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Disruption of Phthorimaea operculella
(Lepidoptera: Gelechiidae) oviposition by the
application of host plant volatiles
Gianfranco Anfora,a Silvia Vitagliano,b,c Mattias C Larsson,d Peter Witzgall,d

Marco Tasin,a,d Giacinto S Germinarae and Antonio De Cristofarob∗

Abstract

BACKGROUND: Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory
system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The
electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant
volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four
most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions.

RESULTS: The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to
pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically
responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the
egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage
conditions.

CONCLUSIONS: This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella.
Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition
disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy.
c© 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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1 INTRODUCTION
Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), the
potato tuberworm, is a key pest causing severe damage to potato,
which, in turn, is a food crop of essential importance worldwide.
The pest is indigenous to South America but at present is spreading
in all the potato production areas in temperate and subtropical
climatic regions.1 Gravid females can lay eggs on foliage and soil
next to the host plant or directly near the eye buds of tubers
exposed through soil cracks or when they are kept under storage.
Larvae develop endophytically in leaves, stems and tubers and feed
on different Solanaceae, with a preference for potato (Solanum
tuberosum L.).1 In addition to direct damage, galleries inside tubers
facilitate the entrance of pathogens responsible for further severe
losses, which may reach up to 100% under inadequate storage
conditions, as often happens in developing countries.1

Until now, control of this pest has been carried out mainly using
chemical insecticides, which are harmful to beneficial insects and
cause pesticide resistance and environmental concerns.2,3 As for
semiochemicals, the female sex pheromone of P. operculella has
been identified as a mixture of (E,Z,Z)-4,7,10-tridecatrienil acetate
[(E,Z,Z)-4,7,10-13:Ac] and (E,Z)-4,7-tridecadienil acetate [(E,Z)-4,7-
13:Ac].4–6 Sex pheromone has been successfully employed in
integrated pest management programmes using traps for pest

monitoring, whereas pheromone-based control techniques, such
as mass trapping, attract-and-kill and mating disruption, are

feasible7–9 but not always satisfactory and not yet commercially
viable. In spite of the great economic importance of P. operculella,
little attention has been paid to the possible use of plant
volatiles in control methods. Behavioural studies using plant
material indicated that host plant recognition and selection
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by gravid females are mediated by chemical cues,10–12 while
roughness of tuber surface is considered to be an important
factor affecting the subsequent choice of the oviposition site.13,14

Two electroantennographic (EAG) studies showed the capability
of the peripheral olfactory system of potato tuberworm adults
to perceive a broad range of volatiles identified from potato
leaves and tubers.11,15 High EAG sensitivity to green-leaf volatiles,
particularly aldehydes and alcohols, has been found, although
there are some apparent inconsistencies in the rank order of EAG
responses to either single compounds or classes of chemicals.11,15

Long sensilla trichodea are the most abundant olfactory
structures on the surface of both male and female antennae of the
potato tuberworm16 and the pink bollworm,17 another important
pest of the Gelechiidae family. However, no studies aimed at
characterising male and female olfactory receptor neurons (ORNs)
housed in the antennal sensilla trichodea of potato tuberworm
have been carried out.

Hence, the goal of this study was to increase knowledge
of the sensitivity of the P. operculella peripheral olfactory
system to some electrophysiologically active host plant volatiles,
previously identified, by single-cell recording (SCR) from sensilla
trichodea ORNs of both sexes. Moreover, the effects of increasing
concentrations of the most SCR-active compounds on the egg-
laying behaviour of gravid females were assessed using a no-choice
experimental design. Finally, the potential of one of the most
bioactive compounds to disrupt potato tuberworm oviposition
was evaluated in a traditional warehouse for potato storage.

2 MATERIALS AND METHODS
2.1 Rearing
Developmental stages of P. operculella were field collected in
the Molise Region (Central Italy) and reared in the laboratory on
tubers of the Spunta and Desireé susceptible varieties cultivated
organically. Rearing cages were kept in a climatic chamber at 26
± 2 ◦C and 60 ± 5% relative hunidity (RH) with a 16:8 h L:D
photoperiod at 2000 lux light intensity. Every 6 months, new wild
insects were introduced into the laboratory colony.

