accepted and applied (FAO, 2010).  

The forest definition of the FAO has a strong focus on land use, and it states 

that forest land must not be under predominantly agricultural or urban land use. 

In addition, a certain canopy cover, tree height, and area size is required for 

land to be considered a forest. By definition, this means that all trees on land 

with agricultural and urban use are considered TOF. In addition, tree 

formations with very low canopy cover or formations with a dense canopy but 

small areal extent are considered TOF regardless of land use. In addition, the 

word “trees” in TOF also includes shrubs, palms, and bamboo, which are 

relevant resources in some countries (de Foresta et al., 2013). 

As indicated by the definition, the TOF concept comprises a large variety of 

tree formations of various functional types and spatial arrangements. 

Classifications are difficult because many criteria exist for generating 

meaningful categories (Kleinn, 2000). Examples of such criteria are the land 

use on which TOF grow, the geometric patterns formed by the trees, the 

functions of the trees, and the origin of the trees. 

Based on land use, TOF can be classified as growing on built-up areas or as 

growing on agricultural lands (Bellefontaine et al., 2002). In built-up areas, 

possible formations include gardens, urban parks, street trees, hedgerows, trees 

along lakes and rivers, or production systems (e.g., orchards). On agricultural 

land, trees grow in combination with annual crops (coffee, cocoa, and other 

agroforestry systems), in pastures and meadows (scattered trees, windbreaks, 

woodlots, and other silvopastoral systems), along watercourses and bodies, or 

in orchards and permanent crop systems. Apart from urban and agricultural 

lands, TOF can also grow on natural lands as part of savannahs, at the tree line 

in mountainous areas, or on peat lands. Tree density in TOF is, therefore, 

typically very low. 

The spatial arrangement of TOF can be categorized as isolated and scattered 

trees, stand-like groups of trees (e.g., small woodlots, parks), and plantings 

along linear landscape features (Alexandre et al., 1999). This spatial diversity 

needs to be taken into account in monitoring systems by adjusting the 

inventory design to efficiently differentiate among the categories (Kleinn, 

2000). 



13 

Functional classification would include TOF for the production of food, 

fodder, and firewood; TOF for the protection of agricultural crops and animals; 

and TOF for the provision of scenic beauty and other ornamental values. 

Applying origin as a classification criterion, the distinction is made between 

planted trees and trees that are remnants from former forests. The latter case is 

especially common in Latin America as a result of harvesting virgin forests 

(Kleinn, 1999). 

A clear distinction from a true forest can be difficult because some 

ambiguities in the definitions exist. Kleinn (1999), for example, highlighted the 

following problem areas where clear distinctions from forest are difficult to 

draw: savannahs, coffee and cocoa plantations under shade trees, pasture lands 

with trees of varying densities, and orchards. These problem areas are mainly 

relevant for supporting inventories with remote sensing data because land use 

cannot be readily assessed and TOF formations might resemble forests on 

satellite images. 

Other ambiguities, also related to definitions, were identified by de Foresta 

et al. (2013). Problematic areas include shifting cultivation, rubber plantations, 

linear tree formations, certain agroforestry practices, and agricultural or urban 

land use. 

Shifting cultivation is a land-use form where short agricultural uses and 

longer periods, where the land lies fallow, alternate in a temporal sequence. 

During a fallow period, secondary forest re-grows and it is often unclear 

whether or not the land is forest and the agricultural land use has been 

abandoned. Trees on such land can thus be falsely counted as either forest or 

TOF. 

Similarly, it is debated if rubber plantations should be counted as forest or 

TOF. The primary product is rubber, and timber is only a secondary product, 

available at the end of the rotation cycle. Currently, rubber plantations are seen 

as forest but were previously regarded as an agricultural cash crop (de Foresta 

et al., 2013). 

The assignment of linear tree formations to either forest or TOF can be 

problematic because land use, as well as geometric criteria, needs to be 

considered. Following the FAO’s forest definition, these tree formations are 

considered a forest when they are wider than 20 m and larger than 0.5 ha and 

when the land use is non-agricultural or non-urban. 

Agroforestry systems are mostly considered TOF because of the 

predominant agricultural land use; however, cases exist where a forest land use 

dominates. For example, temporary grazing in forest plantations or the 

intercropping in the first years after plantation establishment would be 

considered as systems where the forest component dominates. 
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The meaning and exact definition of agricultural and urban lands differ 

between countries (de Foresta et al., 2013). Also, the term “predominantly” is 

not further specified in the FAO definition, and this leaves room for 

interpretations. For example, the term urban forest does not mean that the land 

use is predominantly urban. In fact, the term has a relatively wide meaning and 

refers to all forest and tree resources within and close to urban areas 

(Konijnendijk, 2003). This means that urban forests are partly included in 

forest inventories and partly not. To separate urban forest from urban TOF, 

Rydberg and Falck (2000) suggest using the ground vegetation as a decision 

criterion; if uncultivated, it is an urban forest, otherwise it belongs to the realm 

of TOF. 

From a climate change perspective, TOF are seen as a mitigation strategy 

because additional tree plantings on agricultural and urban lands for carbon 

sequestration normally do not compete with other land uses (Schoeneberger et 

al., 2012; Plieninger, 2011; Schoeneberger, 2009). The potential for carbon 

sequestration through TOF can thereby be considered to be high, in particular 

for agroforestry systems with a rather dense canopy cover (IPCC, 2000, Table 

4-1). In addition, important co-benefits, such as erosion control (Manning et 

al., 2009; Baudry et al., 2000) and the conservation and improvement of 

biological diversity (Paletto & Chincarini, 2012; Bhagwat et al., 2008) can be 

obtained. TOF are also used as a source for food (Herzog, 1998), fodder 

(Hinsley & Bellamy, 2000), and wood products (Ahmed, 2008; Pandey, 2008). 

For many societies, the cultural value (Grala et al., 2010) and scenic or 

recreational uses are of importance (Herzog, 2000). Even in urban 

environments carbon sequestration can be substantial (Nowak, 2002) in 

addition to other services like regulation of micro-climate (Bowler et al., 2010) 

and removal of air pollutants (Jim & Chen, 2009). 

1.2 Motivation for monitoring TOF 

From the previous section it can be concluded that TOF provide many goods 

and services to society. Especially in developing countries with sparse forest 

cover, TOF may be a major source of wood resources. Information about TOF 

is needed at several geographical scales. At the international scale, agreements 

such as the United Nations Framework Convention on Climate Change 

(UNFCCC, 2008) and its Kyoto protocol demand information about all tree 

resources, not only trees in forests. In this case, the focus is biomass and 

biomass change as proxies for carbon dioxide emissions and removals. 

Examples of international agreements that require information of more general 

kind about TOF is the United Nations Convention of Biological Diversity 
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(SCBD, 2005) and the United Nations Convention to Combat Desertification 

(UNCCD, 1994).  

At national scale there is a general need for information to support policies 

and legislation related to the conservation and use of TOF resources. In this 

case TOF information would have a potential to provide input to several 

sectorial fields, such as agriculture and urban planning. In addition, the 

information reported under the international agreements normally is acquired 

and at the national scale. 

At local scale there is a need to acquire information to support the 

management of TOF. Such information would need to be adapted to the 

specific management goals, which would vary substantially depending on what 

subcategory of TOF is considered. For example, MacFarlane (2009) concludes 

that biomass derived from urban trees offers a potential (1) for deriving 

local wood products, (2) for locally generated fuel sources to generate 

power and heat, (3) for reducing fossil fuel consumption, (4) for reducing 

waste disposal costs, and (5) for reducing pressure on forests. 

1.3 Integration into national forest inventories (NFIs) 

As a consequence of the FAO’s attempts to encourage the monitoring of TOF, 

a number of countries have widened the scope of their NFIs to include TOF. 

Examples are the NFIs of India (Tewari et al., 2014), Sweden (Fridman et al., 

2014), France (Bélouard & Coulon, 2002), and Switzerland (Brändli, 2010). A 

more complete list can be found in de Foresta et al. (2013). In addition all 

countries that conduct their NFIs under the National Forest Monitoring and 

Assessment (NFMA) programme of the FAO include TOF by default (FAO, 

2012). Also, several pilot studies within the framework of the forest inventory 

and analysis programme of the USA have been conducted (Lister et al., 2012; 

Cumming et al., 2008; Riemann, 2003). 

The NFIs listed above show that substantial wood resources can be 

overlooked if TOF are not included in the monitoring systems. For example, in 

India it was reported that 25.6 % of the national growing stock of trees exists 

outside forests (FSI, 2011). For the states Haryana, Kerala, and Punjab in India, 

the majority of wood is actually produced by TOF (Ahmed, 2008; Pandey, 

2008). For the NFMA inventories, the share of TOF to national tree 

aboveground biomass (AGB) stocks varied between 3 % and 70 % (Schnell et 

al., 2015). Lister et al. (2012) estimated that 19 % of all trees in the Great 

Plains states of the USA grow outside forests. A similar proportion was found 

by Riemann (2003) for five counties in Maryland, USA. For forest-rich 
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countries like Sweden, however, the contribution of TOF to national growing 

stocks is very low (0.7%). 

Urban areas often have a relatively high tree cover, highlighting the 

importance of TOF in such environments. For example, for urban areas in 

Wisconsin it was estimated that 26.7 % of the area was covered by trees 

(Cumming et al., 2007). Further, Nowak (2002) found that average carbon 

stocks ranged between 4.4 Mg ha
−1

 and 36.1 Mg ha
−1

 for ten cities in the USA. 

In another study, Nowak et al. (2008) found that tree cover for 14 US cities 

ranged from 8.9 % to 36.7 %. 

Despite the general acceptance of the importance of TOF and advances in 

monitoring, data that would be needed for an integrated management of 

landscapes for climate change mitigation and adaptation (Plieninger, 2011) is, 

in general, still missing at the global scale and only partly available at the 

national scale (de Foresta et al., 2013). One reason for this is that not all kinds 

of TOF are included in the monitoring. For example, in Sweden TOF is 

generally included in the NFI but with the exception of trees growing in human 

settlements, thus only allowing conclusions to be drawn about a specific subset 

of TOF. Another reason is that even though assessments are done in many 

countries, results for TOF are hardly ever reported publicly and are difficult to 

access. 

A further problematic area for TOF inventories is the involvement of many 

stakeholders. TOF occur across the agricultural, the forest, and the urban 

sectors. When monitoring crops and livestock, the agricultural sector ignores 

trees, and, likewise, the forest sector concentrates mainly on forest trees (de 

Foresta et al., 2013). Thus, a potentially large tree resource, as shown above, is 

often overlooked. In addition, forest inventories often have no mandate to 

include TOF (Perry et al., 2009). However, because of the rich experience in 

monitoring trees over large areas and because of the existing infrastructure, it 

could be argued that TOF should be integrated into NFIs. 
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2 Objectives 

The main objectives of this thesis were to investigate the importance of TOF in 

different countries, to assess the current state of the art regarding TOF 

monitoring, and to evaluate methodological options for integrating TOF into 

NFIs or similar inventories. The focus was set on inventories that provide 

national level information, including information for international reporting. 

Thus, the studies deal with general properties of TOF, such as abundance 

patterns and biomass assessment. 

The specific objectives of Papers I–IV were: 
 

I To provide a general overview of TOF inventory methodologies through a 

literature review. The intention was to assess the general status of TOF 

monitoring, identify good examples and interesting methodological 

opportunities, and suggest important areas for future study. 

II To demonstrate the importance of TOF resources in different parts of the 

world through re-analysing existing data from different countries using 

standardised methodology, thus facilitating detailed comparisons. Further, 

the sensitivity of the results to the application of different modelling 

approaches was analysed. 

III To develop methods for modelling and reconstructing spatial patterns of 

TOF resources based on empirical landscape data. The methods can be 

applied for testing the suitability of functional summary statistics for 

describing different features of TOF landscapes and for providing 

fictitious landscapes for sampling simulation. 

IV To compare the efficiency of different large area sampling strategies for 

integrating monitoring of TOF into NFIs. The study was conducted 

through sampling simulation. 
 

Due to space limitations, only a basic set of results from the compilation of 

TOF resources in different countries was presented in Paper II. Thus, some 
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additional results from the study are included in this thesis summary to provide 

a more complete picture. 

The original ambition was to utilise TOF landscapes created with the 

method proposed in Paper III for the sampling simulations in Paper IV. 

However, during the course of the work it was found that a slightly different 

approach was more appropriate for the purpose of Paper IV. 
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3 Material and Methods 

3.1 Methodological approach of the thesis 

No formal hypotheses were formulated and tested as part of the studies, as the 

work mainly involved reviews and the development and evaluation of methods. 

This corresponds to the normal practice for scientific studies in the fields of 

survey sampling and forest inventory methodology, where the performances of 

different methods are either compared strictly analytically or through 

quantitative approaches where properties, such as the precision of a sampling 

strategy, are assessed and compared numerically without prior assumptions 

about which method should perform best. 

