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Modelling Climate Change Impacts on Pesticide Leaching. 
Uncertainty and Scenario Analysis at Field and Regional Scales 

Abstract 

Climate change projections for Sweden indicate increases in both temperature and 

precipitation. In a warmer and wetter climate, weed and pest pressures are likely to 

increase, which might in turn trigger an increased use of pesticides. This thesis 

analysed potential impacts of climate change on pesticide losses from Swedish arable 

soils under present (1970-1999) and future (2070-2099) climate conditions. The 

pesticide fate model MACRO was used to evaluate the direct effects of climate change 

on pesticide losses to tile-drains at the field scale accounting for uncertainties related to 

model structure (i.e. the description of temperature dependent processes), parameters 

and climate input data. At the regional scale, MACRO-SE was used to assess the direct 

and the indirect effects of climate change (i.e. changes in cropping patterns and 

herbicide use) on the leaching of herbicides towards groundwater in southern Sweden.  

At the field scale, the results showed that differences in model structures affected 

predictions of pesticide losses under climate change, despite large parameter 

uncertainty. The effect of climate input uncertainty was more important than the effect 

of parameter uncertainty for predicted changes in pesticide losses between present and 

future climates, while it was the opposite for simulated absolute pesticide losses. The 

direction and magnitude of predicted changes in pesticide losses depended on pesticide 

properties, application season and climate scenario. In the regional scale study, the area 

at risk of groundwater contamination was only slightly affected by direct effects of 

climate change, whereas the area at risk doubled due to the indirect effects of climate 

change that were included in the analysis.  

The main conclusions are that (1) the relative importance of different sources of 

uncertainty depends on the pesticide properties, application season and whether the 

focus is on absolute losses or predicted changes, (2) ensembles of climate scenarios are 

necessary for robust assessments and (3) indirect effects need to be considered 

alongside the direct effects as predictions can be significantly affected. Despite large 

uncertainties, this thesis highlights the need to strengthen policies, to adopt improved 

mitigation measures and to implement management strategies that will limit pesticide 

use and minimize the risks of contamination of ground- and surface waters.  

Keywords: soil; water; pesticide; modelling; MACRO model; climate change; regional 

scale; uncertainty; ensemble modelling; direct and indirect effects;  
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Dedication 

To my grandmother.  

Predictions are uncertain, especially about the future. (ATTRIBUTED TO NIELS BOHR) 

All models are wrong, but some are useful. (GEORGE E.P. BOX) 
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Abbreviations and Glossary 

Abbreviations 
 

Aut Autumn  

CKB Centre for Chemical Pesticides 

CS Climate scenario 

EF Model Efficiency  

EPC Ensemble of Parameter Combinations 

FST FOOTPRINT soil type  

GCM Global Climate Model (usually General Circulation Model) 

GHG Greenhouse gas 

GIS Geographic Information System 

GLUE Generalized Likelihood Uncertainty Estimation 

GSS Southern plains of Götaland (sv: Götalands Södra Slättbygder) 

IPCC Intergovernmental Panel on Climate Change 

LOD Limit of detection 

MA Maize 

Ms Moderately sorbed compounds 

MV Model version 

OM Organic matter 

PAS Pesticide Application Scenario 

PB Peas (and beans) 

PCB Polychlorinated biphenyl 

PPDB Pesticide Properties DataBase 

PT Potatoes 

RCM Regional Climate Model 

RCP Representative Concentration Pathway; see 3.1.1 and IPCC (2013b) 

SB Sugar beets 

SC Spring cereals 

Spr Spring  
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SR Spring rape 

SRES Special Report on Emission Scenarios (Nakićenović & Swart, 2000) 

Ss Strongly sorbed compounds 

WC Winter cereals 

WR Winter rape 

Ws Weakly sorbed compounds 
 

Glossary 
 

Climate projection Estimates of future climate derived with climate models 

and the help of scenarios. It can be considered an 

conditional expectation reflecting what can be expected if 

this or that happens (WMO, 2015).  

Climate Scenario (CS) Climate model projections downscaled to local (or 

regional) scale that can be used to drive an impact model. 

Downscaling Transfer of large scale outputs of climate models to local 

or regional scales. 

Ensemble modelling Use of different models, scenarios or downscaling 

methods in parallel to illustrate and account for 

uncertainties. 

Epistemic uncertainty Uncertainty due to imperfect knowledge; see Walker et 

al. (2003) or Curry & Webster (2011). 

Impact model Refers to any model that is used within a climate change 

impact study, driven with climate time series (e.g. a 

pesticide fate model such as MACRO). 

Pesticides Chemical substances used to control weeds, pests and 

diseases in order to secure yields; also called plant 

protection products. Herbicides are pesticides specifically 

used to control weeds.  

Pesticide Application 

Scenario (PAS) 

A unique combination of a pesticide applied on a certain 

crop at a certain time with a certain dose. 

Prediction scenarios Simulation runs with calibrated versions of MACRO for 

present and future climate conditions. 

Scenario Scenarios provide plausible descriptions, i.e. based on 

coherent and internally consistent assumptions, of how 

the system or its driving forces (e.g. atmospheric GHG) 

may develop in the future (Walker et al., 2003). 
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1 Introduction 

In the coming decades, we face the challenge of producing food to feed the 

growing world population with finite resources (Schneider et al., 2011; 

Wirsenius et al., 2010) in a socially, environmentally and economically 

sustainable way. The effects of climate change will add to the growing 

competition for water, energy and land resources (Godfray et al., 2010). In 

Sweden, a warmer and wetter climate in the future is likely to improve 

conditions for crop production (e.g. Olesen et al., 2011; Trnka et al., 2011), but 

also to increase pest and weed pressures (e.g. Patterson et al., 1999). 

Pesticides, which are used to control pests, weeds and diseases and secure 

yields, can have harmful effects on the environment and pose a threat to human 

health due to contamination of drinking water or food that contains pesticide 

residues (Tirado et al., 2010; Miraglia et al., 2009). Pesticides are regularly 

found in groundwater and surface waters in Sweden and around the world (e.g. 

Balderacchi et al., 2013; Malaguerra et al., 2012; Holvoet et al., 2007; 

Kreuger, 1998) and negative effects on non-target organisms in the 

environment are frequently reported (e.g. van der Sluijs et al., 2015; Malaj et 

al., 2014; Moschet et al., 2014). Since the remediation of contaminated 

groundwater is difficult and very slow (Vonberg et al., 2014), future drinking 

water resources need to be protected already today.  

Climate change might lead to increased pesticide use (Delcour et al., 2015), 

is likely to strongly impact pesticide exposure (Schiedek et al., 2007) and the 

distribution of pesticides in the environment (Noyes et al., 2009), might 

increase their toxicity (Noyes et al., 2009; Schiedek et al., 2007) and degrade 

drinking water quality (Delpla et al., 2009). The effects of climate change on 

pesticide fate and transport to ground- and surface waters are very diverse and 

might be difficult to predict (Bloomfield et al., 2006). Very few studies have 

previously attempted to quantify the effects of climate change on pesticide fate 

and transport (e.g. Ahmadi et al., 2014; Henriksen et al., 2013; Beulke et al., 

2007) and only one European-wide study has assessed some potential effects 
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under Swedish conditions (Kattwinkel et al., 2011). Thus, more quantitative 

research is needed to explore the direct and indirect effects of climate change 

on pesticide fate and impacts on water bodies in Sweden. Direct effects refer to 

natural responses and indirect effects to human-mediated responses to changes 

in climate that would lead to changes in pesticide fate, transport or use. 

Modelling is an effective tool to assess the effects of various influential 

factors on system behaviour at different scales. However, pesticide fate 

modelling in the light of climate change is laced with uncertainty related to e.g. 

climate scenarios, model structure or parameters and not least the modeller. It 

is essential to account for these uncertainties in order to provide an appropriate 

scientific basis and realistic, well-founded background information for 

decision-making.  

This PhD-thesis analyses several aspects of the modelling of pesticide 

leaching in a changing climate. This involves both the generation of climate 

scenarios as input data, pesticide fate modelling at different scales, and the 

evaluation of the uncertainties inherent to the process. The sketch in Figure 1 

gives an overview of how the three studies reported in this thesis are inter-

related and which aspects and uncertainties were considered in each study.  

 
Figure 1. Overview of how the three studies reported in this thesis relate to each other and which 

modelling aspects and uncertainties were considered. The combination of climate-soil-crop-

pesticide (marked for paper I, II) can be considered a modelling base unit in all three studies.
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2 Aims 

 To assess whether pesticide leaching is likely to increase or decrease in 

Sweden in a future climate. (papers I, II, III) 
 

 To analyse the relative importance of different sources of uncertainty in 

modelling pesticide leaching under climate change at the field scale: model 

structure, parameters, and climate input data. (papers I & II) 
 

 To assess and contrast direct and indirect effects of climate change on 

herbicide leaching to groundwater and to analyse the relative contribution 

of different factors influencing herbicide leaching under climate change at 

the regional scale. (paper III) 
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3 Background 

3.1 Climate Change Projections and Impact Studies 

3.1.1 Climate Change Projections 

The climate system is unequivocally warming resulting in global climate 

change, for which human activities are extremely likely
1
 to be responsible 

(IPCC, 2013a). For Sweden, climate change projections indicate an overall 

increase in both temperature and precipitation (Kjellström et al., 2014; IPCC, 

2012; Kjellström et al., 2011). They furthermore project a strong correlation 

between increased precipitation and temperature (Kjellström et al., 2011), an 

increase in climate variability (Olesen et al., 2011) and changes in the 

frequency of extreme events (IPCC, 2012; Nikulin et al., 2011). The 

uncertainty in climate model projections is large, especially for summer 

precipitation and extremes (Kjellström et al., 2014; Kjellström et al., 2011). 

Warm temperature extremes are likely to increase and cold temperature 

extremes to decrease. The frequency of dry spells might not increase, but 

periods of drought might increase due to increased temperatures and higher 

evapotranspiration in combination with potentially reduced precipitation 

amounts (Kjellström et al., 2014). Figure 2 shows projected average monthly 

changes for southern Sweden (55° - 60° N) for 2071-2100 compared to 1961-

1990 based on projections from 23 global climate models (GCMs).  

                                                        
1. Extremely likely means with at least 95% certainty according to the IPCC assessment. 
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Figure 2. Projected monthly changes for southern Sweden based on an ensemble of 23 different 

Global Climate Models (GCMs) all under the greenhouse gas emission scenario A1B (taken from 

Lind & Kjellström, 2008). Additionally, the change factors from the ensemble of climate 

scenarios (CS) used in the studies for the region in Västra Götaland (paper II) and for the region 

in Scania (paper III) are presented. The dashed lines denote “no change”.  

A climate projection refers to estimates of future climate derived with climate 

models and the help of scenarios, which can be seen as conditional 

expectations that reflect what can be expected, if this or that happens (WMO, 

2015). Scenarios provide plausible descriptions of how the climate system or 

its driving forces (e.g. atmospheric greenhouse gases) may develop in the 

future and indicate what might happen in the future rather than forecasting 

what will happen (Walker et al., 2003). If a variety of scenarios is used 

together, they represent a range of possibilities that reflect uncertainty and 

increase the robustness of projections (IPCC, 2015).  

Climate model projections are commonly produced by General Circulation 

Models (GCMs; here referred to as Global Climate Models), with a spatial 

resolution of 100-300 km simulating the climate system for the entire globe. 

The older generation of GCMs were driven by emission scenarios as defined by 

the Special Report on Emission Scenarios (SRES; Nakićenović & Swart, 2000). 

These greenhouse gas (GHG) emission scenarios are based on assumptions 

about driving forces such as population growth, economic and technological 

developments. The SRES are grouped into four families that share a common 

storyline (called A1, A2, B1, and B2). They reflect the influence of more 

economic (A) or environmental (B) factors, while focusing more on global (1) 

or regional (2) solutions. The scenario A1B, which has been widely used 

(ENSEMBLES project; van der Linden & Mitchell, 2009), is a subset of the A1-

family that assumes a balance across all energy sources. For the Fifth’ 
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Assessment report of the IPCC (IPCC, 2013a), climate models were run with 

four different ‘Representative Concentration Pathways’ (RCP) that define the 

total radiative forcing pathway until the year 2100 (Moss et al., 2010). The 

radiative forcing is a cumulative measure of anthropogenic GHG emissions 

from all possible sources and the pathways can be described by a wide range of 

possible socio-economic and technological developments. Although the 

procedure for generating climate model projections differs between the SRES-

driven simulations and the RCP-driven ones, the results for Sweden in terms of 

average monthly change factors for temperature and precipitation are in similar 

ranges (Kjellström et al., 2014). In this thesis, only SRES-driven climate 

simulations were used as input to the climate change impact studies on 

pesticide leaching. 

3.1.2 Climate Change Impact Studies 

Studies that analyse the potential effects of climate change are called climate 

change impact studies. For Sweden, such studies have been performed for 

many different potential impacts, e.g. on catchment hydrology (Teutschbein & 

Seibert, 2012; Graham et al., 2007a; Andréasson et al., 2004), surface water 

quality (Arheimer et al., 2005) or crop production (Eckersten et al., 2012), but 

none of these studies has focused specifically on pesticide leaching. In all these 

studies, one or more impact models (such as a hydrological model or a crop 

model) were used, driven with climate projections relevant to the given 

location and scale of the study. 

As the typical resolution of GCMs is usually too coarse for regional or local 

studies, the projections need to be downscaled. One way is to perform 

dynamical downscaling with the help of regional climate models (RCM) that 

have a typical resolution of 10-50 km, and sometimes down to 2-6 km. The 

higher resolution allows a better representation of the underlying topography 

and parameterization of regional and local scale processes. However, RCM 

outputs are often biased compared to observations (Fowler et al., 2007) and 

therefore, bias correction methods have been developed to provide the required 

local scale input to the impact models such as distribution-based scaling 

(Wetterhall et al., 2011; Yang et al., 2010) or quantile-quantile mapping 

(Teutschbein & Seibert, 2012). The basic assumption behind all these 

approaches is that the bias is stationary (Teutschbein & Seibert, 2013; Maraun, 

2012), which might not be valid (Christensen et al., 2008). Reviews and 

comparisons of different methods are presented by for instance Wilby & 

Wigley (1997), Wilby et al. (2004), Fowler et al. (2007) and Teutschbein & 

Seibert (2012). Alternatively, statistical downscaling can be applied as 

described, for example, in Wilby et al. (2004). These methods include weather 
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classification schemes, regression models, and weather generators (Kilsby et 

al., 2007; Semenov et al., 1998). 

