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Waste recovered by-products can increase growth of grass-clover mixtures in low fertility soils and alter 

botanical and mineral nutrient composition 

 

Abstract  

The effectiveness of four by-products (biogas digestate, pot ale, rockdust and wood ash) as fertilisers of a 

perennial ryegrass (Lolium perenne L.) – red clover (Trifolium pratense L.) mixture in terms of biomass production, 

botanical composition and macro- and micronutrient concentrations was tested in an outdoor pot trial. This was 

carried out over two growing seasons using two inherently low-fertility soils used for forage production. Macro- 

and micronutrients (N, P, K, Ca, Mg, Co, Cu, Mn, Mo and Zn) relevant for crops and livestock were determined in 

soils and plants. All the by-products increased overall biomass production and affected nutrient concentrations of 

the individual plant species to varying degrees. In addition the competitive balance between grass and clover was 

altered leading to different botanical composition in the different treatments and consequently differences in the 

nutrient concentrations of the species mixture. Changes were due to the nutrients applied in the by-products per 

se and/or to changes in the soil chemistry caused by the by-products. The results suggest a potential to enhance 

agricultural productivity through improved production and quality of forage on less fertile land by matching of by-

products and soil properties.  

 

Keywords: botanical composition, by-product recycling, crop growth, crop quality, macro- and micronutrient 

concentrations  
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Introduction  

The efficiency of using natural resources in crop production systems is an active area of research to meet needs 

both at farm level and for society in general. This includes the more efficient use of renewable plant nutrient 

resources found in recovered by-products as this has capacity to decrease Global Warming Potential and 

accumulated energy use in arable farming systems (Tuomisto et al., 2012). To be useful as fertilisers, these should 

provide suitable contents of plant-available macro- and micronutrients, and improve soil physical, chemical and 

biological conditions whilst minimizing transfers of deleterious elements or compounds to the soil. There is an 

increasing range of recovered by-products considered for use as soil amendments with widely varying composition 

especially in relation to micronutrients. However, the efficiency of these materials as fertilisers and possible side-

effects of their use at rates corresponding to crop needs and long-term nutrient balance in the receiving fields are 

often lacking. Instead, investigations have often focussed on the potential negative effects of by-product disposal  

at application rates higher than agronomic requirements (e.g. Bucknall et al., 1979; Etiegni et al., 1991; Krejsl and 

Scanlon, 1996), or on short-term effects such as shoot scorch after application in growing crops (Naylor and 

Shortreed, 1981).  

Permanent and temporary grasslands, used as pastures or for ley production, are important land uses and cover 

large areas around the globe; e.g. in 2007 permanent grassland covered 33% of the agricultural area in Europe 

(Eurostat, 2012). Grasslands can show high production capacity even on less fertile land and under low or 

moderate fertiliser nitrogen (N) input, provided that they contain N2 fixing legumes. To realise this potential in full, 

macro- and micronutrient availability must be inherently sustainable or augmented on a regular basis. The less 

productive agricultural lands often used for forage production in Northern Europe tend to have low inherent 

nutrient supplying capacity through soil mineral weathering and  thus require inputs of macro- as well as 

micronutrients to sustain their fertility (Edwards et al., 2012).  Lower productivity coupled with increasing fertiliser 

costs significantly limits the economic margins from such land. Furthermore, most studies on fertilisation including 

amendments have been carried out on productive agricultural soils such that knowledge is lacking on their 

effectiveness on less-fertile soils.  

On less fertile land legume-containing leys (temporary grasslands in crop rotations) play an important role 

providing high quality forage. Requirements regarding feed digestibility, crude protein concentration and energy 

value are strict in high-productivity animal production, and in particular for high-yielding dairy cows. Furthermore, 

in addition to macronutrients, micronutrients such as essential cobalt (Co), copper (Cu), iodine (I), iron (Fe), 

manganese (Mn), selenium (Se) and zinc (Zn) as well as beneficial molybdenum (Mo) and nickel (Ni) are important 

components of good ruminant nutrition (Suttle, 2010); and concentrations of these nutrients are often higher in 

clover than in grasses (e.g. Pirhofer-Walzl et al., 2011; Lindström et al., 2013).  
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Mixtures of grasses and legumes often produce forage of higher digestibility and protein content compared to 

grass-only (Sleugh et al., 2000; Bertilsson and Murphy, 2003), lead to higher feed intake (Bertilsson and Murphy, 

2003) and - unless the leys are heavily N fertilised - give more even biomass production across the growing season 

compared with pure grass leys (Sleugh et al., 2000). Hence the balance between grasses and legumes such as 

clover is an extremely important objective in managing pastures. Species mixtures result invariably in more 

complex crop responses to fertilisation or soil amendments because the individual species may react quite 

differently due to their differing nutritional requirements and tissue concentrations (Cope and Rouse, 1977; 

Lindström et al., 2013). It is a significant challenge therefore to increase production levels of mixed stands while 

maintaining the desired botanical composition of the ley and also to evaluate experimental results from them. 

However, as these forage species are frequently intercropped it is essential to carry out an evaluation of fertiliser 

effects in mixed stands.  