3.2 Reviewing literature on existing inventory methodologies 

A literature review was conducted in order to assess the current state of the art 

regarding inventories of TOF. The review focused on selected aspects of 

relevance for implementing large area monitoring of TOF. These were (1) TOF 

definitions; (2) field-based inventory systems; (3) what sampling units have 

been used in different studies; (4) how remote sensing data might contribute to 

the monitoring; (5) strategies for combining field-based and remotely sensed 

data; and (6) the availability of allometric models for estimating the biomass of 

individual trees. 

The literature was searched through the help of keywords in the ISI Web of 

Knowledge. As keywords, terms that are frequently used as synonyms for TOF 

or that describe a specific TOF subset were used. Examples are non-forest 

trees, working trees, scattered trees, urban trees, hedgerow, shelterbelt, etc. In 

addition terms describing the action of monitoring like inventory, sampling, 

survey, etc. were used to filter the search results. 
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Query results were screened based on titles, abstracts, and author keywords, 

and articles were chosen subjectively for their relevance with respect to the 

aspects listed above. Articles published before 1990 were not actively searched 

for because the interest in monitoring TOF at national scale essentially started 

around 1995, when FAO decided to include TOF into their global forest 

resources assessments (Pain-Orcet & Bellefontaine, 2004). Another reason for 

the limit was to focus only on the more recent developments in the field of 

general methods for natural resources inventories. 

3.3 Reanalysing existing inventory data towards TOF 

In Paper II, existing data from the NFMA programme of the FAO were 

reanalysed to provide comparative information about the importance of TOF 

resources in different regions of the world. Such a compilation did not exist 

prior to this study. 

3.3.1 Data 

In July 2011, data for 11 countries that had completed their inventories under 

the NFMA programme were made available for the study. The 11 countries are 

located on three different continents and mainly in the tropics (Figure 1). An 

overview of general country characteristics is given in Table 1. Land areas 

range from about 10,000 km² (Lebanon) to as much as 750,000 km² (Zambia) 

with a great variety in population density, which is highest in Bangladesh with 

about 1,000 people/km². Also, the Philippines and Lebanon have relatively 

high population densities compared to the other countries, which all have less 

than 100 people/km². The economic conditions vary considerably with the 

average annual gross domestic product per capita ranging from less than 

1,000 US$ to about 10,000 US$. 



21 

 
Figure 1. Map of countries that are included in the analysis in Paper II. 

3.3.2 Analysing the data 

The NFMA inventory data were re-analysed using the estimation framework 

for a mapped plot design described in Zarnoch and Bechtold (2000). In the 

NFMA inventories, clusters of field plots were distributed systematically over 

the study area. Each cluster consisted of four rectangular sub-plots with a size 

of 20 m × 250 m, so that a plot area of 2.0 ha was tallied at each sample 

location (Figure 2). The country’s whole territory was used as the sampling 

frame, and all cluster plots were visited in the field. Trees were measured 

regardless of the land use, i.e. the plot area was mapped according to actual 

land use. The three global FAO land-use categories forest (F), other wooded 

land (OWL), and other land (OL) were used for the break-down of results. 

Trees growing in OL are considered as TOF according to the definition by 

FAO (de Foresta et al., 2013). 

Because countries can adjust the basic NFMA inventory design to local 

conditions, an overview of design characteristics is given in Table 2. It should 

be noted that Kyrgyzstan and Zambia used smaller DBH thresholds in order to 

include trees below the standard threshold of 10 cm. These small variations 

between countries were not corrected for, and results should be interpreted 

with that in mind. Also the sample sizes (the number of cluster plots) varied 

considerably between the studied countries, largely as a result of variability in 

country size and available financial resources. 

For each tree and for each land use encountered on the cluster plots, several 

variables were observed. For this thesis, only observations of DBH, height, and 

tree species were used, as well as the area and the land-use category of the plot 

sections on which the trees were found. For estimation, tree-based observations 

were aggregated to the cluster level and broken down by the major land-use 

categories. 
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Table 1. Population, gross domestic product, and climate for the eleven countries studied in 

Paper I (World Bank, 2013; Mitchell et al., 2004). 

Country 
Population 

GDP 

(US$, nominal, 2011) 

Temperature3 

(1961–1990) 

Rainfall4 

(1961–1990) 

Total1 per km2 Total2 per capita ℃ mm 

Bangladesh 150.49 1020 111.88 743 25.0 (18.5–27.8) 2666 (7–596) 

Cameroon 20.03 42 25.24 1260 24.5 (23.3–26.5) 1603 (14–265) 

Costa Rica 4.73 92 40.87 8647 24.8 (23.9–26.1) 2926 (73–413) 

The Gambia 1.78 171 0.90 506 27.5 (24.1–30.5) 837 (0–267) 

Guatemala 14.76 136 46.90 3178 23.4 (21.1–25.2) 2713 (66–420) 

Honduras 7.75 69 17.43 2247 23.5 (21.3–25.1) 1976 (42–263) 

Kyrgyzstan 5.51 28 6.20 1124 1.6 (–13.8–14.9) 381 (12–58) 

Lebanon 4.26 408 40.09 9413 16.4 (7.7–24.8) 661 (0–140) 

Nicaragua 5.87 45 9.32 1587 24.8 (23.5–26.1) 2391 (41–351) 

Philippines 94.85 316 224.77 2370 25.8 (22.5–27.0) 2348 (85–277) 

Zambia 13.47 18 19.21 1425 21.4 (16.9–24.4) 1020 (0–229) 

1 Million inhabitants 

2 In billions 

3 Yearly average temperatures with monthly averages for the coolest and hottest month in parentheses 

4 Yearly average precipitation with the precipitation of the driest and wettest month in parentheses 
 

Because allometric models that 

estimate AGB at the individual 

tree level are extremely rare for 

TOF (McHale et al., 2009), 

mixed-species pan-tropical 

biomass equations were used 

(Chave et al., 2005). This is in 

agreement with suggestions from 

Nair (2012) for estimating AGB of 

agroforestry systems, and this 

method is also commonly applied 

in NFIs in the tropics (Chave et 

al., 2014). 

For the two non-tropical 

countries, Kyrgyzstan and 

Lebanon, biomass estimations 

were based on the inventoried 

volume, that was converted to 

AGB using average wood specific 

gravity and biomass expansion 

Figure 2. Basic plot design used in the NFMA 

programme. Only the elements necessary for the 

analysis in Paper II are illustrated. A detailed 

description is given by the FAO (2012). The 

application of micro-plots was optional and not 

applied equally by all countries. For Cost Rica, the 

subplot length was 150 m. 
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factors from IPCC tables (IPCC, 2006). This is in agreement with the 

methodology that was applied by the countries for their own reporting of 

NFMA results. To estimate tree volume, species group-specific form factors 

were applied for each species. 

Table 2. Basic characteristics of the sample and plot design used in the different countries (Paper 

I). Sample size is the number of clusters used; in case of inaccessibility the reduced number of 

clusters is given in parentheses. The diameter at breast height (DBH) limit is the threshold for 

measuring trees on forest sub-plots, with thresholds for trees on rectangular nested plots and 

outside forests given in parentheses. The binary variable Nested plot indicates whether nested 

plots were used (1) or not (0). 

Country 
Area Sample size Strata DBH limit 

Nested 

plot Year 

km
2
 no. no. cm bin 

Bangladesh 147 570 298 1 10 (10) 0 2005–2007 

Cameroon 475 440 207 (205) 2 20 (10) 1 2003–2004 

Costa Rica 51 000 40 (39) 1 30 (10) 1 2001 

The Gambia 11 000 144 (129) 1 20 (10) 1 2008–2010 

Guatemala 108 899 114 3 20 (10) 1 2002–2003 

Honduras 112 492 181 1 20 (10) 1 2005–2006 

Kyrgyzstan 199 940 765 (733) 1 8 (8) 0 2008–2010 

Lebanon 10 452 222 (220) 1 10 (10) 0 2003–2005 

Nicaragua 130 000 371 (368) 1 20 (10) 1 2007–2008 

Philippines 300 000 351 (349) 1 20 (10) 1 2003–2005 

Zambia 752 614 238 (232) 1 20 (7) 1 2005–2008 

 

The biomass of palms was estimated with the same models as those used for 

trees, despite the fundamentally different allometry and highly variable wood 

density within single palm trunks (Rich, 1987). The reason for this was mainly 

the lack of allometric equations for biomass estimation of palm trees based on 

the input variables (diameter and height) that were available from the inventory 

data. Models based on trunk height exist for some Mesoamerican species (e.g., 

Saldarriaga et al., 1988; Frangi & Lugo, 1985). However, these palm species 

differ substantially in average size and height, especially compared to Asian 

species that are, e.g., frequent in Bangladesh or in the Philippines. The lack of 

allometric biomass models for palms appears to be a major methodological gap 

for TOF and forest biomass estimation in tropical regions. 
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3.4 Reconstructing tree cover patterns 

The initial idea for Paper III was to simulate maps of TOF cover that could 

serve as an input for simulation studies of sampling strategies (Paper IV). The 

methodological approach was to use techniques from material physics (e.g., 

Yeong & Torquato, 1998) to reconstruct existing TOF patterns as extracted 

from remote sensing data. The reconstructions were based on simulated 

annealing, an optimisation algorithm introduced by Kirkpatrick et al. (1983). 

The morphological information contained in original patterns is described 

using functional summary statistics. The same summary statistics are applied to 

random configurations that are changed at each simulation step. If the random 

configuration improves, i.e. if the summary statistics of the original and 

random configuration become more similar, the original pattern is updated. 

The procedure requires a large number of iterations and proceeds step by step 

towards the target configuration. The procedure depends on how well the 

summary statistics reflect the morphological properties of the original pattern. 

Using this technique, the original intention was to identify suitable 

statistical summary functions for describing patterns of TOF cover as extracted 

from remote sensing data. After that the idea was to identify mathematical 

models that could replace the statistical summary functions. From these models 

it was thought to generate different spatial configurations of TOF in order to 

investigate the effect of spatial characteristics on different sampling strategies. 

However, during the course of the work it turned out that the original idea 

could not be implemented, partly because the simulated annealing technique 

only worked for a limited spatial extent (in the order of 10 hectares) due to 

computational limits. 

The reconstruction algorithm is generally applied to regular lattices, 

consisting of single cells, typically representing either pores or the skeletal 

structure of materials. However, there are also applications to spatial point 

patterns (Tscheschel & Stoyan, 2006). For forest ecosystems, two main types 

of application can be distinguished: (1) reconstruction of the patterns of tree 

locations in forest stands from complete observations (Pommerening, 2006); 

and (2) reconstruction of the same patterns from partial or incomplete 

information, e.g. from forest inventory data (Pommerening & Stoyan, 2008). 

Further, the technique allows for studies of the underlying point processes and 

the assessment of habitat suitability for meeting requirements of nature 

conservation (Bäuerle & Nothdurft, 2011), or to locally reconstruct tree 

locations around inventory plots for improving sampling estimators (Lilleleht 

et al., 2013; Nothdurft et al., 2010). 

In the following, in deviation from the original plan, a first attempt to apply 

stochastic reconstruction to patterns of tree cover is presented. The tree cover 
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patterns outside forests differ from many other random heterogeneous media 

since the phase of interest (canopy cover) is comparably rare compared to the 

background and may have a pronounced non-random spatial distribution (e.g., 

linear features). 

3.4.1 Study area and maps of canopy cover 

The study area was the county of Skåne in the south of Sweden, which has a, 

relatively low forest cover (35 %) compared to other parts of Sweden (Figure 

3). For identifying tree vegetation, airborne laser scanning (ALS) data were 

used; it was acquired from a national flight campaign conducted for deriving a 

new digital elevation model (DEM) for Sweden. In order to process the ALS 

data and to extract tree canopy cover, additional data in the form of a DEM and 

land-use information were required. The DEM was provided by the Swedish 

Land Survey Agency (Lantmäteriet, 2014b) and had a pixel size of 2 m × 2 m. 

For the land-use information, the estate map and the general map of Sweden 

(Lantmäteriet, 2014a; Lantmäteriet, 2014c) were used. Layers describing 

building outlines, human settlements, and a forest mask were extracted. The 

forest mask was cleaned from polygons smaller than 0.5 ha and narrower than 

20 m in order to fulfil the FAO forest definition (de Foresta et al., 2013, p. 28). 

In addition, for the parts of the forest polygons that intersected with 

settlements, a non-forest land use was assumed and tree cover in such areas 

was treated as TOF. 