The method used in this thesis is a simple and straight-forward alternative 

that is computationally inexpensive and widely applicable (e.g. by Eckersten et 

al., 2012; Arheimer et al., 2005). The so-called change factor method (Anandhi 

et al., 2011), delta method (Graham et al., 2007a) or delta change approach 

(Hay et al., 2000) applies change factors to an observed time series to represent 

future climate conditions. Such a future time series is considered a climate 

scenario. The change factors are derived by comparing simulations for a future 

period with simulations for the reference period for which observations are 

available. The method can be applied to GCM-projections or RCM-outputs. It is 

based on the assumption that climate models are able to reproduce climate 

change signals better than absolute values of the climate variables. In its 

simplest form, average yearly or monthly change factors are calculated and 

applied directly to the observations. No change in the frequency of rainfall 

events is accounted for, but the intensity of rainfall events is changed and 

thereby the frequency of rainfall events above a certain threshold. More 

advanced methods have been developed that account for changes in the 

frequency of rainfall events (e.g. Olsson et al., 2012) or vary the change factors 

according to rainfall intensity level (e.g. Olsson et al., 2009).  

3.1.3 Cascade of uncertainty  

Climate change impact assessments are subject to various sources of 

uncertainty, the so-called cascade of uncertainty (Refsgaard et al., 2013; Wilby 

& Dessai, 2010) consisting of the future society, GHG emissions, GCM, 

downscaling to regional (RCM) and local scales, impact model, local impacts 

and the implied adaptation responses. Uncertainty related to climate input data 

arises from the drivers of change (e.g. GHG), the response of the climate system 

to those drivers, natural variability and initialization of the GCM, the structure, 

accuracy, and parameterization of both GCMs and RCMs (Mote et al., 2011; 

Giorgi, 2005). Which source of uncertainty dominates depends to some extent 

on the future period that is investigated: the differences between GHG emission 

scenarios are not so large in the middle of the 21
st
 century, but increase towards 

the end, while uncertainty related to the natural variability in the climate 

typically decreases towards the end of the century (e.g. IPCC, 2013a; 

Kjellström et al., 2011; Hawkins & Sutton, 2009). In addition to the 

uncertainty in the climate models, the downscaling approach introduces 

another source of uncertainty (e.g. Chen et al., 2011; Teutschbein & Seibert, 

2010) along with the chosen future period (Ledbetter et al., 2012; Prudhomme 

et al., 2010), while the impact model itself is subject to structural and 
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parameter uncertainty (e.g. Dobler et al., 2012). Many studies have been 

performed to evaluate the relative importance of the different sources of 

uncertainty (e.g. Dobler et al., 2012; Chen et al., 2011; Kjellström et al., 2011; 

Tebaldi et al., 2005). Several studies concluded that the GCMs are a major 

source of uncertainty (e.g. Kjellström et al., 2011; Déqué et al., 2007; Graham 

et al., 2007b), but other sources of uncertainty can be similar in magnitude 

(e.g. Dobler et al., 2012; Chen et al., 2011), depending on location, spatial 

scale and field of research.  

3.1.4 Ensemble modelling 

Ensemble modelling is the use of different models or downscaling approaches 

in parallel to account for, or at least to illustrate, uncertainties (IPCC, 2001) 

(see also Figure 2). Ensembles can also be used to derive probabilistic 

information on climate change in a region (Kjellström et al., 2011; Déqué & 

Somot, 2010). Ensemble modelling is common practice in weather forecasting 

and is widely adopted by the climate modelling community (e.g. IPCC, 2013a; 

van der Linden & Mitchell, 2009). For climate change impact studies, it is 

recommended to include an ensemble of climate models, especially GCMs 

(Maraun, 2012; IPCC, 2001); even a multi-model ensembles of both climate 

models and impact models (Teutschbein & Seibert, 2010) can be used. 

3.2 Pesticide Fate in Soils 

Pesticides found in ground- or surface water originate from both point sources 

(e.g. spills, accidents, sewage treatment plant effluent) and non-point (diffuse) 

sources arising from normal field application. Point sources may account for 

20-80% of pesticide loadings in surface waters (Holvoet et al., 2007), but are 

of less concern for groundwater. However, if groundwater is polluted, it may 

last very long. In this thesis, only non-point source pollution from agricultural 

land was considered.  

Non-point source pollution of surface water occurs mainly due to surface 

runoff, drainflow and spray drift and to a lesser extent due to atmospheric 

deposition and groundwater seepage (Brown & van Beinum, 2009; Holvoet et 

al., 2007). The main input pathway to groundwater is leaching through soils, 

while re-infiltration of surface water is a minor contributor to groundwater 

pollution (Balderacchi et al., 2013). The major processes and pathways are 

presented in Figure 3. 
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Figure 3. Sketch of the fate and transport of pesticides in agricultural soils. 

Losses of pesticides to surface water are typically <2% of the amount applied 

in the catchment (Capel et al., 2001; Kreuger, 1998). Losses to tile drains or 

groundwater are usually between <0.1 and 1% of the applied amount, but may 

occasionally exceed this (Brown & van Beinum, 2009; Kladivko et al., 2001; 

Flury, 1996). If heavy rain occurs shortly after pesticide application, losses of 

up to 5% or 10% of the dose have been observed for leaching to groundwater 

(Flury, 1996) and tile-drains (Brown & van Beinum, 2009; Kladivko et al., 

2001).  

3.2.1 Fate and Transport Processes 

Pesticides are subject to microbial or chemical degradation and can sorb to 

clay, organic matter, and iron or aluminium oxides. These processes depend on 

both temperature and soil moisture and affect the availability of pesticides for 

transport with the soil water (Figure 3). Water flows in the soil matrix, but also 

as non-equilibrium preferential flow through pathways that only occupy a 

limited part of the soil (e.g. structural macropores;  Jarvis, 2007; Worrall et al., 

1997).  
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Preferential flow can accelerate the transport of pesticides through the 

unsaturated zone to underlying groundwater or surface waters via subsurface 

drains (Jarvis, 2007; Kladivko et al., 2001; Flury, 1996; Brown et al., 1995) 

and explains why pesticides can be found in ground- or surface waters much 

earlier than expected according to the classical theory of equilibrium water 

flow and solute transport (Larsbo, 2005). Preferential flow can, however, also 

prevent leaching of mobile substances: with the first rainfall event after 

application, they might be washed into the soil matrix and, thus, might not be 

available for macropore transport afterwards (Larsson & Jarvis, 2000; Shipitalo 

et al., 1990). The potential for non-equilibrium (macropore) water flow and 

solute (pesticide) transport at any site depends on the nature of the macropore 

network, which is determined by factors that affect soil structure formation and 

degradation, including the abundance and activity of soil biota (e.g. 

earthworms), soil properties (e.g. clay content), site factors (e.g. slope position, 

drying intensity, vegetation) and management (e.g. cropping, tillage, traffic) 

(Jarvis et al., 2013; Jarvis, 2007). Rainfall patterns have been shown to play an 

important role for rapid transport of pesticides (McGrath et al., 2010) and the 

relative timing of rainfall events in relation to pesticide application are 

especially relevant for drainage losses (Lewan et al., 2009; Nolan et al., 

2008; Capel et al., 2001), especially on structured soils (Johnson et al., 

1996).  

Surface runoff is often considered a major pathway for pesticide losses to 

surface waters, especially for strongly adsorbing compounds, which are 

transported primarily in particulate-bound form (Holvoet et al., 2007; Kladivko 

et al., 2001; Wauchope, 1978). Particle-bound pesticides can also leach 

through soil macropores (Worrall et al., 1999). However, these pathways were 

not further analysed in this thesis. 

Many factors influence the fate of pesticides used in agriculture, many of 

which are interrelated (Balderacchi et al., 2013) and influenced by climate. Site 

properties include land-use and soil type. The physicochemical properties of 

the pesticide not only influence the availability for transport, but are also a 

major factor determining the dominant transport pathways (Worrall & Kolpin, 

2003). Weakly sorbed compounds are commonly transported in the soil matrix, 

moderately sorbed pesticides are more prone to macropore flow (McGrath et 

al., 2010), while strongly sorbed pesticides might only be transported in 

particulate-bound form, either through macropores (Worrall et al., 1999) or via 

surface runoff and erosion (Wauchope, 1978). Key agronomic practices that 

affect pesticide fate and transport include application timing and dose (e.g. 

paper III), tillage practices (Alletto et al., 2010), crop rotations (Balderacchi et 

al., 2008) and organic matter management (Larsbo et al., 2009b).  
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3.2.2 Modelling Pesticide Fate and Transport 

Models enable us to integrate knowledge on a specific system and to generalize 

concepts and results. They can be used to explore complex interactions, new 

environments or future conditions. Many models are available to simulate the 

fate and transport of pesticides in soils (Köhne et al., 2009; Siimes & Kämäri, 

2003; Jarvis, 2001). For the registration of pesticides at European and Swedish 

national level, one-dimensional models are used to evaluate the risks of 

groundwater or surface water contamination with pesticides. Only a limited 

number of models are used for these purposes, of which MACRO (Jarvis & 

Larsbo, 2012; Larsbo & Jarvis, 2005), described in chapter 4.2.2, is currently 

the only one that explicitly accounts for macropore flow
2
. Simulations that do 

not account for preferential flow will significantly underestimate leaching in 

structured soils (Moeys et al., 2012; Herbst et al., 2005).  

As mentioned above, the major processes affecting pesticide availability for 

transport through soils are temperature dependent. According to Paraíba et al., 

(2003), failure to account for temperature effects on pesticide degradation and 

sorption processes significantly affects the outputs of pesticide leaching models 

with regard to risks of groundwater or surface water pollution. Models 

commonly only account for temperature dependent degradation, whereas the 

temperature dependence of sorption and diffusion is usually neglected (Tiktak, 

2000). In assessing climate change impacts on pesticide fate and transport, it is 

especially important to evaluate the effect of temperature dependent processes 

on the outputs. The available mathematical descriptions of temperature 

dependent sorption are (to my knowledge) only valid for linear sorption. 

Nevertheless, temperature dependent sorption and diffusion were included in 

the current version of MACRO for the purpose of this thesis as described in 

chapter 4.2.2. 

3.2.3 Regional Scale Modelling 

Regional scale modelling tools for pesticide fate and transport have been 

developed by coupling one-dimensional leaching models with geographic 

information systems (GIS), which may include several data layers describing, 

for example, crop and soil distributions (McGrath et al., 2010; Holvoet et al., 

2007; Sood & Bhagat, 2005; Corwin & Wagenet, 1996). Pesticide leaching 

models range from simple models such as indicator or Attenuation Factor 

based (Rao et al., 1985) models to physically-based dual-permeability models 

such as MACRO. As it is difficult to parameterize complex models due to lack 

                                                        
2. This statement only refers to the FOCUS-versions of the pesticide fate models used for 

registration procedures. The research version of, for instance, the PEARL-model also includes 

preferential flow routines. 
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of data and the natural variability of soil properties in the landscape, simple 

models have often been preferred for large-scale assessments (McGrath et al., 

2010; Loague et al., 1990). Nevertheless, complex preferential flow models 

have previously been implemented in GIS approaches for groundwater 

vulnerability assessments (e.g. Sinkevich et al., 2005) and used in a GIS-

context for studying the effects of crop rotations on leaching risks (Balderacchi 

et al., 2008). The model tool MACRO-SE was used in the regional scale study 

described in paper III, which is based on a coupling of the one-dimensional 

pesticide fate model MACRO with GIS data and automated parameterization 

routines. 

Several watershed-scale hydrological models have been developed that 

account for water quality and non-point source pollution (see e.g. Moriasi et 

al., 2012; Quilbé et al., 2006; Borah & Bera, 2003). Very few models, 

however, account for macropore processes in a spatially distributed way for an 

entire catchment. One example is MIKE SHE/DAISY, a coupling between the 3D 

watershed model MIKE SHE (Abbott et al., 1986a; 1986b) and the 1D agro-

ecosystem model DAISY (Abrahamsen & Hansen, 2000). Christensen et al. 

(2004) used MIKE SHE/DAISY and concluded that point-scale macropore 

processes were dominating processes for pesticide leaching at catchment scale, 

but not important for groundwater recharge and discharge. Furthermore, they 

noted that it might be sufficient to perform several single column simulations 

rather than running a comprehensive 3D model, if spatial and temporal 

variations in the groundwater depth in a catchment are adequately represented 

by the range of columns simulated.  

At regional scales, the availability of suitable geographic input of soil, crop 

and climate data as well as the reliability of pedotransfer functions (PTFs) are 

important aspects. Additionally, information on pesticide use at an appropriate 

spatial resolution is essential (see Miraglia et al., 2009; Boxall et al., 2008). 

The (automated) parameterisation of the entire modelled region poses 

challenges and constitutes a large source of uncertainty. Furthermore, there are 

serious difficulties in validating such modelling approaches arising, for 

instance, from differences in the spatial and temporal scales of simulation 

outputs and measurements. This is discussed in paper III. Nevertheless, some 

watershed models have been tested (Holvoet et al., 2007), at least for discharge 

predictions and water table level (e.g. Christiansen et al., 2004) or against 

pesticide concentrations obtained by grab samples (Beernaerts et al., 2005). 

Uncertainty analyses for regional scale assessments have been performed for 

GIS-based tools coupled with simple models (Loague et al., 2012; Stenemo et 

al., 2007; Loague, 1991) and for fully distributed models (e.g. Van den Berg et 

al., 2012; Heuvelink et al., 2010). 
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3.2.4 Uncertainty Analysis 

Uncertainty in model predictions arises from many sources: driving data (e.g. 

weather or climate data), parameter values due to measurement errors or 

uncertainty in background supporting data used to estimate model parameters 

by pedotransfer functions (PTFs; Bouma, 1989) , model structure (e.g. unknown 

processes, processes erroneously described or incompletely implemented), 

boundary conditions, unknown or incorrect initial conditions and modeller 

subjectivity (e.g. interpretation of input data or results; Boesten, 2000). In this 

thesis, uncertainty in the climate input data is merged with uncertainty in the 

generation of climate scenarios as described above. The uncertainty inherent in 

the predictions of the impact model is also part of the cascade of uncertainty 

described earlier. A detailed overview of the different sources of uncertainty in 

pesticide fate modelling is given in Dubus et al. (2003b) and those aspects 

which are relevant for this thesis are summarized in papers I and II. 