The objective of the present study was to evaluate the fertiliser value of selected organic and inorganic by-

products in terms of their ability to increase biomass production and affect the mineral composition of forage 

crops (mixtures of red clover and perennial ryegrass) on low-fertility soils. The following specific hypotheses were 

tested: 1) the by-products can all be used to improve the bioavailability of both macro- and micronutrients to 

plants by adding additional nutrients and altering soil properties; 2) as a consequence, overall crop growth will 

increase with addition of amendment, but the differing nutrient and pH preferences of the individual species will 

lead to different botanical compositions; 3) wood ash and rockdust add plant-available nutrients (except N) and 

increase soil pH; 4) pot ale liquor specifically increases Cu availability, uptake and plant concentration; 5) biogas 

digestate adds a balanced mix of plant-available nutrients reflecting the composition of the biogas feedstock. To 

test these hypotheses one soil was selected from each of two agricultural areas with coarse textured soils derived 

from nutrient-poor parent material. In order to avoid effects of differing weather and drainage conditions on the 

nutrient uptake and composition of the plants (Roche et al., 2009), these soils were used in an outdoor pot 

experiment where these conditions could be kept equal. In order to understand the plant-soil-amendment 

interactions, we grew a model grass/clover mixture but have assessed growth and nutrient uptake separately for 

each species. 

Materials and methods 

A pot experiment with a completely randomised design with 4 replications was established in summer 2009 and 

treatment effects determined the following year. To ensure relevance to farmers´ practice, application rates 

conformed to national regulations and guidance (Swedish Environmental Protection Agency, 1994 and Swedish 

Board of Agriculture, 2004). A mixture of red clover (Trifolium pratense L., cv. Nancy) and perennial ryegrass 

(Lolium perenne L., cv. Helmer) was used as a simplified model of the mixed ley stands in common use. Top soils 

with low nutrient status were used (Table 1) as representatives of soils derived from highly siliceous parent 

material that is common for Northern European grassland soils. Hollsby (59°48'N, 13°31'E) is a postglacial silt loam 
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originating from mainly granitic and sandstone bedrock and used for grazing on semi-natural grassland (Table 2). 

Rådde (57°36'N, 13°15'E) is a till with sandy loam texture developed from gneissic and granitic parent material and 

used for ley production.  

Treatments 

The by-products were selected based on their relative concentrations of macro- and micronutrients and non-

nutrient elements and an assessment of potential volumes available to the agricultural sector. They included a 

volcanic (pyroxene-andesite) rockdust (Cameron et al., 2010; Ramezanian et al., 2013) as sole amendment or in 

combination with N, bottom ash from mixed deciduous wood as sole amendment or in combination with N, a 

whiskey distillery by-product (pot ale) and biogas digestate from a biogas plant fed with source separated 

household waste and grass silage (Table 3). A fully fertilised treatment in split applications (in spring and after 

harvest 1 and 2; Table 3) and an unamended control were included for comparison. As a general rule the by-

products were applied at the maximum allowable 7-year application rates of nutrient and non-nutrient elements 

as stated by the Swedish Environmental Protection Agency (1994) for trace elements (cadmium (Cd), chromium 

(Cr), Cu, mercury (Hg), Ni, lead (Pb), and Zn), and the Swedish Board of Agriculture (2004) for P. However, to 

maintain a desirable proportion of clover the N application rate via biogas digestate and pot ale was set at 150 kg 

total N ha-1 equivalent. On the other hand, low plant availability of elements was anticipated for the rockdust 

applications; hence the trace element limitation prescribed by Swedish Environmental Protection Agency was 

exceeded (for Ni, Cr) and a higher application rate as recommended by the rockdust supplier was used. The 

mineral N application rate in the fully fertilised treatment and rockdust+N and wood ash+N treatments was 

similarly set to achieve a balanced mix of grass-clover in the pots. All by-products (and the full fertilisation) were 

applied before establishment of the experimental crop in the summer 2009. In spring 2010 and after the first 

harvest, macronutrients were again added to the fully fertilised treatment and N was added in the rockdust+N and 

wood ash+N treatments. The first and second harvest results suggested NPK were still the major limiting factors to 

the evaluation of the by-products. Hence, after the second harvest we augmented with NPK to evaluate separately 

the effects from other component nutrients; however, rockdust-N and wood ash-N treatments did not receive any 

additional N. 

Establishment, growth conditions and samplings  

Both soils were sieved through an 8×18 mm aluminium mesh and thoroughly homogenised before use in the pot 

experiment. At establishment, fresh soil (corresponding to 6 kg dry weight (DW)) was mixed with the respective 

amendments, transferred to each pot (220 mm inner Ø, 250 mm depth) and on 27 July 2009 sown with a mixture 

of red clover and perennial ryegrass which were thinned to 10 plants of each species per pot approximately two 

weeks after emergence. The pots were subsequently kept outdoors under semi-natural conditions in a netted, 

unroofed area and irrigated with deionized water as needed to complement precipitation. During the 
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establishment year, plants were left intact for the entire growth period, and then overwintered in a climate 

chamber at -1°C to +1°C.  

