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Microbial Inputs in Coffee (Coffea arabica L.) Production
Systems, Southwestern Ethiopia: Implications for Promotion
of Biofertilizers and Biocontrol Agents

Abstract

Arabica coftee is the key cash crop and top mainstay of the Ethiopian economy and requires
sustainable production methods. Southwestern natural forests, the site of this study, are
believed to be the centre of origin and diversity for Coffea arabica and still harbour wild
Arabica coffee that may serve as an important gene pool for future breeding. Cost reductions,
sustainability and quality improvement are now the major priorities in coffee production
systems and require organic growing of coffee. Current developments in sustainability
involve rational exploitation of soil microbial activities that positively affect plant growth and
this study examines this possibility. The composition of coffee shade tree species and density
of arbuscular mycorrhizal fungi (AMEF) spores and coffee-associated rhizobacteria in different
coftee production systems in southwestern Ethiopia were investigated. The main objectives
were to: 1) systematically identify the dominant coffee shade tree species; 2) quantify and
characterize AMF populations with respect to spatial distribution; 3) screen for beneficial
rhizobacteria (microbial biofertilizers and biocontrol agents), particularly in the rhizosphere of
coffee plants; and 4) characterize rhizobacterial isolates of particular interest using molecular
tools (polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)
analysis and 16S rDNA gene sequencing). Sampling and determination of microbial
functional characteristics followed standard methods. Nineteen dominant shade tree species
belonging to 14 plant families were identified, with the tree legume (Millettia ferruginea)
dominating. All soil samples contained AMF spores and members of the Glomeromycota,
Glomus spp. dominating. AMF spore density was affected by sampling point, site, depth,
shade tree species and shade tree/coffee plant age. Coftee-associated rhizobacterial isolates
showed multiple beneficial traits (phosphate solubilization, production of organic acids,
siderophores, indoleacetic acid, hydrogen cyanide, lytic enzymes and degradation of an
ethylene precursor). Many isolates also revealed a potent inhibitory effect against emerging
fungal coffee pathogens such as Fusarium xylarioides, F. stilboides and F. oxysporum. According
to in vitro studies Bacillus, Erwinia, Ochrobactrum, Pseudomonas, and Serratia spp. were the most
important isolates to act as potential biofertilizers, biocontrol agents or both. Thus, these
indigenous isolates deserve particular attention and further greenhouse and field trials could
ascertain their future applicability for inoculum development.
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Introduction

The studies presented in this thesis were carried out within the framework
of a bilateral collaboration between the Swedish University of Agricultural
Sciences (SLU) and Addis Ababa University (AAU), Ethiopia, with the main
objectives of capacity building and research promotion in the agricultural
sector in the country in order to stimulate cooperation and biotechnology
development. The work was fully funded by the Swedish International
Development Cooperation Agency (Sida), through its Department for
Research Cooperation (SAREC), and the coordination role was performed
by the International Science Programme (ISP), Uppsala University, Sweden.
The programme phase dealt with the development of environmentally
friendly technologies potentially leading to enhancement of production and
productivity of coffee at its centre of origin, southwestern Ethiopia. The
project was entitled ‘Microbial Inputs in Coffee (Coffea arabica L.)
Production Systems, Southwestern Ethiopia’. The long-term goals of the
studies reported here were to initiate development of new biotechnologies
such as the use of biofertilizers and biocontrol agents (microbial inputs) to
improve plant growth, i.e. coffee production. Understanding of plant-
microbial interactions in the coffee rhizosphere with special emphasis on
shade trees and the understorey cash crop coffee (from the plant side) and
arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria
(from the microbial aspect) are vital for low-input sustainable production.
Specific research tasks were to: (1) study the composition of coffee shade
trees and arbuscular mycorrhizal fungi associated with wild coftee
populations; and (2) isolate and characterize (traditional and molecular
systematics) beneficial coffee-associated rhizobacteria. Future stages of the
project will involve challenging coftee seedlings in greenhouse and field
conditions with microbes shown in in wvitro studies to possess useful
attributes, in order to select pertinent bio-inoculants.

Arabica coffee has become a major global commodity. Its cultivation,
processing, trading, transportation and marketing provide employment for
millions of people. Coffee has for centuries played an important role in the
Ethiopian economy and represents the main cash crop cultivated by small-
scale farmers for social, economic, political and ecological sustainability
(Mekuria et al., 2004; Petit, 2007). Coftee production mainly involves
agroforestry-based systems, although there are both natural coffee forests and
monoculture plantations. The first two are well accredited in improving soil
properties, where coffee grows beneath various shade trees (mainly tree
legumes), and are well suited for sustainable production compared with
conventional monocultural (unshaded) coftee systems (Cardoso et al., 2003;
Gole, 2003). In addition, the presence of wild Arabica coffee at the centre of
its origin is of paramount importance for genetic conservation of this global
commodity (Aga et al., 2003; Gole, 2003).



The economic and ecological problems of today have re-invigorated the
idea of using biofertilizers and biocontrol agents in order to reduce the
application of costly and environmentally-polluting agrochemicals to a
minimum (Hart & Trevors, 2005; Rodriguez et al., 2006). Agrochemicals
(namely fertilizers and pesticides) have greatly influenced natural rhizosphere
microbes in agrosystems (Matson ef al., 1997). Plant beneficial microbial
bioresources promise to replace or supplement many such destructive, high-
intensity practices and support ecofriendly crop production (Hart & Trevors,
2005; Rodriguez et al., 2006). In particular, use of arbuscular mycorrhizal
fungi (AMF) and plant growth promoting rhizobacteria (PGPR) for the
benefits of agriculture and ecosystem functions is gaining worldwide
importance and acceptance (Vessey, 2003; Lucy et al., 2004; Hart &
Trevors, 2005; Rodriguez et al., 2006). These are bioresources that may
become potential tools for providing substantial benefits in agriculture, as
they are key elements for plant establishment under nutrient-imbalance
conditions. Beneficial soil microbes can help improve plant growth,
nutrition and competitiveness and plant responses to external stress factors by
an array of mechanisms (Vessey, 2003; Lucy et al., 2004; Rodriguez et al.,
2006). They can also inhibit soil-borne plant pathogens and induce plant
resistance to these (Leeman ef al., 1996; Vessey, 2003; Lucy et al., 2004).

Mycorrhizal technology can be profitably applied in forestry and in
agricultural and horticultural crops for better nutrient utilization (Jeftries et
al., 2003). The contributions of AMF to coftee production systems in coffee
growing regions of the world have been well recognized (Vaast et al., 1998;
Habte & Bittenbender, 1999). The use of AMF and PGPR as natural
fertilizers is reported to be advantageous for the development of sustainable
agriculture in nutrient (particularly phosphorus) -deficient tropical soils
(Rodriguez et al., 2006).

There is currently no published information on the use of AMF and PGPR
in Ethiopian Arabica coffee production systems. However, several reports
(Jiménez-Salgado ef al., 1997; Sakiyama et al., 2001; Vega et al., 2005) reveal
that putative agriculturally beneficial bacteria are associated with Coffea
arabica L.

It therefore appeared worthwhile to quantify and screen indigenous
beneficial microbial bioresources at sites where pathogens, antagonists or
biofertilizers are expected to display wide abundance and biodiversity. The
greatest microbial biodiversity is expected at the centre of origin of the plant
species with which they are associated (K. Lindstrém, pers. comm.) and
Requena et al. (1997) have verified that the utmost benefit to the plant host
arises from native plant beneficial microbes such as AMF and PGPR
compared with commercial or introduced forms. Consequently, the
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potential biotechnological applications of native microbes in promotion of
plant growth have been well accredited (Pandey ef al., 2006).

Management of microbes either through selection and inoculation of
specific microbial strains or simply by promoting naturally existing microbes
holds great promise for sustainable agriculture compared with artificial inputs
(Hart & Trevors, 2005; Vassilev et al., 2006). Synergistic interactions with
AMEF (Artursson et al., 2006) are also of great importance for mycorrhizae-
dependent Arabica coffee (Habte & Bittenbender, 1999). Therefore, the
work presented in this thesis focused on the composition of coffee shade tree
species and on rhizospheric microbes of Arabica coffee (from natural forest,
agroforestry-based or monoculture plantations) that displayed biofertilizer or
biocontrol agent attributes (Papers I-V), with the long-term aim of
enhancing plant growth within sustainable agriculture in the future.

Role of coffee in the Ethiopian economy

The estimated coffee production area (2% of total cultivated land) in
Ethiopia is in the range 320,000-700,000 ha (FAO, 1987), although there
are a potential 6 million ha of cultivable land suitable for coffee production
(Mekuria et al., 2004). In general, all Ethiopian coffee cultivation systems
appear to be under the same system of cultivation techniques. However, the
major conventional production systems include: i) forest coffee (10%); ii)
semi-forest coffee (35%); iii) garden coffee (50%); and iv) plantation coffee
(5%) (Aga et al., 2003; Mekuria et al., 2004; Petit, 2007).