An uncertainty analysis is essential for a reliable quantification of pesticide 

losses. Refsgaard et al. (2007) gives an overview of various methods for 

uncertainty assessments. Sensitivity analyses often serve as basis for estimating 

parameters and for uncertainty analysis. For many pesticide leaching models, 

parameters related to degradation and sorption are the most sensitive 

(Heuvelink et al., 2010; Cheviron & Coquet, 2009; Dubus et al., 2003a). In 

addition, parameters governing the generation of macropore flow and mass 

exchange between macropores and the soil matrix are of particular importance 

for preferential flow models like MACRO (Dubus & Brown, 2002).  

Monte-Carlo methods are uncertainty assessment methods with stochastic 

application of deterministic models (Soutter & Musy, 1998). These methods 

calculate the distribution of the model output for a large number of realisations 

(deterministic simulations) with selected parameters (or input data) randomly 

sampled from prior distributions (Refsgaard et al., 2007). Monte-Carlo-

Markov-Chain methods update the prior distributions step-wise and search 

through the parameter space in a systematic and computationally efficient way, 

while making use of an explicit description of the error-model. Vrugt et al. 

(2009) summarized these approaches as formal Bayesian approaches.  

The Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven 

& Binley, 1992), on the other hand, is considered as an informal Bayesian 

approach, because the distinction between ‘behavioural’ and ‘non-behavioural’ 

parameter sets is subjective and different types of performance criteria 

(informal likelihood measures) can be used (Vrugt et al., 2009; Smith et al., 

2008). GLUE is built on the philosophy that a strong assumption concerning the 

structure of the error model cannot be justified given the epistemic uncertainty 

of model structures in environmental models (Beven, 2006; Beven & Binley, 
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1992). Epistemic uncertainty refers to the uncertainty due to imperfect 

knowledge, which can potentially be reduced by more research and empirical 

data collections (Curry & Webster, 2011; Walker et al., 2003). It is in contrast 

to uncertainty due to inherent variability or randomness (also called ontic or 

aleatory uncertainty; Curry & Webster, 2011). Despite intense discussion in the 

scientific literature on the advantages and disadvantages of the different 

philosophies (see e.g. Honti et al., 2014; Vrugt et al., 2009; Beven et al., 2008; 

Mantovan & Todini, 2006), both methods seem to give similar results (Vrugt et 

al., 2009; Beven et al., 2008). The parameter identification method applied in 

paper I and II was based on GLUE, as it is conceptually simple, easy to 

implement and simulations can be easily run in parallel to reduce total 

simulation times (Vrugt et al., 2009).  

3.3 Direct and Indirect Effects of Climate Change on Pesticide 
Leaching 

Climate change may affect the leaching of pesticides to ground- and surface 

waters both directly and indirectly. In the context of this thesis, direct effects 

summarize the natural responses of the soil-ecosystem to changes in climatic 

variables (mainly temperature, precipitation and potential evapotranspiration). 

Indirect effects refer to any changes in the use, fate and transport of pesticides 

that are triggered by human activities in response to climate change. Some 

changes can, thus, be considered either direct or indirect depending on the 

cause of the change (e.g. changes in soil organic carbon content). 

3.3.1 Direct Effects 

The direct effects of climate change on the leaching of pesticides are diverse 

and often contrasting. Table 1 summarizes the processes and transport 

pathways relevant for this thesis and the climatic drivers projected to be 

relevant for Sweden in a future climate (Kjellström et al., 2014). Some effects 

are rather strong (e.g. faster degradation of pesticides), while others are rather 

weak (e.g. hydraulic conductivity for leaching to groundwater). For more 

details on how climate change might affect the source terms, transport 

pathways and receptors for pesticides, the reader is referred to the review by 

Bloomfield et al. (2006).  
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Table 1. Direct effects of climate change on processes affecting pesticide fate and transport in 

soils and potential implications for leaching of pesticides under Swedish conditions. “+” 

indicates an increase in leaching, while “-” indicates a reduction in leaching. 

Climatic 

driving force 

Processes and effects in the system Effect on 

pesticide leaching  

Increased 

temperature  

Faster degradation - 

Higher turn-over of organic matter (less sorption sites) + 

Greater litter input due to improved growth and 

increased soil organic matter content 

- 

Weaker sorption (for most compounds) + 

Faster diffusion leads to faster mass exchange between 

micro- and macropores and to less transport via 

macropores 

- 

More volatilization - 

Increased hydraulic conductivity + 

Increased potential (and actual) evapotranspiration 

leading to reduced drainflow and percolation 

- 

Increased winter 

temperatures  

Changes in freezing-thawing cycles that can lead to 

changes in soil structure (e.g. crack formation, 

aggregation) 

+/- 

Increased 

precipitation 

amount 

Increased volumes of drainflow/percolation + 

Faster degradation due to increased soil moisture - 

Reduced degradation, if soil moisture gets close to 

saturation 

+ 

Higher turn-over of organic matter (less sorption sites) + 

Higher 

precipitation 

intensities 

Preferential transport triggered more often + 

Longer drought 

periods 

Reduced degradation + 

Faster gas diffusion  - 

Higher rate of volatilization - 

Cracking of clay soils affects macropore flow + 

3.3.2 Indirect effects 

The indirect effects of climate change on pesticide leaching are many and 

diverse and only a few can be discussed here. Conditions for crop growth in 

Sweden are likely to improve in a future climate mainly due to an extended 

growing period and milder winters (Eckersten et al., 2008a). This is likely to 

change the cropping patterns and allow the cultivation of new crops (more 

maize, sunflower, grapes) and more autumn-sown crops (Harrison & 

Butterfield, 1996), which would require the use of pesticides adapted to these 

crops and conditions. It might also affect the timing of pesticide applications, 
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as sowing and harvest dates would be adapted to the growing conditions 

(Olesen et al., 2012; Trnka et al., 2011; Eckersten et al., 2008b). However, the 

extent to which the soils are trafficable earlier in spring depends not only on 

temperature, but also on soil moisture conditions and the preceding rainfall 

amounts (Earl, 1997).  

Warmer winters would favour the survival of pests and accelerate the 

development of weeds (Patterson et al., 1999), which would lead to an 

increased need for plant protection, which could result in an increased use of 

pesticides (larger area sprayed or more frequent sprayings). Furthermore, the 

reduced efficiency of pesticides could require increased use (Bailey, 2004), as 

well as enhanced development of resistances against pesticides. The 

relationship between climate change and pesticide usage has been analysed for 

U.S. conditions with the conclusion that pesticide usage and the costs related to 

it are likely to increase in a future climate, partly due to increased inter-annual 

climate variability (Koleva et al., 2010; Koleva & Schneider, 2009; Chen & 

McCarl, 2001).  

Other indirect effects of climate change include socio-economic factors and 

political decisions (e.g. reduced pesticide use; Hossard et al., 2014), which are 

typically difficult to assess as they are uncertain and might change rapidly, 

while having a strong impact on the agricultural system (Delcour et al., 2015; 

Bloomfield et al., 2006).  

3.3.3 Previous Quantitative Assessments 

Although the likely effects of climate change on pesticide losses to water 

recipients are qualitatively rather well understood, few studies have attempted 

to quantify these impacts. Beulke et al. (2007) analysed the impacts of climate 

change on the leaching of three representative pesticides to surface water via 

tile-drains. Their study suggested that losses of autumn-applied pesticides are 

likely to increase in the future resulting from increased volumes of drainflow 

and runoff and increased rain intensities in critical events. They accounted for 

some of the indirect effects of climate change (changes in crop development, 

application time, dose and frequency) and suggested that these and others 

could have larger impacts on leaching than the direct effects.  

In a similar study, Henriksen et al. (2013) simulated the impact of climate 

change on the leaching of several different pesticides to groundwater and 

surface water for two different field sites and catchments in Denmark. They 

evaluated two different agricultural production systems and accounted for 

typical crop rotations and pesticide usage for present and future conditions 

based on estimates from locations further south in Europe (known as the 

analogue method or space-for-time substitution). Their results clearly indicate 
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the complex interplay of different factors that makes it difficult to draw general 

conclusions. Nevertheless, it seemed that both the direct and the indirect effects 

of climate change were stronger for loamy soils than for sandy soils, for which 

the effects were minimal or negligible. Depending on pesticide properties, 

projected increases in leaching were negligible for strongly sorbed herbicides, 

minor for ordinary herbicides such as MCPA or clopyralid and more 

pronounced for the newer low-dose herbicides such as florasulam. The 

catchment scale assessment they performed with MACRO coupled to MIKE-SHE 

showed that simulated pesticide concentrations were influenced by dilution in 

surface and groundwater and varied with soil and pesticide properties. 

Kattwinkel et al. (2011) analysed the exposure of aquatic organisms to 

insecticides in a future climate at a European scale. They also accounted for 

changes in land-use and pesticide usage based on space-for-time substitution. 

They identified the insecticide application rate as the main driver for a change 

in the ecological risk and concluded that the combined impact of climate 

change was larger than direct or indirect effects considered separately.  

Two recent studies focused on direct effects of climate change and 

evaluated the uncertainty in such estimations. Ahmadi et al. (2014) performed 

a modelling study with the SWAT-model for a watershed in the US and 

evaluated the impacts of climate change on fate and transport of the herbicide 

atrazine. Variability and uncertainty increased in a future climate and changes 

in total atrazine loadings differed depending on the emission scenario 

(increases for the A2 scenario, no changes for A1B and B1). In a Monte-Carlo 

uncertainty analysis, Kong et al. (2013) assessed the effects of input 

uncertainty and variability on the modelled fate of the persistent organic PCBs 

(polychlorinated biphenyl) in the light of climate change. They concluded that 

the relative changes in concentrations in the soil and water bodies were 

dominated by climate uncertainty, while variation in degradation rates 

dominated the projections of the absolute values of those model outcomes. 
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4 Materials and Methods 

4.1 The Study Set-ups 

A unique combination of “climate-crop-pesticide-soil” forms the base 

simulation unit in all three studies (see also Figure 1). Pesticide fate 

simulations for this base-unit were run with MACRO for present climate 

conditions (1970-1999) and for a future climate representing the period 2070-

2099. Each 30-year period was simulated with a preceding warm-up period of 

6 years, the results of which were excluded from the analyses. The field scale 

studies accounted for the direct 

effects of climate change and 

analysed the role of model 

structural differences (paper I) 

and climate input uncertainty 

(paper II) in relation to parameter 

uncertainty. In both papers, 

accumulated losses of pesticides 

to surface waters via tile-drains 

were simulated at the field site in 

Lanna (Figure 4). Both direct 

effects and indirect effects of 

climate change on the leaching of 

herbicides to groundwater were 

assessed at the regional scale for 

a major crop production region in 

Scania (Figure 4) focusing on 

concentration in leachate (paper 

III).  
 
Figure 4. Map of Sweden, where the sites 

and crop production regions that are 

relevant for this thesis are marked. 

Västra 

Götaland

Halland

Scania
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4.2 Field Scale  

The studies reported in paper I and II were set-up in a similar way and are 

therefore presented together here. In a first step, MACRO was calibrated against 

comprehensive field data from the field site at Lanna (Figure 4). This resulted 

in an ensemble of acceptable parameter sets, which was used in a second step, 

to run “prediction scenarios” of hypothetical compounds with different degrees 

of sorption strength leaching to field drains under present and future climate 

conditions. 

4.2.1 Site 

The field site at Lanna is located in the county of Västra Götaland in the south 

west of Sweden (see Figure 4). The soil is a silty clay (see Table 1 in paper I, 

II) that had been under no-tillage practice since 1988. In terms of pesticide 

leaching via preferential flow to drains, this soil represents a worst-case 

scenario, since it has a strongly developed and stable aggregate structure and 

abundant earthworm biopores. The field plot is 0.4 ha in size and tile-drained at 

1 m depth and 13 m spacing. The field experiment was performed between 

October 1994 and December 1995 (Larsson & Jarvis, 1999). The weakly 

sorbed herbicide bentazone (2.5 kg ha
−1

) was applied simultaneously with 

potassium bromide (44.4 kg Br
-
 ha

-1
; non-reactive tracer) on bare soil on 

October, 18
th
 1994. During the summer of 1995, spring-sown rape (Brassica 

napus L.) was grown. Drainflow and flux concentrations of bentazone and 

bromide were recorded continuously, while measurements of water content, 

resident bentazone and bromide concentrations in the soil were obtained from  

1 m deep soil cores taken on 3-5 occasions during the experimental period. 

8.5% of the applied amount of bentazone was lost to tile drains, 10.5% 

remained in the soil on the last measurement occasion, while the rest was either 

degraded or leached below the depth of measurements. Of the applied bromide, 

31% was recovered in the drainflow, 22% was left in the soil at the end of the 

experiment and the remaining 47% was lost in deep percolation or in lateral 

shallow groundwater flow (Larsson & Jarvis, 1999).  

4.2.2 Impact Model: MACRO 

MACRO is a one-dimensional physically-based model that simulates water 

flow and solute transport in structured soils and explicitly accounts for non-

equilibrium macropore flow with a dual-permeability approach. For a 

detailed description of the current version MACRO 5.2, see Jarvis & Larsbo 

(2012) and Larsbo et al. (2005). MACRO has been mainly used to simulate the 

impact of macropore flow on pesticide leaching (Jarvis & Larsbo, 2012), but it 

has also been used to simulate leaching of other solutes, such as 
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pharmaceuticals (e.g. Larsbo et al., 2009a) and heavy metals (e.g. Moradi 

et al., 2005). MACRO is driven with weather or climate data and crop growth 

is described with a simple approach. A complete water balance is simulated 

with root water uptake calculated using the model described by Jarvis 

(1989), flow and transport to drainage systems calculated by the 

Hooghoudt equation and seepage potential theory, and potential 

evapotranspiration is estimated with the Penman-Monteith equation 

(Larsbo & Jarvis, 2003).  

Water flow in the soil matrix is calculated with Richard’s equation and 

solute transport follows the convection-dispersion equation. Preferential 

flow in macropores is assumed to be gravity-dominated and modelled with 

the kinematic wave equation. The saturated hydraulic conductivity of the 

soil matrix (Kb [mm h
-1

]) governs the partitioning of water flow between 

matrix and macropore systems. The exchange of water and solutes between 

the two pore systems via diffusion and convection is controlled by the 

diffusion pathlength (d [mm]), a proxy parameter for the unknown 

geometry of soil macropore structure (Gerke & Van Genuchten, 1996).  