 
Figure 3. Location of the selected study site: Skåne, Sweden (area shaded in dark grey on the left 

panel). The dots indicate the locations of the lower left corners of the 400 m × 400 m large images 

that were used for the reconstruction (right panel). 
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The ALS point cloud was normalised to match the DEM in order to obtain 

height above ground information. The building mask was used to classify the 

point cloud into points representing buildings and other points. To identify 

vegetation, a local transparency and roughness measure – the slope adaptive 

echo ratio – was calculated for each point (Höfle et al., 2009). The echo ratio 

of single points was then averaged over a 2 m × 2 m raster excluding the points 

that were previously classified as buildings. Cells that had an average echo 

ratio of less than 85 % were classified as vegetation. The preliminary 

vegetation mask was refined by removing any remaining artificial objects such 

as remnants of buildings, power lines, street lights, etc. by the technique 

described in Eysn et al. (2012). Finally, information from the land-use maps 

was combined with the final tree canopy mask to yield three tree cover 

categories: forest trees, trees in settlements, and trees in the open landscape. 

To select specific TOF patterns, the tree cover map (Figure 3) was divided 

into 200 m × 200 m squares. The focus was on areas that were completely 

located in Skåne and that had no trees in forests or settlements. In total, 1,625 

squares fulfilled these criteria. From this set of squares, 10 were selected by the 

sampling protocol described in the following. FRAGSTAT (McGarigal et al., 

2012) was used to calculate a set of metrics that described the general 

abundance and shape of TOF patches in the single squares. The following 

metrics were chosen: percentage of area covered by patches, largest patch 

index, average patch size, average of the related circumscribing circle, and the 

perimeter-area fractal dimension. With the help of these metrics, a sample of 

10 squares was chosen using the local pivotal method (Grafström et al. 2012). 

With this sampling technique, auxiliary variables are used to select samples 

that are evenly distributed in the space defined by the auxiliaries. The result 

was a sample of images that represents the variability of the available TOF 

patterns with respect to the used auxiliaries. The selected images constituted 

the original images for the reconstruction experiment. 

3.4.2 Summary statistics 

To reconstruct the original images, summary statistics that describe the spatial 

properties of the TOF patterns in the original and reconstructed images were 

needed. The two-point probability function and the lineal-path function were 

used for this purpose (Gerke et al., 2014; Yeong & Torquato, 1998). 

The two-point probability function 𝑆2(𝑥1, 𝑥2)  is a measure of the 

probability that the two points 𝑥1 and 𝑥2 are both covered by the same image 

category, i.e. tree cover in the present case. The lineal-path function 𝐿(x1, x2) 

also uses two points 𝑥1 and 𝑥2. Here, however, the function assesses whether 

the line spanned by the two points is completely covered by trees. 
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The two functions describe different aspects of tree-cover patterns (Yeong 

& Torquato, 1998). The connectivity of tree pixels is covered by the lineal-path 

function, but it does not contain any information beyond the maximum cluster 

size. This short-range information of different clusters is, however, addressed 

by 𝑆2 ; thus the two functions complement each other. Another reason for 

selecting these two functions is their computational nature. They are 

comparatively easy to implement and can be calculated quickly, which is 

important for the reconstruction process. 

When calculating 𝐿 and 𝑆2, all possible point pairs in an image are normally 

evaluated and summarised by the distances between the point pairs. The final 

functions thus represent the frequency distribution of successful events, i.e. 

both points represent trees or a straight line connecting two points is covered 

by trees. Additional morphological information was gathered by evaluating the 

functions only along the two orthogonal and the two diagonal axes of the 

images (Gerke et al., 2014; Yeong & Torquato, 1998). 

3.4.3 Reconstruction method 

The TOF cover patterns were reconstructed using simulated annealing with an 

improvements-only algorithm (Tscheschel & Stoyan, 2006). With this 

approach, a random start configuration or image that has the same number of 

tree-cover pixels as the respective original image was first generated. This 

random image will gradually evolve into a reconstructed image that mimics the 

original image in terms of the applied summary statistics 𝐿 and 𝑆2. To control 

the reconstruction of the original, a so-called energy or contrast measure 𝐸 is 

used, which basically measures the squared differences between two functions 

(Yeong & Torquato, 1998).  

In each simulation step, 𝑚, one background pixel and one tree pixel were 

randomly chosen and their states interchanged, i.e. background to tree and tree 

to background. By this a tree pixel was moved to a new random location. The 

summary statistics of the simulated pattern were updated after each simulation 

step, and a new energy 𝐸newwas calculated. 𝐸new was then compared to the 

energy of the former step 𝐸old . If 𝐸new < 𝐸old , the new configuration was 

accepted. If not, the previous configuration was restored. Thus, only 

improvements (lower energy) were accepted at each simulation step. The 

simulation was stopped when E reached a small value (𝐸min) or after 1 × 10
6
 

simulation steps. The implementation of the simulated annealing algorithm is 

summarised in Figure 4 below. 

The algorithm was programmed in C++ and run in an R script (R Core 

Team, 2014) using the Rcpp package (Eddelbuettel, 2013). During the 

simulation, periodic boundary conditions were applied to the images as a 
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method to correct for edge effects (Illian et al., 2008, p. 184; Yeong & 

Torquato, 1998). The simulation was completed after approximately four days. 

 
Figure 4. Pseudo code describing the simulated annealing algorithm (improvements-only). 

3.5 Simulation of sampling strategies 

3.5.1 Study area 

For this paper, the same study area (Skåne) as for Paper III was used because 

of the low forest cover and thus the availability of larger amounts of TOF. 

Instead of selecting a few rather small study sites, the entire county was used as 

the sampling frame for the investigated sampling strategies. The distribution of 

tree AGBs for Skåne as derived from this study is shown in Figure 5. The 

same ALS data as used for Paper III were used, but for purposes of (1) 

generalising the field data to build the artificial population, (2) building an 

ALS AGB model that was necessary for some of the investigated sampling 

strategies, and (3) providing the auxiliary information used in some of the 

investigated sampling strategies. 
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Figure 5. Study site location. Left: the location of Skåne in southern Sweden (area shaded in dark 

grey). Right: Aboveground tree biomass and the spatial location of permanent NFI clusters. Each 

point represents one cluster of at most four field plots. The horizontal lines indicate the location of 

500 m wide strips that run east-west across Skåne. The strips are used in a two-phase sampling 

strategy for estimating total biomass. A selection of 20 out of 265 strips is shown in the figure. 

3.5.2 Field data 

Field data for building the artificial population and for developing the ALS 

AGB model were available from the Swedish NFI (Fridman et al., 2014). 

Permanent plots from the years 2008 to 2012 were used and a total of 1,033 

plots were available. For each plot, AGB in Mg ha
−1

 was calculated using the 

models from Marklund (1988) for Norway spruce, Scots pine, and birch.  

Field plots were available from all land-use categories except built-up areas. 

The majority of plots were situated on agricultural fields followed by forests 

and pastures (see Table 3). Most of the agricultural and pasture plots contained 

no tree biomass at all and thus received an AGB of zero. The plots were 

separated into a forest and a non-forest set, and no further distinctions were 

made between OWL and OL, even though the FAO makes such distinctions in 

its land-use definitions (de Foresta et al., 2013). However, in Skåne, only 

5,000 ha are covered by OWL, thus justifying this simplification in building 

the artificial population. Non-forest land uses include fields, pastures, mires, 

roads, and power lines. Trees growing in settlements were not observed in the 

field but were all the same included in the final artificial population, which is 

explained further below. 



30 

Table 3. Summary of the field data. Given are the total number of permanent plots available and 

the number of permanent plots that had some tree vegetation (non-zero). The statistics under 

‘Biomass’ are based on the non-zero plots. Under sd the standard deviation and under skew the 

skewness of the data is given. 

Land use 
Permanent plots AGB (Mg ha−1) 

total non-zero mean min max SD Skew 

Field 432 11 45.6 3.4 144.7 39 1.2 

Forest 417 398 109.3 0.4 429.4 72.4 1 

Pasture 55 25 38.9 0.9 141.9 32.8 1.3 

Mire 14 13 40.6 2.4 85.9 27.3 0.2 

Road 6 2 44.6 9.6 79.6 49.5 0 

Bedrock 3 0 0.0 0.0 0.0 n.a. n.a. 

Power line 2 2 21.7 0.9 42.5 29.4 0 

Other 2 0 0.0 0.0 0.0 n.a. n.a. 

All 931 451 101.2 0.4 429.4 72.4 1.8 

 

3.5.3 Building the artificial population 

The vegetation mask and the map data from Paper III were used to classify the 

ALS point cloud into vegetation echoes, building echoes, and echoes coming 

from other land cover (mainly bare soil). The vegetation echoes were 

tessellated into 20 m × 20 m square cells covering the entire area of Skåne. For 

each square, a set of ALS metrics was calculated following an area-based 

approach (e.g., Næsset, 2002). The average height of the vegetation echoes 

(ℎmean ) and the ratio between vegetation echoes and the total number of 

echoes (𝑝veg) as a density measure were chosen as ALS metrics. The same 

metrics were calculated from the ALS points within the boundaries of the NFI 

field plots. Building echoes were excluded from these calculations.  

The field-plot metrics together with the field-assessed AGB served as 

reference data. However, instead of linking the reference data directly to the 

full-cover ALS data via nearest-neighbour imputation, a copula model was 

introduced as an intermediate step as suggested by Ene et al. (2012) to avoid 

too many duplicated observations in the final product. From the fitted copula 

model, a large set of 250,000 observations of 𝑎𝑔𝑏 , ℎmean , and 𝑝veg  was 

generated and merged with the original field data. First-nearest-neighbour 

imputation was then used to link the copula data to the full-cover ALS data by 

searching the first nearest neighbour in the space of the ALS metrics. The 

Euclidean distance was used for all measurements. 

Based on the map data (forest mask and settlements), grid cells were 

assigned to one of the following domains: forest (F), settlements (SM), and 

other open land (OL, mainly agricultural fields and pastures). 
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3.5.4 ALS biomass model 

For all of the investigated sampling strategies, model-assisted estimation 

(Särndal et al., 1992) was applied as an alternative estimation technique. For 

this, a model was required that predicts the target variable 𝑎𝑔𝑏 from the ALS 

data. A model of the form 

[3.5.1]  𝑎𝑔𝑏 = 𝛽0 ℎmean
𝛽1  𝑝veg

𝛽2  𝜖 

was fitted using ordinary least-squares regressions after logarithmic 

transformation of the response and predictor variables. Back-transformation 

bias was corrected using the ratio-like correction factor proposed by Snowdon 

(1991) and defined as ∑𝑎𝑔𝑏/ ∑ 𝑎�̂�𝑏. Because dummy variables for land use 

had no significant effect, a common model was applied for all land-use 

categories. The leave-one-out cross-validated root mean square error (RMSE) 

of this model was 39.7 Mg ha
−1

 (38.5 %). The model performed much better 

for forest than for non-forest areas, and the cross-validated RMSEs for the 

forest and TOF domains were 41.1 Mg ha
−1

 (37.1 %) and 29.8 Mg ha
−1

 

(68.8 %), respectively. 

3.5.5 Local pivotal method (LPM) 

The LPM was used as an alternative to simple random sampling with 

replacement (SRSwoR) to evaluate the effect of using auxiliary information for 

the selection of samples. The LPM was first introduced by Grafström et al. 

(2012), and it is an extension of the random pivotal method of Deville and Tillé 

(1998). The basic concept is to select units in a way that the distance between 

them is maximised with the consequence that the sampled units are well spread 

in the auxiliary data space. The Euclidean distance was used in this case, but in 

general any distance measure can be chosen. Two different sets of auxiliary 

variables were applied: (1) geographical coordinates, which lead to a sample 

that is well spread spatially across the study area, and (2) ALS metrics, which 

result in a sample that is evenly spread in the space of these metrics. The idea 

is that the auxiliary information should be related to the target variable and thus 

the sample will be “a miniature version of the population” (Grafström & 

Schelin, 2014). An implementation of the LPM was made available via the R-

package BalancedSampling (Grafström, 2014). 

3.5.6 Sampling strategies 

Three broad sampling strategies were investigated for obtaining fully 

integrated tree inventories: (1) single-phase sampling, (2) two-phase sampling 

for stratification, and (3) two-phase sampling of large clusters of population 

elements in the first phase and sub-sampling within selected clusters in the 
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second phase. Inference was strictly design-based (Gregoire, 1998) in all three 

cases, either applying model-assisted estimation or not. The intention was to 

estimate total biomass for the entire population, for the three domains (F, OL, 

and SM), and for a union of the two TOF domains OL and SM. An overview 

of the sampling strategies is provided in Figure 6. 

The population was made up of the trees in the fictitious “Skåne” 

population. They were selected into the sample through a 20 m × 20 m grid 

from which the aggregated AGB of the trees was calculated. These were 

assumed to be the true values. This finite grid forms the sampling frame and 

the single cells of the grid are the sampling units. 

In total there were 𝑁 =  28,385,580 such grid cells divided into the three 

domains F, SM, and OL. For each cell the domain membership, AGB, and the 

two ALS metrics ℎmean and 𝑝veg were known. 