The plants were harvested 15 June, 20 July, and 20 August 2010 and at all three harvests the clover was between 

stem elongation and early flowering stage and the grass was at earing stage. Before harvest the plants were 

showered with deionized water to minimize plant contamination by dust. Plants were subsequently cut at 5cm 

above soil level with stainless steel scissors, sorted into clover and grass and dried in perforated plastic bags at 

50˚C in a forced-ventilation dryer for at least 48 h. The plant samples were weighed and milled to a particle size 

below 1 mm using a cutting mill with a titanium knife (Grindomix GM 200, Retsch GmbH). Precautions to 

counteract trace element contamination (Dahlin et al., 2012) were taken at all handling steps.   

Soil sampling was carried out on 22-29 September 2010, all pots of one replicate per day. Ten cores were taken 

from each pot using a corer (9 mm inner Ø) to the pot´s full depth, and the samples air dried.   

Chemical analyses 

Soil samples, wood ash and rockdust, were a) digested in concentrated HNO3, HCl and HF in closed Teflon 

containers in a microwave digestion system and Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, sulphur (S) and Zn measured on ICP-

SFMS (sector technique), and b) fused with lithium metaborate, then dissolved in HNO3 and aluminium (Al), Ca, K, 

magnesium (Mg), Mn and P measured by ICP-AES. Biogas digestate, pot ale and the plant material were digested in 

concentrated ultrapure HNO3 and HF in open vessels in a microwave oven, followed by filtering, and measurement 

of all elements on ICP-SFMS.  

Total N and C concentrations in plant and soil samples were analysed by high temperature induction furnace 

combustion using LECO CN2000 (LECO Corporation, St Joseph, MI, USA). Soil electrical conductivity (EC) was 

measured in a solution of deionized water and thereafter CaCl2 was added (0.01 M) and pH determined (Sumner, 

1994). EDTA extractable P, K, Ca, Mg, S, Co, Cu, Mn, Mo and Zn were analysed after extraction according to Streck 

and Richter (1997) although Na-EDTA was used and the extracts were analysed by ICP-MS ELAN 6100 DRC (Perkin 

Elmer SCIEX, Waltham, MA, USA). EDTA extractable concentrations are reported as CaEDTA, CoEDTA, etc. 

Certified reference material (NIST Wheat Flour, National Institute of Standards and Technology, Gaitersburg, MD, 

USA) was included in all batches for plant material analysis. For soil analyses an in-house standard was included in 

each batch. 

Soil particle size distribution was determined according to ISO 11277:1998 (ISO, 1998), and cation exchange 

capacity (CEC) and base saturation (BS) calculated from Parker (1929) and Thomas (1982). Phosphorus, K, Ca, and 

Mg were extracted with ammonium lactate/acetic acid (AL) solution (Swedish Standards Institute, 1993) for 

comparison with Swedish soil maps. The mineralogical composition of < 2mm soil was determined by XRD on spray 
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dried random powder samples (Hillier, 1999) and quantitative analyses done using a full pattern fitting method 

(Omotoso et al., 2006). 

All-season average concentrations of the nutrients taken up by the plants were calculated by weighting of biomass 

DW at each harvest, and overall nutrient concentrations of the species mixtures calculated by taking into account 

the botanical proportion of each species in each mixture. The nutrient off-take was also calculated, here defined as 

the total amount of macro- and micronutrients removed with the total (i.e. summed grass and clover) biomass 

harvested per unit area.  

Statistical analysis 

Statistical analysis was done using the JMP 10.0.0 (SAS Institute Inc., Cary, NC, USA) two-factorial variance analysis 

including by-product/fertiliser treatment and soil type in the data. When needed, data were transformed to the 

natural logarithm or square root to achieve normal distribution of residuals. Multiple linear regressions followed 

by pairwise correlations were performed using the Holm (1979) method to control the family-wise error of the 

multiple regressions; plant biomass accumulation was tested vs plant concentrations of all measured nutrients, 

and vs soil pH; plant concentrations of all nutrients were tested vs soil pH; and plant concentrations were tested vs 

the respective EDTA extractable soil concentrations. All differences described in the text are significant at p<0.05. 

Results 

Soil response to amendment 

The pH range across all treatments was 4.6-5.4 (Hollsby) and 4.4-5.4 (Rådde) (Table 4). Across soils, pH was 

significantly higher after wood ash application (average pH 5.2) than in the unamended control and most other by-

product amended soils (average pH 4.9). The EC was similar in all by-product amended and non-amended soils but 

higher in the fully fertilised treatment (Table 4). 

The wood ash amended soils had higher EDTA extractable concentrations of Ca, K and Mg compared with other 

treatments but low-to-average concentrations of other nutrients (Table 4). The pot ale treatment had the highest 

CuEDTA. The fully fertilised treatment frequently had higher than average EDTA extractable concentrations, but had 

the lowest average CuEDTA on the Hollsby soil.  