Pesticide degradation is described by first-order kinetics, with the rate 

coefficient (µ; where µ = ln(2) divided by the half-life DT50 [days]) given as a 

function of soil temperature, according to the Arrhenius equation (Boesten & 

Van der Linden, 1991) and moisture content, following a modified Walker 

function (Walker, 1974). Sorption can be described with a linear isotherm or 

a non-linear Freundlich isotherm. In papers I and II, a linear sorption 

isotherm was used, with the sorption coefficient Kd [ml g
-1

] governing the 

partitioning of pesticides between solution and sorbed phase. As input to 

models like MACRO, the Koc [ml g
-1

] is typically used, which is the Kd value 

normalized for the organic carbon fraction of the soil (foc [-]) according to 

Wauchope et al. (2002). 

𝐾𝑜𝑐 =  
𝐾𝑑

𝑓𝑜𝑐
       [1] 

To study the effects of temperature on pesticide leaching in a future climate, 

optional functions were introduced into MACRO 5.2 to describe temperature 

dependent sorption and diffusion. The effect of temperature on sorption was 

simulated according to the van’t Hoff equation for linear equilibrium sorption 

with a constant sorption enthalpy (ΔHs = -30 kJ mol
-1

): 

𝐾𝑑 = 𝐾𝑑𝑟𝑒𝑓
 exp [

−𝛥𝐻𝑠

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)]     [2] 

where Kd,ref is the sorption coefficient at reference temperature Tref (20°C), T is 

the temperature [K] and R denotes the molar gas constant (=8.314 J K
-1

 mol
-1

).  
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Figure 5. The effect of temperature on sorption (sorption coefficient Kd) for a compound with a 

negative sorption enthalpy of -30 kJ mol
-1

 and diffusion (molecular diffusion coefficient in water 

DT) as implemented in the model.  

Temperature dependent diffusion was calculated as a function of viscosity at 

reference and actual (soil) temperatures and implemented as follows based on 

Korson et al. (1969) and Hayduk & Laudie (1974):  

D𝑇 = 𝐷𝑟𝑒𝑓 (
𝜂𝑟𝑒𝑓

𝜂20
)

1.14
(10((𝐵(𝑇−20)2−𝐴(20−𝑇)) (𝑇+𝐶) )∗1.14⁄ )  [3] 

where DT and Dref are the diffusion coefficients of the specific chemical in 

water at any temperature and at the reference temperature of 25°C (= 5*10
-10

 

m
2
 s

-1
; FOCUS, 2000), ηref (=0.8904 g m

-1
 s

-1
) and η20 (=1.002 g m

-1
 s

-1
) are the 

viscosities at 25°C and 20°C, respectively, A=1.1709, B=0.001827, and 

C=89.93°C. Paper I presents further details.  

The effect of temperature on sorption and diffusion is illustrated in Figure 5 

following equations 2 and 3, respectively. Implementation of these functions 

allowed the choice of four structurally different model versions (MVs; see 

Figure 6).  

4.2.3 Calibration  

Figure 6 summarizes the approach used to calibrate the model and to identify 

an ensemble of acceptable parameter sets for MACRO that describes the 

observations sufficiently well. The approach is based on the GLUE-

methodology described by Beven and Binley (1992). The basic principle is to 

run simulations with different sets of parameter combinations and evaluate 

their performance with respect to the measurements, in this case the field 

experiment described above. In order to test different model structures, we 

calibrated each of the four model versions (MVs) separately against the 

measurements (paper I). For paper II, we applied the same approach but only 

for MV4 with some modifications as mentioned below.  
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Figure 6. Sketch of the procedure to identify an ‘Ensemble of acceptable Parameter 

Combinations’ (EPC) for the four structurally different model versions (MVs) of the MACRO-model 

(paper I). TD stands for temperature dependent. For paper II, a slightly modified procedure was 

performed with only MV4, a reduced number of combinations (40000) and a criteria of 

acceptance that required an EF>0 for all 6 different types of observations.  

Four sensitive parameters in MACRO were included in the procedure based on 

previous sensitivity and uncertainty assessments (Larsbo & Jarvis, 2005; 

Dubus et al., 2003a): the degradation rate coefficient (µ), the sorption 

coefficient (Koc), the diffusion pathlength (d), and the saturated matrix 

hydraulic conductivity (Kb). Values for topsoil and subsoil were sampled 

independently, which resulted in 8 uncertain parameters. 80000 and 40000 

different parameter combinations were tested for papers I and II, respectively. 

Application date, application dose, soil properties and crop information were 

set according to measurements at the field site or previous calibrations of the 

model against the data (Larsbo & Jarvis, 2005; Larsson & Jarvis, 1999). The 

simulations were driven by on-site recorded meteorological time series of 

hourly precipitation, and daily data of temperature, solar radiation, wind speed 

and relative humidity.  

The performance of the different parameter sets was evaluated based on the 

model efficiency (EF) (or Nash-Sutcliff criteria; Nash & Sutcliffe, 1970), with  

𝐸𝐹𝑖 =
∑ (𝑂𝑖𝑗− �̅�𝑖 )

2𝑛
𝑗=1 −∑ (𝑂𝑖𝑗−𝑃𝑖𝑗)

2𝑛
𝑗=1

∑ (𝑂𝑖𝑗−�̅�𝑖)
2𝑛

𝑗=1

     [4] 

where i denotes the different types of observations, n is the number of 

observations in each group, Oij and Pij are the observed and simulated values 

and �̅�𝑖 is the average of the observations for each group.  
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GLUE

1-year observations:  
water content, 

drainflow, 
bromide & bentazone 

concentration in 
drainflow and in soil

• 8 parameters:
Kb, d, µ, Kf oc 

for topsoil and subsoil 
• 80000 combinations
• Uniform distribution

Performance measure: modelling 
efficiency (EF) 

Criteria of acceptance: EF>0 for 5 
different observation types

2EPC-1

MV1 MV2 MV3 MV4

TD diffusion

TD sorption
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The criterion relates the variation in the observations to the variation in the 

simulations. It gives a value between – and 1, where a value greater than zero 

means that the simulations are better predictors than the average of the 

measurements. All available measurements were included, i.e. measurements 

of dynamic fluxes and state variables, each of which produced one EF-value. 

Those simulations that gave EF-values larger than zero for all observation types 

were defined as acceptable. In paper I, bromide flux concentration data was 

excluded from this criterion because no parameter combination gave good 

simulations of both bromide flux concentration and bentazone resident 

concentration. For paper II, the prior ranges for Kb in top- and subsoil were 

narrowed in relation to the total number of samples taken, which gave a 

sufficient number of parameter combinations in the relevant range and much 

better simulations of bromide concentration in drainage. 

4.2.4 Prediction Scenarios 

The calibrated ensemble of parameter sets was used to test different prediction 

scenarios under present and future climate conditions. We simulated six 

different pesticide application scenarios (PAS’s) defined as a unique 

combination of a certain pesticide compound (with its specific properties) 

applied on a crop with a particular dose at a certain time of the year. We tested 

three hypothetical compounds differing in their sorption strength
3
, which were 

derived by multiplying the calibrated Koc values with the factors given in  

Table 2. Pesticides were applied in spring (May, 1
st
 to May, 16

th
) or in autumn 

(September, 29
th
 to October, 15

th
) at a fixed annual application rate            

(0.45 kg ha
-1

) on winter cereals. 

Table 2. Overview of the pesticide application scenarios simulated in papers I and II for present 

and future climate conditions. The calibrated Koc-values were multiplied by the given Koc-factors.  

Scenario  Sorption properties Application Season Koc-factor 

WsSpr  
weakly sorbed 

spring  
1 

WsAut  autumn 

MsSpr  
moderately sorbed 

spring 
10 

MsAut  autumn 

SsSpr  
strongly sorbed 

spring 
50 

SsAut  autumn 

 

  

                                                        
3
 see also Figure 9 in 4.3.3. 
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For present conditions, climate data from the weather station in Såtenäs 

(58°26’N, 12°41’E, see Figure 4) was used, which is considered representative 

for the crop production region Västra Götaland. For future climate conditions, 

time series were generated with the simple delta-change method (see 3.1.2 and 

paper II). Thus, monthly average change factors were calculated for 

temperature, precipitation and solar radiation from the climate model 

projections (Table 3) and applied to systematically change the present climate 

time series. Additive change factors were used for temperature and solar 

radiation and multiplicative ones for precipitation (Figure 2). Wind speed and 

relative humidity were kept unchanged. In the case of wind speed, this was 

because projected changes are rather small and do not show systematic patterns 

(Kjellström et al., 2014; Kjellström et al., 2011), while models and 

experiments suggest that relative humidity will be unaffected in a future 

climate (Bengtsson, 2010). In paper I, only one climate scenario was included 

(CS9), while paper II included all nine climate scenarios (Table 3).  
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Table 3. Overview of the climate model projections forming the basis of the climate scenarios 

used in this thesis. SRES stands for the emission scenarios as described in Nakićenović & Swart 

(2000) and GCM for global climate model. All GCMs were dynamically downscaled by the regional 

climate model (RCM) developed by the Swedish Meteorological and Hydrological Institute, called 

RCA3 (Samuelsson et al., 2011). For the ECHAM5-model, three simulations differing only in the 

initial states (denoted with r1, r2, r3) were used. References to the individual GCMs are given in 

paper II. 

GCM Short information about the GCM SRES 

(initial 

state) 

Climate 

Scenario 

Paper 

I II III 

BCM Bergen Climate Model is a coupled 

atmosphere–ocean–sea ice model consisting of 

the atmospheric model ARPEGE/IFS and a 

global version of the ocean model MICOM 

(Furevik et al., 2003). 

A1B CS1  x x 

CCSM3 Community Climate System Model is a coupled 

climate model for simulating the earth's climate 

system. It was created by the National Centre 

for Atmospheric Research (CO, USA), as a 

freely available model for the wider climate 

research community (CESM, 2015). 

A1B CS2  x x 

HadCM3Q0 Hadley Centre Coupled Model, version 3 is a 

coupled climate model developed at the Met 

Office Hadley Centre, UK (MetOffice, 2015). 

The model is run on a 360-day year, i.e. 12 

months with 30 days each.  

A1B CS3  x x 

IPSL The IPSL Earth System Model was developed 

by the Institute Pierre Simon Laplace in France 

in a modular way with model components of 

the Earth system that can be used as standalone 

models or coupled to each other (IPSL, 2015). 

A1B CS4  x x 

ECHAM5 The 5th generation of the ECHAM general 

circulation model, which was developed by the 

Max Planck Institute for Meteorology, 

Hamburg, Germany. It originates from 

developments based on the global numerical 

weather prediction model of the European 

Centre for Medium-Range Weather Forecasts 

(MPI-MET, 2015).  

A1B (r1) CS5  x x 

A1B (r2) CS6  x  

A1B (r3) CS7  x  

B1 (r1) CS8  x  

A2 (r1) CS9 x x  

 

  

http://en.wikipedia.org/wiki/Hadley_Centre
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4.3 Regional Scale 

Field-scale studies can provide insights into processes that will affect pesticide 

leaching under climate change, but a proper appreciation of the likely overall 

impacts requires analyses at larger spatial scales such as catchments or regions. 

Figure 7 gives an overview of the methodology adopted for the regional scale 

study reported in paper III, which analysed both direct and indirect effects of 

climate change on herbicide leaching to groundwater. 

 
Figure 7. Sketch of the regional scale project. For each combination of climate, soil type, and 

pesticide application scenario (PAS), MACRO-SE parameterizes and runs simulations that produce 

field-scale concentrations. In a subsequent step, risk maps for each PAS are produced that account 

for soil distribution, fractional crop coverage and area sprayed with the herbicide. All the 

individual risk maps are then combined to obtain aggregated herbicide concentrations. This is 

done for both present and for each of the five climate scenarios separately.  
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4.3.1 Study Region 

The study focused on the southern part of the GSS crop production region in the 

county of Scania (GSS are the southern plains of Götaland; see Figure 4). This 

region is a major Swedish crop production region with agricultural land 

comprising 61% of the area, which is very high compared to the Swedish 

average of 7.6%. Scania contributes 50% of the total agricultural production in 

Sweden (SJV, 2014) on roughly 20% of the agricultural land with 60% of the 

national pesticide use (SCB, 2011). The dominant soils in Scania are developed 

in quaternary moraine (till) deposits. The climate in the simulated region is 

humid temperate with an annual precipitation of 706 mm and an annual 

average temperature of 7.8 °C (paper III, Table 1).  

4.3.2 Impact Model: MACRO-SE 

MACRO-SE is a regionalized version of MACRO 5.2 (see chapter 4.2.2), currently 

under development by the Centre for Chemical Pesticides (CKB) at the Swedish 

University of Agricultural Sciences (SLU). It combines soil maps, detailed 

information on land-use, crop area and climate data with a set of empirical 

pedotransfer functions (PTFs) and other parameter estimation routines (Moeys 

et al., 2012; Jarvis et al., 2007), which provide a complete parameterization of 

MACRO 5.2 for an entire region in Sweden (cf. Figure 7). A previous test of the 

PTFs showed that water recharge, the general temporal pattern of solute 

leaching and the ranking of soils according to preferential solute transport 

indicators was reasonably well predicted (Moeys et al., 2012).  

The soil classification in MACRO-SE is based on the FOOTPRINT soil type 

(FST) classification (Centofanti et al., 2008), but has been adapted to fit the 

available data for Swedish arable soils. The FST designation comprises four 

components: the soil hydrological class, the texture class in topsoil and subsoil, 

and the topsoil organic matter content class. The texture code is given by a 

number between 1 and 5 for coarse, medium, medium-fine, fine and very fine 

mineral soils, respectively (see also Figure 8), while bedrock in the subsoil is 

denoted with a 0 and peaty soils are denoted with a 6. The code for organic 

matter content (u, n, h, and t) represents topsoils with low (<3%), average (3-

5%), and high (>5%) organic matter contents, and peaty soils, respectively. 

Four hydrological classes are distinguished that define the dominant flow 

pathways and the bottom boundary condition for MACRO (Table 4). Classes W 

and Y have recharge to groundwater via percolation as well as discharge to 

surface water, class U only discharges to surface water, while class L only 

recharges to groundwater. As an example: Y24n denotes a soil with 

hydrological class Y (discharge and recharge), a medium textured topsoil (2), 

fine textured subsoil (4) and medium organic carbon content (n).  
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Table 4. Description of soil-geological conditions, modelled flow pathways and the definition of 

the bottom boundary condition in MACRO for the four hydrological classes in MACRO-SE. 