The economy of Ethiopia is based on agriculture, and coftee is the central
agricultural export product. Historically, Ethiopia is the oldest exporter of
coffee in the world and it is the largest coffee producer and exporter in
Africa (ITC, 2002). Coftee is a means of subsistence for the rapidly growing
population of the country as a complement or even sole source of income,
and it plays a fundamental role in both the cultural and socio-economic life
of the nation. LMC (2003) estimates that 15 million people are dependent
on coffee for at least a significant part of their livelithood. Ethiopian coffee
(Arabica coffee) ranks highly in intrinsic quality of the bean (Bhattacharya &
Bagyaraj, 2002) and it is the principal economic species, contributing over
70% of the world’s commercial coftee (Gole et al., 2002). Ethiopian farmers
normally produce nine spectra of the finest single-origin/speciality coffees
(Jimma, Nekemte, Illubabor, Limu, Tepi, Bebeka, Yirga Chefe, Sidamo and
Harar), which are now well diffused into the trade circuits of the coffee
industry (Mekuria et al., 2004).
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Southwestern Ethiopia, the origin of wild Arabica
coffee

More genetically diverse cultivars of C. arabica exist in Ethiopia than
anywhere else in the world (Aga ef al., 2003), which has led botanists and
scientists to agree that Ethiopia is the centre of origin (primary gene centre)
for diversification and dissemination of the coffee plant (Fernie, 1966; Zeven
& Zhukovsky 1975; Bayetta, 2001). Currently, natural coftee forests are
limited mostly to the southwestern area of the country, where remnants of
rainforest still exist on patchy areas (Taye, 2001; Gole ef al., 2002; Aga et al.,
2003; Gole, 2003). These contain the only wild populations of Coffea arabica
in the world, which may serve as a gene pool for further international
Arabica coffee breeding activities (Fernie, 1966; Zeven & Zhukovsky, 1975;
Bayetta, 2001; Aga et al., 2003; Gole, 2003). They are also highly important
for in situ/ex situ conservation of Arabica coffee. It is well accepted that
coffee seeds in general cannot be stored for long-term conservation in seed
gene banks (Aga, 2005), and therefore the collections of coffee genetic
resources are traditionally maintained as living trees or shrubs in field gene
banks (Berthaud & Charrier, 1988). Thus, this southwestern area of Ethiopia
is of particular value to the world as a whole, as it is the home and cradle of
biodiversity of Arabica coffee seeds with the best inherent quality
(Bhattacharya & Bagyaraj, 2002) and production potential (Zeven &
Zhukovsky, 1975) due to the occurrence of wild coffee populations. In
southwestern Ethiopia, agroforestry-based and monoculture coffee systems
are also extensively cultivated. The potential of coffee production in this
region is very high as a result of suitable altitude, ample rainfall, optimum
temperature (Gemechu, 1977), suitable planting material (van der Vossen,
2001; Aga et al., 2003) and good soil fertility (Hofner, 1987). Thus, because
of the aforementioned facts, increased attention has been drawn to this
region.

Shade coffee production for sustainable land
use: Overview

Agroforestry systems can increase soil nutrient availability and accelerate
phosphorus cycling due to the fact that the deeper tree roots remarkably
improve soil conditions (Young, 1997). This kind of land use system is
therefore of paramount importance, particularly in densely populated,
sloping regions in the humid and sub-humid tropics, which includes the
major coffee growing areas of Ethiopia.

Intensive methods of unshaded coffee production do not take into
consideration the environmental and social consequences (Polzot, 2004).
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Normally, sun-grown coftee displays a reduction in structural complexity
and diversity and is associated with a number of negative by-products,
ranging from reduced forest cover, increased soil erosion, chemical runoff
and water contamination to consolidation of plantations into large
agribusinesses. It has also been suggested that monoculture reduces the
spectrum of beneficial fungal species found in the soil after several years of
continuous cultivation or when natural ecosystems are transformed into
agro-ecosystems (Sieverding, 1991). Such transformation is a common
practice in southwestern Ethiopia, where the present studies were carried
out (Paper II). The current instability in coffee prices on the world market
can be attributed to transition from shade-grown to sun-grown coftee (Rice
& McLean, 1999). However, recently a paradigm shift has begun to occur,
where traditional production systems that were once considered unprofitable
are being revisited (Polzot, 2004). Studies have revealed that the agroforestry
coffee systems are more effective in promoting soil conservation than
conventional monoculture (unshaded) coffee systems (Cardoso et al., 2003).

Moreover, coffee has favourable characteristics for agroforestry practices. In
its original habitat, coffee naturally occurs in native forests (Taye, 2001; Aga
et al., 2003; Gole, 2003; Paper I). The period of flowering, when coffee
requires more light, coincides with the dry season, in which the agroforestry
trees lose their leaves. A side effect of this is that coftee trees do not compete
for water with other species (Polzot, 2004). Coffee production increases
when grown in habitats suitable for sustaining pollinators, for instance,
honey bees in shade-grown coftfee (Roubik, 2002). Therefore, increasing
tree cover in coffee production is a viable option for mitigating climate
change that also provides social, economic and ecological benefits (Polzot,
2004). Like other agroforestry systems that employ a woody component,
shade-grown coftee agroecosystems contribute to the removal of carbon
from the atmosphere and its storage on land.

In Ethiopia, farmers traditionally grow coffee as an important cash crop
under various types of shade trees, mainly dominated by leguminous tree
species (Taye, 2001; Gole, 2003; Papers I & II). Wide use of tree legumes
for providing shade has also been well documented in many coffee growing
countries across the globe (Perfecto et al., 1996; Albertin & Nair, 2004;
Polzot, 2004). The list of well-known and dominant shade trees
documented in Ethiopia increases from time to time but mainly
encompasses Albizia, Acacia, Bersama, Cordia, Croton, Dracaena, Entada,
Ehretia, Erythrina, Ficus, Leucaena, Millettia, Olea, Pavetta, Prunus, Schefflera,
Syzygium and others (FAO, 1968; Teketay & Tegeneh, 1991; Taye, 2001;
Gole, 2003; Papers I & II).
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Smallholders represent 95% of total production in low input-low output
systems, making shaded Ethiopian coftee production naturally ‘organic’
(Petit, 2007). Farmers usually do not apply agrochemicals and Ethiopia has
the potential to produce certified organic high quality coffee due to
favourable growing conditions and the high diversity of genetic resources in
Coffea arabica (Aga et al., 2003; Mekuria et al., 2004). Thus, the present
investigation placed special emphasis on this type of production system,
which protects the environment and maintains biodiversity due to shade tree
species (Perfecto et al., 1996). The effect of shade trees on Arabica coffee
production has been tested for a long time and the general belief is that the
advantages outweigh the suggested negative impacts (Beer et al, 1998;
Muschler, 2001).

Improvement of coffee attributes

Evidence is increasing that better coffee attributes are generally produced by
shaded systems, particularly those dominated by tree legumes (Muschler,
2001; Muleta et al., unpubl.). More precisely, studies from Costa Rica
(Muschler, 2001) have determined the main benefits of shading on coftee
plants to be: (1) higher weight of fresh fruits; (2) larger beans; (3) higher
visual appearance ratings for green and roasted beans; (4) higher acidity and
body ratings; and (5) absence of off-flavours.

Climate regulation

The importance of overstorey trees in buffering temperature extremes
(day/night) in coffee production systems is well documented (Beer et al.,
1998; Polzot, 2004). Shade is reported to reduce the effect of excessive heat
on the coffee plants during the day and to reduce heat losses at night.
Furthermore, Beer et al. (1998) have recorded the advantages of tree cover
in reduction of wind speed, which in turn minimizes crop desiccation and
soil erosion losses. Shade trees also make a great contribution in reduction of
hail damage (Beer ef al., 1998; Muleta et al., unpubl).

Organic matter contribution, nutrient cycling and
maintenance of biodiversity

The roles of coftee agroecosystems in contributing massive leaf litter input,
stimulating organic matter turnover and decreasing soil erosion have been
well addressed (Beer ef al., 1998). Coffee agroecosystems store significant
amounts of carbon in aboveground woody biomass of shade trees, the litter
layer and soil organic matter compared with unshaded systems, and thus act
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as potential carbon sinks (Polzot, 2004). Significant aboveground plant
carbon pools contribute to reductions in greenhouse gas (GHG) emissions
and the alleviation of GHG accumulation in the atmosphere. Beer et al.
(1998) point out that coffee agroecosystems could prevent the release of up
to 1000 t C ha". Thus, the contributions shaded coffee plantations make to
climate change mitigation can be quite significant (Polzot, 2004).

Tree legumes predominate as overstorey trees, both in natural coffee forests
(Taye, 2001; Paper I) and agroforestry-based coffee systems (Paper II) in
southwestern Ethiopia. Leguminous shade trees are acknowledged for their
good capacity for fixing atmospheric nitrogen (Granhall, 1987; Beer ef al.,
1998) by forming symbiotic associations with certain soil bacteria, rhizobia
(Roskoski, 1982; Assefa & Kleiner, 1998; Grossman et al., 2006). In Mexico,
organic farmers claim that Inga (tree legume) shade improves coffee plant
health (Grossman, 2003). Similarly, in Costa Rica (Albertin & Nair, 2004)
and in Ethiopia (Muleta ef al., unpubl), the majority of farmers commonly
mention legume shade trees as the first class tree species to include in their
coffee fields. Altogether, native leguminous tree species are often used to
supply all or a proportion of the N needs of coftee bushes and reduce the
dependence on synthetic fertilizers (Soto-Pinto et al., 2000; Sprent &
Parsons, 2000; Grossman et al., 2006), which is fundamental to low-input
sustainable agricultural practices in most developing countries.

In Ethiopia, various types of shade trees in agroforestry-based coffee
plantations (Asfaw, 2003) and afromontane forests (Wubet et al., 2003, 2004)
have been reported to form associations with certain beneficial soil fungi,
e.g. arbuscular mycorrhizal fungi (AMF). More precisely, coftee bushes
under some shade trees, mainly leguminous, in both natural coffee forest
(Paper 1) and agroforestry-based coffee (Paper II) are associated with higher
numbers of AMF spores than those under non-leguminous trees. Beer ef al.
(1998) verified that nutrient turnover and the transfer of major bioelements
N, P, K, Ca, and Mg to the soil are greater in shaded plantations due to
excess litter from both trees and coffee bushes.