2.2 Odour stimuli
Compounds tested in electrophysiological assays are listed in
Table 1. Chemicals were purchased from Sigma-Aldrich (Milan,
Italy) and were 85–99% pure. They were selected from compounds
identified in the headspace of potato tubers and leaves and
were chosen to represent the most EAG-active compounds
in different chemical categories and the differential sensitivity
between sexes.11,15 Furthermore, one plant ketone and acetate
and two sex pheromone components of potato tuberworm were
tested in SCR experiments. For each compound, 100 µg µL−1

stock solutions in both light mineral oil and hexane (Sigma-Aldrich,
Milan, Italy) were prepared and stored at −20 ◦C.

In SCR experiments, a 10µL aliquot of 1µgµL−1 hexane solution
of a test compound was adsorbed on a piece of filter paper (1
cm2), exposed to the air for 1 min to allow solvent evaporation
and inserted into a Pasteur pipette.

In oviposition bioassays, stimuli were 100 µg µL−1 mineral oil
solutions of hexanal, octanal, nonanal and 1-octen-3-ol loaded into
35 mL volume polyethylene vials, with a 1 mm diameter hole in
the lid, at doses of 4, 40 and 400 mg. In the warehouse experiment,
a 1:1 (v/v) mineral oil solution of octanal loaded into low-void
polymer disc dispensers (Trécé Inc., Adair, OK) (10 mL dispenser−1)
was used.

2.3 Single-cell recording
Insects (2–3 days old) were placed in plastic pipette tips, with the
head and antennae protruding from the cut-off tip. The specimen
was placed onto a glass side, and the antennae were fixed on a
cover glass with double-sided sticky tape. Dental wax (Surgident;
Heraeus Kulzer Inc., South Bend, IN) was used further to restrain
the head and keep the antennae from moving.

An electrolytically sharpened (in a 10% KNO3 solution) tungsten
wire was used to penetrate the insect head cuticle to serve as
a ground electrode. Another electrolytically sharpened tungsten
electrode was inserted at the base of the sensilla to establish
contact with the receptor neurons.18 The recording electrode was
positioned by means of a DC-3K micromanipulator with a piezo
translator (Märzhauser, Wetzlar-Steindorf, Germany) under a high-
powered compound microscope with up to 500× magnification.
Recordings were made from the curved hair-like olfactory sensilla
trichodea, the most abundant on the surface of both male and
female potato tuberworm antennae,16,17 selecting a recording
area between the twentieth and thirtieth antennomere. During the
recording, the antennae were continuously flushed with charcoal-
filtered and humidified air at a rate of 20 mL s−1 through a glass
tube, the outlet of which was about 1 cm from the preparation. A
Pasteur pipette loaded with the odour stimulus was inserted into a
hole in the glass tube, 15 cm from the outlet. A stimulus controller
(Syntech, Hilversum, The Netherlands) connected to the pipette
generated an air puff of 3 mL s−1 during 0.5 s through the pipette
into the constant air flow over the antenna. The stimulations were
presented with an interval of at least 30 s, or until the activity
of ORNs had returned to their resting frequencies. Pipettes were
renewed after five stimulations. Only recordings showing the
activity of at least one sensitive neuron not responding to the
control stimuli (a blank pipette and a pipette loaded with hexane)
were considered in the data analysis.

Neuronal activity was monitored by computer loudspeakers, and
the amplified analogue signal was captured and processed with
a data acquisition controller (IDAC-4; Syntech). Spike frequencies
of amplified signals were analysed using Autospike 3.2 software
(Syntech). The response from receptor neurons was calculated
as the difference between the number of spikes during 1 s
before stimulus application and the number of spikes 1 s upon
stimulation. Responses elicited in the ORNs were assigned to three
different categories, according to different levels of increase in
spike frequency (see Table 1).

2.4 Oviposition bioassay
Bioassays were carried out in plastic cylindrical cages (20 × 12 cm
ID) with the opening covered by a plastic net (1 × 1 mm mesh
size), which allowed volatiles to escape.

The cylinders were divided into two equal sectors by a metal
wire structure covered with a black nylon net (12 cm ID, 0.5 ×
0.5 mm mesh size), which was shown to be a suitable oviposition
substrate for P. operculella females.13,14 The odour stimuli were
placed into the cage sector below the internal net, which allowed
volatiles to escape in the upper sector (no-choice test). In this cage,
moths could use only their olfactory ability but not their vision.
Five-day-old mated females were released into the upper sector
of each cage.