Hydrological 

class 

Landscape feature or position Flow pathways Bottom boundary 

condition in MACRO 

L soils with free drainage to deep-

lying groundwater 

Only percolation towards 

groundwater  

unit hydraulic gradient 

W soils with moderately permeable 

substrate; groundwater-table can 

reach into the soil profile, but not 

far 

recharge to groundwater 

dominates, but discharge 

to surface waters via 

lateral flow occurs 

percolation rate is 

defined as a linear 

function of the water 

table height 

Y soils with slowly permeable 

substrate; groundwater-table can 

reach far into the soil profile 

discharge to surface 

waters via subsurface 

drains dominates, but 

recharge to groundwater 

occurs 

percolation rate is 

defined as a linear 

function of the water 

table height 

U soils with impermeable substrate 

(i.e. very low hydraulic 

conductivity in the subsoil) or 

soils occupying low-lying 

discharge areas. 

only discharge to surface 

water via subsurface 

drains 

zero-flow 

The default parameterization of MACRO-SE was used for all soils in the region. 

This means that the default version of MACRO 5.2 (MV1) was used, which does 

not account for the effects of temperature on sorption or diffusion. Sorption 

followed a Freundlich isotherm defined by the organic carbon sorption 

coefficient Kfoc and the Freundlich exponent nf and pesticide degradation was 

simulated with first-order kinetics as in paper I and II. More details on the data 

input to MACRO-SE are presented in the supplementary material to paper III.  

4.3.3 Input Data 

Climate 

For present conditions, measured data from a representative weather station in 

Barkåkra (56°29’N, 12°85’E) was used for the entire region. For future 

conditions, five different climate model projections were used to generate the 

climate scenarios with the same delta-change approach used in the field-scale 

studies (see 4.2.4; CS1-CS5 as described in Table 3). The change factors varied 

between climate scenarios (Figure 2) with an annual increase in temperatures 

of 2 to 3.5 °C and increases in annual precipitation of 12 to 25% (paper III, 

Fig. 2 and Table 1).  
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Soil  

The GSS region in Scania is dominated by medium-textured soils with a clay 

content of 10-20% in the topsoil and locally high clay contents of up to 40%. 

The organic matter (OM) contents are low to medium in the region (58% with 

<3% OM, 39% with 3-5% OM and 3% with >5% OM). 34% of the arable soils 

within the GSS-region were classified as U-soils with no recharge to 

groundwater and were, thus, not relevant for the study. The 24 most common 

L, W and Y-soils (filled circles in Figure 8) were simulated, which together 

accounted for 97% of the arable area with recharge to groundwater (unfilled 

circles in Figure 8). As an illustrative comparison, the topsoil (0-30cm) texture 

class of the field site in Lanna is also marked in Figure 8.  

 

 
Figure 8. Topsoil texture triangle of the Soil Map of Europe, also called HYPRES texture triangle. 

The unfilled circles denote all soil types in the GSS region of Scania with recharge to groundwater, 

the filled dots are the 24 most common soils, which were included in paper III. The black star is 

the topsoil texture of the soil in Lanna (paper I and II). The letters mark the texture classes: 

C=coarse (FST-code 1), M=medium (FST-code 2), MF=medium-fine (FST- code 3), F=fine (FST-

code 4) and VF=very fine (FST-code 5). 
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Crop 

The eight most important crop types in southern Sweden (winter cereals, spring 

cereals, winter rape, sugar beets, peas, potatoes, maize, and spring rape) were 

simulated. Grassland was also included in the study, but no simulations were 

run as the grassland area was considered as un-treated, while the water balance 

for grass was approximated by that of winter cereals. The fractional coverage 

of each crop was derived from a field scale database held by the Swedish 

Board of Agriculture, with the data aggregated to the catchment scale (see 

paper III, Fig. S3 and Table S1). 

Pesticide application scenarios 

All herbicides that are currently allowed for use in Sweden on these eight crops 

were included, except for glyphosate and three additional compounds, for 

which the information was not sufficient to parameterize the simulations 

(bifenox, clomazone and picloram). The 37 herbicides (Figure 9) combined 

with the crops they are registered for use on, gave a total of 67 pesticide 

application scenarios (PAS’s). For each PAS, application date and dose as well 

as the fraction of the specific crop sprayed with the particular herbicide was 

obtained from long-term monitoring data gathered in two catchments that are 

part of the Swedish national environmental monitoring program for pesticides 

(see Figure 4). In the monitoring programs, pesticide residues in surface water, 

groundwater, stream sediment, and rain water are collected regularly 

throughout the year. Additionally, the farmers are interviewed each year to 

gather information about field size, crops grown, and pesticide usage (i.e. 

substance, application day and rate). The pesticide properties (Kfoc, DT50, nf) 

were taken from the Pesticide Properties DataBase of the University of 

Hertfordshire (PPDB, 2013). For the complete list of all PAS’s, including crop 

growth parameters, application dose and day of application, see Table S2 in 

paper III. 

The study was performed as a two-step procedure (cf. Figure 7). From each 

simulation for soil type i, crop j and herbicide k, predictions of accumulated 

percolation in a depth of 2 m (Wi,j [m]) and the corresponding accumulated 

pesticide mass (Li,j,k [mg m
-2

]) were obtained. For each location in the region 

(p), these results were aggregated to an overall concentration of herbicides 

leaching to groundwater (𝐶𝑝(𝑖)̅̅ ̅̅ ̅̅ ) that accounted for the fractional coverage of 

the crop (fcrop(j,p)), the fraction of the crop area sprayed with a particular 

herbicide (fsub(k,j)) and a factor for the relative changes in herbicide use 

compared to present conditions (find(j)): 

𝐶𝑝(𝑖)
̅̅ ̅̅ ̅̅ =

∑ ∑ (𝑓𝑐𝑟𝑜𝑝(𝑗,𝑝)𝑓𝑠𝑢𝑏(𝑘,𝑗)𝑓𝑖𝑛𝑑(𝑗)) 𝐿𝑖,𝑗,𝑘
𝑛𝑠𝑢𝑏𝑠
𝑘=1

𝑛𝑐𝑟𝑜𝑝𝑠
𝑗=1

∑ 𝑓𝑐𝑟𝑜𝑝(𝑗,𝑝) 𝑊𝑖,𝑗
𝑛𝑐𝑟𝑜𝑝𝑠
𝑗=1

   [5] 
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Figure 9. Pesticide properties for the simulated compounds in paper II and paper III. For the 

herbicides from paper III, the Kfoc values are given, although Koc is indicated in the axis label. 

4.3.4 Future Scenarios of Herbicide Use 

Three scenarios of herbicide use in a future climate were explored. For each 

scenario, the five climate scenarios described above (Table 3) were included to 

represent climate input uncertainty.  
 

 Scenario (A) only accounted for direct effects of climate change and 

assumed the cropping patterns and herbicide use to be unchanged compared 

to present conditions.  

 Scenario (B) accounted for changes in climate and land-use. Land-use 

changes were represented by changes in the relative fractions of crops 

grown in the future. The area of spring sown cereals and spring sown 

oilseed rape were reduced by 60 and 100%, respectively, and replaced by 

autumn sown cereals and oilseed rape in a ratio of 3:2. The area of 

grassland was reduced by 50% in favour of maize. 
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 Scenario (C) accounted for changes in climate, land-use and herbicide use. 

In addition to the changes for scenario (B), the expected increase in weed-

pressure is met by an increased use of herbicide. Change factors were 

calculated based on Wivstad (2010) and varied between 1.035 and 1.59 for 

the different crops, with an average increase of 45% (paper III, Table S1).  
 

Only a few of the many possible indirect effects (cf. 3.3.2) could be assessed in 

this study due to a limited computational capacity and incomplete knowledge. 

The factors included in the analysis were considered as very likely to be 

relevant in the future and sensitive for herbicide leaching at regional scales, 

and they allowed the parameterization of the simulations within the given 

modelling framework. This aspect is further discussed in section 5.4.  

4.3.5 Model Evaluation against Monitoring Data 

As discussed in paper III, a quantitative validation of MACRO-SE is difficult, so 

only a qualitative test of the regional scale modelling approach was performed. 

Simulations were compared with groundwater monitoring data to evaluate 

whether MACRO-SE could distinguish between leachable and non-leachable 

compounds. Results from four different monitoring campaigns in the region 

were available (see Figure 4): monitoring data collected from two catchments 

that are part of the Swedish national long-term environmental monitoring 

program for pesticides (CKB, 2014), monitoring campaigns carried out by the 

county boards in Scania (Virgin, 2012) and Halland (Löfgren & Tollebäck, 

2012) and analyses of private groundwater wells in Halland (Larsson et al., 

2013). Based on these monitoring results, each herbicide was classified as 

detected when it was found at least once in any of the groundwater samples 

taken in any of the studies. In order to compare measurements with 

simulations, the simulations were censored based on a typical limit of detection 

(LOD) of 0.01 µg l
-1

 and the herbicides were treated as virtual detects when 

simulated concentrations exceeded the LOD at any location in the area, and as 

virtual non-detects if simulated concentrations were always below the LOD. 





45 

5 Results and Discussion 

5.1 Field scale  

5.1.1 Calibration Results  

The comparison between the simulations with the ensemble of acceptable 

parameter combinations and the measured flux variables from paper II are 

shown in Figure 10. The corresponding results in paper I were similar for 

drainflow and bentazone concentrations in drainflow, but worse for bromide, 

partly because those observations were excluded from the performance 

criterion. The model failed to simulate the first peak of drainflow and 

consequently did not predict any solute transport in this period (papers I, II). 

This was most likely due to a lack of measurements below one meter depth, 

which led to wrong initial soil moisture conditions, especially with respect to 

the initial depth of the groundwater table. This is probably also the reason why 

the model underestimated the total amount of pesticide lost to drains 

(measured: 8.5%; simulated 3.1-6.2% of the applied dose). Nevertheless, the 

model described the remaining observations reasonably well. A comparison 

between simulated and measured state variables (water content, resident 

bromide and bentazone concentration in soils) showed that the variation in the 

replicated measurements was also reasonably well captured (paper I, Figs. 7-9).  
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Figure 10. Field observations (black dots) at Lanna, Västra Götaland, between October 1994 and 

December 1995 compared to model simulations (small grey dots) for (A) drainflow, (B) 

concentration of the herbicide bentazone in drainflow and (C) concentration of the non-reactive 

tracer Bromide in drainflow. Simulations with all 56 acceptable parameter combinations for paper 

II are displayed. 
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In paper I, a clear reduction in the posterior distributions was observed 

compared to the prior distributions for several parameters (paper I, Table 5). 

This is exemplified in Figure 11 for Koc, especially in the topsoil, while a 

greater degree of equifinality was found for the subsoil. Apart from a 

significant reduction in the posterior parameter ranges in the topsoil, a clear 

distinction between the optimum ranges for models that account for 

temperature dependent sorption (MV3, MV4) and those that do not account for 

it (MV1, MV2) was observed with smaller optimal Koc values in the former 

case (Figure 11).  

 

 
Figure 11. Performance of the parameter values for the sorption coefficient Koc for each of the 

four model versions (MV; see Figure 6) analysed in paper I. The modelling efficiency (EF) was 

obtained based on comparisons between simulations with the particular parameter values in the 

topsoil and subsoil and measurements of bentazone resident concentration in the soil. The range 

of values on the x-axis represents the prior parameter range. 
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5.1.2 Pesticide Losses under Climate Change 

Losses of pesticides to drains decreased with increasing sorption strength of the 

compounds and losses after spring application were generally lower than losses 

after autumn application for present and future climate (cf. Figure 12). This 

was observed independent of model structural version (paper I) or climate 

scenario (paper II).  

In paper I, losses of pesticide to drains after spring application decreased 

from the present to the future climate for all model versions and pesticide 

compounds with the exception of the SsSpr-scenario with the models 

accounting for temperature dependent sorption (MV3, MV4). In these cases, 

the changes were negligible and not consistent between parameter 

combinations (paper I, Table 7), since the effect of temperature on sorption 

counteracted the effect on degradation. Leaching after autumn applications 

increased in the future climate in all cases. This was mainly triggered by 

increases in winter precipitation, since losses were reduced when only changes 

in temperature were considered (Figure 12).  

 

 
Figure 12. Accumulated loss to tile-drains of the moderately sorbed pesticide after spring and 

autumn application for all model versions (MVs; Figure 6). The boxes mark the inter-quartile 

range, the black bar the median and the whiskers the 5
th
 and 95

th
 percentile of the results derived 

with the ensemble of acceptable parameter combinations. Results for present and future climates 

with changes in both temperature and precipitation (T&P) are presented. For autumn application, 

a future climate with only changes in temperature (T) is also shown.  
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In paper II, we showed that the direction and magnitude of change depended 

on the choice of the climate scenario for all PAS’s (paper II, Figs. 4 and 5). An 

ensemble of parameter sets and climate scenarios was used to make a 

probabilistic assessment of the direction of change of pesticide leaching in a 

future climate (Figure 13). The ensemble estimated a 70% chance that the 

losses of a weakly sorbed compound applied in spring would decrease in a 

future climate. For moderately and strongly sorbed compounds applied in 

spring, the likelihood of reduced or increased future losses was similar (50%). 

For autumn applications, the probability of an increase in leaching losses 

ranged from 50% for the weakly sorbed compound to 80% for the moderately 

and strongly sorbed compounds.  

 

 
Figure 13. Cumulative distribution function of the ensemble mean generated from all parameter 

sets and climate scenarios for changes from present to future for all pesticide application 

scenarios (PAS; as in Table 2): Ws denotes the weakly sorbed, Ms the moderately sorbed and Ss 

the strongly sorbed compound, while Spr stands for spring applications and Aut for autumn 

application. 
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5.1.3 Model Structural Differences vs. Parameter Uncertainty  

In Paper I, a statistical analysis using the Kolmogorov-Smirnov test showed 

that the effects of model structural differences could be distinguished despite 

large parameter uncertainty. It indicated that the dominant factor for 

moderately and strongly sorbed compounds was temperature dependent 

sorption, while temperature dependent diffusion was more important for 

weakly sorbed compounds. This demonstrated that the effect of temperature on 

sorption is higher for compounds with higher sorption strength.  

For the weakly sorbed compound, losses were smaller when temperature 

dependent sorption was accounted for (see paper I, Fig.10) as the typical daily 

average temperatures in Sweden are less than the reference temperature of 

20°C. However, for moderately and strongly sorbed compounds, the losses 

increased with the model accounting for temperature dependent sorption (cf. 

Figure 12). The most likely explanation for this is that stronger sorption of 

these compounds means that they stay close to the soil surface for longer, 

which increases the likelihood of losses via macropore flow (McGrath et al., 

2010; Larsson & Jarvis, 1999). 