Increased shade density and complexity is reputedly highly beneficial for
conservation of biodiversity (Perfecto et al., 1996; Polzot, 2004). Perfecto et
al. (1996) have reported that many traditional shaded coffee plantations
resemble natural forests more than any other agricultural system in use, in
terms of structure and ecology. Studies in Costa Rica indicate that shaded
coffee systems can support greater numbers of animal populations (Hall,
2001) and can act as buffer zones to protected areas and serve as biological
corridors, thus providing pathways for the migration of fauna between
natural reserves (Polzot, 2004).
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Weed suppression

Canopy cover may suppress the major weeds in coffee plantations, such as
African couch grass (Digitaria scalarum), which in turn can minimize synthetic
herbicide application and reduce labour inputs, giving rise to cheaper
production (Beer ef al., 1998). In Bonga natural coffee forest, the lower
stratum (< 2 m) contained various plant species, mainly Desmodium (Paper
I), which has been reported to be an efficient suppressor of aggressive and
spontaneous weeds (Bradshaw & Lanini, 1995).

Reduction of disease and pest problems

Cool and wet weather in combination with increased shade can favour the
incidence of some fungal diseases in shaded coffee systems. Nevertheless,
shade has also been shown to minimize the occurrence of some fungal
diseases that may pose serious problems in sun-grown crops (Polzot, 2004).
In addition, Beer ef al. (1998) indicate that shade trees may provide habitats
for biological control agents due to their rich biodiversity, thus reducing the
prevalence of disease and the dependence on pesticides in shaded coffee
production systems.

Minimizing groundwater pollution risks

Groundwater can be contaminated during application of synthetic fertilizers
in sun-grown coftee fields, often causing increased health risks. Beer et al.
(1998) reported that groundwater contamination by nitrate and nitrite is
more common under intensive coffee production with little or no shade
compared with shaded coffee production systems.

Food production and other benefits

Other valuable benefits associated with shade trees involve fruits suitable as
food (Peeters et al., 2003). The inclusion of fruit-bearing trees as shade in
coftee plantations provides farmers with access to additional foods, such as
mangos, oranges, bananas and avocados (Polzot, 2004).

Apart from their contribution to understorey coffee bushes, farmers derive
benefits from shade trees in terms of firewood and timber (Beer et al., 1998;
Peeters et al., 2003, Muleta et al.,unpubl.). For instance, Cordia africana, the
main timber tree in the country, universally provides shade to coffee plants
in southwestern Ethiopia (FAO, 1968). Timber-producing shade trees have
low management costs and can be considered "revenue storage" for farmers
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that can be cashed during periods of low coffee prices or crop failure
(Polzot, 2004). Other valuable benefits associated with shade trees involve
honey production and other options for income (Hailu ef al., 2000, Muleta
et al., unpubl.). In Ethiopia, the most common shade tree species such as
Croton macrostachyus (Giday, 2001), Albizia gummifera and Syzygium guineense
(Geyid et al., 2005) also play a vital role in traditional medicine to combat
various infectious diseases.

Another added advantage of shaded coffee systems is the ever increasing
demand and willingness of consumers to pay best prices for organic and fair-
trade coffee (Wikstrom, 2003; van der Vossen, 2005). Premium prices may
compensate for the possibly low yield but economically viable and
sustainable returns of shaded coftee systems (Beer ef al., 1998).

Arbuscular mycorrhizal fungi (AMF)

AMF are soil-dwelling fungi that form associations with the roots of a
plethora of terrestrial plants (angiosperms, gymnosperms and many
pteridophytes and bryophytes) by forming distinct symbiotic structures (Fig.
1). The AM fungi were formerly included in the order Glomales in the
Zygomycota (Redecker et al., 2000), but they have recently been moved to
a new phylum, the Glomeromycota (Schiibler et al., 2001).This group of
fungi is still an untapped resource for sustainable soil management. They are
ubiquitous soil-borne microbial fungi, whose origin and divergence have
been dated back more than 450 million years (Redecker ef al., 2000). AMF
can be found in virtually almost all ecosystems in temperate, tropical and
arctic regions, except under waterlogged conditions (Smith & Read, 1997).
As a group, they may have the single largest effect on plant performance of
any rhizosphere-associated microbe, functioning as an extension of the root
system of the plant and increasing absorptive area (Leake et al., 2004).
Arbuscular mycorrhizal (AM) associations are of great importance in forest
ecology, land rehabilitation, plant health and yield in low input systems of
the tropics through key ecological processes (Sieverding, 1991).
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Fig. 1. Cross-section of a plant root with mycorrhizal features (Source: Azcon-
Aguilar & Barea, 1980).

Agronomic and ecological roles of AMF

Most of the root systems of agricultural/horticultural plants and crops are
colonized by AMF (Sieverding, 1991). The most prominent effect of the
fungus is improved phosphorus nutrition of the host plant in soils with low
phosphorus levels due to the large surface area of their hyphae and their high
affinity P uptake mechanisms (Koide, 1991). There are also reports of
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production by AMF of organic acids that could solubilize the insoluble
mineral phosphates (Lapeyrie, 1988), an added advantage in terms of
improvement of P uptake by host plants. AMF mycelia have also been
shown to increase uptake of many other nutrients, including N, S, B, Cu,
K, Zn, Ca, Mg, Na, Mn, Fe, Al, and Si (Clark & Zeto, 2000). In some
cases, AMF may be responsible for acquiring 100% of host nutrients (e.g. P;
Smith et al., 2004). Marschner (1998) and Hodge & Campbell (2001) have
indicated that the improved plant nutrition is due to (i) increased root
surface through extraradical hyphae, which can extend beyond root
depletion zone, (ii) degradation of organic material and (iii) alteration of the
microbial composition in the rhizosphere.

New research suggests that AMF have multiple ecosystem functions and are
ideal tools for any field where plants and their communities are manipulated,
including sustainable agriculture, landscape restoration and horticulture,
among others (Fig. 2; Hart & Trevors, 2005). This multifunctional nature of
AMF  encompasses mineralization of organic nutrients, seedling
establishment, increased pathogen resistance, herbivore tolerance and
pollination, and soil stability, heavy metal tolerance/bioremediation, drought
(hydraulic stresses)/chilling resistance and alleviation of desertification among
others (Fig. 2; Jeffries et al., 2003; Hart & Trevors, 2005).

The roles of AMF to their hosts in a given environment, however, are
largely dependent on the nutrient status of the soil, particularly P. Highly
fertile soils generally exhibit lower mycorrhizal fungal populations. It is
known that the AM fungi are not able to colonize plant roots strongly under
P-sufficient conditions (Koide & Schreiner, 1992). In certain cases, the
growth rates of plants can be reduced by AM colonization in the presence of
available P (Peng ef al., 1993).
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Fig. 2. Wider applications of AMF in production systems and ecosystems (Source:
http://aggie-horticulture.tamu.edu/faculty/davies/students/alarcon/ AMFApplications.pdf; 10-Jul-2007)

AMF and horticultural crop production (e.g. Coffea
arabica L.)

Agricultural land carrying low input production systems is a natural
mycorrhizal habitat, with a high diversity of AMF (up to 40 species per site;
Vandenkoornhuyse et al., 2002). Most horticultural and crop plants are
symbiotic with arbuscular mycorrhizal fungi and drive great benefits from
these particular associations. Coffee plants (Coffea arabica) are usually
associated with arbuscular mycorrhizal (AM) fungi and highly dependent on
these particular associations (Habte & Bittenbender, 1999; Miyasaka &
Habte, 2001). A total of 22 species of AM fungi that are important in

20



Arabica coffee plantations in central Sao Paulo State, Brazil, have been
identified, with predominance of Glomus, Acaulospora and other genera
(Lopes ef al., 1983). Cardoso et al. (2003) have demonstrated differences in
the distribution of mycorrhizal fungal spores in soils under agroforestry and
monocultural coffee systems in Brazil, with higher AMF spore density under
the former production system, in keeping with the results from Ethiopia
(Paper II). Arabica coffee rhizospheres in both natural forest (Paper I) and
agroforestry-based coftee production systems (Paper II) in southwestern
Ethiopia contain AMF propagules, with predominance of Glomus. Various
types of shade trees in forests (Wubet ef al., 2003, 2004), including
medicinal and nitrogen-fixing species, have also been found to be associated
with AMF in Ethiopia. Furthermore, investigations in natural forests (Muleta
et al., unpubl.) indicate that wild Arabica coffee seedlings show a reasonable
level of root colonization (30%) as observed elsewhere (Lopes ef al., 1983).

The benefits that coffee plants obtain from AMEF associations include
improved growth, nutrition, water relations and tolerance to pathogens
and/or parasitic nematodes. Vaast & Zasoski (1992) evaluated the effects of
AMEF and nitrogen sources on rhizosphere soil characteristics, growth and
nutrient acquisition of Arabica coffee seedlings and showed that mycorrhizal
plants grew better and accumulated more N, Ca and Mg than non-
mycorrhizal plants. Furthermore, Fernindez-Martin ef al. (2005) investigated
the effects of AM and a soil-earthworm mixture on the growth of coffee
plants and revealed that leaf area increased by 6-140% with AM application
and that mass of the endophytic mycorrhizal fungi was inversely dependent
on soil fertility.