Synthetic compounds loaded in polyethylene dispensers were
tested either alone or coupled with tubers (three tubers, overall
weight 100 g cage−1; cv. Spunta) at doses of 40 and 4 mg. Either
tubers alone or cages left empty were used as controls. Cages
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Table 1. Activation of receptor neurons housed in long sensilla trichodea on the antennae of female Phthorimaea operculella by 13 host plant
volatiles and the two main pheromone components.a

Recordingsb

Stimuli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Numberc

Aldehydes

Hexanal ** *** *** ** ** 0 ** 0 0 0 *** *** ** *** *** 0 ** 0 *** 13 (27)

Heptanal 0 0 * ** 0 *** ** 0 0 0 0 ** *** 0 0 0 0 0 * 7 (27)

Octanal *** 0 *** *** *** 0 0 0 0 0 0 * *** * * 0 * 0 *** 10 (27)

Nonanal 0 ** ** * 0 *** * 0 0 0 0 * *** 0 0 0 * 0 * 9 (27)

(E,E)-2,4-Decadienal 0 ** *** * 0 *** * 0 0 0 0 ** *** 0 0 * 0 0 *** 9 (27)

Alcohols

2-Hexanol *** 0 ** * ** 0 0 *** *** 0 ** 0 *** 0 0 0 0 * 0 8 (27)

1-Pentanol — — — — — — — — — — 0 0 *** 0 0 0 0 0 0 1 (16)

1-Octen-3-ol *** *** * 0 0 *** ** *** 0 * *** ** *** ** 0 0 0 0 ** 12 (27)

Acids

Hexanoic acid — — ** ** 0 * ** 0 0 0 0 0 *** ** 0 0 0 0 ** 7 (25)

Ketones

2-Decanone — — — — — — — — — — ** 0 0 0 * * 0 0 0 3 (16)

Acetates

Undecyl acetate — — — — — — — — — — 0 * ** 0 0 0 0 0 0 2 (16)

Monoterpenes

(S)-(−)-Limonene — — — — — — — — — — 0 0 0 0 0 0 0 0 0 0 (16)

Sesquiterpenes

(−)-Linalool — — — — — — — — — — 0 ** *** ** 0 0 0 0 * 4 (16)

Sex pheromones

(E,Z,Z)-4,7,10-13:Ac — ** *** ** 0 *** ** 0 0 0 0 0 0 0 0 0 0 0 0 5 (26)

(E,Z)-4,7-13:Ac — — — — — *** ** 0 0 0 0 0 ** 0 0 0 0 0 0 3 (22)

a Each number in the table represents one single-cell recording. Eight recordings in which neither of the receptor neurons responded to any of the
stimuli were not included in the table.
b —: compound not tested; 0: no response by any receptor neuron; *: weak response, spike frequency increase with 10–40 Hz after stimulation;
**: intermediate response, spike frequency increase with 40–70 Hz; ***: strong response, spike frequency increase with 70 Hz or more.
c The number of recordings in which a compound elicited responses of receptor neurons in the total of recordings (in brackets).

were kept in a climatic chamber (4 × 3 × 3 m) under controlled
environmental conditions (26 ± 2 ◦C and 60 ± 5% RH with a 16:8 h
L:D photoperiod at 2000 lux light intensity). Air in the chamber was
supplied by a self-projected air flow conditioning unit equipped
with filter papers, granular activated carbon filters, a laminar air
flow generator and membrane humidifiers, able to modulate wind
speed and relative humidity.19 The system provided a full air
change in the chamber within 4 h. The number of eggs laid on the
nylon net was counted 72 h after moths were released into the
cages. Each experiment was repeated 3 times.

Parametric one-way ANOVA followed by Tukey’s post hoc
multiple comparison test was used to assess the difference in
the number of eggs laid. Homogeneity of variance had been
previously determined by Levene’s test.