As noted above, the direction of change of losses from present to future 

climate conditions was consistent among parameter sets and the same direction 

was predicted by all model versions for a given PAS with the exception of the 

SsSpr-scenario. The magnitude of change, however, was affected by the choice 

of model structure. Including temperature dependent sorption led to a relative 

increase of losses for all compounds (Figure 12), due to a reduction in sorption 

strength at higher temperatures (Figure 5).  

5.1.4 Climate Input Uncertainty vs. Parameter Uncertainty  

In paper II, the effects of parameter uncertainty in MACRO were compared with 

the effects of uncertainty in the model driving data derived from the climate 

model projections. The relative importance of these two sources of uncertainty 

was found to depend on whether absolute pesticide losses or changes in these 

losses between present and future climates are of interest. This is in accordance 

to findings by Kong et al. (2013) regarding the modelling of the fate of PCBs in 

the environment. Figure 14 demonstrates this difference for the weakly sorbed 

compound applied in spring. The effect of parameter uncertainty is 

demonstrated by the spread in the outputs for a given climate input data set (i.e. 

present or any climate scenario). The effect of climate input uncertainty is 

reflected by the spread between the nine climate scenarios, which is illustrated 

by the underlying grey area. The parameter uncertainty in this approach lumps 

all uncertainties related to the model (i.e. model structure, boundary conditions, 

parameters, etc.) and, thus, overestimates the pure parameter uncertainty 
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(Vrugt et al., 2009). The contribution of parameter uncertainty to the overall 

variation in predictions decreased from 92% to 55% when focusing at 

predicted changes compared with absolute losses, while the effect of climate 

uncertainty increased from 8% to 45%. This effect was most pronounced in the 

case of a weakly sorbed pesticide applied in autumn, where the uncertainty due 

to climate input data increased from 12% to 64%, and least pronounced for the 

strongly sorbed compound applied in autumn (3% to 30%). See paper II for 

details. 

A non-parametric analysis of variance (Kruskal-Wallis test) showed that the 

ensemble mean prediction for the changes in pesticide losses between present 

and future climate did not differ significantly between the individual 

parameterizations of MACRO for the spring applied compounds and the weakly 

sorbed compound in autumn (paper II, Table 3 & Fig. 7). This suggests that 

using only one MACRO-parameterization per soil type together with an 

ensemble of climate scenarios could be a reasonable strategy to adopt for large 

scale studies. However, for moderately and strongly sorbed compounds applied 

in autumn, this simplification might lead to biased results. Nevertheless, 

probabilistic predictions of future pesticide losses or changes in losses, as 

illustrated in Figure 13, require ensembles of both MACRO-parameterizations 

and climate scenarios.  

 

 
Figure 14. Cumulative distribution functions of simulated pesticide losses (left) and predicted 

changes in pesticide losses (right) for the weakly sorbed pesticide applied in spring (WsSpr). The 

changes are calculated as future minus present, i.e. values larger than zero represent an increase in 

the future, and values smaller than zero a reduction.  
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5.2 Regional Scale 

5.2.1 Model Evaluation against Monitoring Data 

Table 5 shows that 29 out of 33 herbicides were correctly classified by MACRO-

SE as either leachable or non-leachable in the comparison with groundwater 

monitoring data. This gives some confidence in the simulation results, even if a 

quantitative evaluation remains to be performed. Table 6 presents the fraction 

of the area for which simulated concentrations exceeded the LOD. Of the 12 

herbicides that were simulated as leachable (see Table 6), only flurtamone and 

propoxycarbazone-sodium were never detected in any groundwater sample, 

probably because they are rather new (first registered in 2002 and 2005) and 

may not have had sufficient time yet to leach to the groundwater (see also 

Åkesson et al., 2014). Point sources are possible explanations for the 

compounds that were detected but not simulated with concentrations above 

LOD. For further discussions on the comparison between simulations and 

monitoring results, see paper III.  

Table 5. Comparison of the modelling results with regional groundwater monitoring results. Each 

cell of this “confusion matrix” shows the number of true positives, false positives, true negatives 

and false negatives, respectively. This is based on simulated concentrations above or below the 

limit of detections (LOD) of 0.01 µg l
-1

 (“true” and “false”) compared to detects or non-detects in 

groundwater monitoring (“positives” and “negatives”). Four of the 37 simulated herbicides were 

not analysed in any of the monitoring studies and therefore excluded here.  

Simulations 

Monitoring 

Simulated 

concentrations > LOD 

Simulated 

concentrations <LOD 
SUM 

Detected 10 2 12 

Not detected 2 19 21 

SUM 12 21 33 
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Table 6. Area-averaged relative contribution of different herbicides to the total herbicide 

concentration in leachate [%] and the fraction of the arable area for which modelled herbicide 

concentrations exceeded the limit of detection (LOD) of 0.01 µg l
-1

. Only those herbicides and 

their physicochemical properties are listed, for which simulated concentrations exceeded the LOD 

at least in some part of the area.  

Herbicide Kfoc 

[ml g
-1

] 

DT50 

[days] 

nf 

[-] 

Contribution to 

total herbicide 

concentration [%] 

Fraction of the area 

which exceeded 

the LOD of µg l
-1

. 

clopyralid 5.0 34 1.00 42.9 1.000 

bentazone 55.3 45 1.00 26.9 0.990 

metazachlor 79.6 16 0.99 10.0 0.830 

metamitron 86.4 19 0.81 8.4 0.860 

propoxycarbazone-Na 28.8 61 1.00 4.5 0.920 

ethofumesate 187.3 97 0.88 1.6 0.330 

MCPA 74.0 24 0.68 1.3 0.120 

quinmerac 86.0 17 0.88 1.0 0.038 

flurtamone 329.0 130 0.90 0.8 0.037 

chloridazon 199.0 43 0.84 0.8 0.018 

fluroxypyr 68.0 13 0.93 0.6 0.004 

metribuzin 37.9 12 1.08 0.4 0.025 

5.2.2 Simulated Field-Scale Leachate Concentrations  

Figure 15 gives an overview of the field-scale herbicide concentrations 

simulated for each PAS and soil type included in paper III. It suggests that 

herbicide properties have a stronger influence on the overall leachability than 

soil properties (texture class, organic matter content) and hydrological class. 

The indicated changes (+/-) refer to the direct effects of climate change. The 

simulated concentrations decreased in the future for compounds that leached at 

the highest concentrations under present conditions (bentazone, clopyralid, 

propoxicarbazone-Na), whereas they increased for most other compounds. 

Predicted concentrations increased for a few compounds that did not leach 

under present conditions (the non-leachable ones), but for most of them no 

change was simulated. These field-scale concentrations do not include 

landscape or regional scale features such as soil surface, fractional crop 

coverage, or fraction of the crop area sprayed with the herbicide. However, 

these results are valuable for the interpretation of aggregated landscape or 

regional scale results and necessary to disentangle key-factors. Discussions on 

the specific responses of individual herbicides to climatic or soil-related factors 

are, however, outside the scope of this thesis. 
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Figure 15. Matrix of simulated field-scale herbicide concentrations in leachate for all pesticide 

application scenarios (see abbreviation list, Table 6 and Table S2 in paper III) and FOOTPRINT-

soil types (see 4.3.2) under present climate conditions. Colour coding ranges from white (0 µg l
-1

) 

to black (>5 µg l
-1

). Average changes in the future of more than 0.001µg l
-1

 are indicated by “+” 

for increases and “-” for decreases (results for the scenario that only considered the direct effects). 
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Figure 16. Herbicide concentration in leachate [µg l

-1
] under present climatic conditions (A) and 

under future climate conditions (B-F) when only the direct effects of climate change were 

considered as projected based on the five climate scenarios (see Table 3).  

5.2.3 Aggregated Herbicide Concentrations in Leachate 

Aggregated herbicide concentrations in leachate under present conditions 

varied spatially between zero and 1.4 µg l
-1

 (Figure 16A). Regions with high 

concentrations correspond to areas with soils of larger clay content (see   

Figure 15 and paper III, Figs. 3 & S8), because the PTFs in MACRO-SE predict 

macropore flow to be stronger in these soils (Moeys et al., 2012). In clayey till 

soils, typical for southern Sweden, preferential flow extends well below the 

root zone due to the presence of fissures (Stenemo et al., 2005; Jørgensen et 

al., 1998). Areas with higher clay contents can, therefore, be at risk of 

groundwater pollution (Stenemo et al., 2005).  

Figure 17 shows the change in these simulated concentrations in relation to 

topsoil properties and changes in climate variables. Topsoil clay content had 

the strongest impact on the relative change in concentration in a future climate 

compared to present conditions (Figure 17A). Thus, areas most at risk today as 

a result of pronounced leaching in macropores are projected to become even 

more at risk in the future. This agrees with the experimental findings reported 

by Beulke et al. (2002). Changes in annual precipitation seemed more 

influential than changes in temperature (Figure 17C, D). A simple correlation 

analysis confirmed these visual impressions (see paper III).  
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Figure 17. Relative change in herbicide leachate concentration from present to future in relation 

to topsoil properties (A: clay content; B: organic carbon content) and climatic variables (C: 

change in annual temperature; D: relative change in annual precipitation) for the future herbicide 

use scenario (A) with only direct effects of climate change. For each climate scenario (see 

legend), each dot represent one of the 24 soils that were simulated. 

The changes in predicted herbicide concentrations depended on the climate 

scenario (Figure 16). Simulated changes for scenario (A), which only 

considered direct effects of climate change, ranged from strong reductions 

(Figure 16 (F) ECHAM5) to small or moderate increases over the entire region 

(Figure 16 (B) BCM, (C) IPSL). This reflects the correlation with the projected 

precipitation amounts (Figure 17D) as ECHAM5 is the climate scenario that 

projected smallest increases in precipitation amounts, while IPSL and BCM 

projected largest increases in annual rainfall (see paper III, Table 1). 

Only a few herbicides contributed to the overall concentrations in leachate 

to groundwater (Table 6; Figure 15). The contribution of the different crops to 

the total leaching (see Table 7) is not only influenced by the herbicides used on 

those crops, but also depends on how widely the crop is grown and how much 

of the crop is sprayed with that herbicide. Spring cereals, peas and winter rape 

were the main contributors to overall simulated concentrations, followed by 

sugar beets and winter cereals.  



57 

Table 7. Area-averaged relative contributions (%) of the different crops to the overall herbicide 

concentrations in leachate to groundwater for present and future conditions.  

 

Crop 

 

Present 

Future climate conditions 

Scenario (A) Scenario (B) Scenario (C) 

Winter cereals 7.80 3.80 5.30 3.90 

Spring cereals 29.30 23.80 7.90 6.40 

Winter rape 24.50 28.50 37.40 36.80 

Sugar beets 10.80 19.20 16.50 20.40 

Peas 25.50 22.60 19.20 16.30 

Potatoes 0.50 0.60 0.50 0.40 

Maize 1.40 1.40 13.20 15.80 

Spring rape 0.04 0.06 0.00 0.00 

The contribution of the crops differed between present and future climate 

conditions and also changed with the future scenarios for herbicide use    

(Table 7) as a result of the projected changes in cropping patterns and the 

effects of climate on the leaching of specific compounds (cf. Figure 15). The 

contribution of peas decreased, while the contribution of sugar beets increased 

markedly under future climate conditions, although the area of both crops was 

unchanged. This direct effect of climate change suggests that the herbicides 

used on sugar beets are rather susceptible to macropore flow.  

The contribution of winter cereals decreased in a future climate, although 

the cropped area and the estimated future use of herbicides increased. In this 

case, the direct effects of climate change outweighed the indirect effects. Many 

of the herbicides used on winter cereals are either strongly sorbed and not 

leachable or low-dose mobile compounds, which are less susceptible to 

macropore flow. Before performing this study, the expectation was that an 

increased cultivation of winter cereals would have negative impacts on future 

pesticide leaching, because of the higher losses from autumn applied pesticides 

compared to those applied in spring (paper I, II, Lewan et al., 2009). This 

regional scale study stressed, however, the importance of considering real 

compounds at their actual recommended doses rather than hypothetical ones. 

Comparing a compound applied in spring and autumn on winter cereals gave 

equivalent results to what was found in paper I and II (see e.g. flurtamon, 

Figure 15). Applications of a compound to spring cereals gave similar or 

higher concentrations than if the same compound was applied on winter cereals 

in spring, even if the application rate was lower (e.g. MCPA). This is because 

applications on spring cereals usually occur later (see paper III, Table S2) on 

less developed crop canopies, so the interception of pesticides is less than in 

winter cereals.  
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Contrary to winter cereals, winter rape is a larger contributor partly because 

leachable compounds such as metazachlor and quinmerac (see Figure 15 and 

Table 6) are applied in autumn, and in the case of metazachlor even at high 

application rates. Additionally, 70% of the applications occur in autumn 

compared to less than 50% in the case of winter cereals. Thus, based on this, 

efforts should be put into reducing leaching risks from sugar beet and winter 

rape, as their contribution is projected to increase even when only direct effects 

of climate change are accounted for, which are likely to occur, even if the 

extent is uncertain.  

Spatial aggregation of the results showed that under present conditions, 

simulated concentrations in leachate to groundwater were likely to exceed the 

EU drinking water guideline value of 0.5 µg l
-1 

on 35% of the arable land in the 

study area (Figure 18). Accounting only for the direct effects of climate change 

(scenario A), this area was projected to decrease to 31%, as estimated by the 

ensemble mean. The variation among the five climate models ranged from a 

decrease of the area at risk to 5% to an increase to 47%. Accounting for 

indirect effects of climate change, the area with simulated concentrations 

exceeding the guideline value increased to 50% (19-70%) in the case of 

scenario (B) (i.e. only considering changes in cropping patterns) and to 70% 

(50-80%), when a likely increase in herbicide use was also considered 

(scenario C). This suggests a doubling of the area at risk of groundwater 

contamination in the future compared to present-day climatic conditions. 
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Figure 18. Spatial aggregation of the herbicide concentration in leachate for the entire simulated 

region (aggregated over each pixel) for the three future herbicide use scenarios analysed in paper 

III. Each curve represents the fraction of the arable land for which the herbicide leachate 

concentration is predicted not to exceed a certain threshold value (e.g. the EU drinking water 

guideline value of 0.5 µg l
-1

). The area for which the concentrations might exceed that value can 

be calculated as 1-“y-value”. The ensemble prediction is calculated from the results obtained with 

the five future climate scenarios (see Table 3).  
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5.3 Uncertainties 

5.3.1 Different Sources of Uncertainty 

This thesis tried to disentangle the effects of some of the uncertainties inherent 

to modelling pesticide fate under climate change and to evaluate their relative 

importance. Papers I and II demonstrated that the level of uncertainty depended 

on the pesticide application scenario and on whether absolute losses were 

considered as output or predicted changes. For absolute pesticide losses, the 

effect of parameter uncertainty was large. Nevertheless, effects of model 

structural differences could still be identified. For predicted changes, the 

climate input uncertainty dominated, while parameter uncertainty was less 

important. This is also implied by the results of paper I, as the different 

structural model versions indicated the same direction of change for most of 

the PAS, even if the magnitude of change was clearly affected by the model 

version.  