Plant biomass harvested  

Grass growth was strong during spring but subsequently declined, whereas the opposite was true for the clover 

(data not shown). The additional fertilisation with N, P and K after the second harvest did not significantly increase 

growth of either clover or grass, except that of clover on the rockdust amended Rådde soil. However, on average 

this fertilisation more than doubled the plant K concentration and to a smaller degree increased the P 
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concentration in most of the treatments while it decreased the plant Mg concentration compared to the second 

harvest. Nevertheless, as the overall treatment effects were similar at each harvest, data are presented averaged 

across the growing season.  

The harvested plant biomass was strongly affected by the amendments (Fig. 1A and B), with higher grass biomass 

on soils amended with by-products containing plant available N or receiving mineral N (fully fertilised, pot ale, and 

wood ash and rockdust in combination with N). However, treatments with high grass biomass generally had a 

relatively small clover biomass (except for the fully fertilised treatment.) This was most clearly seen where mineral 

N was applied along with wood ash and rockdust as compared to when wood ash and rockdust were added alone. 

The total biomass production subsequently varied less, but was significantly higher on all amended soils compared 

with the unamended control and particularly high on the fully fertilised soil. As a result of the different response of 

clover and grass to the by-products and the mineral fertilisation, the botanical composition of the species mixture 

differed widely from 20-50% clover in the wood ash+N, rockdust +N and fully fertilised treatments to around 75% 

clover in the wood ash and rockdust amended treatments (Fig. 1A and B).  

Clover and grass nutrient concentrations 

Plant nutrient concentrations in the unamended control was frequently low indicating that more than one nutrient 

may have restricted growth. Clover concentrations were at or below reported critical concentrations of K (both 

soils), Mg (Rådde) and P (Rådde), and close to reported critical concentrations for N (both soils) and P (Hollsby) 

(Supp. 1A and B). Grass concentrations of K (both soils), N (both soils) and P (Rådde) were below critical 

concentrations, and close to critical concentrations for Cu (Hollsby), Mg (both soils) and P (Hollsby) (Supp. 2A and 

B). From a fodder perspective, the species mixtures were below recommended concentrations for Co (Rådde), Cu 

(Rådde), N (both soils) and Zn (Hollsby), and close to the lowest recommended concentrations for K (both) and Mg 

(Rådde) (Supp. 3A and B).  

Amendment and fertiliser applications lead to lower clover concentrations of Cu and N on both soils and P on 

Hollsby soil. Clover from the wood ash treatment generally had among the lowest concentrations of Ca, Co, Cu and 

N, for both soils (Fig. 2A and B). The fully fertilised treatment generally showed low clover concentrations of Cu 

and Mo, but high K, Mg, Mn and N. The biogas digestate, pot ale, and rockdust (with or without N) generally 

showed intermediate nutrient concentrations. When wood ash or rockdust application was combined with N, 

clover concentrations of Ca, Mg and Mo were significantly higher than when grown without N, and for rockdust 

also Co and Mn were higher. There was also a tendency for lower K concentrations in both wood ash and rockdust 

amended soils when N was added. 
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After by-product amendment or fertilisation, grass Cu and Ca concentrations were lower on both soils and Mg, Mo 

and P concentrations on the Hollsby soil (Fig. 3A and B). In the wood ash and rockdust treatments, Ca, Co and N 

were higher and K lower when N was applied, which differed from the effects on the clover. 

Analysed across all treatments and both soils, clover had significantly higher concentrations of Ca (240%), Co 

(30%), Cu (140%), Mg (70%), Mo (5%), N (80%) and Zn (80%) than the grass, whereas concentrations were lower 

for K (30%) and Mn (50%) (Supps. 1A and B, and 2A and B). Phosphorus concentrations were similar and not 

significantly different between species. On both soils, K in clover and grass was low in relation to reported plant 

needs, and P and Cu concentrations were also similarly low in relation to plant needs in some treatments (Supps. 

1A and B, and 2A and B). Magnesium concentrations apparently did not meet the plant demand in some 

treatments on the Rådde soil. 

Overall nutrient concentrations and off-takes of the species mixture 

Overall nutrient concentrations of the mixtures were strongly affected by the treatments, with a median ratio of 

1.9 between the highest and lowest concentrations within each soil (Fig. 4a and b, Suppl. 3a and b). For example, 

Mg concentrations were higher on the rockdust and wood ash amended soils than on the ones amended by pot ale 

and digestate, Cu and Zn were generally high after digestate application, but Cu low after pot ale amendment, and 

Co, Mn and Zn low on the rockdust and wood ash amended soils. Application of N with the rockdust or wood ash 

generally decreased the overall concentrations of Ca, Cu, K and N on both soils and Mg on Hollsby soil. 

The nutrient off-take with harvested biomass reflected nutrient concentrations as well as the biomass production 

of the clover and grass, respectively (Supp. 4a and b). The fully fertilised treatment thus generally showed the 

highest off-takes. The unamended control showed low off-takes for all nutrients, but Mn off-take was lowest from 

the wood ash and wood ash + N fertilised soils, and off-take of Cu was lowest from the pot ale and wood ash + N 

fertilised soils. Simultaneous application of N with the wood ash or rockdust produced significantly lower off-takes 

of Ca, Cu, Mg, K, and N compared to wood ash or rockdust only, but higher Mn off-takes for the rockdust fertilised 

soils.  