2.5 Warehouse experiment
The experiment was conducted in a traditional warehouse for
potato storage. The volume was 18.7 m3 (length 2.20 m, width
3.40 m, height 2.50 m). The floor and the walls were covered
with white washable tiles. Before starting the trials, the whole
room was washed and ventilated for 1 week. The experiments
were conducted during August 2011 at a temperature between
25 ± 1 ◦C and 29 ± 1 ◦C and at 70 ± 10% RH with a 15:9 h
L:D photoperiod. The room was divided into two areas by an
anti-insect net in order to allow only the odour to pass through.
A quantity of 40 kg of potatoes from organic crop (susceptible

varieties Spunta and Agata) were used for the trials. They were
distributed in 20 crates (2 kg crate−1) arranged in a single layer.
Half of the crates (n = 10) were stacked and lined up in two rows
(5 crates pile−1, 1 pile row−1) spaced 1 m apart from each other,
and were placed in one area of the room. The remaining ten
crates were placed in the opposite area (2.5 m apart from crates
in the opposite area). One octanal-loaded low-void polymer disc
dispenser was placed at the centre of each crate, only in the rows
of one area. No dispensers were placed in crates lined up in the
opposite area. This design made it possible to create two different
sets of experimental conditions in relation to the distance from
the octanal source: treatment A – the dispensers baited with the
tested compound were deployed directly on the potato tubers;
treatment B – the potatoes were not in direct proximity to the
octanal-loaded dispensers. Fifty potato tuberworm individuals (25
males and 25 females) kept in a plastic container covered with a
gauze and fed with a 20% sucrose solution soaked on a cotton
ball were maintained in the room for 12 h to acclimatise prior
to the start of the experiment. Insects from one container were
released at the centre of each of the two areas of the room, after
placing the stimuli. The room was carefully sealed immediately
the trial started. After 15 days of exposure, larval infestation
was recorded by counting the number of potatoes with either
wormholes and/or food residues. The percentage of infestation
was calculated for each crate (number of damaged potatoes/total
number of potatoes) and averaged for the ten replicates. At the

wileyonlinelibrary.com/journal/ps c© 2013 The Authors. Pest Manag Sci 2014; 70: 628–635
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



6
3

1

Olfactory responses of potato tuberworm to plant volatiles www.soci.org

end of each bioassay, the whole room was washed and left open
for 10 days.

A control bioassay was set up in only one area of the same room,
with ten crates containing potatoes left untreated (untreated
control). Insects from one container were released at the centre
of this area, and the percentage of infestation was calculated as
described above.

Parametric one-way ANOVA followed by Tukey’s post hoc multi-
ple comparison test was used to assess the difference in mean tuber
infestation among the two treatments and the untreated control,
after checking for homogeneity of variance by Levene’s test.

3 RESULTS
3.1 Single-cell recordings
3.1.1 Females
Recordings from 19 sensilla trichodea showed spontaneous
activity from several ORNs, which could not always be reliably
distinguished by their spike amplitudes. Quantitative estimates
of response strength in females are therefore based on the net
responses from all neurons in the recording. Of 19 recordings with
one or more responding neurons, 17 showed responses to two or
more tested compounds, and the maximum number of responses
from one recording was for 12 different compounds (Table 1). The
compounds that elicited the highest number of responses were
hexanal (13 responding neurons), 1-octen-3-ol (12), octanal (10),
nonanal (9), (E,E)-2,4-decadienal (9) and 2-hexanol (8). However, all
the tested compounds elicited responses in at least two or more
antennal olfactory neurons housed in trichoid sensilla. Female
sensilla also contained neurons excited by (E,Z,Z)-4,7,10-13:Ac (5)
and (E,Z)-4,7-13:Ac (3). Stimulations with aldehydes and alcohols
induced the strongest increases in spike frequencies (about 50%
with 70 Hz or more).

3.1.2 Males
Recordings from 16 sensilla trichodea revealed at least two types of
olfactory receptor neuron generating spikes of different amplitude,
each of which typically responded to one of the two pheromone
components (Table 2). The neuron with the higher spike amplitude
responded to (E,Z,Z)-4,7,10-13:Ac, whereas the cell with the lower
spike amplitude responded to (E,Z)-4,7-13:Ac. In five cases, neurons
were also excited by a host plant compound: 1-octen-3-ol twice,
hexanoic acid twice and 2-hexanol once. In each case, these
responses emanated from the neuron responding to (E,Z,Z)-4,7,10-
13:Ac or possibly a third neuron with a high spike amplitude
(Table 2). No responses to the other plant volatiles or to the
control stimuli were observed. The neuron with the higher spike
amplitude showed a strong increase in spike frequency (more than
70 Hz) in 25% of the recordings, and an intermediate response
(with 40–70 Hz) in 38% of the recordings after stimulation with
(E,Z,Z)-4,7,10-13:Ac. The cells sensitive to (E,Z)-4,7-13:Ac usually
gave weaker responses; at most, they fired with an intermediate
rate (with 40–70 Hz) in 36% of all stimulations.