Vaast ef al. (1997) investigated the effects of a root-lesion nematode
(Pratylenchus coffeae), AM fungi and timing of inoculation on the growth and
nutrition of a nematode-susceptible Arabica coffee cultivar. The results
indicated that in the presence of P. coffeae, early AM-inoculated plants
remained P sufficient and their biomass was 75-80% of that of nematode-
free controls.

The benefits that AMF impart to their hosts vary depending on specific time
of application. The best results are often obtained when plants are inoculated
during propagation (micropropagation, cuttings and seedlings). For instance,
AMEF inoculation showed a significant positive effect (P-sufficient) on in vitro
propagated Arabica coffee microcuttings compared with control plants
(Vaast et al., 1997).
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Plant growth promoting rhizobacteria

The rhizosphere is the zone of soil surrounding a plant root where the
biology and chemistry of the soil are influenced by the root. In the
rhizosphere, very important and intensive interactions take place between
the plant, soil, microorganisms and soil microfauna, influenced by
compounds exuded by the root and by microorganisms feeding on these
compounds (Antoun & Prévost, 2006). All this activity makes the
rhizosphere the most dynamic environment in the soil. Gobat et al. (2004)
have distinguished three rhizosphere fractions: 1) the endorhizosphere
(interior of the root); 2) the rhizoplane (surface of the root); and 3) the
rhizospheric soil that adheres to the root when the root system is shaken
manually. The volume of the soil that is not influenced by the root is
defined as non-rhizospheric soil or bulk soil.

The rhizosphere is the front-line between plant roots and soil-borne pests.
Therefore it seems logical that microorganisms that colonize the same niche
could be ideal candidates for sustainable agriculture (Weller, 1988). In the
rhizosphere, bacteria are the most abundant microorganisms (Antoun &
Prévost, 2006). Rhizobacteria are rhizosphere-competent bacteria that
aggressively colonize plant roots; they are able to multiply and colonize all
the ecological niches found on the roots at all stages of plant growth, in the
presence of a competing microflora (Antoun & Kloepper, 2001).
Rhizobacteria can have a neutral, detrimental or beneficial effect on plant
growth. Deleterious rhizobacteria are presumed to adversely affect plant
growth and development through the production of undesirable metabolites
(phytotoxins) or through competition for nutrients or inhibition of the
beneficial effects of mycorrhizae (Sturz & Christie, 2003).

Beneficial rhizobacteria are termed either plant growth promoting
rhizobacteria (PGPR) or plant health promoting rhizobacteria (PHPR)
according to their mode of action (Sikora, 1992). The term PGPR was first
used by Kloepper & Schroth (1978) and investigations on PGPR have been
escalating at an ever increasing rate since then.

The PGPR are defined by three intrinsic characteristics (Barea et al., 2005):
(1) they must be able to colonize the root, (i) they must survive and
multiply in microhabitats associated with the root surface, in competition
with other microbiota, at least for the time needed to express their plant
promotion/protection activities, and (iii) they must promote plant growth.
The PGPR are known to participate in many important ecosystem
processes. They were first used for agricultural purposes in the former Soviet
Union and India and are now being tested worldwide (Lucy et al., 2004).
These authors have also summarized the benefits of PGPR for plant growth,
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which include increases in: germination rate, root growth, yield (including
grain), leaf area, biocontrol, chlorophyll content, hydraulic activity,
tolerance to drought, shoot and root weights.

Mechanisms of action: Overview

A wide array of beneficial rhizosphere bacteria have been categorized as
PGPR including mainly diazotrophs, bacilli, pseudomonads and rhizobia
(Antoun & Prévost, 2006). PGPR may induce plant growth promotion
through different direct or indirect modes of action (Glick et al., 1999;
Antoun & Prévost, 2006). Direct mechanisms include improvement of plant
nutrient status (liberation of phosphates and micronutrients from insoluble
sources; non-symbiotic nitrogen fixation), iron sequestration by
siderophores, the production of bacterial volatiles and phytohormones and
lowering of the ethylene level in the plant. The indirect effects can be
exerted by antibiotic production, depletion of iron from the rhizosphere,
induced systemic resistance, synthesis of antifungal metabolites, production
of fungal cell wall lysing enzymes, competition for sites on the root,
stimulation of other beneficial symbioses and degradation of xenobiotics in
inhibitor-contaminated soils. Somers ef al. (2004) have classified PGPR into
the following functional groups depending on their inherent activities as: 1)
biofertilizers (increasing the availability of nutrients to the plant), i)
phytostimulators (plant growth promoting, usually by the production of
phytohormones: auxin, cytokinin, gibberelin), iii) rhizoremediators
(degrading organic pollutants), and iv) biopesticides (controlling diseases,
mainly by the production of antibiotics and antifungal metabolites).

Phosphate solubilizing bacteria (PSB)

Theoretical estimates have suggested that the accumulated phosphorus (P) in
agricultural soils due to fixation is sufficient to sustain maximum crop yields
world-wide for about 100 years (Goldstein et al., 1993). However, although
P is abundant in soils in both inorganic form (originating mainly from
applied P fertilizer) and organic form (derived from microorganisms, animals
and plants) (Paul & Clark, 1989), it is still one of the major plant growth-
limiting nutrients. On average, most nutrients in the soil solution are present
in millimolar amounts, but phosphorus is present only in micromolar or
lesser quantities (Ozanne, 1980). These low levels of P are due to the high
reactivity of soluble P with calcium (Ca), iron (Fe) or aluminium (Al),
which leads to P precipitation (Fig. 3). Inorganic P in acidic soils is
associated with Al and Fe compounds, whereas calcium phosphates are the
predominant form of inorganic phosphates in calcareous soils.
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Fig. 3. Phosphorus channels in soil. (Source: modified from Bagyaraj ef al., 2000).

Organic P may also make up a large fraction of soluble P, as much as 50% in
soils with high organic matter content (Barber, 1984). Phytate, a
hexaphosphate salt of inositol, is the major form of P in organic matter,
contributing between 50 and 80% of the total organic P (Alexander, 1977).
Although microorganisms are known to produce phytases that can hydrolyze
phytate, phytate tends to accumulate in virgin soils because it is rendered
insoluble as a result of forming complex molecules with Fe, Al and Ca
(Alexander, 1977). Phospholipids and nucleic acids form a mother pool of
labile P in soil that is easily available to most of the organisms present (Molla
& Chowdary, 1984).
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To circumvent the problem of P deficiency, the addition of phosphate
fertilizers has become a common practice in modern agriculture. The
production of chemical phosphate fertilizers is a highly energy-intensive
process, requiring energy worth US$4 billion per annum in order to meet
the global needs (Goldstein et al, 1993). The situation is further
compounded by the fact that almost 75-90% of added P fertilizer is
precipitated by Fe, Al and Ca complexes present in the soils, creating a
demand for suitable alternatives to mobilize this fixed fraction of the
important bioelement (Stevenson, 1986). Soil microorganisms are able to
mobilize insoluble mineral phosphate in a more environmentally friendly
and sustainable manner.

The involvement of microorganisms in solubilization of inorganic
phosphates was known as early as 1903 (Kucey et al., 1989). It is estimated
that P solubilizing microorganisms may constitute 20 to 40% of the
culturable population of soil microorganisms and that a significant
proportion of these can be isolated from rhizosphere soil (Kucey, 1983;
Chabot ef al., 1993). Most PSB are isolated from the rhizosphere of various
plants and are known to be metabolically more active than those isolated
from sources other than rhizosphere (Baya et al., 1981). In the present study,
over 72% of the rhizobacteria (both Gram-negative and Gram-positive)
associated with wild Arabica coffee rhizospheres were shown to be able to
solubilize mineral P (Paper III). Important phosphate solubilizing
microorganisms (PSMs) including bacteria and fungi have been well
reviewed (Rodriguez & Fraga, 1999). In general, P solubilizing bacteria
commonly outnumber P solubilizing fungi 2-150 fold (Kucey, 1983; Kucey
et al., 1989). However, fungal isolates exhibit greater P solubilizing ability
than bacteria in both liquid and solid media (Kucey, 1983). In addition, the
P solubilizing ability in bacteria (Fig. 4; Paper III) may be lost upon repeated
sub-culturing but no such loss has been observed in the case of P solubilizing
fungi (Kucey, 1983). The majority of the phosphate solubilizing
microorganisms (PSMs) mobilize Ca-P complexes and only a few can
solubilize Fe-P and Al-P complexes (Kucey ef al., 1989).
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(b)

Fig. 4. Insoluble phosphate solubilization studies on Pikovskaya’s agar (PA): (a) and
(b) show two consistent and efficient phosphate solubilizing isolates (large haloes),
whereas six others lost their activity (no visible halo) during repeated subculturing
on PA (Paper III).

Phosphorus biofertilizers in the form of microorganisms can help in
increasing the availability of fixed phosphates for plant growth by
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solubilization (Goldstein, 1986; Kucey ef al., 1989). PSMs also exhibit other
traits beneficial to plants, such as production of phytohormones, antibiotics,
siderophores, vitamins, antifungal substances and hydrogen cyanide
(Kloepper et al., 1989; Rodriguez & Fraga, 1999; Papers IV & V). In
addition to being better scavengers of soluble P (P biofertilizers), the
microorganisms involved in P solubilization can also enhance plant growth
by increasing the efficiency of biological nitrogen fixation, enhancing the
availability of trace elements such as Fe, Zn, etc. (Fig. 5; Kucey ef al., 1989;
Rodriguez & Fraga, 1999). It is well established that every aspect of the
process of formation of the N, fixing nodule is limited by the availability of
P and legumes show a high positive response to P supplementation (Deng et
al., 1998). This most likely has significant positive implications for the
dominant legume shade trees in the current study areas (Papers I & II).