Relations between soil characteristics, plant composition and growth 

Amendment affected plant growth and nutrient concentrations depending on by-product composition and soil 

availability of the respective nutrients. Increasing soil pH generally was correlated with decreasing plant 

concentrations of Cu, Mn and Zn but with increasing plant Mo (both soils) and P (Hollsby) concentrations (Supp. 5). 

Biomass accumulation was, however, not significantly correlated with pH on either of the soils. 
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Correlations between plant nutrient concentrations and EDTA extractable soil concentrations were mainly with K, 

Mg and Zn (Supp. 5). Direct correlations between nutrient application rates and increased plant concentrations of 

the same nutrient were seen only for K (Hollsby clover p=0.0023; Rådde grass p=0.0003).  

Clover biomass accumulation was inversely correlated with its Mg and Mo concentrations on the Hollsby soil 

(Supp. 5). Grass biomass was directly correlated with plant Mn and Zn concentrations but inversely correlated with 

plant Mo concentration. On the Rådde soil, grass biomass was directly correlated with plant Co, K, Mg and P 

concentrations.   

Discussion 

Testing the by-products in a pot experiment serves as a first step and needs to be followed by testing in the field. 

However, it gave the opportunity to test their effects on different soils under semi-controlled and equivalent 

conditions. The soils selected had low concentrations of K, Mg and several micronutrients compared with arable 

soils in Northern Europe (Reimann et al., 2000; Eriksson et al., 2010; Paterson, 2011; Swedish Monitoring Program, 

2013). They thus served as representatives of soils commonly used for grazing and forage production and the 

potential for detecting any fertiliser effects of K, Mg and several micronutrients of the by-products was deemed to 

be good. Both soils had low pH, although not extreme for this type of land use. Nevertheless the low pH will have 

improved the availability of a majority of the micronutrients (Alloway, 2013), possibly contributing to sufficient 

plant uptake in spite of the low total soil concentrations of some of these nutrients.  

Effects of by-product application on biomass production  

Total biomass harvested was low on the unamended soils, much higher in the fully fertilised treatment, with the 

by-product amended treatments falling between these two extremes. This indicates that biomass production on 

the unamended soils was impeded primarily by nutrient supply. It was further evident that total biomass 

production was increased by all the by-products applied to these soils. Such increases have been reported for 

digestate-amended soils (Gunnarsson et al., 2010; Grigatti et al., 2011) and pot ale-amended soils (Douglas et al., 

2003). This has also been reported for wood ash-amended soils (as reviewed by Demeyer et al., 2001), although 

application rates have often been considerably higher than agronomic requirements. Yield increases have also 

been reported after amendment with mafic rockdust (e.g. Kahnt et al., 1986; Bakken et al., 2000) although no yield 

effect was found by Campbell (2009) and Ramezanian et al. (2013) of the same type of andesitic rockdust as that 

used in the current experiment. The contrasting results highlight the importance of the original nutrient status of 

the soils for the scope of detecting nutrient supply from by-products, and also determine whether these products 

may potentially be useful as amendments to the respective soils. Rockdust may be most suitable therefore for soils 

with low capacity to supply plant nutrients, especially for K, Ca and Mg.  

Clover and grass respond differently to treatments 
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The increased grass and decreased clover biomass production upon N fertilisation confirmed the increased 

competitiveness of perennial ryegrass vs. clover under high N availability and a shift in botanical composition 

frequently seen in swards under increased N fertilisation (Harris et al., 1996; Elgersma et al., 2000). However, by-

products containing little or no N in this experiment (i.e. the wood ash and rockdust) also led to a shift in botanical 

composition compared to the unamended control, albeit with an increase in the proportion of the clover. Data 

from Ferreiro et al. (2011) also suggest that the white clover proportion in ash-amended leys increased relative to 

the unamended control in a similar manner, although this was not specifically tested in that study. The two organic 

by-products gave intermediate but distinctly different botanical composition. Consequently the agronomic 

management of clover in such low fertility soils needs to consider carefully the effect of amendments on the sward 

composition. 

Both inherent soil properties and by-products affect grass and clover nutrient concentrations 

The macro- and micronutrient concentrations of the grass and clover grown on the two soils was apparently 

affected by the inherent nutrient-supplying capacity of the soil, by the application of nutrients per se and indirectly 

through effects the amendments had on pH or the ionic composition of the soil solution. For example, the direct 

correlation between grass K concentration and harvested biomass on Rådde soil and a tendency towards a 

correlation on Hollsby soil, combined with the low plant concentrations suggests that K deficiency was limiting 

growth in some treatments on both soils. Potassium and Mg supply from the by-products was clearly indicated as 

both plant nutrient concentrations and off-takes increased, although to a differing extent; e.g. on average across 

the soils wood ash increased clover K and Mg concentrations by 55 and 35%, respectively, and total plant off-takes 

by 115% and 140%, respectively, compared with the unamended control. However, the results suggest K supply 

was still limited. Although Öborn et al. (2010) found a clear growth limitation only at a ryegrass K concentration of 

1%, critical or sufficiency concentrations reported by Whitehead (2000) and Mengel (2007) suggest that grass as 

well as clover K concentrations were in the suboptimal range. The decreased K concentrations in the N-fertilised 

grass thus indicate a dilution effect (Jarrell and Beverly, 1981) through enhanced biomass accumulation which 

could not be matched by a corresponding increase in K uptake in spite of the K application via the wood ash or 

rockdust. 