3.2 Oviposition bioassay
In no-choice conditions, the number of eggs laid per cage was
similar for cages containing only the suitable oviposition substrate
(wire mesh) or added potato tubers as a source of volatiles. The
presence of synthetic plant compounds significantly inhibited
oviposition of potato tuberworm when hexanal (F = 717.5; df = 7,
16; P < 0.001), octanal (F = 41.4; df = 7, 16; P < 0.001), nonanal

Figure 1. Mean percentage (±SD) of potato tubers in storage
conditions damaged by Phthorimaea operculella treated with octanal-
baited dispensers (10 mL of a 1:1 light mineral oil solution). Black bar:
treatment A, octanal-baited dispensers were directly deployed on potatoes;
grey bar: treatment B, potato tubers were in the same room as treatment
A, 2.5 m apart from the treated side; white bar: untreated control. Different
letters on the bars indicate significant differences (ANOVA, Tukey’s test: F
= 25.0; df = 2, 27; P < 0.001).

(F = 41.4; df = 7, 16; P < 0.001) and 1-octen-3-ol (F = 92.4; df = 7,
16; P < 0.001) were tested (Table 3). Hexanal induced the highest
reduction in the number of eggs laid with respect to controls.
Moreover, a significant decrease in the number of eggs laid was
observed with increasing hexanal dose loaded in the dispensers
(Table 3).

3.3 Warehouse experiment
A significant reduction in the mean percentage of tubers damaged
by P. operculella was observed in a comparison of treatments with
octanal-baited dispensers and untreated control (F = 25.0; df =
2, 27; P < 0.001). In the ten crates in which the dispenser baited
with octanal was deployed (treatment A) (Fig. 1, black bar), the
mean percentage of damaged tubers was 23.9% [first-row crates
(n = 5): 30.2%; second-row crates (n = 5): 17.5%]. In the ten crates
of treatment B (Fig. 1, grey bar), the mean tuber damage was
27.3% [first-row crates (n = 5): 27.0%; second-row crates (n =
5): 27.6%]. In the ten control crates (Fig. 1, white bar), the mean
tuber damage was 66.3% [first-row crates (n = 5): 60.5%; second-
row crates (n = 5): 72.1%]. The reduction is statistically relevant
either when octanal-baited dispensers were directly deployed on
potatoes (treatment A) (Fig. 1, black bar) or when tubers were in the
opposite area of the room 2.5 m apart from the octanal dispensers
(treatment B) (Fig. 1, grey bar). No significant differences were
observed between treatments A and B (F = 25.0; df = 2, 27; P <

0.001).

4 DISCUSSION
In potato tuberworm females, long sensilla trichodea apparently
function as broad-spectrum sensors for a great number of odours
ranging from plant volatiles to pheromone compounds. The
authors could not with certainty distinguish responses of single
olfactory cells, and therefore were unable to determine the
degree of specificity of individual receptor neurons. However,
the ability of females to detect their own sex pheromone has
already been demonstrated with both electrophysiological and
behavioural experiments in several species of Lepidoptera, i.e.
Trichoplusia ni (Hübner),20 Choristoneura fumiferana (Clemens),21

Adoxophyes orana (Fischer von Röslerstamm),22 Spodoptera

Pest Manag Sci 2014; 70: 628–635 c© 2013 The Authors. wileyonlinelibrary.com/journal/ps
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Table 2. Activation of receptor neurons housed in long sensilla trichodea on the antennae of male Phthorimaea operculella by 13 host plant volatiles
and the two main pheromone components. (E,Z,Z)-4,7,10-13:Ac, 1-octen-3-ol, 2-hexanol and hexanoic acid evoked responses in cells with higher
spike amplitudes, whereas (E,Z)-4,7-13:Ac evoked responses in cells with the lower spike amplitudes.a

Recordingsb

Stimuli 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Numberc

Aldehydes

Hexanal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (16)

Heptanal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (16)

Octanal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (16)

Nonanal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (16)

(E,E)-2,4-Decadienal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (16)

Alcohols

2-Hexanol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ** 0 1 (16)

1-Pentanol 0 0 0 0 0 0 0 0 - 0 (8)