A standard sample size of 𝑛 = 2,000  sample units was used, which 

corresponds approximately to the number of sub-plots used by the Swedish 

NFI within the county of Skåne during a five-year period. However, different 

to the NFI, the case of clustered field plots was not considered. The sample 

size was allocated proportionally to the size of the single domains resulting in 

𝑛F = 751, 𝑛TOF = 1,249, 𝑛OL = 1,119, and 𝑛SM = 130 for F, TOF, OL, and 

SM, respectively. TOF is the union of OL and SM. The same distribution was 

used for all single-phase strategies that did not utilise auxiliary information, i.e. 

all units had the same inclusion probabilities. In cases where ALS data were 

incorporated for selecting samples and/or for facilitating estimation, elements 

with zero AGB biomass were excluded from the sampling, thus resembling 

stratification. Estimation was then focused on the vegetated stratum, and the 

sample size was reduced by the share of zero population elements to 𝑛veg =

2,000 ×  0.516 = 968  sample units for a fair comparison to sampling 

strategies that did not use auxiliary information. The main reason for this 

additional step was to decrease the number of elements from which to choose 

the sample for the LPM. Computing time for the LPM would otherwise have 

been too long (several days for only one repetition). The expected distribution 

of sample sizes was then as follows: 𝑛F = 712, 𝑛TOF = 256, 𝑛OL = 181, and 

𝑛SM = 75. 
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Figure 6. Summary of the tested sampling strategies. Under Layout, the broad layout of the different 

strategies is described. Selection indicates which selection mechanism was applied for selecting sample 

units. The type of auxiliary information used during the design phase is given under Auxiliary variate. 

Here XY denotes geographical coordinates and RS stands for auxiliary information extracted from the 

ALS data. Under Abbr., abbreviations for easier reference to the results of the simulation are given. 

The superscript indicates the number of sampling phases used. For LPM, the subscript shows the type 

of auxiliary variables in which the sample was spread. For two-phase sampling for stratification (TPSS), 

the subscript is related to the first-phase sample size. For the two-phase designs, the sample size for the 

first phase is provided in the first column under Sample size. The sample size for the second phase is 

given in the second column. 

Single-phase sampling 

In this case sampling units were selected directly from the entire sampling 

frame either through simple random sampling without replacement (SRSwoR) 

or the LPM. The domain total was estimated by  

[3.5.2]   �̂�HT,𝑑
(1)

 =
𝑁𝑑

�̂�𝑑
∑

𝑦𝑘

𝜋𝑘
𝑠𝑑

. 

The superscript (1) for �̂� was used to indicate single-phase sampling, while the 

subscript 𝑑 indicates a specific domain and 𝑠𝑑 the set of sample units in the 

sample 𝑠 that belong to the domain 𝑑. 𝑁𝑑  is the size of domain 𝑑 and �̂�𝑑  its 

estimator. HT stands for Horvitz-Thompson estimation and was used to 

indicate that estimation was done without model-assistance. For both SRSwoR 

and the LPM, constant inclusion probabilities 𝜋𝑘 = 𝑛/𝑁 = 𝑛veg/𝑁veg  were 

used. When applying LPM sampling, either geographical coordinates or the 

two ALS variates ℎmean and 𝑝veg were used to select sampling units. 

For model-assisted estimation, domain-specific estimation was done using 

[3.5.3]  �̂�GREG,𝑑
(1)

= ∑ �̂�𝑘𝑈𝑑
+

𝑁𝑑

�̂�𝑑
∑

𝑒𝑘

𝜋𝑘
𝑠𝑑

 . 
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Here, the index GREG indicates that the generalised regression estimator was 

used for both SRSwoR and the LPM. The observed difference between 

observations and model predictions 𝑒𝑘 were calculated as 𝑒𝑘 = 𝑦𝑘 − �̂�𝑘, where 

�̂�𝑘 is the model prediction from Eq. [3.5.1]. 

Two-phase sampling for stratification (TPSS) 

In two-phase sampling for stratification, a large sample 𝑠𝑎 of size 𝑛𝑎 is drawn 

randomly and without replacement in the first phase and is stratified into 

ℎ = 1, … , 𝐻𝑠𝑎
 strata. For elements in 𝑠𝑎, only stratum membership is observed. 

The number of strata 𝐻𝑠𝑎
 is usually random and depends on 𝑠𝑎. Sample units 

with zero AGB were put into stratum ℎ = 1  irrespective of land use. The 

remaining units were divided according to land-use domain (F, OL, or SM) 

into strata ℎ = 2, 3, and 4 , respectively. The number of first-phase units in 

stratum ℎ is denoted as 𝑛𝑎,ℎ. From stratum ℎ, a sub-sample 𝑠ℎ of size 𝑛ℎ was 

drawn where 𝑛ℎ = 𝑛𝑎,ℎ  / 𝑛𝑎 ×  𝑛 and 𝑛 = ∑ 𝑛ℎ
𝐻𝑠𝑎

ℎ=1
. The latter is the sample 

size of the second-phase and was set to 𝑛 = 2,000. The first-phase sample size 

was set to 𝑛𝑎 = 10,000. The overall total was estimated as a sum of stratum 

totals by  

[3.5.6]  �̂�TPSS
(2)

= ∑ �̂�ℎ
(2)𝐻𝑠𝑎

ℎ=1
. 

The superscript number (2) indicates that sampling was done in two phases. 

For stratum totals, the following estimator was used: 

[3.5.7]  �̂�HT,ℎ
(2)

= 𝑁𝑤𝑎,ℎ𝑦
𝑠ℎ

. 

Here 𝑤𝑎,ℎ = 𝑛𝑎,ℎ  / 𝑛𝑎  is the relative size of stratum ℎ , and 𝑦
𝑠ℎ

 is the 

corresponding stratum mean. If model-assisted estimation was applied, the 

stratum total was given by 

[3.5.8]   �̂�GREG,ℎ
(2)

= 𝑁
1

𝑛𝑎
∑ �̂�𝑘𝑠𝑎,ℎ

+ 𝑁𝑤𝑎,ℎ
1

𝑛ℎ
∑ 𝑒𝑘𝑠ℎ

. 

Two-phase sampling with ALS strips 

For the second two-phase sampling design, the general inventory layout as 

used for a AGB estimation study in Hedmark County, Norway, was used (Ene 

et al., 2012). The sampling frame was partitioned into NI = 265  non-

overlapping, 500 m wide strips that ran in an east-west direction. The strips 

formed primary sampling units (PSUs) denoted as 𝑈𝑖 with 𝑖 = 1, 2, … , 𝑁I such 

PSUs. These are clusters of population elements. Each PSU consisted of 𝑁𝑖 

secondary sampling units (SSUs) that are the actual sampling units 𝑘. In total 

there are 𝑁 = ∑ 𝑁𝑖𝑈I
 SSUs and 𝑈I denotes the entire set of PSUs. As before, 
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sampling was done in two phases. In the first phase, a sample 𝑠I of PSUs was 

drawn from 𝑈I by some probabilistic sampling design. The sample size was 

chosen as 𝑛I = 20, and the selection of PSUs was performed using either 

SRSwoR or the LPM. In the second phase, a sample 𝑠𝑖  of SSUs was then 

drawn independently from each PSU in 𝑠I. Here, again, either SRSwoR or the 

LPM was used to select the sampling units. 

In total, there were 𝑛 = ∑ 𝑛𝑖𝑠I
 SSUs in the sample 𝑠, and 𝑛 was set to be 

proportional to the size of the selected PSUs using 𝑛𝑖 = 𝑛𝑠  × (𝑁𝑖 / ∑ 𝑁𝑖)𝑠I
. 

Irrespective of the design chosen for selecting sample units in the different 

phases, totals were estimated as a sum of 𝜋-expanded PSU totals: 

[3.5.9]  �̂�C,𝑑
(2)

= ∑
�̂�𝑖,𝑑

𝜋I
𝑠I

. 

The subscript C now indicates cluster sampling instead of strata as before, and 

𝜋I is the probability of including a PSU in the sample, which is constant and 

given as 𝑛I/𝑁I = 20/265. In a similar fashion, PSU totals �̂�𝑖,𝑑 were estimated 

by 

[3.5.10]  �̂�HT,𝑖,𝑑 = ∑ 𝑦𝑘|𝑖𝑠𝑖,𝑑
/𝜋𝑘|𝑖 

where 𝑦𝑘|𝑖 denotes the observed value of the study variable of unit 𝑘 in the 𝑖th
 

PSU, while 𝑠𝑖,𝑑  indicates summation over SSUs in the 𝑖 th
 PSU and the 𝑑 th

 

domain. The probability of including an SSU in 𝑠 is calculated by 𝜋𝑘|𝑖 = 𝑛𝑖/

𝑁𝑖. 

In the model-assisted case, auxiliary information was needed. The PSUs 

were then regarded as ALS flight lines where scanning would only be done for 

the PSUs in 𝑠𝐼. The corresponding estimator for PSU totals is 

[3.5.11]  �̂�GREG,𝑖,𝑑 = ∑ �̂�𝑘𝑈𝑖,𝑑
+ ∑

𝑒𝑘|𝑖

𝜋𝑘|𝑖
𝑠𝑖,𝑑

. 

When sampling with the LPM, again two different sets of auxiliary variables 

were used. For PSUs, either the geographical position of unit 𝑖 in the north-

south direction or the forest cover of a strip was chosen. For SSUs, the same 

variables as with single-phase sampling were used, i.e. the geographical 

coordinates or the two ALS variables ℎmean and 𝑝veg. 

3.5.7 Accuracy assessment through Monte Carlo simulation 

For each sampling strategy, 𝑀 = 1,000 realisations were generated during the 

simulations. To test whether estimators were unbiased and precise, several 

statistics were calculated from the given sample distributions. For known 

population and domain totals, the generic notation 𝑡  was used, and the 

corresponding estimates were denoted as �̂� with a variance estimate �̂�(�̂�). For 
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the single simulation steps 𝑚 = 1, 2, … , 𝑀 , �̂�𝑚  and �̂�(�̂�m)  were used, 

respectively. The variability of the total estimates was described using the 

observed relative standard error (RSEobs ) as calculated from the sampling 

distribution of �̂�: 

[3.5.12]  RSEobs =
√𝑉obs

𝑡
. 

Here, 𝑉obs =
1

𝑀
∑ (�̂�𝑚 −

1

𝑀
∑ �̂�𝑚

𝑀
𝑚=1 )

2
𝑀
𝑚=1 . The subscript obs indicates that this 

is the standard error or variance as calculated from the generated sampling 

distribution. 
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4 Results 

4.1 Available options for monitoring TOF 

4.1.1 Definitions 

The literature review revealed that currently only one general TOF definition is 

used at the international scale. It is the one from FAO which relies on the 

definitions for F and OWL (de Foresta et al., 2013, p. 26). 

For international reporting, the FAO definitions are accepted by most 

countries. The FAO defines F as land with an area of more than 0.5 ha with 

trees higher than 5 m and a crown cover of at least 10 %. Trees can be smaller 

than 5 m and the cover less than 10 % if the trees are able to reach these 

thresholds under the given site conditions. Lands with predominantly 

agricultural or urban use are not included as F or OWL regardless of the tree 

abundance. OWL differs from Forest with respect to the canopy cover and tree 

height. In the case of OWL, canopy cover should lie between 5 % and 10 % 

and tree height can be lower as 5 m. If shrubs are present, lands with a 

combined cover of trees and shrubs greater than 10 % are categorised as OWL 

provided that the thresholds for Forest are not reached. 

By inversing the two definitions given above, TOF are trees that grow on 

lands with a combined cover of shrubs and trees of less than 10 % or a tree 

cover of less than 5 %. Patches that are smaller than 0.5 ha are always TOF 

independent of the crown cover. Likewise, trees on land with a predominantly 

agricultural or urban land use are always included as TOF. 

4.1.2 NFI type inventories 

Only two inventory systems were identified that include all possible types of 

TOF that might exist in a study area, e.g. rural and urban TOF. These are the 

NFMA inventories of the FAO (FAO, 2012) and the NFI of India (Tewari et 

al., 2014). 
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As described earlier, the NFMA approach is a single-phase design where 

relatively few, but large, sampling units are distributed systematically over the 

study area. Trees on all land uses are measured and field plots are mapped 

according to changes in land use. This allows for a very straightforward 

implementation of the inventory and analysis of the data. 

The Indian NFI, in contrast, uses a two-stage strategy (Tewari et al., 2014), 

where the first-phase sampling units are the districts of India and a stratified 

random sample of 10 % is selected every 2 years proportional to the area of the 

physiographical zones of India. In the second stage separate sampling 

strategies for forest, rural TOF, and urban TOF are followed. The urban areas 

are divided into blocks that consist of approximately 120 to 160 households. 

These blocks are the sampling units, which are selected randomly. All trees in 

a sampled block are then measured in the field. For rural TOF, the area covered 

by TOF within a selected district is stratified into block, linear, and scattered 

tree formations using remote sensing. For each stratum a different plot layout is 

used which is adapted to the average spatial arrangement and density of the 

trees in the stratum. For the block stratum, square plots with a size of 1000 m² 

are used; for the linear stratum plots are 10 × 125 m large rectangles; and for 

the scattered stratum the plots are square and 3 ha large. 