The correlation of plant nutrient concentrations or off-takes vs. EDTA-extractable soil concentrations was strong 

for Zn on both soils, for Mn on the Hollsby soil and K and Mg on the Rådde soil, but otherwise often weak, which 

illustrates that EDTA extraction is often only a crude estimate of plant available fractions of nutrients (e.g. Soriano-

Disla et al., 2010). A particularly striking example of this was the EDTA extractable Cu concentration in the soils 

treated with pot ale which was highest of all treatments for both soils, but where the clover concentration and the 

total off-take were among the lowest. This indicates that Cu in the plant biomass not only was diluted due to 

increased growth (e.g. Reith et al., 1984; Kopsell and Kopsell, 2007), but also that the pot ale Cu was poorly 

available to the plants or other factors were reducing its uptake.  
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The availability of a number of micronutrients is known to be strongly affected by pH (Alloway, 2013). The pH 

increase from 5.0 to 5.4 in Hollsby and from 4.6 to 5.2 in Rådde could be expected to affect plant availability of 

nutrients in the wood ash and wood ash + N treatments. Clover and grass concentrations of Co, Cu, Mn and Zn 

were indeed low in these treatments whereas Mo concentrations were high. Other studies have also revealed 

decreased plant concentrations of micronutrients such as Cu and Mn (Krejsl and Scanlon, 1996) but increased plant 

Mo concentrations (Park et al., 2012) after wood ash application and these effects were attributed to an increased 

pH. However, in our experiment only off-takes of Mn were decreased compared with the control, suggesting that 

dilution due to increased biomass accumulation (Jarrell and Beverly, 1981) may have been a contributing factor for 

the decreasing plant concentrations at least for the remaining nutrients (Co, Cu and Zn). 

Effects of botanical composition on plant mixture mineral concentrations 

Enhanced N nutrition affected the species mixtures´ overall nutrient concentrations and off-take via effects on the 

botanical composition and nutrient concentrations of the individual species. Application of N with wood ash and 

rockdust increased plant concentrations of a majority of the macro- and micronutrients in the clover and/or the 

grass. Increased plant concentrations in response to N fertilisation were also reported by Fangmeier et al. (1997) 

for Ca, Mg, N, and Zn in wheat at the beginning of shoot elongation although the relation was inversed at later 

phenological stages. The increased nutrient concentrations of the plant mixture, however, cannot with certainty be 

interpreted in terms of enhanced nutrient availability in the soil as nutrient off-takes in our experiment often did 

not show the same trend. For example, Ca (in both plant species) and N (in grass) concentrations increased upon N 

fertilisation but overall concentrations and total off-takes generally decreased. These disparate results were due to 

a shift in botanical composition of the species mixtures  to one dominated by the grass which had lower Ca and N 

concentrations than the clover, and confirms the decreased N off-take previously found in mixed white clover-

perennial ryegrass leys upon N fertilisation (Elgersma et al., 2000). The impact of N fertilisation on the botanical 

composition obviously had a strong impact on the overall nutrient concentrations and total off-takes of the species 

mixture.  

Implications for the feeding value of the species mixture 

The tested by-products all affected the botanical composition. Such changes have implications for the feeding 

value of a species mixture. A balanced diet is of utmost importance for animal productivity and health, and 

especially so in dairy production. Legumes may increase the concentrations of most macro- and micronutrients in 

the forage crop as shown here, and by Lindström (2013), Pirhofer-Walzl et al. (2011) and Govasmark et al. (2005). 

In addition, legumes have the potential to increase forage digestibility, energy value and the cows´ feed intake, all 

needed for high milk production (Bertilsson and Murphy, 2003). Where clover-grass leys contribute a large 

proportion of the diet, ley fertilisation should thus be adjusted so that the desired botanical composition is 
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achieved. The change in overall macro- and micronutrient composition of the mixtures also has implications for the 

need for mineral nutrient supplementation. In this experiment, biogas digestate and rockdust amendment 

increased crop mixture concentrations of Cu and Zn to close to or over the minimum concentrations 

recommended by the US National Research Council (NRC) (2001; Supp. 3a and b). The rockdust and wood ash 

increased crop Mg concentrations which can be of importance where grass tetany (hypomagnesaemia) occurs.  