1-Octen-3-ol 0 0 ** 0 0 0 0 0 ** 0 0 0 0 0 0 0 2 (16)

Acids

Hexanoic acid 0 0 0 ** * 0 0 0 0 0 0 0 0 0 0 0 2 (16)

Ketones

2-Decanone — — — — — — — 0 0 0 0 0 0 0 0 - 0 (8)

Acetates

Undecyl acetate — — — — — — — 0 0 0 0 0 0 0 0 - 0 (8)

Monoterpenes

(S)-(−)-Limonene — — — — — — — 0 0 0 0 0 0 0 0 - 0 (8)

Sesquiterpenes

(−)-Linalool — — — — — — — 0 0 0 0 0 0 0 0 - 0 (8)

Sex pheromones

(E,Z,Z)-4,7,10-13:Ac ** ** *** ** * *** ** ** * * * *** *** * * ** 16 (16)

(E,Z)-4,7-13:Ac ** ** * ** * * * * 0 0 * ** * * * ** 14 (16)

a Each number in the table represents one single-cell recording.
b —: compound not tested; 0: no response by any receptor neuron; *: weak response, spike frequency increase with 10–40 Hz after stimulation;
**: intermediate response, spike frequency increase with 40–70 Hz; ***: strong response, spike frequency increase with 70 Hz or more.
c The number of recordings in which a compound elicited responses of receptor neurons in the total of recordings (in brackets).

Table 3. Mean ± SD eggs laid by Phthorimaea operculella females (n = 3) on a cloth exposed to different odours

Eggs laid ± SDb

Stimulia Hexanal Octanal Nonanal 1-Octen-3-ol

4 mg 65.0 ± 8.9 b 127.3 ± 39.6 a 106.3 ± 24.8 a 72.3 ± 7.9 a

4 mg + tubers 64.3 ± 7.6 b 139.0 ± 28.4 a 121.3 ± 20.6 a 77.1 ± 8.6 a

40 mg 53.7 ± 6.0 ab 103.3 ± 14.2 a 87.3 ± 12.7 a 66.7 ± 5.2 a

40 mg + tubers 57.3 ± 4.7 ab 125.7 ± 24.0 a 105.0 ± 15.6 a 66.9 ± 7.9 a

400 mg 40.3 ± 4.2 a 100.0 ± 19.5 a 79.3 ± 16.0 a 58.3 ± 5.0 a

400 mg + tubers 46.0 ± 6.0 ab 112.7 ± 16.0 a 90.7 ± 27.8 a 60.0 ± 6.6 a

Tubers 364.0 ± 16.5 c 294.0 ± 7.0 b 271.3 ± 13.1 b 323.3 ± 42.3 b

Blank 304 ± 7.1 c 298.3 ± 14.2 b 248.0 ± 26.7 b 320.7 ± 39.5 b

ANOVA, df = 7, 16 F = 717.5; P < 0.001 F = 41.4; P < 0.001 F = 41.4; P < 0.001 F = 92.4; P < 0.001

a Doses refer to hexane solutions (100 µg µL−1) loaded in polyethylene dispensers applied in the cage alone or with tubers (three tubers, overall
weight 100 g; cv. Spunta).
b Different letters within the same column indicate significant differences (ANOVA, Tukey’s test).

littoralis (Boisduval) and Spodoptera frugiperda (Smith),23,24

Euplagia (Panaxia) quadripunctaria (Poda),25 Cydia splendana
(Hübner) and Cydia fagiglandana (Zeller)26 and Cydia pomonella
(L.),27,28 and it has been proposed that this perception could
play a role in the optimisation of pheromone production
and in the spatial dispersion of calling females over the
host plants.21,22,29,30

Long sensilla trichodea located on the surface of male
antennae mainly function as specific pheromone receptors.
They house at least two different olfactory cells specialised
to detect only one of the components of the female sex
pheromone, as reported for other lepidopteran species.26,31,32

It is worth noting that these specialised male receptor neurons
occasionally but selectively respond to host plant compounds

wileyonlinelibrary.com/journal/ps c© 2013 The Authors. Pest Manag Sci 2014; 70: 628–635
Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



6
3

3

Olfactory responses of potato tuberworm to plant volatiles www.soci.org

with chemical structures not related to those of pheromones,
or that other neurons with different response specificities are
possibly sometimes also present in these sensilla. Moreover, it
cannot be ruled out that spikes from neighbouring sensilla have
also been recorded.33 The possible existence of either sensilla or
receptor cells responding both to plant volatiles and pheromone
components might supply further interpretations concerning the
reported ability of plant compounds to modulate the behavioural
responses to pheromones in insect species.27 Host plant volatiles
can indeed synergise the attractant power of a synthetic sex
pheromone but can also have inhibitory or repellent effects that

disrupt insect responses to pheromones.34–42 Therefore, these
interactions in odour perception at a peripheral level need to be
carefully considered when setting up new semiochemically based
monitoring or control methods.