At the molecular genetics level, the precise mechanism used by different
PSMs  still remains mostly unidentified (Rodriguez et al, 2006).
Nevertheless, it is generally believed that the production of organic acids,
added to a steep drop in pH, is the main driving force for mobilization of
mineral phosphates (Illmer ef al., 1995; Goldstein, 1996; Rodriguez & Fraga,
1999; Paper III). Moreover, Goldstein (1996) proposed direct glucose
oxidation to gluconic acid (GA) as a major mechanism for mineral
phosphate solubilization (MPS) in Gram-negative bacteria. As a result of
acidification of the surrounding medium, soluble orthophosphate ions
(H,PO," and HPO,”) can be readily released. The PSMs produce a range of
low molecular weight organic acids such as acetate, lactate, oxalate, tartarate,
succinate, citrate, gluconate, ketogluconate, glycolate, efc. (Goldstein, 1986;
Kim et al., 1998; Paper III). More precisely, the organic acids secreted can
either directly dissolve the mineral phosphate as a result of anion exchange
of PO,” by acid anion or can chelate both Fe and Al ions associated with
phosphate (Moghimi ef al., 1978). Strong support for this suggested
mechanism has been provided by evidence that addition of NaOH abolishes
the P solubilization process, indicating that pH reduction of the system is
responsible for the P solubilizing abilities of PSMs.
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However, acidification does not seem to be the only mechanism of P
solubilization, as the ability to reduce the pH in some cases does not
correlate with the ability to solubilize mineral phosphates (Subba Rao,
1982). For instance, a genomic DNA fragment from Enterobacter agglomerans
showed mineral phosphate solubilization activity in E. coli JM109, although
the pH of the medium was not altered (Kim et al., 1997). Similarly, Kucey
(1988) has demonstrated that the chelating property of the organic acids is
also important, as it has been shown that the addition of 0.05M ethylene
diamine tetraacetic acid (EDTA) to the medium has the same solubilizing
effect as inoculation with a phosphate solubilizing organism. In addition,
under some circumstances phosphate solubilization has been observed at
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only slightly acidic or alkaline pH values (Altomare et al., 1999). On the
other hand, mineral phosphate solubilization has been reported in the
absence of detectable chelating agents or organic acids, merely by acidifying
the medium (lllmer ef al., 1995). Overall, the exact mechanisms utilized by
PSMs remain to be discovered (Rodriguez ef al., 2006).

Microorganisms also rely on various forms of enzymes (Garcia et al., 1992;
Rodriguez et al., 2006) in order to mobilize organic phosphate sources.
These include: (1) non-specific  phosphatases, which perform
dephosphorylation of phospho-ester or phosphoanhydride bonds in organic
matter; (2) phytases, which specifically cause P release from phytic acid; and
(3) phosphonatases and C-P lyases, enzymes that perform C-P cleavage in
organophosphonates. The main activity apparently corresponds to the work
of acid phosphatases and phytases because of the predominant presence of
their substrates in soil. The overall plant and microbial mechanisms to
increase P availability in the rhizosphere excluding mycorrhizal association
are presented in Fig. 6.

Production of phytohormones (particularly IAA)

Phytohormones, also called plant growth regulators, are well known for
their regulatory role in plant growth and development and work at
extremely low concentrations. The most common, best characterized and
physiologically most active auxin in plants is indole-3-acetic acid (IAA). L-
tryptophan (L-TRP), an amino acid, serves as a physiological precursor for
biosynthesis of auxins in higher plants and in microbes (Frankenberger &
Arshad, 1995). Root exudates are natural sources of TRP for the
rhizosphere microflora, which may enhance auxin biosynthesis in the
rhizosphere (Martens & Frankenberger, 1994).

Indoleacetic acid is known to stimulate both a rapid response (e.¢. increased
cell elongation) and a long-term response (e.g. cell division and
differentiation) in plants (Cleland, 1990). More specifically, IAA is a
phytohormone that is known to be involved in root initiation, cell division
and cell enlargement (Salisbury, 1994). A significant activity of PGPR is the
production of auxin-type phytohormones that affect root morphology and
thereby improve nutrient uptake from soil (Barea ef al., 2005). Lucy et al.
(2004) have shown that IAA-producing PGPR increase root growth and
root length, resulting in greater root surface area, which enables the plant to
access more nutrients from soil.

The capacity to synthesize IAA is widespread among soil- and plant-
associated bacteria.
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Fig. 6. Plant and microbial mechanisms increasing phosphorus (P) availability in the
rhizosphere (mycorrhizal colonization not considered). Plants and microorganisms
can increase the availability of inorganic P by altering rhizosphere pH and exuding
organic acid anions. Plants can also increase the capacity to take up P by increasing
the root surface area via (i) growing long and thin roots with numerous thin root
hairs, and (ii) changing the capacity and/or affinity of plasma membrane-embedded
P transporters. Plants and microorganisms can mobilize P from organic pools and
convert it to available inorganic forms by phosphatases. The phytase enzyme exuded
by microorganisms is capable of converting phytate into P esters that phosphatases

can break down to inorganic P. The outline arrows indicate P uptake. (Source:
Rengel & Marschner, 2005).

By and large, microorganisms isolated from the rhizosphere and rhizoplane
of various crops are more active in producing auxins than those from root-
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free soil because of rich supplies of substrates exuded from roots compared
with non-rhizosphere soil (Strzelczyk & Pokojska-Burdzeij, 1984). A 3-fold
higher IAA content was found in the rhizosphere compared with non-
rhizosphere environments (Narayanaswami & Veerraju, 1969). It has been
estimated that 80% of bacteria isolated from the rhizosphere can produce
IAA (Patten & Glick, 1996; Ahmad ef al., 2006). Similarly, over 66% of wild
Arabica coffee-associated rhizobacteria secreted IAA (Paper V).

A survey of the IAA biosynthesis pathways utilized by plant-associated
bacteria reveals that pathogenic bacteria such as Pseudomonas syringae,
Agrobacterium tumefaciens and Erwinia herbicola synthesize IAA predominantly
via the indole-3-acetamide (IAM) pathway. Synthesis by this route is
generally constitutive. PGPR  such as Rhizobium, Bradyrhizobium and
Azospirillum species synthesize IAA, mainly via the indole-3-pyruvic acid
(IPyA) pathway, which may be subject to more stringent regulation by plant
metabolites (Patten & Glick, 1996). Other rhizobacteria may produce
cytokinins (Timmusk ef al., 1999) and gibberellins (Khan ef al., 2006).

Lowering of ethylene production

The term ‘stress ethylene’ was coined by Abeles (1973) to describe the
acceleration of ethylene biosynthesis by plants in response to biological and
environmental stresses. Ethylene stimulates senescence and leaf and fruit
abscission, inhibits plant growth (i.e. roots) and triggers cell death near
infection sites (Bashan & de-Bashan, 2005). In agriculture it is important to
control ethylene levels, often by lowering them in order to prevent
economic losses.

1-aminocyclopropane-1-carboxylate (ACC) 1is the immediate direct
physiological precursor of ethylene. Several soil microorganisms, mainly
Pseudomonas spp. synthesize the enzyme ACC deaminase (reviewed by Glick
et al., 1999) which degrades ACC, thus preventing plant production losses
by inhibitory levels of ethylene. In the present study, over 27% of
rhizobacteria (all Pseudomonas spp.) isolated from wild Coffea arabica
rhizospheres were able to degrade ACC (Paper V). Glick ef al. (1998) put
forward the theory that the mode of action of some PGPR was the
production of ACC deaminase. Those authors suggested that ACC
deaminase activity would decrease ethylene production in the roots of host
plants and result in root lengthening. In some cases, the growth promotion
effects of ACC deaminase-producing PGPR appear to be best expressed in
stressful situations (Grichko & Glick, 2001).
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Biocontrol of fungal plant diseases (particularly coffee
diseases)

Phytopathogenic microbes have an immense impact on agricultural
productivity, greatly reducing crop yields and sometimes causing total crop
loss (Antoun & Prévost, 2006). Major pathogens induce well-known root or
vascular diseases with obvious symptoms (Weller, 1988). Pathogenic fungi in
general and Fusarium spp. in particular are highly destructive pathogens of
both greenhouse and field-grown major crops under favourable conditions
for disease development. The disease caused by this fungus is characterized
by yellowing of the older leaves, browning of the vascular system, wilting in
a later stage and finally death of the whole plant. Chlamydiospores of the
pathogen remain in infested soils for several years and invasion occurs
through wounds on the root surface.

At present, emerging serious fungal wilt diseases are one of the biggest
challenges confronting African coffee growers, with noticeable yield losses
(Adugna et al., 2001; Geiser et al., 2005; Serani et al., 2007). Coftee wilt
disease or tracheomycosis caused by Fusarium xylarioides Steyaert
(teleomorph:  Gibberella xylarioides Heim and Saccas) is becoming an
important major coffee disease of both Robusta and Arabica coffee in coffee
growing regions of Africa (Adugna et al., 2001; Geiser et al., 2005; Silva et
al., 2006). The incidence of coffee vascular disease (tracheomycosis) in
Ethiopia is reported to be 60%, with significant yield losses due to very
severe damage and ultimate death of millions of coftee bushes (Adugna et al.,
2001). Other important coffee pathogens reported from Ethiopia include
Fusarium stilboides Wollenw (telemorph: Gibberella stilboides) (Silva et al.,
2006) and Fusarium oxysporum Schlechtend.: Fr. (Wellman, 1954). However,
studies reveal that F. xylarioides causes more deaths of young coffee plants
than any other Fusarium spp. (Serani et al., 2007).