The data indicate that the by-products can improve both forage quantity and quality on nutrient-poor soils in the 

absence of fertilisers or as a complement to macronutrient fertilisation. However, the results from pot 

experiments should always be evaluated cautiously and evaluation via field experiments should be the next 

essential step. Studies on other aspects of by-product recycling are also likely to be needed to secure safe and 

long-term sustainable use of by-products as fertilisers. These include more in-depth characterisation of the by-

products and a process based understanding of the factors that lead to the observed behaviours. Monitoring of 

soil quality (e.g. by using soil health indicators and element input-output mass balances of nutrients and non-

nutrients) and consideration of long term ecological effects are also needed. The approach to recycle by-products 

is worth pursuing further, but requires good management skills and knowledge of by-products characteristics and 

processes in the soil-plant system, including the effects on species competition and thus composition of species 

mixtures.  
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Table 1 Original characteristics of the two soils (Hollsby and Rådde) used in the pot experiment; total and 

extractable (ALa or EDTA) concentrations of nutrients 

Soil       Hollsby     Rådde 

Characteristic Total AL  Total AL 

 g kg-1 mg kg-1  g kg-1 mg kg-1 

N 1.9 na  2.8 na 

P 0.78 13  1.19 51 

K 25 23  20.6 53 

Ca 9.98 490  11.4 1020 

Mg 3.01 12  3.51 55 

S 0.33 na  0.48 na 

      

 Total EDTA  Total EDTA 

 mg kg-1 mg kg-1  mg kg-1 mg kg-1 

Co 2.6 0.07  3.8 0.02 

Cu 6.9 2.3  6.5 0.7 

Mn 531 35  431 8 

Mo 0.40 bdb  0.85 bd 

Zn 46 4.6  30 2.3 

 
a ammonium lactate/acetic acid solution 
b below detection limit 
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Table 2 Original characteristics of the two soils (Hollsby and Rådde) used in the pot experiment. Clay, silt and sand 

fractions are given as % of the mineral fraction  

  
 

 

 

 

 Soil 
Characteristic Hollsby Rådde 

Clay (%) 4 8 

Silt (%) 69 31 

Sand (%) 27 61 

pHCaCl2 4.8 5.2 

CEC (cmol+c kg-1) 9 13 

BS (%) 40 52 

SOC (%) 2.2 3.5 

Quartz (%) 53 52 

K-feldspar (%) 17 15 

Plagioclase (%) 19 19 

Amphibole (%) 2 4 

Dioctahedral phyllosilicates(%) 4 4 

Trioctahedra phyllosilicates(%) 3 4 

Iron oxides (%)  1 1 
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Table 3 Characteristics of the waste products biogas digestate (BD), pot ale (PA), rock dust (RD) and wood ash (WA), waste product and nutrient application rates used in 1 
the experiment. The nutrient or non-nutrient element limiting the application rate of waste products is given in bold. Application rates of N, P and K presented separately up 2 
to and after second harvest. a denotes the limiting element according to SEPA if N application via waste products had not been targeted to 15 g m-2. b denotes the nutrient 3 
was added in solution. c denotes the nutrient was added as dry salt 4 

 Amendment characteristics Application rates  

 unit PA BD RD WA  unit FF PA BD RD-N RD+N WA-N WA+N 

Amount product  na na na na  kg m-2 na 8.5 1.5 5.0 5.0 0.14 0.14 

Liming effect % CaO -4 6.2 1.9 51.3   na na na na na na na 

C % 47 42 0.005 1.1  g m-2 - 126 177 - - 1.5 1.5 

N g kg-1 58 24 1.0 0.1  g m-2 13c + 2b 15+ 2b 15+ 2b - 13 + 2b 0.008 13 + 2b 

P g kg-1 15 8.2 1.2 21  g m-2 18.8+7.5c 3.9+7.5c 3.4+7.5c 6.0+7.5c 6.0+7.5c 3.1+7.5c 3.1+7.5c 

K g kg-1 32 12 2.6 69  g m-2 26.5c+4.2b 8.6+4.2b 4.9+4.2b 12.8+4.2b 12.8+4.2b 10.0+4.2b 10.0+4.2b 

Ca g kg-1 1.7 49 13 324  g m-2 143c 0.44 20.3 65.8 65.8 46.9 46.9 

Mg g kg-1 6.0 6.2 17 40  g m-2 19.6b 1.58 2.58 84.1 84.1 5.79 5.79 

S g kg-1 4.2 3.1 0.09 0.82  g m-2 3.91b 1.10 1.28 0.46 0.46 0.12 0.12 

Co mg kg-1 0.07 0.89 12 21  mg m-2 - 0.02 0.4 59 59 3.0 3.0 

Cu mg kg-1 177a 29 7.3 118  mg m-2 4.3b 47 12 36 36 17 17 

Mn mg kg-1 16 215 375 7810  mg m-2 98b 4.3 90 1850 1850 1130 1130 

Mo mg kg-1 0.45 1.9 0.20 <6  mg m-2 0.04b 0.1 0.8 1.0 1.0 0.4 0.4 

Zn mg kg-1 21 76 46 182  mg m-2 0.2b 5.6 32 228 228 26 26 

 5 

  6 
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Table 4 Soil pH, electrical conductivity (EC) and EDTA extractable nutrient concentrations (macronutrients in g kg-1 DW soil; micronutrients in mg kg-1 DW) 14 months after 7 
fertilisation and by-product amendment; fully fertilized (FF), biogas digestate (BD), pot ale (PA), rock dust (RD) and wood ash (WA). Data given as LSMeans±SEM of four 8 
replicates, df = 7 9 