Beside the NFMA inventories and the Indian NFI, other countries have 

widened the scope of their NFIs to include TOF or use other large area 

monitoring strategies. Example are Switzerland (Brändli, 2010), Sweden 

(Fridman et al., 2014), and Great Britain (Barr & Gillespie, 2000). In addition 

several pilot studies in the frameworks of the forest inventory and analysis 

programme of the USA have been conducted (Lister et al., 2012; Cumming et 

al., 2008; Riemann, 2003). 

4.1.3 Remote sensing 

When reviewing the literature on remote sensing in a TOF context, a 

distinction was made between passive (such as optical data from satellites or 

aerial images) and active sensors (such as light detection and ranging). The 

passive sensors were further separated by their spatial resolution. Data with a 

spatial resolution of less than 2.5 m (pixel size) was considered as high 

resolution. Data with a pixel size between 2.5 m and 60 m was considered as 

medium resolution and everything with pixels larger than 60 m as coarse 

spatial resolution data. 

Only two studies have used data with a coarse spatial resolution to assess 

TOF resources (Zomer et al., 2014; Perry et al., 2009). Both used the 

vegetation continuous field product of the MODIS satellite, which delivers 

global maps showing the proportion of bare ground, herbaceous cover, and tree 
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cover. The spatial resolution of the final product was 500 m. Perry et al. (2009) 

described an indirect approach for comparing land area with tree cover from 

MODIS with estimates from forest inventory and analysis data in the USA. 

The study concluded that a significant amount of tree resources is overlooked 

by traditional forest inventories. Zomer et al. (2014) combined tree cover from 

MODIS data with the Global Land Cover 2000 database (GLC, 2003) to assess 

TOF resources on agricultural land at a global scale. They found that 43 % of 

all agricultural land had a tree cover of more than 10 %. 

At medium spatial resolution, studies typically focused either on TOF in 

agricultural areas or on TOF in urban settlements. The aim was often the 

mapping of tree cover, and images from Landsat and SPOT satellites were 

common data sources. A problem with this type of data is that TOF elements 

are often found in mixed pixels that contain spectral information about several 

land-use types, where standard multi-spectral classification consequently fails 

in recognizing them as the spectral signature of woody vegetation (Foschi & 

Smith, 1997). Several approaches to overcome this problem were identified: 

neural networks and machine vision to detect sub-pixel objects such as narrow 

hedgerows and single trees (Foschi & Smith, 1997); pixel swapping to assign 

attractiveness of sub-pixels for certain land-use classes (Thornton et al., 2007; 

Thornton et al., 2006); and spectral mixture analysis to assign fractions of 

certain surface types to each pixel (Small & Lu, 2006; Lee & Lathrop, 2005). 

In special situations, a simple unsupervised classification approach with a 

subsequent supervised classification may be successful to identify woody 

vegetation (Kumar et al., 2008). Also the prediction of carbon stocks may be 

an alternative when field measured carbon stocks are predicted based on 

specific metrics derived from the images (Myeong et al., 2006). 

For high spatial resolution data, a relatively clear distinction between 

manual interpretation of images (Fehrmann et al., 2014; Walton, 2008) on the 

one side and an object-based classification of images on the other side (e.g., 

Tansey et al., 2009) was found. With object-based classification, it is possible 

to fully map large study areas (Schumacher & Nord-Larsen, 2014; Walker & 

Briggs, 2007). Studies that used manual image interpretation are typically 

limited to some sort of sampling (Fehrmann et al., 2014; Fensham & Fairfax, 

2003; Hansen, 1985). 

The studies on object-based classification in connection with TOF had 

varying objectives and target on different TOF categories. The categories can 

be divided into urban areas and metropolitan regions (Taubenbock et al., 2010; 

Ouma & Tateishi, 2008; Walker & Briggs, 2007), agricultural landscapes 

(Liknes et al., 2010; Sheeren et al., 2009; Tansey et al., 2009), fragmented 

landscapes (Zhou & Troy, 2008), suburban areas (Zhou & Troy, 2008), and 
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savannahs (Boggs, 2010). The objectives were to map tree cover (Boggs, 2010; 

Liknes et al., 2010; Ouma & Tateishi, 2008) but also to map other objects in a 

given landscape, such as buildings, streets, etc. in urban areas (Taubenbock et 

al., 2010), and hedgerows, woodlots, crop fields, etc. in agricultural areas 

(Tansey et al., 2009). Overall classification accuracies that were achieved 

ranged from 80 % to more than 90 %. 

Relatively few studies on TOF monitoring apply active remote sensing 

techniques, such as ALS (Straub et al., 2008). ALS data have been used for 

automated delineation and classification of forest and non-forest vegetation in 

urban and rural environments (Eysn et al., 2012; Rutzinger et al., 2008; Straub 

et al., 2008). Straub et al. (2008) used full waveform ALS data to delineate 

regions with tree vegetation that were subsequently separated into forest and 

TOF. Accuracy assessments resulted in an overall accuracy of 97 %, whereas 

for tree groups and single trees (TOF) only 78 % and 68 % accuracy were 

reached, respectively. Eysn et al. (2012) focused on the delineation of forest 

areas for larger regions, which is useful from the perspective that once forest 

areas are identified, it implicitly becomes clear what tree cover regions can be 

assigned as TOF. The resulting forest maps had a high accuracy but non-forest 

land uses (e.g. fruit orchards) posed a challenge. Rutzinger et al. (2008) used 

ALS data to automatically detect urban trees using an object-based point cloud 

analysis concept. Accuracies of over 90 % were obtained, but data had a high 

number of returns per square meter (between 15 and 20 returns per m²) and 

evaluations were made only for fairly small test sites in the city of Vienna. 

Used from the ground, LiDAR data from terrestrial laser scanning appears 

to have a great potential to facilitate the development of volume and biomass 

models for TOF (Lefsky & McHale, 2008). With this technique, the entire 3D 

structure of trees can be revealed, and thus there is a potential to make accurate 

tree volume estimates from terrestrial laser scanner data alone. 

4.1.4 Combining field data and remotely sensed data 

In the monitoring of natural resources, there are typically two possibilities for 

incorporating remotely sensed data. With the first possibility, the focus is on 

supporting the selection of samples in the design phase of an inventory. The 

population may be stratified based on available maps and the sampling strategy 

optimised towards the specific characteristics of each stratum. This is what is 

done in the Indian NFI (Tewari et al., 2014).  

If no auxiliary data is available, the first-phase of multi-phase sampling 

strategy can be used to collect data, which would then be used to stratify the 

first-phase sample (Baffetta et al., 2011; Lam et al., 2011). In a second-phase, 

a stratified sub-sample is then selected, and one of the advantages is that 
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sampling locations without trees can be put in a stratum that normally need not 

be visited in the field. 

Further options supporting the selection of samples, are methods of 

spatially balanced sampling that strive to optimise the selection of sample units 

in a way that the sample represents the population as good as possible with 

respect to the available auxiliary information. Recently developed methods, 

such as the LPM, have apart from Paper IV not been applied to TOF 

inventories but were tested for forest inventory scenarios (Grafström et al., 

2014; Grafström & Ringvall, 2013). 

Other approaches for combining field and remotely sensed data are directed 

at improving estimators in design-based inventories (Gregoire et al., 2011) or 

at applying model-based inference (Ståhl et al., 2011). In both cases variables 

such as aboveground biomass are modelled using predictor variables that are 

derived from remotely sensed data. With respect to TOF inventories, there is 

little to no experience about these techniques, again apart from the results of 

Paper IV. 

4.1.5 Biomass models 

For providing figures on the availability of additional wood and biomass 

resources, and the role of TOF in the carbon cycle, allometric models that 

predict biomass and carbon at the level of the individual tree are needed. For 

TOF, there is a general lack of such models (McHale et al., 2009; Nilsson, 

2008). 

Only a few studies have developed TOF-specific allometric biomass 

equations and made a comparison to forest models (e.g., Yoon et al., 2013; 

Kuyah et al., 2012; McHale et al., 2009; Zhou et al., 2007; Kumar et al., 1998; 

Nowak, 1994). In an early attempt, Nowak (1994) measured the biomass of 

street trees in Chicago and found that measured biomass was on average 20 % 

lower than the biomass predicted from forest models. In contradiction to that 

result, Zhou et al. (2014) found for open-grown trees in agricultural land, that 

measured biomass was on average 20 % larger than the one predicted from 

forest models. Adjustment factors when applying forest models to TOF may 

thus range between 0.8 and 1.2. 

Similarly, Yoon et al. (2013) also partly observed an overestimation for 

street trees in Daegu, South Korea. However, they also found that for some 

species the deviation from existing forest models was small. This is in 

agreement with Kuyah et al. (2012), who found that the multi-species pan-

tropical dry forest models from Chave et al. (2005), agreed well with models 

that were developed for trees in an agricultural landscape in western Kenya. 
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Further, Yoon et al. (2013) found that the application of models developed 

for the same species can lead to very different results. This is in agreement 

with the study of McHale et al. (2009) on street and park trees in Fort Collins, 

USA, which demonstrated that on single tree level the variability of biomass 

estimates ranged between 60 % and 300 %. 

In general it can be stated that tree allometry and wood specific gravity is 

altered for open/grown trees in comparison to forest trees of the same species. 

Regarding the same species, Zhou et al. (2011) found, for open-grown trees, 

that they have a higher wood specific gravity of trunk wood, a sharper trunk 

taper, and that they allocate more biomass towards the crown in comparison to 

forest trees. They conclude that these differences are a consequence of an 

increased exposure of open-grown trees to solar radiation, wind, and 

agricultural residuals. Harja et al. (2012) found that open-grown trees are on 

average shorter than forest trees of the same species and with the same 

diameter. 

In many countries bamboo and palms are included as TOF, and they may 

sometimes contribute substantially to the overall biomass stocks (FRA, 2006). 

For these species groups the situation regarding model availability is extremely 

difficult. Only some rather crude estimation approaches (e.g., Brown, 1997) 

were identified during the review. 

4.2 Status of TOF resources in different regions of the world 

In Paper II the focus was on biomass and carbon stocks; however 

complementary analyses focussed on other aspects such as species richness, 

size class distributions, and average tree size. Thus, some additional results 

compared to what is shown in Paper II are presented here. 

4.2.1 Area estimates 

As might be expected from the diversity of countries involved, cover estimates 

for the four major land-use classes vary to a large extent (Table 4). The three 

countries with the lowest forest cover proportion are Kyrgyzstan, Bangladesh, 

and Lebanon, and this implies that the majority of their land area is covered by 

OL, which is the land use category where TOF grow. Forest cover of more 

than 40 % was estimated for Zambia, Costa Rica, Honduras, and Cameroon. 

The other countries lie in the range of 20 % to 40 %. OWL is highest in 

Cameroon at 31.1 %, and most of the other countries have between 10 % and 

20 % of this land-use category. Except for the countries with low forest cover, 

the share of OL usually ranges between 35 % and 60 %, whereas Cameron and 

Zambia only have about 20 % of this land-use type. Bangladesh, The Gambia, 
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and Nicaragua have relatively high proportions of IW. Furthermore, the 

proportion of land where land use is unknown due to inaccessible sample units 

might represent up to 8 % of a country’s area. In the table, also estimates of 

forest cover as given in the Global Forest Resources Assessment 2010 (FAO, 

2010) are provided. 

Table 4. Area estimates for the major land-use classes forest, other wooded land (OWL), other 

land (OL), and inland water (IW) given as percentages of total land area. The corresponding 

standard errors are given in parentheses as a percentage of the estimated total. Under FRA 2010, 

the estimates of forest area as reported by the FAO in the Global Forest Resources Assessment 

2010 (FAO, 2010) are given as a percentage of the total area. 

Country Forest FRA20101 OWL OL IW Unknown 

Bangladesh 8.1 (18.1) 11 0.7 (62.6) 76.8 (2.9) 13.7 (12.4) 0.7 (70.6) 

Cameroon 44.2 (2.6) 42 31.1 (4.2) 23.5 (3.9) 0.6 (0.3) 0.6 (0.8) 

Costa Rica 46.7 (10.9) 51 1.8 (73.3) 43.1 (13.2) 4 (65.9) 4.4 (53.7) 

The Gambia 26.6 (11.4) 48 10.9 (18.2) 52.1 (6.5) 10.5 (22.7) n/a 

Guatemala 37.3 (4) 34 16.3 (2.4) 42.6 (3.7) 1.8 (1.5) 2 (9.5) 

Honduras 42.7 (6.9) 46 11.7 (12.1) 34.7 (7.7) 2.9 (34.7) 8 (25) 

Kyrgyzstan 3.4 (14.2) 5 3.1 (14.3) 88.8 (1.1) 4.7 (15.5) n/a 

Lebanon 12.6 (12.9) 13 10.4 (13) 71.7 (3.4) 0 (76.7) 5.3 (27.9) 

Nicaragua 25 (7.1) 26 17 (7.6) 48.8 (4.1) 9.2 (15.3) n/a 

Philippines 23.8 (7.9) 26 12.2 (10.1) 61.3 (3.4) 2.7 (20.6) n/a 

Zambia 63.9 (4.2) 67 7.4 (18.9) 19.7 (10.5) 4.2 (29.3) 4.8 (28.9) 

1
 Estimates of forest area in the FRA 2010 report are related to total land area excluding inland water, whereas 

here estimates are related to total land area including inland water. The differences are partly explained by this 

as well as by differing inventory dates and methodologies. 