Currently, control of plant disease is a pressing need for agriculture across
the globe, particularly in economically disadvantaged countries. Existing
practices for controlling plant disease are fundamentally based on genetic
resistance in the host plant, management of the plant and its environment,
and synthetic chemicals (Strange, 1993). The high cost of pesticides, the
emergence of fungicide-resistant pathogen biotypes and other social and
health-related impacts of conventional agriculture on the environment have
increased interest in agricultural sustainability and biodiversity conservation
(van der Vossen, 2005). Moreover, many of the synthetic chemicals may
lose their usefulness due to revised safety regulations and concern over non-
target effects (Guy et al., 1989).

Thus, there is a need for new solutions to plant disease problems that
provide effective control while minimizing cost and negative consequences
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for human health and the environment (Cook ef al., 1996). In most systems,
the biological elements are the primary factors in disease suppression and the
topic of ‘biological control of plant pathogens’ has gained feasibility in the
context of sustainable issues (Weller et al., 2002). The rich diversity of the
microbial world provides a seemingly endless resource for this purpose.
Biological control is also likely to be more robust than disease control that is
based on synthetic chemicals. The complexity of the organism interactions,
the involvement of numerous mechanisms of disease suppression by a single
microorganism, and the adaptedness of most biocontrol agents to the
environment in which they are used all contribute to the belief that
biocontrol will be more durable than synthetic chemicals (Cook, 1993).
Microorganisms that can grow in the rhizosphere are ideal for use as
biocontrol agents, since the rhizosphere provides the front-line defence for
roots against attack by pathogens (Weller, 1988). The groups of soil
microorganisms with antagonistic properties towards plant pathogens are
diverse, including plant-associated prokaryotes and eukaryotes (Barea et al.,
2005). Increased plant productivity by biocontrol mechanisms is indirect and
results from the suppression of deleterious microorganisms and soil-borne
pathogens, by PGPR in particular (Schippers et al., 1987).

Bacillus/Paenibacillus spp. have been tested on a wide variety of plant species
for their ability to control diseases. They are appealing candidates for
biocontrol because they produce endospores that are tolerant to heat and
desiccation (Weller, 1988). Currently, Pseudomonas spp. are also receiving
much attention as biocontrol agents due to their remarkable potential for
rhizosphere competence (Bashan & de-Bashan, 2005). The world-wide
interest in these groups of bacteria was sparked by studies initiated for
sustainable production systems. The fluorescent pseudomonads (De Freitas &
Germida, 1990) and Bacillus spp. (Landa et al., 1997) are the main candidates
for the biological control of diseases induced by fungal pathogens and they
have been applied successfully to suppress fusarium wilts of various plant
species. Similarly, among wild Arabica coffee rhizosphere isolates, Bacillus
and Pseudomonas spp. in particular showed remarkable inhibition against

Fusarium xylarioides, F. stilboides and F. oxysporum under in vitro conditions
(Fig. 7, Paper 1V).
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Fig. 7. Control plates (left row) and dual culture media showing some rhizobacteria
and coffee pathogen interactions: a) F. oxysporum, b) P. chlororaphis (AUPB23) vs F.
oxysporum, c) P. chlororaphis (AUPB24) vs F. oxysporum, d) F. stilboides, e)
Pseudomonas sp.(AUPB15) vs F. stilboides, f) Bacillus sp. (AUBY95) vs F. stilboides (no
inhibition), g) F. xylarioides, h) B. subtilis vs F. xylarioides. Arrows indicate the zones
of inhibition (Paper IV).
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Mechanisms used by biocontrol PGPR

Pathogen suppression by antagonistic microorganisms can result from one or
more mechanisms depending on the particular antagonist involved (Barea et
al., 2005). An effective biocontrol agent often acts through a combination of
several different mechanisms (Whipps, 2001).

Siderophore production

Living organisms require iron as a component of proteins involved in
important life processes such as respiration, photosynthesis and nitrogen
fixation. Iron is one of the major elements in the earth’s crust but soil
organisms such as plants and microbes have difficulty in obtaining sufficient
iron to support their growth because of formation under aerobic conditions
of ferric oxides, which cannot be readily transported into cells. Under such
iron starvation, bacteria, fungi and plants secrete small, specialized efficient
iron (III) chelator molecules commonly known as siderophores (Drechsel &
Jung 1998). After the iron-siderophore complexes have formed, these now
soluble complexes are internalized via active transport into the cells by
specific membrane receptors (Glick ef al., 1999). Following either cleavage
or reduction to the ferrous state, the iron is released from the siderophore
and used by a cell (Glick et al., 1999).

Lankford (1973) coined the term siderophore to describe low molecular
weight (approximately 600 to 1500 daltons) molecules that bind ferric iron
with an extremely high affinity. Siderophore was derived from a Greek term
meaning iron carrier (Ishimaru, 1993). The dominant iron-binding ligands
of siderophores are hydroxamates and catecholates (phenolates), but
carboxylate, oxazoline, d-hydroxy carboxylate and keto hydroxyl bidentate
siderophores have also been found (Essén et al., 2006). In addition, hybrid
siderophores with more than one type of ligand group exist (Neilands,
1981). Each functional group presents two atoms of oxygen, or less
commonly, nitrogen, that bind to iron (III). While bacterial siderophores are
structurally diverse, fungal siderophores are dominated by hydroxamate
siderophores (Drechsel & Jung, 1998). On the other hand, plant
siderophores are linear hydroxy- and amino-substituted iminocarboxylic
acids, such as mugineic and avenic acids (Sugiura et al., 1981).

Many bacteria are capable of producing more than one type of siderophore
or have more than one iron-uptake system to take up multiple siderophores
(Neilands, 1981). A considerable number of wild Arabica coffee-associated
rhizobacteria (67%) produce siderophores (Paper IV). Wide arrays of
beneficial plant-associated bacterial genera, e.g. Pseudomonas, Azotobacter,
Bacillus, Enterobacter, Serratia, Azospirillum and Rhizobium secrete various
types of siderophores (Glick et al., 1999; Loper & Henkels 1999; Paper IV).
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Siderophores function mainly in the solubilization, transport and storage of
iron (Stephan et al,, 1993). Some other important mechanisms by which
siderophore-producing bacteria contribute to the promotion of plant growth
are described briefly below.

Siderophores produced by certain strains of fluorescent Pseudomonas spp.
have been linked to suppression of soil-borne plant diseases. It has been
suggested that siderophores act antagonistically by sequestering iron from the
environment, restricting growth of the pathogen (Bashan & de-Bashan,
2005). Convincing evidence for the involvement of siderophores in disease
suppression is readily available (Bashan & de-Bashan, 2005). For example, a
mutant strain of P. putida that overproduces siderophores has been shown to
be more effective than the wild bacterium in controlling the pathogenic
fungus Fusarium oxysporum in tomato. Many wild strains that lose their
siderophore trait also lose biological control activity. The extent of disease
suppression as a consequence of bacterial siderophore production is affected
by several factors (Bashan & de-Bashan, 2005), including the specific
pathogen, the species of biocontrol PGPR, the soil type, the crop and the
affinity of the siderophore for iron. For instance, siderophore-mediated
suppression should be greater in neutral and alkaline soils than in acid soils
(Baker et al., 1986). Thus, disease suppression under controlled laboratory
conditions is only an indication of the efficacy of the biocontrol agent in the

field.

Pathogens are thought to be sensitive to suppression by siderophores for
several reasons: (a) they produce no siderophores of their own; (b) they are
unable to use siderophores produced by the antagonists or by other
microorganisms in their immediate environment; (c) they produce too few
siderophores or biocontrol PGPR produce siderophores that have a higher
affinity for iron than those produced by fungal pathogens, allowing the
former microbes to scavenge most of the available iron, and thereby prevent
proliferation of fungal pathogens; or (d) they produce siderophores that can
be used by the antagonist, but they are unable to use the antagonist’s
siderophores (Weller, 1988; Bashan & de-Bashan, 2005).

Bashan & de-Bashan (2005) have reported that depletion of iron from the
rhizosphere normally does not affect plant growth, as plants can thrive on
less iron than can microorganisms. However, some plants can bind and
release iron from bacterial iron-siderophore complexes, and use the iron for
growth. Thus, these plants benefit in two ways: from the suppression of
pathogens and from enhanced iron nutrition, resulting in increased plant
growth.

Pseudomonas siderophores have also been implicated in inducing systemic
resistance (ISR) in plants (Leeman et al., 1996), i.e. enhancement of the
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defence capacity of the plant against a broad spectrum of pathogens.
Exposure to pathogens, non-pathogens, PGPR and microbial metabolites
stimulates the plant’s natural self-defence mechanisms before a pathogenic
infection can be established, effectively ‘immunizing' the plant against
fungal, viral and bacterial infections (Bashan & de-Bashan, 2005). Protection
occurs by accumulation of compounds such as salicylic acid, which plays a
central protective role in acquired systemic resistance, or by enhancement of
the oxidative enzymes of the plant. While acquired systemic resistance is
induced upon pathogen infection, induced systemic resistance can be
stimulated by other agents, such as PGPR inoculants. The feasibility of
protecting plants by induced systemic resistance has been demonstrated for
several plant diseases. For instance, plants inoculated with the biocontrol
PGPR P. putida and Serratia marcescens were protected against the cucumber
pathogen P. syringae pv. Lachrymans (Bashan & de-Bashan, 2005).