To assess the part of the cascade of uncertainty related to the generation of 

the climate scenarios, a limited analysis was performed based on the data used 

in paper II. It showed that the uncertainty arising from the choice of GCMs had 

a larger impact than the variation in emission scenarios or the natural 

variability represented by the variation in initial states of the GCM. Whether 

this was only due to the larger number of realisations (5 different GCMs, 

compared to 3 different GHG emission scenarios and 3 different initial states; 

see Table 3), was not further analysed. Nevertheless, it is in line with findings 

of studies in various fields of research (e.g. Dobler et al., 2012; Kjellström et 

al., 2011; Graham et al., 2007b). Although the uncertainties due to the choice 

of the RCMs or the downscaling method can be high (e.g. Chen et al., 2011), 

they were not analysed in this thesis. Those uncertainties are likely to add to 

the climate uncertainty, which would further strengthen the conclusion of paper 

II that the climate uncertainty is very important.  

5.3.2 Uncertainties in Regional Scale Assessments 

In the regional scale study, only climate input uncertainty was included, which 

showed the same patterns as in the field scale analysis (paper II): the direction 

and magnitude of change was strongly influenced by the climate models 

(Figure 16). The strength of the effect depended on soil type and for some 

areas in the region concentrations were always lower in the future for any 

climate scenario and any future herbicide use scenario.  

Parameter uncertainty was not accounted for at the regional scale, although 

it must have an impact on the simulations. Accounting for uncertainty was 

shown to increase predicted concentrations, especially for high-percentile 



61 

concentrations of spatially aggregated data (Van den Berg et al., 2012; 

Heuvelink et al., 2010). Coquet et al. (2005) furthermore showed that 

simulations with average values for pesticide properties (Koc, DT50) taken from 

a database underestimated risks compared to regional scale simulations based 

on site-specific estimates of the pesticide properties. How different site-

specific values for Koc and DT50 can be compared to database values is 

illustrated for bentazone in Figure 9, where the values estimated as good 

predictors for the field site (weakly sorbed compound) are marked together 

with the bentazone parameterization used in the regional scale study. 

Nevertheless, experience from the field studies reported in Papers I and II 

suggests that predicted changes in pesticide leaching are more robust in the 

face of parameter uncertainty and should depend mainly on the climate 

scenario.  

The contribution of uncertainty in DT50 values has been found to be larger 

than the contribution of Koc or uncertainty in organic matter content, soil 

texture or hydraulic conductivity for regional scale uncertainty assessments 

with GeoPEARL (Heuvelink et al., 2010). For MACRO-SE, this might be 

different, as macropore flow is considered, which may increase the relative 

importance of sorption strength, as discussed earlier (chapter 5.1.3), and of the 

parameters governing the exchange between matrix and macropores. PTFs 

describing the spatial variability in degradation and sorption developed by e.g. 

Ghafoor et al. (2013; 2011), Fenner et al. (2007) or Von Götz & Richter (1999) 

could be implemented in future studies. 

Uncertainty and variability in the fractional coverage of crops also affects 

the spatial estimates of leaching risk (Balderacchi et al., 2008). Figure 19 

illustrates the effect of accounting for detailed (catchment-scale) statistics on 

the spatial distribution of crops compared to applying average statistics for the 

entire region: the spatial variability increases, hot-spots are more frequent and 

the predicted risks are higher, when higher resolution input data is available. 

The average herbicide concentration in leachate increased from 0.43 µg l
-1

 with 

average crop statistics (Figure 19B) to 0.45 µg l
-1

 with detailed statistics 

(Figure 19A or Figure 16A). For higher percentiles of spatially aggregated 

values, the changes might be larger than for the mean or median values.  
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Figure 19. Effect of accounting for detailed catchment-scale crop statistics (A) in regional scale 

analysis as opposed to the use of average (more easily available) crop statistics (B) under present 

climatic conditions. 

Uncertainty in pesticide usage will have large impacts in catchment or regional 

scale studies (Åkesson et al., 2013; Kreuger & Törnqvist, 1998). The two 

catchments used in paper III to parameterize pesticide usage were rather 

representative for the entire GSS-region at least regarding the cropped area 

sprayed with herbicides and the fractional coverage of crops. To overcome 

constraints on the availability of input data for large scale assessments in the 

future, Miraglia et al. (2009) suggested exploring methodologies to derive 

actual pesticide usage information at the EU level and similarly, some Swedish 

authorities are discussing the possibility of collecting such information from 

the farmers (Moeys, J., pers. comm.). Detailed use information at a regional 

scale would certainly increase the reliability of predictive modelling exercises 

and reduce this type of epistemic uncertainty (Refsgaard et al., 2013). 

Uncertainties related to the scenarios chosen to represent future herbicide 

use are more difficult to analyse. It seems that the average increase in herbicide 

use (45%) was higher than the estimated 16 to 28% increase in pesticide use in 

the US (Koleva & Schneider, 2009), but within the range of estimates from 

Kattwinkel et al. (2011) on insecticide application rates in Europe (22% to 23-

fold the current level). Although insecticide use might increase relatively more 

than herbicide use in Sweden, the estimated increases seem realistic 

considering that the changes in weed pressure will be higher at higher latitudes. 

Further uncertainties arise from the many direct and indirect effects that were 

not included in this thesis, which are difficult to quantify.  
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5.4 Other Potential Direct & Indirect Effects of Climate Change 

The range of climate change effects that could be included in this thesis was 

limited due to computational and other technical constraints. In the following, I 

discuss a few additional aspects and factors that were not accounted for in the 

published papers and briefly discuss their implications. 

5.4.1 Intensity and Frequency of Rainfall Events 

Intensive rainfall events are very likely to become more frequent in a future 

climate (IPCC, 2012; Nikulin et al., 2011; Christensen & Christensen, 2003). 

The delta-change approach used to generate future climate scenarios accounts 

for average changes in the monthly precipitation totals and changes the 

precipitation intensities accordingly. Figure 20 presents a histogram of hourly 

rainfall for the reference climate of Västra Götaland (papers I and II) and 

Table 8 gives the relative change in the frequency of hourly rainfall above a 

certain threshold for the different climate scenarios of paper II. Up to a 

threshold of 15 mm, the frequency of rainfall events increased by up to 97% 

depending on the climate scenario. The change in the frequency of rainfall 

events >20 mm was more uncertain, due to the small number of events, and 

ranged from -12% to +100% depending on the climate scenario. 

 
Figure 20. Frequency distribution of hourly rainfall events under present climate conditions in 

Västra Götaland (reference time series in paper I and II). 
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Table 8. Relative change in the frequency of occurrence of hourly rainfall amounts above a 

certain threshold for all climate scenarios of paper II. 

Climate Scenario > 2 mm >10 mm >15 mm >20 mm 

CS1 (BCM) +10% +65% +12% +50% 

CS2 (CCSM3) +13% +75% +17% -12% 

CS3 (HADCM3) +19% +83% +33% +88% 

CS4 (IPSL) +22% +97% +33% +100% 

CS5 (ECHAM5-A1B-r1) +17% +75% +12% +50% 

CS6 (ECHAM5-A1B-r2) +21% +95% +33% +25% 

CS7 (ECHAM5-A1B-r3) +12% +83% +21% +62% 

CS5 (ECHAM5-B1) +  9% +49% +  4% +/-0% 

CS5 (ECHAM5-A2) +18% +87% +21% +25% 

The method, however, did not change the number of days with rainfall and 

thus, did not account for changes in the length of wet and dry spells. For 

Swedish conditions, the likelihood of extended dry spells is rather low 

(Kjellström et al., 2014) and, thus, this might not be overly important. 

Nevertheless, if the delta-change method overestimates the total number of rain 

days and/or underestimates potential drought periods, it is likely that pesticide 

losses will be underestimated because degradation rates would be reduced in 

drier soils and the days with rain would have relatively more intense 

rainstorms, which might trigger more macropore flow.  

Another aspect is that the delta-change method cannot account for a change 

in the frequency distribution of rainfall events, which could mean a relatively 

larger increase in heavy rainfall events compared to the average increase in 

precipitation. According to recent projections with RCMs run at very high 

spatial resolution (1-3 km), high-intensity short-term rainfall event (convective 

rain showers) may increase even more in their intensity in a future warmer 

climate than previously projected (Kendon et al., 2014). This would have most 

impact if these events occur close to the day of application.  

The effect of randomly choosing another application date within the given 

2-week application window, still applying pesticides on the same date under 

present and future conditions was tested as mentioned in paper II (see      

Figure 21 WsSpr). For the ensemble prediction of changes in pesticide losses 

from present to future, the effect seemed negligible. This should be the case for 

all compounds as weakly sorbed compounds are most strongly influenced by 

rainfall patterns shortly after pesticide application (McGrath et al., 2010). An 

additional small test was performed, in which the application date for the 

different climate scenarios was varied. The effects of choosing the same date 

for present and future simulations or choosing different dates for different 
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climate scenarios were small for most pesticide application scenarios     

(Figure 21). Only for the weakly sorbed compound applied in spring, the 

uncertainty was higher, as expected from earlier studies (McGrath et al., 2010). 

However, the general tendency towards a reduction in pesticide losses still 

held. This gives some indication of potential results obtained from simulations 

that account for changes in rainfall patterns around the date of application, 

which previous studies have shown to be important (e.g. Brown & van 

Beinum, 2009; Lewan et al., 2009; Nolan et al., 2008). Nevertheless, a more 

thorough investigation of the effect of changes in rainfall patterns would be 

valuable. This is especially important if the focus is on the risk of surface water 

contamination via runoff or sub-surface drains, especially for predictions of the 

maximum concentrations that are important for ecotoxicological effects, rather 

than average concentrations in the leachate.  

 
Figure 21. Effect of rainfall patterns around the day of application for the PAS of the weakly and 

the moderately sorbed compounds applied in spring and autumn (see Table 2). “same AD” denotes 

that the application date (AD) was the same for present and all nine climate scenarios. “diff. AD” 

denotes that the AD differed between the climate scenarios and the reference conditions. For the 

PAS of WsSpr, a second set of both, the case of identical AD as well as different AD was tested, 

which are shown in grey and marked as “same2” and “diff.2”. 
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5.4.2 Soil properties 

The organic carbon content of the soil acts as a major sorbent for pesticides 

and thus reduces leaching (see also Figure 15). Changes in climate variables 

will have effects on the soil organic carbon content (see Table 1), which could 

be assessed using carbon turnover models (Lugato et al., 2014; Jones et al., 

2005). Organic carbon content might decrease in a warmer climate due to 

increased turn-over of the organic matter, but this could be counteracted by a 

higher biomass production, which would lead to higher carbon inputs to the 

soil (Davidson & Janssens, 2006). A preliminary sensitivity test showed that 

the slight change (3%) in organic carbon content (predicted by Lugato et al., 

2014) had little effect on the predictions. Not surprisingly, more drastic 

changes in soil organic carbon content (-40%) would lead to significant 

changes in predicted leaching (+30%) as demonstrated by a comparison of 

similar FSTs, which mainly differ in their organic carbon coding
4
. Drastic 

changes in soil organic matter content are rather unlikely to occur purely as a 

result of the direct effects of climate change, but could possibly occur due to 

changes in land management practices (i.e. land-use, fertilization, drainage) 

that affect the soil organic carbon stocks, as shown by Karlsson et al. (2003) 

from long-term monitoring data in Sweden.  

Changes in soil structure resulting from altered frequencies of freeze-thaw 

cycles and extended drought periods may also affect pesticide leaching in a 

changing climate (Table 1). This would have consequences for rapid leaching 

via macropores as shown experimentally by Beulke et al. (2002).  

5.4.3 Land-use 

A change in the area of land used for agriculture is another aspect which could 

have been included in this thesis (Kattwinkel et al., 2011; Beulke et al., 2007). 

In Sweden, the trend in the recent past has been a reduction in the area of 

arable land by 28% since the 1950s and by 10% since the 1980s, mainly due to 

afforestation and urbanization (SCB, 2013a). However, these trends are likely 

to slow down, at least in major agricultural areas such as Scania 

(Länsstyrelsen, 2015). Kattwinkel et al. (2011) assumed that the area of 

cultivated arable land in Scandinavia would increase in the future and 

identified this as a major factor for the projected increase in aquatic exposure 

to insecticides in Scandinavia in a future climate. Similar results could be 

expected for aggregated herbicide concentrations. 

                                                        
4
 Average herbicide concentration for Y22n (0.4 µg l

-1
) compared to Y22u (0.53 µg l

-1
). 
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5.4.4 Crop development 

Changes in crop development were not accounted for in our study, despite 

strong evidence of significantly prolonged growing seasons (e.g. Trnka et al., 

2011), which would imply shifts in sowing and pesticide application dates 

(Olesen et al., 2012; 2011). It is difficult to judge the importance of these 

factors, as climate change affects not only crop development and application 

timings, but also application amounts (Henriksen et al., 2013; Beulke et al., 

2007).  

Nevertheless, Beulke et al. (2007) identified a four-fold increase in the 

application rate as the major driver of increased maximum daily concentrations 

predicted for the herbicide mecoprop, despite 5 weeks earlier application in 

spring and 10 days earlier spraying in autumn. This gives support to the 

conclusions drawn from a limited preliminary sensitivity analysis to the work 

carried out in Paper III that changes in application rate are more important than 

changes in crop development or application timing. Furthermore, changes in 

application date would probably be small in relation to the uncertainty and 

spread in application dates at the catchment scale (up to 8 weeks for many 

crop-herbicide combinations), which reflects inter-annual climate variation, 

differences between soil types and the workload of farmers and sprayers (paper 

III, Fig. S5).  