4.2.2 Estimates for biomass and carbon stock 

Results of living aboveground tree biomass are summarised in Table 5, where 

the average biomass per hectare, its relative standard error, and the share of the 

country’s total biomass are presented. The largest average biomass stocks for 

TOF were observed in Cameroon (16.4 Mg ha
−1

) and in the Philippines 

(12.3 Mg ha
−1

). The other countries had stocks of less than 10 Mg ha
−1

 and 

were in general in a comparable range to the stocks found on OWL. Average 

biomass stocks in forests were naturally higher and ranged from 21.8 Mg ha
−1

 

to 159.9 Mg ha
−1

.  

Forests typically contain the major part of the tree biomass in the countries 

studied. However, for six out of the eleven countries more than 10 % of the 

total tree biomass was found outside forests and other wooded land, and in 

Bangladesh as much as 75 % of the national tree biomass stocks were 

estimated to be TOF, mainly because OL is by far the largest land-use class in 
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this country but also because stocks on forest land are relatively low 

(33.4 Mg ha
−1

) compared to the stocks on other land (9.6 Mg ha
−1

). 

 

Table 5. Estimated aboveground biomass. Given is the estimated mean aboveground biomass per 

hectare with the corresponding estimated relative standard error in parentheses The share of the 

three major land-use classes of the total tree biomass of the country is listed in the columns 

labelled %. 

Country F OWL OL 

Mg ha−1 (%) % Mg ha−1 (%) % Mg ha−1 (%) % 

Bangladesh 33.4 (21.5) 26.7 7.7 (79.5) 0.5 9.6 (8.6) 72.8 

Cameroon 159.9 (2.9) 89.4 14.6 (9.9) 5.8 16.4 (15.4) 4.9 

Costa Rica 104 (15.4) 93.0 0 (n/a) 0.0 8.5 (28.7) 7.0 

The Gambia 21.8 (10.9) 57.6 8 (15) 8.7 6.5 (13.5) 33.7 

Guatemala 80.6 (14) 86.0 9.3 (15.6) 4.3 7.9 (16.9) 9.6 

Honduras 79.2 (9.3) 91.0 9.3 (16.1) 2.9 6.5 (14.5) 6.0 

Kyrgyzstan 30.2 (21.8) 84.2 1 (29.8) 2.6 0.2 (22.1) 13.2 

Lebanon 24.6 (28.5) 51.6 4.6 (26.5) 7.9 3.4 (26.9) 40.5 

Nicaragua 74.1 (6.3) 74.4 12.6 (10.9) 8.6 8.6 (9) 17.0 

Philippines 82.6 (8.2) 69.0 10.5 (12.1) 4.5 12.3 (9.2) 26.5 

Zambia 32 (5.3) 95.1 4.9 (21.2) 1.7 3.6 (16.5) 3.3 

 

4.2.3 Species richness 

The general pattern for the tropical countries is that most species were found 

within forests followed by OL and OWL (Table 6). The tropical forests usually 

also contained the highest number of species that were only found within 

forests and not elsewhere, as described by the variable 𝑛𝑢. For Bangladesh and 

the two non-tropical countries of Lebanon and Kyrgyzstan, the opposite pattern 

was observed, i.e. more species were found in OL instead of in F, and more 

species were unique to OL. For other non-tropical countries, such data are not 

available and it would be interesting to see if this pattern can be generalised 

globally. Especially in Europe, it can be assumed that tree species richness is 

higher outside forests. However, data to evaluate this assumption are not yet 

available. 
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Table 6. Tree species diversity by country and land use. The variables are as follows: 𝑺 – number of species with known scientific name (only counting 

individuals that could be identified to the species level); 𝒑𝒎𝒊𝒔𝒔 – share of records with unknown species or where only family or genus were known; 𝒏𝒔 – number 

of species with only one individual; 𝒏𝒅 – number of species with two individuals; 𝒏𝒖 – number of species unique within the given land use; 𝒑𝑭𝒊𝒓𝒔𝒕 – share of the 

most abundant species based on tree counts; 𝒑𝑺𝒆𝒄𝒐𝒏𝒅 – share of the second most abundant species based on tree counts. 

Country Land use 𝑆 𝑝𝑚𝑖𝑠𝑠 (%) 𝑛𝑠 𝑛𝑑 𝑛𝑢 𝑝𝐹𝑖𝑟𝑠𝑡 (%) Name of most abundant 𝑝𝑆𝑒𝑐𝑜𝑛𝑑 (%) Name of second-most abundant 

Bangladesh 

Forest 125 1.7 30 8 25 33.2 Heritiera fomes 16.2 Excoecaria agallocha 

OWL 32 28.4 15 8 2 15.5 Tectona grandis 9.7 Olea europaea 

OL 216 7.0 48 23 112 19.2 Areca catechu 9.6 Mangifera indica 

Cameroon 

Forest 435 6.1 57 30 152 3.6 Blighia welwitschii 2.5 Uapaca guineensis 

OWL 303 3.8 75 41 29 7.7 Terminalia albida 6.5 Lophira lanceolata 

OL 294 4.4 65 47 15 7.5 Morelia senegalensis 6.8 Hymenocardia acida 

Costa Rica 
Forest 182 32.1 61 36 118 7.2 Tectona grandis 3.2 Guazuma ulmifolia 

OL 83 23.2 42 20 19 14.3 Cordia alliodora 7.2 Gliricidia sepium 

The Gambia 

Forest 68 5.8 15 6 18 23.1 Combretum glutinosum 9.8 Terminalia macroptera 

OWL 42 7.2 12 3 4 23.7 Combretum glutinosum 17.5 Mitragyna inermis 

OL 58 11.3 15 8 9 9.9 Mitragyna inermis 9.3 Elaeis guineensis 

Guatemala 

Forest 278 29.4 83 27 98 4.7 Pinus oocarpa 4.1 Pouteria reticulata 

OWL 190 20.6 72 32 26 3.6 Cecropia peltata 3.2 Byrsonima crassifolia 

OL 234 18.2 84 45 67 5.6 Inga spuria 4.8 Cordia alliodora 

Honduras 

Forest 310 21.0 56 31 122 20.5 Pinus oocarpa 5.9 Pinus caribaea 

OWL 161 16.5 46 23 10 5.5 Prosopis chilensis 5.3 Guazuma ulmifolia 

OL 205 16.6 55 32 33 7.8 Inga vera 6.7 Gliricidia sepium 

Kyrgyzstan Forest 21 0.2 1 0 1 28.5 Picea schrenkiana 22.2 Juniperus semiglobosa 
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Country Land use 𝑆 𝑝𝑚𝑖𝑠𝑠 (%) 𝑛𝑠 𝑛𝑑 𝑛𝑢 𝑝𝐹𝑖𝑟𝑠𝑡 (%) Name of most abundant 𝑝𝑆𝑒𝑐𝑜𝑛𝑑 (%) Name of second-most abundant 

OWL 18 0.7 3 2 0 49.8 Juniperus semiglobosa 12.9 Acer turkestanicum 

OL 29 0.0 3 1 8 19.1 Populus alba 16.6 Sorbus tianschanica 

Lebanon 

Forest 33 0.7 6 3 4 21.2 Quercus coccifera 20.8 Pinus brutia 

OWL 27 4.6 8 4 2 25.7 Quercus coccifera 20.4 Juniperus excelsa 

OL 62 20.3 10 5 29 43.1 Olea europaea 17.6 Citrus  

Nicaragua 

Forest 366 6.9 35 30 48 7.1 Pinus caribaea 2.7 Guazuma ulmifolia 

OWL 306 4.9 45 42 35 5.5 Guazuma ulmifolia 4.7 Cecropia insignis 

OL 338 4.1 52 33 14 8.6 Guazuma ulmifolia 8.0 Cordia alliodora 

Philippines 

Forest 465 43.8 139 48 190 22.6 Shorea  6.9 Pentacme  

OWL 249 22.0 82 36 32 5.2 Gmelina arborea 4.8 Cocos nucifera 

OL 285 3.6 83 35 42 57.3 Cocos nucifera 5.5 Gmelina arborea 

Zambia 

Forest 227 9.7 59 22 90 11.8 Brachystegia boehmii 7.8 Julbernardia paniculata 

OWL 100 15.2 34 14 5 9.5 Diplorhynchus condylocarpon 4.3 Brachystegia boehmii 

OL 120 22.2 48 21 5 6.0 Brachystegia boehmii 5.0 Julbernardia paniculata 
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For a considerable number of species, only one or two individuals, 𝑛𝑠 and 𝑛𝑑, 

were observed, which is a typical feature for frequency distributions of species 

(Magnussen et al., 2010; Lam & Kleinn, 2008). The two most abundant forest 

species differ in general from the two most abundant TOF species in each 

country examined except for Zambia. In many countries, TOF are dominated 

by one or two economically important species. For example, in the Philippines 

coconut palms (Cocos nucifera) account for as much as 57.3 % of all non-

forest trees. Likewise in Lebanon, 60.7 % of all non-forest trees are olive trees 

(Olea europaea) and citruses (Citrus sp.). Similar patterns with less dominance 

could be found for Bangladesh, Costa Rica, The Gambia, and Kyrgyzstan. 

Similar observations were made by Fischer et al. (2011) for an NFI in Burkina 

Faso, where the multiple-use shea butter tree (Vittelaria paradoxa) clearly 

dominated the species frequency distribution on OL. The remaining countries 

showed low dominance of single species, and particularly for Cameroon, 

Guatemala, and Nicaragua species distributions could be considered as 

relatively even across all land uses. 

4.2.4 Diameter distributions and average tree size 

Comparing the DBH distributions for forest trees and TOF, the countries can 

be split into two groups. One group shows the typically inverse J-shaped 

distributions on both land-use categories (F and OL), with most trees occurring 

in the smallest size class followed by a rapid decrease in individuals with 

increasing diameter (Figure 7). The other group, i.e. The Gambia, Guatemala, 

the Philippines, and Zambia, shows a clear shift in the shape of the 

distributions from forest to OL, where the smallest size class is less frequent 

and medium size classes become more important. For The Gambia and the 

Philippines, this pattern can be attributed to the influence of palms, for which 

the DBH, in the absence of secondary growth, is rather constant throughout the 

lifespan of the tree. In Guatemala and Zambia, palms are rare and the 

distribution for OL might indicate a problematic regeneration of the tree 

population outside forests. 
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Figure 7. Relative abundance of trees based on diameter at breast height (DBH) distributions by 

country and major land use. 

Looking at average tree size in terms of DBH and tree height, earlier 

observations that TOF have the tendency to be thicker in diameter and shorter 

in height (Table 7) can be confirmed. For The Gambia and the Philippines, the 

influence of palms is again visible because the diameters and heights outside 

forests are considerably larger. In Kyrgyzstan and Lebanon, TOF are thinner 

and shorter following a stronger shift of the species composition from forest 

species to fruit trees. 
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Table 7. Differences in average tree size between forest and non-forest trees. Given are the 

diameter at breast height (DBH) in cm, total tree height in m, and the ratio between height and 

diameter (h/d). 

Country 
Average dbh (cm) Average height (m) h/d ratio 

Forest OL Forest OL Forest OL 

Bangladesh 20.7 19.7 10.4 8.7 50.06 44.29 

Cameroon 22.8 23.6 13.8 9.4 60.36 39.75 

Costa Rica 21.7 23.5 12.5 9.0 57.70 38.48 

The Gambia 19.1 33.6 8.1 9.2 42.68 27.51 

Guatemala 21.9 24.6 12.8 9.3 58.35 37.93 

Honduras 23.3 23.0 13.1 8.9 56.32 38.60 

Kyrgyzstan 19.8 16.9 8.8 7.0 44.41 41.64 

Lebanon 21.2 17.0 7.8 4.3 36.77 25.33 

Nicaragua 22.2 22.9 12.9 9.2 58.13 40.11 

Philippines 21.3 26.4 10.9 12.3 51.17 46.59 

Zambia 15.9 20.4 8.5 8.6 53.66 42.00 

4.2.5 Distribution of TOF across land-use categories 

In most cases, the majority of TOF (more than 80 %) grow on agricultural land 

(Table 8). This is supported by the area estimates where agricultural land often 

covers substantial parts of a country’s land area. Countries that deviate from 

the common pattern are Bangladesh, Kyrgyzstan, and Zambia. In Bangladesh 

most TOF was observed in rural settlements, which in comparison to other 

countries also covers a large proportion of the land area. In Kyrgyzstan, the 

distribution of TOF across the sub-categories was relatively even, and most of 

the land area is covered by natural other land that consists of deserts and areas 

of high altitude. Other countries where a larger part of natural TOF formations 

such as trees on barren land, natural grassland, and marshes exist are 

Cameroon, The Gambia, Guatemala, and Zambia. 
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Table 8. Distribution of trees outside forests across sub-categories of other land and 

corresponding area estimates for the sub-categories. 