Hpydrogen cyanide (HCN) production

Considerable numbers of free-living rhizospheric bacterial communities,
mainly Pseudomonas spp. (Faramarzi et al., 2004; Ahmad et al., 2006;
Faramarzi & Brand, 2006; Paper 1V), are capable of generating HCN by
oxidative decarboxylation from direct precursors such as glycine, glutamate,
or methionine (Castric, 1977). Other rhizobacterial genera reported to
produce HCN include Bacillus (Ahmad et al., 2006; Faramarzi & Brand,
2006) and Chromobacterium (Faramarzi & Brand, 2006; Paper 1V). However,
hydrogen cyanide has not been detected in cultures of Pseudomonas
aeruginosa, ~Serratia marcescens, Bacillus subtilis, Staphylococcus  aureus and
Escherichia coli (Michaels & Corpe, 1965).

In general, cyanide is formed during the early stationary growth phase
(Knowles & Bunch, 1986). Cyanide occurs in solution as free cyanide,
which includes the cyanide anion (CN') and the non-dissociated HCN. It
does not take part in growth, energy storage or primary metabolism, but is
generally considered to be a secondary metabolite that has an ecological role
and confers a selective advantage on the producer strains (Vining, 1990).
Cyanide is a phytotoxic agent capable of inhibiting enzymes involved in
major metabolic processes and is considered one of the typical features of
deleterious rhizobacterial isolates (Bakker & Schippers, 1987). Nevertheless,
at present its applications in areas of biocontrol methods (see below) are
increasing (Voisard et al. 1989; Devi ef al., 2007).

Cyanogenesis in bacteria accounts in part for the biocontrol capacity of the
strains that suppress fungal diseases of some economically important plants
(Voisard et al., 1989). For instance, for many pseudomonads, production of
metabolites such as hydrogen cyanide (HCN) is the primary mechanism in
the suppression of root fungal pathogens. Cyanogenic bacterial species have
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also been found to be effective in killing the subterranean termite
Odontotermes obesus, an important pest of major agricultural crops and forest
plantation trees, under in vitro conditions (Devi ef al., 2007), in addition to
suppression of plant parasitic nematodes (Siddiqui ef al., 2006). Hydrogen
cyanide (HCN) effectively blocks the cytochrome oxidase pathway and is
highly toxic to all aerobic microorganisms at picomolar concentrations.
However, producer microbes, mainly pseudomonads, are reported to be
resistant (Bashan & de-Bashan, 2005).

Production of lytic enzymes

A large array of other microbial substances is involved in the suppression of
phytopathogenic growth and subsequent reduction in damage to plants.
These substances include lytic enzymes such as chitinase, 8-1,3-glucanase,
protease and lipase (Bashan & de-Bashan, 2005). Many Pseudomonas and
Bacillus species are capable of producing some of these hydrolytic enzymes
(Paper 1V). For example, Pseudomonas stutzeri produces extracellular chitinase
and B-1,3-glucanase, which lyse the pathogen Fusarium sp. (Bashan & de-
Bashan, 2005). Cladosporium werneckii and B. cepacia can hydrolyze fusaric
acid (produced by Fusarium), which causes severe damage to plants (Bashan
& de-Bashan, 2005). Direct evidence for the role of cell-wall degrading
enzymes in biocontrol in vivo comes from studies utilizing mutant strains
overexpressing or lacking a particular enzyme, or transgenic plants
expressing these enzymes (Pozo ef al., 2004).

Antibiotics

Many organisms operative in pathogen suppression also act via antibiosis
(Mazzola, 2002). Antibiotic production by biocontrol PGPR is perhaps the
most powerful mechanism against phytopathogens (Bashan & de-Bashan,
2005). Indeed, the first clear-cut experimental demonstration that a bacteria-
produced antibiotic could suppress plant disease in an ecosystem was made
by Tomashow & Weller (1988). Fluorescent pseudomonads (Paper IV) have
been shown to produce a range of antibiotics, eg. = 2,4-
diacetylphloroglucinol, which suppress the growth of various soil-borne
fungal phytopathogens (Mazzola, 2002).

Competition

Competition for nutrients and suitable niches is another key mechanism
among pathogens and biocontrol PGPR in biocontrol of some plant diseases
(Bashan & de-Bashan, 2005). Members of the pseudomonads are highly
efficient in competition for root resources among rhizobacterial
communities (Barea et al., 2005). On plant surfaces, host-supplied nutrients
include exudates, leachates, waste products of other organisms or senesced
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tissue (Pal & Gardener, 2006). To successfully colonize the phytosphere, a
microbe must effectively compete for the available nutrients. Biocontrol
rhizosphere bacteria have the ability to multiply and spread in the
rhizosphere environment, to colonize potential infection sites on the root
and to act by direct contact with the pathogens (Insunza et al., 2002).
Although difficult to prove directly, much indirect evidence suggests that
competition between pathogens and non-pathogens for nutrient resources is
important for limiting disease incidence and severity (Bashan & de-Bashan,
2005; Pal & Gardener, 2006). The degree of the susceptibility of soil-borne
pathogens to the prevailing competition remarkably varies among microbes.
In general, soil-borne phytopathogens such as species of Fusarium and
Pythium that infect through mycelial contact are more susceptible to
competition from other soil- and plant-associated microbes than those
pathogens that germinate directly on plant surfaces and infect through
appressoria and infection pegs (Pal & Gardener, 2006).

Studies have often revealed multiple modes of action of the population of
putative PGPR inhabiting the rhizosphere (Weller, 1988; Haas & Keel,
2003). It is important to remember that in a given biological agent more
than one mechanism may operate to suppress a pathogen, and the relative
importance of a particular mechanism may vary with the physical or
chemical conditions in the rhizosphere (Weller, 1988). In addition,
Pseudomonas spp. produce several metabolites with antimicrobial activity
towards other bacteria, fungi and even nematodes (Haas & Keel, 2003).
Several reports also show the potential of combining different biocontrol
agents with different disease-suppressive mechanisms in the field (de Boer et
al., 2003) and the combined inoculation of selected rhizosphere
microorganisms has been recommended for maximising plant growth and
nutrition (Probanza et al., 2001).

Interactions between AMF and rhizobacteria

Despite the difficulty in selecting a multifunctional microbial inoculum,
appropriate microbial combinations can be recommended for a given
biotechnological input related to improvement of plant performance.
Beneficial plant-microbe interactions in the rhizosphere are primary
determinants of plant health and soil fertility (Jeffries et al., 2003). The
rhizosphere of mycorrhizal plants (mycorrhizosphere) harbours a great array
of microbial activities responsible for several key ecosystem processes (Barea
et al., 2002). A typical beneficial eftect is that exerted by the ‘mycorrhiza-
helper-bacteria’ (MHB), a term coined by Garbaye (1994) for those bacteria
known to stimulate mycelial growth of mycorrhizal fungi and/or enhance
mycorrhizal formation. Within the mycorrhizosphere, AMF interact
positively with various types of rhizobacterial communities that have proven
agronomic and/or ecological significance, including symbiotic/free living
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N,-fixing bacteria, phosphate solubilizing bacteria, heavy metal detoxifying
bacteria, microbial biocontrol agents and microbes that are involved in soil
aggregate formation (Barea et al., 2005). Certain rhizobacteria are known to
produce compounds such as phytohormones that increase the rates of root
exudation (Azcén-Aguilar & Barea, 1992). Consequently these rhizosphere
microorganisms may be able to affect the presymbiotic stages of AM
development, such as spore germination rate and mycelial growth for root
colonization (Azcon-Aguilar & Barea, 1995). Once the arbuscular symbiosis
has developed, AM hyphae influence the surrounding soil, i.e. the
mycorrhizosphere (Linderman, 1988), resulting in the development of
distinct microbial communities relative to the rhizosphere and bulk soil
(Andrade et al., 1997). Mycorrhiza formation in its turn changes several
aspects of plant physiology and some nutritional and physical properties of
the rhizospheric soil (Barea et al., 2002) and consequently results in alteration
of the microbial composition in the rhizosphere (Marschner, 1998; Hodge
& Campbell, 2001).

Muthukumar et al. (2001) have indicated that microorganisms act
synergistically when inoculated simultaneously. Many biocontrol agents,
both Gram-negative (Barea et al., 1998; Barea ef al,, 2005) and Gram-
positive (Budi et al., 1999) strains, at least (cf. above) do not have inhibitory
effects on AM formation. None of the Pseudomonas strains tested to date
affect: (1) the numbers or diversity of the native AM fungal population; (ii)
the percentage of root length that becomes mycorrhizal; or (iii)) AM
performance (Barea et al., 2005). On the other hand, the antifungal activities
of certain Pseudomonas spp. may improve plant growth and nutrient (N and
P) acquisition by the mycorrhizal plants (Barea ef al., 1998). Among Gram-
positives, a Paenibacillus sp. isolated from the mycorrhizosphere of sorghum
shows antagonistic activity against soil-borne fungal pathogens and stimulates
mycorrhization (Budi ef al., 1999). The same applies to certain P. polymyxa
strains associated with wheat (Artursson ef al., unpubl.).