In the no-choice behavioural bioassay the four most SCR-active
volatiles from potato, hexanal, octanal, nonanal and 1-octen-3-ol
strongly disrupted the oviposition site selection process by potato
tuberworm females when individually applied at concentrations
considerably above their production in intact and healthy plant
tissues. This negative effect of unbalanced amounts of individual
host plant volatiles on moth’s egg-laying behaviour is consistent
with the observation that in polyphagous insects the absolute and
relative amounts of ubiquitous plant volatiles are critical factors in

host selection.43–46 Moreover, such a disruptive effect may be due
to the insect’s ability to avoid a source of toxic compounds.
It is well known that the emission of green-leaf volatiles,
including short-chained aliphatic aldehydes, alcohols and esters,
dramatically increases when the plant tissues are wounded.47

These compounds are produced through the hydroperoxide lyase
pathway of oxylipin metabolism48 in response to mechanical and
herbivory damage and can play a major role in plant defence. For
example, aliphatic aldehydes are known to possess fumigant
and contact49,50 and repellent effects,51,52 depending on the
dose, against various insect pests, including potato tuberworm
females in laboratory oviposition bioassays.11 Moreover, some of
them were found to inhibit pathogenic fungi53,54 and bacteria.55

Interestingly, synthetic plant volatiles, either corresponding
(octanal and nonanal) or chemically related, (Z)-3-hexenol and
(E)-2-hexenal, to those selected in the present study, were also
shown to attract beneficial insects when deployed at high dosages
in different agroecosystems.56,57 Moreover, potato tuberworm
females are attracted to volatiles released by intact potato tubers
but not to those from tubers damaged by conspecific larvae,
which, in turn, orientate the natural enemy Orius insidiosus (Say).12

In no-choice conditions, the olfactory cues from tubers were
not able to enhance potato tuberworm oviposition in comparison
with a control represented by an adequate physical substrate for
oviposition, as demonstrated in previous studies,13,14 whereas the
same odour has been shown to mediate female attraction to the
plant at longer range.11,12 This suggests that potato tuberworm
females probably use different cues for host plant recognition and
oviposition site location respectively.

The experiments conducted under conventional storage
conditions confirmed the results of laboratory assays. Octanal was
preferred to hexanal because, even though slightly less effective,
it has a lower volatility (octanal vapour pressure 1.2 mmHg at
20–25 ◦C, hexanal vapour pressure 11 mmHg at 20–25 ◦C)58 and
hence is more suitable for a longer release duration in practical
applications. In the warehouse, octanal elicited a strong decrease
in the number of eggs laid compared with the untreated control,
both when dispensers were directly deployed on potatoes and

when tubers were 2.5 m apart from the treated side, probably as
a result of a homogeneous dispersion of the compound in the
surroundings. The present results therefore suggest the possibility
of avoiding the direct contact of octanal with stored potatoes,
and even of using a relatively low density of semiochemical-baited
dispensers. In South-East Asia, repellent plant materials applied
as dried leaves or powders just to cover stored-tuber bulks are
reported to be an effective control strategy to prevent P. operculella

infestation.59–61

In conclusion, this work has provided new information on the
olfactory system of potato tuberworm, with particular attention
to the perception of intra- and interspecific semiochemicals by
long sensilla trichodea in both sexes. Moreover, laboratory and
semi-field behavioural studies have shown that, among alternative
botanical control means,59,62 the use of synthetic plant volatiles,
i.e. common short- and straight-chained aldehydes and alcohols,
as host recognition disruptant and/or oviposition deterrent for
potato tuberworm appears to be feasible under potato storage
conditions.

Further studies are now required to define large-scale
application methods utilising these bioactive compounds against
potato tuberworm.
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