Country 

Trees growing on OL 

(percentage of total number of TOF) 

Area estimates for sub-classes of OL 

(percentage of total land area) 

Natural Agriculture Settlements Natural Agriculture Settlements 

Bangladesh 0 16 84 0.6 55.5 20.7 

Cameroon 17.6 80.7 1.8 6.7 16 0.8 

Costa Rica 0 96.4 3.6 2.7 39.2 1.2 

The Gambia 17.3 82.1 0.5 8.8 39.5 3.8 

Guatemala 10.9 83.2 5.9 4 37.1 1.6 

Honduras 6.4 85.6 8.1 8.5 24 2.2 

Kyrgyzstan 35.6 26.4 37.4 79 8 1.9 

Lebanon 3.3 89.8 6.9 36.2 29.2 6.2 

Nicaragua 2.7 93.5 3.8 8.5 39.2 1.1 

Philippines 6.4 88.4 5.2 16.1 41.3 3.9 

Zambia 30 62.7 7.3 9.5 9.5 0.7 

4.3 Tree-cover patterns and their reconstruction 

Here, only results for two out of the ten study sites in Paper III are shown 

(images 3 and 7). The original and reconstructed images are shown in Figure 8. 

Each reference image was reconstructed five times, and for all reconstructions 

the simulation was stopped after 1×10
6
 simulation steps. 

 
Figure 8. A selection of original and reconstructed TOF patterns. Each row represents a unique 

study site. The first column gives the original image extracted from the remote-sensing data. The 

other columns show the five replications that were simulated for each study site. The white pixels 

represent tree cover. Each image is 200 pixels × 200 pixels large, and one pixel has an area of 

4 m². 
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The reconstruction algorithm (improvements-only) in combination with the 

tested summary statistics was in general able to reproduce images that are at 

least in some aspects similar to the reference images from the tested study 

sites. The reconstructed patterns for image 1 in the first row only partly agreed 

with some features from the original image. The direction of the original linear 

feature and the size of patches are approximately correct, but the summary 

functions could not identify that small patches belong to the same linear tree 

formation because they were not aligned to each other. This was true for all 

cases where linear shapes occurred. 

For study sites with smaller tree groups (image 7 in Figure 8), the 

reconstruction worked well. However, for study sites with larger tree groups 

(not shown), results were not as good. The tendency of clustering can be 

recognized in the reconstructions, but the single clusters were not as clear as in 

the reference images. The boundaries were fuzzy and the clusters had a 

somewhat loose structure with many gaps. 

The development of the energy during the simulations is depicted in Figure 

9. Similar patterns were observed for all images and replications. In the 

beginning of the simulation, the decrease was very fast but slowed down 

quickly with increasing simulation time. After approximately 2 × 10
5
 

simulation steps, the energy level had reached its minimum. 

 
Figure 9. The development of the energy when reconstructing the two selected study sites. Each 

panel represents one study site, and the five lines are for the five replications. 

In Figure 10, the lineal-path functions are given and it is shown that correlation 

length corresponds to the size of the largest cluster in the image. 
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Figure 10. The lineal-path functions. Study sites are represented by the rows in the same order as 

in Figure 8. The black lines are the functions for the reference images and the grey lines are the 

functions for the five reconstructions of each reference image. The columns are the four directions 

along which functions were evaluated (from left to right: 𝑥, diagonal 𝑥, 𝑦, and diagonal 𝑦) 

The lineal-path function does therefore not contain any information beyond the 

maximum cluster size. As a consequence, small patches that should form a 

linear formation did not form a line. 

The two-point probability functions for the reference and reconstructed 

images are shown in Figure 11. A comparatively good agreement between 

reference functions and the reconstructed functions was observed. Larger 

deviations can occur at larger distances. Also noticeable are the deviations 

between the functions for the different directions; the same statistical 

calculation along different directions can give very different results. 

 
Figure 11. The two-point probability functions. Study sites are represented by the rows in the 

same order as in Figure 8. The black lines are the functions for the original images and the grey 

lines are the functions for the five reconstructions of each original. The columns are the four 

directions along which functions were evaluated (from left to right: 𝑥, diagonal 𝑥, 𝑦, and diagonal 

𝑦). 
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4.4 Suitability of different sampling strategies 

The most important findings of the simulation study are presented in the 

following section. Summary statistics for the artificial population that formed 

the basis for the simulations are given in Table 9. The population had a total 

AGB of 48.7 million Mg, including forest trees and TOF. About 12 % of that 

amount is found in TOF. The share of elements with no biomass at all is 

naturally relatively large for the TOF domain. 

Table 9. Summary for the artificial population and the different domains. 

Domain 
AGB Population elements Zero population elements 

Mg % no. % no. % 

Total 4.87 × 10
7 

100.0 2.84 × 10
7
 100.0 1.47 × 10

7
 51.6 

F 4.29 × 10
7
 88.1 1.07 × 10

7
 37.6 5.55 × 10

5
 5.2 

TOF 5.78 × 10
6
 11.9 1.77 × 10

7
 62.4 1.41 × 10

7
 79.5 

TOFOL 3.89 × 10
6
 8.0 1.59 × 10

7
 55.9 1.33 × 10

7
 83.8 

TOFSM 1.89 × 10
6
 3.9 1.85 × 10

6
 6.5 7.90 × 10

5
 42.6 

 

The sampling strategies aimed at estimating tree AGB for the following five 

domains of interest: (1) the entire tree population in Skåne (Total), (2) the 

forest trees (F), (3) trees outside forests (TOF), (4) trees growing in 

agriculture-dominated landscapes as a subset of TOF (TOFOL), and (5) trees 

growing in urban settings as a subset of TOF (TOFSM). 

All of the presented estimators produced results that appeared to be 

unbiased, i.e. on average the AGB values given in Table 9 were obtained. An 

exception occurred when the LPM was used to select sample units in both 

phases of the two-phase design with ALS strips when ALS variables were used 

as auxiliary information. Deviations from known totals of up to 1.94 % were 

observed in this case. Using ALS variables and the LPM also seemed to result 

in underestimation that tended to increase for smaller domains. The deviations 

can, however, still be considered as small. 

Empirical relative standard errors are presented in Table 10. For single-

phase sampling, the least precise results were produced when SRSwoR was 

applied without the use of the AGB ALS model for assisting the estimation, 

which was expected. The precision can nonetheless be regarded as high, 

especially for the entire population and the forest domain for which relative 

standard errors of 3.56 % and 2.56 %, respectively, of the population totals 

were observed. When using the AGB ALS model to assist estimation, the error 

was reduced considerably to 1.51 % when estimating total AGB for the entire 
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population. A similar reduction of the sampling error was observed for the 

other domains as well. 

For two-phase sampling for stratification, SRSwoR was used in both phases 

for selecting sample units. Due to the stratification of the first-phase sample, 

estimates were more accurate compared to single-phase SRSwoR for most of 

the domains or strata (Table 10). The precision could be improved even more 

by applying model-assisted estimation; in particular the smaller domains 

benefited from including biomass predictions into the estimators. The 

reduction in sampling error was, however, not as high as for single-phase 

sampling because auxiliary data were only available for the first-phase 

sampling units and not for the entire area. 

When selecting ALS strips by SRSwoR, very poor precision of the applied 

total estimators was observed with hardly any improvement when model-

assisted estimation was used (Table 10). Standard errors of about 15 % were 

observed for all domains. This was largely related to the strong variation in the 

size and total biomass of the ALS strips. 

Table 10. Empirical sampling errors of the simulated sampling scenarios. Presented are the 

standard deviations of total estimates as a percentage of true population totals (Total) or domain 

totals. Abbreviations under the column Design are explained in Figure 6. 

Design Estimation design Total F TOF TOFOL TOFSM 

SRS1 HT 3.56 2.56 8.75 10.08 14.83 

SRS1 GREG 1.51 1.63 4.04 4.95 7.11 

LPMXY
1  HT 2.39 2.42 6.52 7.40 12.20 

LPMXY
1  GREG 1.55 1.68 4.10 5.05 7.40 

LPMRS
1  HT 2.38 2.27 6.63 7.68 12.59 

LPMRS
1  GREG 1.58 1.69 4.02 4.96 7.19 

TPSS10 HT 2.49 2.65 6.95 7.86 13.81 

TPSS10 GREG 2.05 2.30 5.30 6.23 9.85 

SRS2 HT 14.21 15.40 12.18 13.15 22.86 

SRS2 GREG 14.45 15.62 9.81 9.72 17.35 

LPMXY + SRS HT 5.72 6.26 10.56 10.95 21.72 

LPMXY + SRS GREG 4.92 5.31 6.34 6.02 14.24 

LPMRS + SRS HT 4.37 4.91 10.42 11.32 21.95 

LPMRS + SRS GREG 3.32 3.64 7.11 6.66 15.21 

LPMXY
2  HT 5.03 5.57 9.14 10.09 18.85 

LPMXY
2  GREG 4.91 5.36 6.16 6.16 13.96 

LPMRS
2  HT 3.38 3.83 9.57 10.44 21.26 

LPMRS
2  GREG 3.22 3.58 6.93 6.56 15.34 
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Applying the LPM for selecting sample units generally improved the results for 

single-phase sampling and for two-phase sampling with ALS strips. For single-

phase sampling, the reduction of standard errors was not as high as when 

model-assisted estimation was used in combination with SRSwoR. Applying 

the LPM without model assistance, the error only dropped to approximately 

2.4 % independently of the choice of auxiliary variables. The use of auxiliary 

information in both the design and estimation stage (LPM and model-

assistance) did not further reduce the sampling error compared to model-

assisted SRSwoR. 

In two-phase sampling with ALS strips, the design effect of using the LPM 

over SRSwoR was considerable and led to a three to fourfold reduction of the 

sampling error when estimating the population total. By using auxiliary 

information for selecting ALS strips, the sample of strips was well spread 

across the strip population and the variation in size was taken into account. For 

the smaller domains (OL and SM), the design effect of using the LPM was 

modest, while a combination with model-assisted estimation led to larger 

improvements. By spreading the strip sample in the ALS metrics and by 

applying model-assisted estimation, a sampling error that was roughly on the 

same level as in single-phase SRSwoR without model-assisted estimation was 

achieved. In particular, the smaller domains profited from incorporating the 

model into the estimation. Applying the LPM in both phases somewhat further 

reduced sampling error, but differences from the previous error were rather 

marginal. 
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5 Discussion 

Since the term TOF was introduced by the FAO in 1995, considerable 

advancements in the large area monitoring of TOF have been made. Both 

FAO’s NFMA inventories (FAO, 2012) and the Indian NFI (Tewari et al., 

2014) use a holistic approach to include all trees that grow in a country into 

their monitoring efforts. The NFMA inventories have a strong focus on tropical 

regions. For European countries, the monitoring of trees is usually centred on 

forests but there have been trends to widen the scope of the existing inventories 

to include TOF (e.g., Fridman et al., 2014; Brändli, 2010). One of the drivers is 

to assess additional sources for sustainable wood supply. In this context, 

projects to initiate harmonisation of definitions and reporting on TOF have 

been conducted (COST, 2014). Also in the USA pilot studies for an integration 

of TOF into the forest inventory and analysis programme have been undertaken 

(e.g., Riemann, 2003). All these existing TOF inventories have shown the TOF 

can constitute a substantial wood resource. Further, the results of Paper II 

showed that the contribution to national AGB stocks may range from 3.3 % to 

as much as 72.8 %. Also, a strong correlation between this general importance 

of TOF and the forest cover of a country was identified; i.e. in countries with a 

relatively high forest cover, the share of TOF to national biomass stocks is low. 

However, in absolute terms, considerable amounts of AGB still can be 

accumulated outside forests. For example, the results of Paper II also showed 

that in Zambia only 3.3 % of tree AGB was found outside forests but these 

3.3 % still accumulate approximately 52 million Mg AGB. This is more than 

the total tree biomass found in Kyrgyzstan or the Lebanon. 

Paper II also showed that TOF are often shorter in height and thicker in 

diameter than forest trees, thus indicating a different tree allometry. These 

results are confirmed by studies from Harja et al. (2012) and Zhou et al. 

(2011), and lead directly to the problematic estimation of single tree biomass. 