 Control FF PA BD RD - N RD + N WA - N WA + N 

Hollsby          

pH 5.0±0.0 5.1±0.1 4.9±0.1 5.0±0.0 5.0±0.0 5.1±0.1 5.3±0.0 5.4±0.0 

EC 93±6 211±16 97±6 104±4 104±4 103±1 118±3 122±3 

P 0.026±0.001 0.027±0.002 0.029±0.001 0.029±0.001 0.027±0.002 0.025±0.002 0.027±0.001 0.028±0.001 

K 0.020±0.001 0.030±0.002 0.033±0.003 0.027±0.001 0.021±0.001 0.026±0.001 0.034±0.002 0.042±0.001 

Ca 0.99±0.03 0.77±0.02 1.03±0.02 1.08±0.06 1.00±0.01 1.04±0.02 1.21±0.02 1.26±0.03 

Mg 0.016±0.001 0.040±0.001 0.021±0.001 0.016±0.001 0.022±0.003 0.026±0.001 0.029±0.001 0.033±0.001 

Co 0.15±0.01 0.21±0.02 0.13±0.01 0.13±0.01 0.13±0.01 0.13±0.01 0.11±0.01 0.11±0.01 

Cu 1.4±0.1 1.1±0.0 2.0±0.1 1.5±0.0 1.4±0.1 1.4±0.1 1.6±0.1 1.6±0.1 

Mn 26±1 64±4 22±2 23±1 21±2 22±3 22±2 22±2 

Mo 0.025±0.007 0.056±0.027 0.024±0.011 0.018±0.000 0.021±0.003 0.011±0.004 0.019±0.002 0.019±0.002 

Zn 3.6±0.2 5.4±0.2 3.7±0.1 3.8±0.3 3.4±0.1 3.2±0.1 4.0±0.5 3.6±0.2 

Rådde         

pH 4.6±0.1) 5.0±0.1 4.7±0.1 4.7±0.0 4.7±0.1 4.8±0.1 5.2±0.0 5.2±0.0 

EC 85±8 223±8 88±6 100±9 80±2 84±4 112±2 104±3 

P 0.010±0.000 0.030±0.004 0.015±0.001 0.014±0.002 0.011±0.001 0.010±0.001 0.014±0.001 0.013±0.001 

K 0.015±0.001 0.029±0.003 0.023±0.002 0.020±0.001 0.013±0.001 0.014±0.001 0.028±0.003 0.034±0.004 

Ca 0.55±0.01 0.89±0.07 0.56±0.02 0.65±0.04 0.65±0.05 0.56±0.01 0.81±0.01 0.82±0.01 

Mg 0.005±0.000 0.040±0.002 0.009±0.001 0.007±0.000 0.014±0.000 0.013±0.000 0.018±0.001 0.019±0.001 

Co 0.23±0.02 0.21±0.01 0.26±0.01 0.22±0.02 0.22±0.02 0.23±0.01 0.18±0.01 0.19±0.01 
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Cu 1.1±0.0 1.1±0.0 1.5±0.0 1.2±0.0 1.1±0.0 1.1±0.0 1.2±0.0 1.3±0.0 

Mn 73±4 62±3 86±3 72±4 67±4 69±4 60±3 60±5 

Mo 0.023±0.004 0.050±0.022 0.019±0.002 0.023±0.005 0.019±0.001 0.021±0.002 0.020±0.003 0.017±0.001 

Zn 5.7±0.3 4.9±0.1 5.7±0.3 5.4±0.4 5.9±1.0 5.2±0.2 4.4±0.2 4.2±0.1 
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Figure captions 

Figure 1 Biomass production (g DW m-2) and botanical composition (proportion of clover) in the grass-clover 

mixture grown on (A) Hollsby and (B) Rådde soil. Data are given as LSMeans with error bars indicating SEM of 

four replicates, df = 7.  

Figure 2 Relative all-season average nutrient concentrations of clover grown on (A) Hollsby and (B) Rådde soil, 

expressed as a percentage of the unamended control. Data given as LSMeans with error bars indicating SEM of 

four replicates, df = 6. 

Figure 3 Relative all-season average nutrient concentrations of grass grown on (A) Hollsby and (B) Rådde soil, 

expressed as a percentage of the unamended control. Data given as LSMeans with error bars indicating SEM of 

four replicates, df = 6. 

Figure 4 Relative overall nutrient concentrations of grass-clover mixture grown on (A) Hollsby and (B) Rådde 

soil, expressed as a percentage of the unamended control. Data given as LSMeans with error bars indicating 

SEM of four replicates, df = 6. 
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Figure 1A 
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Figure 1B 
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Figure 2A 

 

  

0

50

100

150

200

250

N P K Ca Mg Co Cu Mn Mo Zn

Ho
lls

by
 c

lo
ve

r n
ut

rie
nt

 c
on

c.
  

(%
 o

f c
on

tr
ol

) 

Fully fertilised
Pot ale
Biogas digestate
Rockdust - N
Rockdust + N
Wood ash - N
Wood ash + N

27 
 



Figure 2B 
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Figure 3A 
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Figure 3B 
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Figure 4A 
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Figure 4B 
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