Ratti et al. (2001) found that a combination of the arbuscular mycorrhizal
fungus Glomus aggregatum and the PGPR  Paenibacillus polymyxa and
Azospirillum brasilense maximized biomass and P content of the host plant
Cymbopogon martinii when grown with an insoluble source of inorganic
phosphate. Similarly, both Enterobacter sp. and Bacillus subtilis were found to
promote the establishment of the AM Glomus intraradices and to increase
plant biomass and tissue N and P contents (Toro et al.,, 1997). Kim et al.
(1998) also found that P content increased with inoculation with either the
AM  Glomus etunicatum or the phosphate solubilizing PGPR  Enterobacter
agglomerans; however, the highest N and P uptake was observed when
tomatoes were inoculated with both organisms. It is interesting that in each
of the above reports, one or more of the helper bacteria are known to have
P solubilizing capabilities and this clearly suggests that the bacteria are acting
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in concert with the AM to improve P acquisition of the host plant. AM
inoculation per se improves the establishment of both inoculated and
indigenous phosphate solubilizing rhizobacteria acting as MHB (Toro ef al.,
1997; Barea et al., 2002). In the mycorrhizosphere, AMF also interact with
various soil-borne fungal phytopathogens such as agents of Fusarium wilt. A
growing body of evidence reveals that inoculation with AMF significantly
suppresses disease development and incidence induced by Fusarium spp.
(Harrier & Watson, 2004). The potential biotechnological applications of
native free-living microbes with multiple beneficial traits (Vassilev et al.,
2006) and synergistic interactions (Babana & Antoun, 2006) in promotion of
plant growth have been well addressed.

Biofertilizers for sustainable agriculture

Sustainable farming systems strive to minimize the use of costly and
environmentally unfriendly synthetic pesticides/agrochemicals and to
optimize the use of alternative management strategies to improve soil
fertility and control soil-borne pathogens (Harrier & Watson, 2004). A more
sustainable agriculture that is ‘ecologically sound, economically viable,
socially just and humane’ (Gips, 1987) should aim to recycle minerals in the
soil with no or few external inputs, maintain a high biodiversity in agro-
ecosystems, favour mechanical and biological weed control, and better
exploit soil-plant-microbe interactions for plant nutrition and protection
against pests (Edwards et al., 1990). An answer to this is the biofertilizer, an
environmentally friendly fertilizer now used in many countries. During the
last couple of decades, the use of biofertilizers-PGPR  for sustainable
agriculture has increased tremendously in various parts of the world. Vessey
(2003) defined biofertilizer as a substance that contains living
microorganisms which, when applied to seed, plant surfaces or soil, colonize
the rhizosphere or the interior of the plant and promote growth by
increasing the supply or availability of primary nutrients to the host plant.
The term is not synonymous with organic/biological fertilizer or
biopesticide. The main sources of biofertilizers are PGPR, beneficial
rhizospheric fungi such as arbuscular mycorrhizae and Penicillium bilaii and
cyanobacteria (blue-green algae) that are long known to have plant growth
promoting effects via increasing the nutrient status of host plants (Vessey,
2003). Various studies have demonstrated a positive influence of
biofertilization on horticultural plant growth, development and yield
(Rodriguez Sr., 2006). Significant increases in growth and yield of
agronomically important crops in response to inoculation with biofertilizers
have been reported (Asghar et al., 2002). Moreover, AM products are now
commercially available as biofertilizers in Europe, Asia and the U.S.A
(Narutaki & Miyamoto, 1996; Talavera ef al., 2001).
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The mode of action by which biofertilizers enhance the nutrient status of
host plants (cf. above) can be categorized into some important areas (Vessey,
2003): (1) biological N, fixation; (2) increasing the availability of nutrients in
the rhizosphere (e.g. solubilization of phosphorus); (3) inducing increases in
root surface area; (4) enhancing other beneficial symbioses of the host such
as arbuscular mycorrhizae and phytohormone production; 5) production of
enzymes that decrease phytohormone production by the host, induction of
the host to produce signal substances to other symbionts (e.g. flavonoids);
and (6) combination of modes of action. Recorded important benefits from
biofertilizers include: 1) Increasing crop yield by 20-30%; 2) replacing
chemical nitrogen and phosphorus by 25%; 3) activating the soil
biologically; 4) restoring natural soil fertility; and 5) providing protection
against drought and some soil-borne diseases
(http://www.vasat.org/learning resources/OrganicFAQs/biofertilizer.htm;
21-Aug-2007). In addition, some PGPR appear to promote growth by
acting as both biofertilizer and biopesticide. For instance, strains of
Burkholderia cepacia have been shown to have biocontrol characteristics to
Fusarium spp., but also to stimulate growth of maize under iron-poor
conditions via siderophore production (Bevivino et al., 1998). The overall
simplified methods of using biofertilizers are presented in Fig. 8.
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Fig. 8. General methodology for obtaining and using biofertilizers. Source:
(http://www.pugwash.org/reports/ees/cuba2004/02%20Pugwash/07 Ondina.pdf;;
21-Aug-2007)
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Conclusions
The main findings of this thesis can be summarized as follows:

A number of the shade trees studied, particularly the tree legumes, are ideal
for agroforestry systems because most coffee rhizospheres under them
presented higher AMF spore counts and greater diversity, even in deep soil
layers, than unshaded coftee plants (Papers I and II). Canopy bases and
topsoil layers harboured higher mean spore densities of AMF (Paper II).
Overall, members of Glomeromycota were dominated by Glomus and
Acaulospora (Papers I and II). The presence of these native AMF genera in
particular in the study areas is highly vital for the establishment and growth
of wild Arabica coftee seedlings.

Phosphate solubilizing rhizobacterial isolates from wild coffee plants were
screened for P solubilization efficiency (Paper III). In all cases, pH and
mobilized P values had an inverse relationship. By and large, Gram-negative
phosphobacteria showed remarkable superior activities over the Bacillus
group in terms of lowering the pH and releasing P into the growth medium.
2-ketogluconic and gluconic acids were the principal organic acids exuded
by all Gram-negative wild Arabica coftee-associated rhizobacteria and caused
steep declines in pH values. The production of these organic acids can be
suggested to be the main mechanism used by these rhizobacteria to mobilize
insoluble P sources. Higher concentrations of 2-ketogluconic acid were
measured in HAP medium (the most insoluble P source), indicating
enhanced induction of glucose dehydrogenase (GDH) as a result of
phosphate starvation. Isolates AUEY28 and AUEY29 (both Emwinia sp.)
showed remarkable P solubilizing abilities, making them the most promising
candidates for a bioinoculant development programme.

Potent inhibitory effects were exhibited by several coffee-associated
rhizobacterial isolates against deleterious coffee wilt diseases caused by
Fusarium spp. (Paper IV). Wild Arabica coffee-associated antagonists showed
more prominent inhibitory activity against F. xylarioides and F. stilboides than
against F. oxysporum. The highest percentage inhibition against the target
fungal pathogens was caused by the isolate AUPB24 (P. chlororaphis). The
antagonists were found to produce various inhibitory substances as possible
mechanisms of inhibition of the coffee fungal pathogens.

PCR-RFLP and 16S rRNA gene analyses revealed a limited number of
rhizobacteria, mainly Pseudomonas and Bacillus spp., but this study does
provide first-hand information on the presence of some strains closely
related to rhizobacteria of proven importance for plant growth promotion
(Paper V). Several members of the pseudomonads showed some direct
phytobeneficial traits, e.g. production of IAA and utilization of ACC.
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Overall, the rhizobacterial isolates showed multiples of beneficial traits that
can qualify them either as potential biofertilizers or biocontrol agents (Papers
[II-V). The natural coffee forests of southwestern Ethiopia are therefore
ideal focal sites not only for in situ coffee genetic resources and biodiversity
conservation but also for isolation of rhizobacteria with biocontrol and
biofertilizer capacities for the promotion of organically grown coffee.

Future trends

Given that this investigation is the first of its kind in coffee growing areas of
Ethiopia and that studies on the wild Arabica coftee-associated AMF and
rhizobacteria are generally lacking, there is much opportunity for further
research in this field, both in Ethiopia and elsewhere. Field-collected AMF
spores and identification based on morphotypes (as in this study) provide
only a static picture of the AMF community. A fuller understanding of the
AMF community composition in natural coffee forests can be obtained by
using trapping and molecular methods that directly involve plant roots
and/or spores in combination with the conventional techniques. It is also
recommended that further studies be conducted to determine microbial
communities by involving both culture and culture-independent techniques
(extraction and analysis of total soil DNA) to reveal the real picture of
rhizobacteria diversity associated with wild Arabica coffee. The current in
vitro study verified the presence of many indigenous beneficial rhizobacteria
of wild Arabica coffee plants that can function both as potent biofertilizers
and biocontrol agents. The development of better screening procedures and
understanding of the genetic basis of phosphate solubilization and
rhizospheric competence will help in developing novel PSMs that could be
studied in greenhouse and field trials to ascertain their future applicability for
inoculum development. In general, the availability of new and powerful
technologies for studying co-operative microbial interactions in the
rhizosphere guarantees a greater understanding of these processes, which will
facilitate their successful applications in biotechnology. Further studies may
address the consequences of the co-operation between microbes in the
rhizosphere under field conditions to assess their ecological impacts and
biotechnological potential. As our understanding of the mechanisms used by
PGPR advances, it becomes feasible to enhance their capacity to stimulate
plant growth by modifying promising traits in both areas of biofertilizers and
biocontrol agents, e.g., by introducing genes responsible for the biosynthesis
of desirable metabolites that can extend the range of their abilities to
improve sustainable plant productivity, while maintaining environmental

quality.
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Thus, future research in rhizosphere biology which relies on the
development of molecular and biotechnological approaches should increase
our knowledge of coffee rhizospheres and make it possible to achieve
integrated management of soil microbial populations.
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