As shown by the literature review (Paper I), only few studies have been 
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conducted where TOF have been destructively sampled for the development of 

allometric biomass models (e.g., Zhou et al., 2014 to cite the most recent one). 

The most common solution is to apply models that have been developed for 

forest trees of the same species or species group (Nair, 2012). However, results 

of the TOF-specific biomass studies are inconclusive and no general rule of 

thumb can be given regarding whether or not forest models can be transferred 

to TOF. Both under- and overestimation were observed, as well as cases where 

the forest models worked fairly well (Zhou et al., 2014; Yoon et al., 2013; 

Kuyah et al., 2012; McHale et al., 2009). Thus, to improve TOF models, a 

recommendation from the literature review is to allocate more resources to 

perform destructive sampling of non-forest trees to test the suitability of 

available forest models or to develop new models. From the point of view of 

this background, advances in terrestrial laser scanning for estimating the stem 

volume of trees (Lefsky & McHale, 2008) or other non-destructive methods for 

measuring volume (Rodriguez et al., 2014) could be a way to avoid destructive 

sampling of trees and thus to reduce costs. For AGB, merely wood specific 

gravity would need to be determined, which ideally would be derived from 

small specimen sampled from the measured trees. Further, it might also be an 

option to add additional predictor variables to allometric models that are not as 

sensitive to changes in allometric scaling as height-diameter relationships are. 

Harja et al. (2012), for example, identified, the crown volume – stem diameter 

relationship to be relatively stable from forest to open-grown. 

Another problematic area for TOF inventories is the matter of defining what 

TOF are, or how to distinguish trees outside forest from forest trees. As the 

term trees outside forests indicates, every TOF definition strongly relies on a 

workable forest definition. In the case of FAO’s TOF definition also OWL 

needs to be defined as TOF are all trees outside the land-use/cover categories F 

and OWL. While reviewing the literature in Paper I, it was found that in 

particular many remote sensing studies do not clearly state which definitions 

they applied and how they were implemented. In contrast, the studies of 

Magdon et al. (2014) and Eysn et al. (2012) rigorously showed how existing 

land-use classification frameworks can be translated to produce land-use maps 

from remote sensing data. From a TOF perspective, such data are very useful 

since they provide a distinction of TOF from forest trees and can help in 

planning and conducting inventories. 

A further classification of TOF into subcategories can be considered 

difficult because there are various criteria along which meaningful classes can 

be generated (Kleinn, 2000). Such classification might be done according to 

the land use where the trees grow, according to the geometric pattern of tree 

growth, according to functions (fences, wind breaks, shade, scenic beauty, 
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etc.), or according to origin (planted or forest remnants). In a more recent FAO 

report, de Foresta et al. (2013) suggested classifying TOF into three broad sets: 

(1) trees growing on land with agricultural land use, (2) trees growing on land 

with urban land use, and (3) trees growing in small stands, in narrow linear 

formations, or on other lands with low crown cover. One problem with these 

categories is that (1) and (2) refer to land use, while (3) is based on geometrical 

patterns that can also be found under the categories (1) and (2). 

Another fundamental problem with the way FAO’s definition is interpreted 

is that it is seen as an area category of its own that was proposed to divide OL 

into mutually exclusive patches of the above-mentioned categories using 

relatively complicated decision trees (de Foresta et al., 2013). Decision criteria 

like patch area and shape, tree height, canopy cover, and land use are used; 

however, it is often difficult to translate such criteria into operational 

monitoring systems. Thus, a recommendation is that TOF should not be 

regarded as an area category but only as a category of trees that grow on OL. If 

required by local conditions, local land-use classification systems can be used 

and the trees can be assigned to the different local categories. In some cases, 

trees will dominate a class (e.g., in small woodlots, hedgerows, and urban 

parks), while in many other cases trees will be a minor component (e.g., single 

trees in a field or trees along a street). 

Regarding sampling strategies, the often applied approach of monitoring 

non-forest areas with the same sampling intensity as forest areas leads to 

comparatively poor precisions of TOF estimates. This was shown in Paper II 

and Paper IV and is a consequence of the low number of TOF elements that are 

selected into the sample by such single-phase sampling strategies. A large 

proportion of the plots on non-forest lands (OL) do not contain any trees at all. 

Thus it is difficult to reach high precision in the estimation of TOF attributes 

when the sampling designs of ordinary NFIs are expanded to include OL, 

except in cases where TOF are abundant and evenly distributed over the target 

area. However, TOF by definition occur in low densities. The precision of TOF 

estimates may be increased by either increasing the sample size or by 

increasing the plot area that is measured at each sample location. 

Another option for improving the precision of sample-based estimators is to 

incorporate remote sensing data. If this is done using model-assisted 

estimation, relatively high improvements could be achieved. The study in 

Paper IV showed that sampling errors could be reduced by approximately 50 % 

and that, in particular, the TOF domains profited from including full-cover 

remote sensing data into the estimation. Alternatively, remote sensing data can 

be used to improve the selection of samples at the design stage, rather than 

correcting for poor samples through model-assisted estimation. In Paper IV, 
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the LPM was applied as an option for selecting representative samples 

(Grafström & Schelin, 2014). Here as well, improvements of the precision 

were observed but not as large as when model-assisted estimation was applied. 

This is in contrast to Grafström and Ringvall (2013), who observed a stronger 

effect of the LPM in comparison to model-assisted estimation. Reasons for the 

different outcomes most probably can be explained by the auxiliary data used. 

In general, the better the auxiliary data explains the target variable, the better 

the estimation will be. With respect to tree inventories, the LPM has, apart 

from Paper IV, so far only been tested for forest inventories (Grafström et al., 

2014; Grafström & Ringvall, 2013). More simulation studies are thus needed to 

support any general conclusions about this relatively novel sampling design. 

Instead of single-phase sampling strategies, multi-phase sampling strategies 

may be applied. In Paper IV, two-phase sampling for stratification estimators 

showed a higher precision than their single-phase counterparts when model-

assisted sampling was not used. The model-assisted estimators were, however, 

slightly less precise because auxiliary information was only available for the 

first-phase sample. Multi-phase sampling strategies have also been applied in 

other studies of TOF (Baffetta et al., 2011; Corona et al., 2011; Lam et al., 

2011; Baffetta et al., 2009). They have the advantage that information can be 

gathered for a large sample during the first-phase, which is especially useful 

when little or nothing is known about the objects of interest. This is often the 

case for TOF because an extraction and classification from remote sensing data 

can be difficult and requires data of high spatial resolution. 

For ALS assisted forest inventories, a common approach is to use a two-

phase strategy, where a sample of ALS strips is selected in the first phase to 

reduce the acquisition costs of the ALS data (Gobakken et al., 2012). Results 

of Paper IV indicated that this strategy is less optimal for TOF inventories 

because of the clustering of sample units within the ALS strips. In single-phase 

strategies and with two-phase sampling for stratification, sampling units are 

more evenly spread over the entire study area, thus resulting in lower sampling 

errors. In particular, when ALS strips were selected randomly, poor precisions 

of estimators were obtained due to considerable variability in strip size.  

Regarding Paper III, it has already been mentioned that the reconstruction 

technique could not be used as intended for simulating maps of TOF cover. 

Further, the reconstructed patterns of canopy cover did only partly resemble 

the original patterns as extracted from the ALS data. Future studies could focus 

on four possible approaches for improving the reconstruction: (1) the use of 

other initial configurations, e.g. cluster processes; (2) alternative ways for 

randomly selecting pixels for random movement; (3) additional or different 
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summary statistics; and (4) including Metropolis-Hastings probabilities 

(Metropolis et al., 1953). 

The initial configuration for each simulation was a purely random image. In 

order to improve the reconstructed images, start configurations could be 

initialised in a way that random linear structures or random clusters are 

produced. To do this, techniques from point pattern statistics could be applied, 

including the Neyman-Scott process for clustering (Illian et al., 2008, chap. 

6.3) or fibre processes for linear features (Stoyan et al., 1995, chap. 9). 

To prevent the rapid decrease in energy, Jiao et al. (2008) suggested only 

selecting free pixels, i.e. pixels that are not surrounded by others of the same 

type, at later stages of the simulation. Jiao et al. (2008) showed that this 

approach helps to further decrease the energy and increase the similarity 

between the reconstructed images and the original images with respect to the 

summary statistics used in the energy function. It is also likely that this 

technique helps to make single patches of trees more compact. 

Further, pixel selection might be based on landscape features such as roads 

or watercourses along which TOF often occur. In Paper III, pixels were 

selected with equal probabilities, but as an alternative the probabilities could be 

modified in such a way that locations close to roads and watercourses are 

preferred. The reconstructed images would still be random representations of 

the original images. 

The third approach for improvements involves alternative summary 

statistics that capture more information from the reference patterns. Jiao et al. 

(2009) described a superior descriptor for random textures that uses a two-

point cluster function to evaluate whether two points separated by a distance 

are situated in the same cluster. This summary statistic is superior in terms of 

describing topological connectivity of single patches and leads to more 

accurate results. In a similar manner, the lineal-path function could be modified 

in a way that it checks whether two points in different clusters are aligned to 

each other. Other summary statistics that can be used for reconstruction 

purposes are described in Schlüter and Vogel (2011). However, many of the 

alternatives are computationally intensive and cannot be easily applied. 

Another reason for the fast decrease of the energy could be that the 

simulations got stuck in local minima because we used an improvements-only 

algorithm. The Metropolis-Hastings probability was originally suggested by 

Kirkpatrick et al. (1983) because it allows an occasional acceptance of inferior 

energy values. That is, a new configuration can be accepted even if the 

resulting energy is larger. Tscheschel and Stoyan (2006) showed that the 

improvements-only algorithm was able to produce results with small deviations 

from the original patterns in a shorter amount of time. The difficulties with 
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using the Metropolis-Hastings probabilities lie in the determination of the 

parameters that are needed to calculate them. In this study, initial tests with this 

approach showed no improvements. 
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6 Conclusions and future work 

The literature review showed that methodologies for large area tree inventories 

are available. For designing and implementing such inventories, the rich 

experience from the forest inventory sector can be used, and it is thus a natural 

choice to assess TOF as part of existing forest inventory systems. This is 

increasingly being done, but only in few cases the specific features of TOF 

variables have been carefully considered in the sampling strategies. One 

important example is the Indian NFI. In addition, only rarely have all possible 

TOF types been included in existing inventories, and only the Indian NFI and 

the NFMA inventories of the FAO include all types of trees that might grow in 

a country. In general, when it comes to the reporting and the analysis of the 

results, harmonisation is not as advanced as it is for the forestry sector. Also, it 

is often difficult to locate the results from TOF assessments. Coordination in 

this area is poor, although the FAO has taken several steps towards 

mainstreaming TOF into inventories and the resulting databases. 

Technical aspects that need to be solved include allometric biomass models, 

which are a bottleneck for all studies related to biomass and carbon stocks. 

Huge uncertainties exist, in particular when forest models are applied in the 

absence of TOF-specific models. More efforts for developing models and for 

assessing the adequacy of existing forest models for TOF assessments are 

urgently needed. In particular, new methods for non-destructive estimations of 

tree volume using terrestrial laser scanning are promising because they have 

the potential to reduce laborious fieldwork. 

For effective TOF inventories, an extensive use of remotely sensed data to 

assist field inventories appears to be necessary. However, further research to 

investigate schemes such as model-assisted estimation or recently developed 

methods for spatially balanced sampling is needed.  

The analysis of NFMA data provided quantitative evidence that TOF are an 

important tree resource on the national level. In many countries, TOF are a 
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substantial part of the national woody biomass stocks, and TOF might even be 

an important regional wood resource. 

Reconstruction techniques that were originally developed for applications in 

material physics appear to have promise for verifying the applicability of 

summary statistics for describing tree cover in the open landscape. In the long 

run, this technique might also help to generate artificial populations of tree 

cover with different spatial properties. Such populations can be used in 

sampling simulations for identifying appropriate inventory strategies. 

The sampling simulation study showed that several promising strategies for 

integrating TOF into NFIs exist. In particular, when model-assisted estimation 

was used, the most straightforward way of extending a basic sampling design 

led to good results. This, however, requires the availability of wall-to-wall 

remotely sensed data. To circumvent this requirement, two-phase sampling 

strategies can be applied. Although two-phase sampling for stratification led to 

slightly larger sampling errors when compared to the single-phase model-

assisted strategies, this seems to be a fair trade-off for cases where wall-to-wall 

auxiliary data are not available. In addition, detailed information about domain 

membership can be collected for populations that are difficult to classify 

beforehand, such as TOF. When using two-phase sampling with ALS strips, 

extensive use of auxiliary information at the design and estimation stage was 

required to reach similar precision as in single-phase random selection of 

sampling units without any use of auxiliary information. A final conclusion is 

that the use of remotely sensed auxiliary data appears to be very important for 

setting up cost-efficient sampling strategies and that sample errors can be 

reduced substantially by correctly incorporating such data both at the 

estimation stage and at the design stage of TOF surveys. 
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