However, as the aggregated results were dominated by a few compounds 

and crops, shifts in application dates for compounds used on these crops could 

have a significant impact on the overall results. The direction of such changes 

would generally be towards increased losses, when pesticides are applied later 

in autumn (Lewan et al., 2009). If pesticides are applied earlier in spring, the 

time for degradation is longer, which would reduce leaching losses. 

Nevertheless, as discussed earlier, losses are more sensitive to changes in the 

precipitation patterns around the date of application, which can lead to high 

losses and thus outweigh this effect, as demonstrated by Lewan et al. (2009).  

5.4.5 Pesticide compounds 

It is rather likely that there will be new compounds available by the end of the 

century (e.g. Beulke et al., 2007) as suggested by the history of chemical plant 

protection from the beginning of the 19
th

 century until today (Delaplane, 1996). 

The future developments are very difficult to predict, but social and political 

pressures are unlikely to allow the registration of new compounds that have 

worse environmental impact than today’s compounds. In this respect, the 

regional scale study can be considered a worst-case business-as-usual scenario 

analysis for herbicide concentrations in leachate. The current trend in many 
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parts of Europe is towards farming with fewer pesticides as a result of EU-

legislation (Hillocks, 2012). 

The introduction of low-dose compounds in the 1980s/1990s resulted in 

reduced amounts of pesticides used in agriculture (see also SCB, 2013b). 

However, the total sold amounts of pesticides relative to the arable land in 

Sweden have slightly increased since the early 1990s partly due to an increase 

in area cultivated with cereals at the expenses of fallow land (SCB, 2013b). A 

limited analysis of the temporal trends of the median doses for different 

herbicides in the two monitoring catchments used in paper III showed that the 

changes were not very large for most compounds during the last 20 years. 

However, for a few compounds, the median dose did actually decrease during 

this period (e.g. florasulam used on spring cereals, ethofumesate and 

chloridazone used on sugar beets), which might suggest that the overall trend is 

towards applications with lower doses. In the case of sugar beets, it might be 

correlated to an increase in the spraying frequency, but this was not further 

analysed.  

5.5 How Representative are these Results? 

The field study was a rather extreme worst-case scenario with 8.5% of the 

applied herbicide lost to drains, which is considerably higher than typical 

losses to tile drains (<1%; Brown & van Beinum, 2009). Earlier studies 

showed that high leaching losses can occasionally occur (up to 10.6%; Brown 

& van Beinum, 2009) and can certainly be expected from such soils with no-

till practice (e.g. Gish et al., 1991).  

The conclusions that can be drawn from the field scale studies on the effect 

of temperature dependent sorption depend on the studied compound and their 

thermodynamic behaviour as well as the soil type. As most pesticides sorb to 

soils with exothermic reactions (e.g. ten Hulscher & Cornelissen, 1996), these 

results are probably rather representative for most pesticides. The sorption 

enthalpy, for which suitable values from the range given in Spurlock (1995) 

were used, determined the magnitude of the effect of temperature on sorption 

and with a less negative value, a smaller effect would have been observed. As 

the binding mechanisms are very complex in reality and probably vary over 

time, it would be necessary to conduct specific experiments to obtain more 

specific parameters, which is not feasible for a general study such as this. 

Nevertheless, these results should give some indications of trends for a wide 

range of pesticide-soil combinations, which can be useful to discuss 

uncertainty in the modelling of pesticide leaching under climate change.  
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The results in this thesis are specific to pesticide leaching to surface water 

via tile drains and to groundwater and might not hold for other transport 

pathways (e.g. surface runoff), as other factors might dominate the losses than 

those analysed here. For paper III, the aggregated results (predicting total 

herbicide concentrations) are specific to the climate and climate change 

signals, the distribution of soil types, crops and the herbicides included in the 

study and are thus not easily transferable to other regions. Including all the 

soils of the GSS region in the study would have probably only affected the 

results to a minor extent. The soils that were excluded were mainly fine-

textured (Figure 8) and would, therefore, be likely to contribute to leaching, 

but they contributed less than 3% of the total area, which might have 

overshadowed their overall impact at a regional scale. However, the field-

scale-results presented in Figure 15 may indicate general trends and could be 

transferred to other regions to guide mitigation measures, even if they have 

different climate conditions, soils, cropping and application patterns. For 

regions in Sweden with a larger proportion of heavy clay soils, the risk might 

even increase without any changes in land-use or pesticide usage, although 

these soils mostly pose a risk to surface waters via drainage, with the field site 

in Papers I and II being one example. 
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6 Conclusions 

 Accounting for different sources of uncertainty reduces the risk of drawing 

overconfident conclusions (e.g. regarding the direction of change in 

pesticide losses in a future) and makes the assessment more robust. 

 The relative importance of different sources of uncertainty depends on 

pesticide properties, application season and whether the focus is on absolute 

values or predicted changes. For changes in pesticide losses in the future 

compared to present conditions, the uncertainty in climate input dominated, 

which emphasized the need for ensemble modelling. 

 The indirect effects of climate change need to be considered alongside the 

direct effects, as the predictions can be significantly affected: The area at 

risk of groundwater contamination in southern Sweden was only slightly 

affected by direct effects of climate change, but was projected to double due 

to changes in land-use and pesticide use (indirect effects) in a future 

climate.  

 Currently vulnerable areas with medium to high clay contents might 

become even more vulnerable in the future as relative changes in leachate 

concentration were positively correlated with soil clay content. 

 The key factors determining pesticide losses under climate change may 

differ between the field scale and larger scales.  

 Implementation of strict regulations and improved mitigation measures will 

be required to protect current and future drinking water resources in a 

changing climate. 
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7 Implications and Future Research 

This thesis has demonstrated what would happen if the likely increase in weed 

and pest pressures under future climate conditions in Sweden were mainly 

controlled by an increased use of pesticides: the area at risk of groundwater 

contamination would strongly increase. Despite the myriad uncertainties 

inherent in the modelling of pesticide leaching under climate change, there is 

enough evidence to claim that mitigation strategies to reduce risks of 

groundwater and surface water contamination are necessary to protect current 

and future drinking water resources. 

7.1 Mitigation Measures to Reduce Pesticide Leaching Risks 

Mitigation strategies for surface water contamination include measures that 

reduce spray drift, the implementation of surface runoff and erosion controls 

(Holvoet et al., 2007) and the use of constructed (artificial) wetlands (Vymazal 

& Březinová, 2015; Gregoire et al., 2009) to remove pesticides from 

agricultural drainage and runoff. Feasible mitigation measures for drainage and 

leaching pathways are reductions in pesticide application rates, product 

substitutions (see also Miraglia et al., 2009) and changes in the timing of 

pesticide applications (Reichenberger et al., 2007). Paper III suggests that 

product substitution may be highly effective, as the simulated total 

concentration in leachate was dominated by only a few substances. The low 

contribution of winter cereals to overall herbicide leaching risks could be an 

indicator that reductions in application dose can have significant effects on 

regional scale herbicides leaching risks, too.  

Several management strategies that protect the crops but reduce pesticide 

use could be adopted: Adaptation in the farming system such as improved crop 

rotations (Balderacchi et al., 2008) or inter-cropping; improvements of 

biological and mechanical plant protection methods in line with recent EU-

directives on integrated pest management practices; crop breeding and bio-
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technological methods, which produce crops that are resistant to pests (Phipps 

& Park, 2002); precision farming techniques or guided and targeted pest 

control with the help of (electronic) warning systems for farmers (Holvoet et 

al., 2007). At regional scales, such measures could be most efficient if they are 

applied to the crops that were identified as major contributors to pesticide 

leaching risks, such as sugar beets and winter rape in the case of southern 

Sweden in a climate change perspective.  

Regional scale modelling, as reported in this thesis, can be used to identify 

vulnerable areas, which could be used by regulatory authorities to restrict or 

permit the use of particular pesticides in certain areas (Balderacchi et al., 2008) 

aiming at a reduction in the overall pesticide use in a region. It can further be 

used to guide monitoring and might help to distinguish point-sources from 

non-point sources (Balderacchi et al., 2008) and thereby improve the targeted 

measures.  

7.2 Future Research Topics 

Many additional questions could be further developed and analysed in the field 

of climate change impacts on pesticide leaching. Here, I summarize some ideas 

including some of those that have already been discussed in this thesis.  

Changes in precipitation patterns 

One essential aspect is to analyse the effect of changes in precipitation patterns, 

i.e. changes in rainfall frequency and in extremes. As several authors have 

pointed out, the timing of precipitation events in relation to the application 

timing is an important factor for losses to surface water via tile-drains or 

surface runoff (McGrath et al., 2010; Lewan et al., 2009; Nolan et al., 2008). 

Furthermore, climate studies suggest that the frequency of heavy rainfall events 

is increasing, especially of short-term heavy rainfall events (Kendon et al., 

2014); probably beyond what can be handled with the delta-change method 

applied in this thesis (Teutschbein & Seibert, 2013; Nikulin et al., 2011). This 

would require identifying a suitable downscaling or bias correction method that 

accounts for such changes (e.g. Olsson et al., 2012). As the uncertainty due to 

GCMs often overshadows the uncertainty related to, for instance, the 

downscaling methods (e.g. Dobler et al., 2012), an ensemble of GCMs should 

be included in the analysis rather than testing different downscaling methods. 

Field scale analysis with MACRO 

With respect to paper I, it would be interesting to analyse the impact of 

accounting for temperature dependent sorption (and diffusion) on other soil 
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types. This would help to evaluate the importance of these processes at larger 

scales.  

Furthermore in order to perform a complete uncertainty analysis at the field 

scale, a longer experiment with equally comprehensive measurements would 

be required. A minimum of two to three years of continuous measurements (or 

several periods with at least one year of continuous measurements) would be 

needed for a split-sample analysis (as e.g. discussed in Jarvis & Larsbo, 2012) 

for which one part of the measurements (at least one year) is used to calibrate 

the model (as in paper I & II) and the remaining measurements are used to 

validate the model.  

Regional scale risk assessments (MACRO-SE) 

MACRO-SE could be used for several interesting additional studies. One idea 

would be to do a similar study but for surface water contamination. This 

requires the implementation and testing of a surface runoff and erosion routine. 

This kind of study would also greatly benefit from suitably downscaled rainfall 

time series that account for changes in rainfall frequency and intensity as 

runoff is often generated in heavy rainfall events (Holvoet et al., 2007; 

Wauchope, 1978). An extension to such a study would be to combine the 

exposure assessment with ecotoxicological models or indicators (such as toxic 

units; see Bundschuh et al., 2014) to evaluate the ecological impacts of 

changes in climate (Kattwinkel et al., 2011; Noyes et al., 2009). 

The risk of pesticide losses at any location depends on soil type, pesticide 

properties and pesticide use, but also on the climate. Thus, risk assessment can 

be improved by using high-resolution spatially-variable climate data, especially 

rainfall data. For projections into the future, the climate scenarios should 

account for the spatial correlations between climate variables.  

A complete uncertainty analysis with MACRO-SE that includes the effects of 

the uncertainty in soil and pesticide properties (similar to Van den Berg et al., 

2012) or due to PTFs (similar to Stenemo & Jarvis, 2007) would be interesting, 

but incredibly demanding of computer resources. An assessment of the effects 

of spatial variability of sorption and degradation processes (e.g. Ghafoor et al., 

2013; 2011) would also be valuable. It could also be worthwhile to perform a 

more comprehensive sensitivity analysis that disentangles effects of climate 

change that were not considered here, such as changes in organic carbon 

content and crop development/application timing and evaluates further 

scenarios that account for mitigation strategies (e.g. substance substitution or 

halving of pesticide use).  
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8 Sammanfattning (Swedish Summary) 

Klimatförändringar kommer sannolikt att medföra ökad temperatur och 

nederbörd i Sverige. Ett varmare och blötare klimat kommer att öka trycket av 

ogräs och skadegörare, vilket i sin tur kan innebära en ökad användning av 

kemiska bekämpningsmedel. Syftet med denna avhandling var att belysa hur 

klimatförändringar kan komma att påverka bekämpningsmedelsläckaget från 

svensk åkermark baserat på dagens (1970-1999) och framtidens (2070-2099) 

klimat. För att beräkna pesticidläckage via dräneringsvatten på fältskala 

användes en dynamisk simuleringmodell (MACRO) som beskriver nedbrytning 

och transport av pesticider i mark som funktion av klimat-data. Betydelsen av 

olika osäkerheterskällor i beräkningskedjan för simulerade 

pesticidkoncentrationer och förändringar i pesticidutlakning analyserades. För 

att även belysa betydelsen av indirekta effekter av klimatförändringar, dvs 

ändringar i areell fördelning av olika grödor och i pesticidanvändning, på 

herbicidläckaget till grundvatten, användes en regionaliserad modellversion 

(MACRO-SE).  

Resultat från studierna på fältskala visade att valet av modellstruktur 

påverkade simulerade pesticidförluster, trots att parameterosäkerheten var stor. 

Parameterosäkerheten hade större betydelse för beräknade absolutvärden 

(pesticidförluster) än för beräknade relativa förändringar. Effekten av 

osäkerheter i klimatdata hade däremot större betydelse för beräknade 

förändringar i pesticidförluster (i dagens klimat jämfört med framtida klimat). 

Riktning och storlek i simulerade förändringar i pesticidförluster berodde på ett 

komplext samspel mellan pesticidegenskaper, tidpunkt för bekämpning och val 

av klimatscenario. På regional skala var emellertid de direkta effekterna av 

förändringar i klimatet marginell, medan de indirekta effekterna hade stor 

betydelse för beräknade pesticidförluster till grundvattnet. Förväntade 

klimatrelaterade förändringar i grödor och pesticidanvändning resulterade i en 

fördubbling av den areal inom vilken risken för kontaminering av grundvattnet 

överskred EU:s gränsvärd för dricksvatten.  
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Slutsatser från denna studie är att (1) den relativa betydelsen av olika 

osäkerhetskällor beror både på pesticidegenskaper, spridningstidpunkt och om 

fokus ligger på absoluta pesticidförluster eller relativa förändringar av 

förlusterna, (2) osäkerheten i klimatscenario-data bör beaktas för att kunna 

göra robusta bedömningar (t ex genom s.k. ”ensemble modelling”) och (3) 

indirekta effekter av klimatförändringar bör beaktas i kombination med de 

direkta effekterna för att resultaten inte ska bli missvisande. Oavsett de stora 

osäkerheter som är en naturlig del av beräkningar baserat på olika typer av 

scenarier, understryker resultaten i denna avhandling behovet av effektiva 

åtgärder och strategier för att minimera risken för grund- och 

ytvattenkontaminering i en förändrad klimatsituation. 
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